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Abstract Somitogenesis is the process for the development of somites in vertebrate
embryos. This process is timely regulated by synchronous oscillatory expression of
the segmentation clock genes. Mathematical models expressed by delay equations or
ODEs have been proposed to depict the kinetics of these genes in interacting cells.
Throughmathematical analysis, we investigate the parameter regimes for synchronous
oscillations and oscillation-arrested in an ODEmodel and amodel with transcriptional
and translational delays, bothwithMichaelis–Menten type degradations. Comparisons
between these regimes for the twomodels aremade. The delaymodel has larger capac-
ity to accommodate synchronous oscillations. Based on the analysis and numerical
computations extended from the analysis, we explore how the periods and ampli-
tudes of the oscillations vary with the degradation rates, synthesis rates, and coupling
strength. For typical parameter values, the period and amplitude increase as some
synthesis rate or the coupling strength increases in the ODE model. Such variational
properties of oscillations depend also on themagnitudes of time delays in delaymodel.
We also illustrate the difference between the dynamics in systems modeled with lin-
ear degradation and the ones in systems with Michaelis–Menten type reactions for
the degradation. The chief concerns are the connections between the dynamics in

B Chih-Wen Shih
cwshih@math.nctu.edu.tw

Kuan-Wei Chen
kwchen0613@gmail.com

Kang-Ling Liao
kangling325@gmail.com

1 Department of Applied Mathematics, National Chiao Tung University, Hsinchu 300, Taiwan

2 Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00285-017-1138-1&domain=pdf
http://orcid.org/0000-0001-8530-3542


98 K.-W. Chen et al.

these models and the mechanism for the segmentation clocks, and the pertinence of
mathematical modeling on somitogenesis in zebrafish.

Keywords Gene regulation · Segmentation clock gene · Synchronous oscillation ·
Oscillation-arrested · Delay equation

Mathematics Subject Classification 34K18 · 92B25 · 92C15 · 92C45

1 Introduction

Mathematical modeling for gene regulation can easily go up tomultiple or high dimen-
sions, if several genes, their mRNA and protein products are taken into account.
Such models can be expressed by coupled nonlinear systems. Aside from the com-
plicated biochemical details, there are time delays involved in the process, including
the synthesis of mRNA and proteins, and the modification and transport of molecules.
The amount of time lags in these processes may extend to tens of minutes. It is
therefore reasonable to incorporate delays into modeling of such processes. Math-
ematical techniques for analyzing such coupled nonlinear systems with multiple
delays become essential in understanding the dynamical properties of those mod-
els.

One interesting instance is the modeling of somitogenesis in vertebrate devel-
opment. Somites are segmental structures arising one by one from the presomitic
mesoderm (PSM) and laying along the antero-posterior axis of vertebrate embryos.
They later develop, through further differentiation, into vertebrate, rib, and tail. The
process during the development of somites is called somitogenesis. It involves gene
regulation in both space and time. Somite segmentation depends on oscillatory gene
expression for cells in the PSM, with neighboring cells oscillating in synchrony. In
zebrafish, the involved oscillating genes include her1, her7, and cells interact through
Delta–Notch signaling (Horikawa et al. 2006; Jiang et al. 2000; Mara et al. 2007;
Özbudak and Lewis 2008; Riedel-Kruse et al. 2007). Mutations in the Notch cell–
cell signaling pathway disrupt synchronization and somite formation and lead to
defective somite boundary and irregular segmented body axis (Jiang et al. 2000;
Lewis 2003). Therefore, both oscillation and synchronization of clock gene expres-
sion are necessary dynamics for normal segmentation. In addition, the oscillation
period of clock genes in the tail bud of zebrafish is about 30min which matches
the period of somites made (Hanneman and Westerfield 1989; Holley 2007). This
shows that the expressions of the clock genes play an important role in somitogenesis
and mathematical model can help understand the processes during somitogene-
sis.

Autorepression of clock genes by its own protein product has been advocated as the
main mechanism for the single cell oscillations in the zebrafish segmentation clock.
A simple mathematical model for such regulation involving the mRNA and protein of
either her1 or her7 gene was proposed in Lewis (2003). A key feature of this system
is the inclusion of transcriptional and translational time delays. On the other hand, by
considering the processes in the cell responsible for time delays, an ODE system was
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studied in Uriu et al. (2010). Therein, the transport of Her protein from cytoplasm
to nucleus is taken into account, so that the protein concentrations in cytoplasm and
nucleus are both state variables. Although many components of the segmentation
clock in zebrafish have been identified in the past decade, further detailed regulatory
interactions among these components, and the associated biochemical evidences were
recently explored. That the core of the clock’s regulatory circuit consisting two distinct
negative feedback loops, one with Her1 homodimers and the other with Her7:Hes6
heterodimers, was reported in Schröter et al. (2012).More completemodels taking into
accountmRNAmolecules ofher1,her7,hes6,deltaC, and theirmonomer proteins, and
dimer proteins have been investigated (Ay et al. 2013, 2014). Further understanding of
the transcriptional regulation of each her/hes gene in the clock was achieved through
experiments and computational modeling in Schwendinger-Schreck et al. (2014).

Normal segmentation relies on well-timed oscillation of clock genes and syn-
chronization over neighboring cells. Cell–cell communication via the Delta–Notch
signaling synchronizes adjacent cells so that their gene expressions oscillate in phase.
However, as pointed out in Uriu et al. (2010), how synchronized oscillation is achieved
is not obvious, as Delta protein in a cell stimulates the expression of her clock gene
in neighboring cells, but the uprising expression of her in these cells in turn sup-
presses their delta genes. Mathematical justification of such a mechanism is therefore
of interest. On the other hand, it was reported that when the Notch signaling is absent,
the clock desynchronization is due to the stochastic dissociation of Her1/7 repressor
proteins from the oscillating her1/7 autorepressed target genes (Jenkins et al. 2015).

The “clock and wave” mechanism for the formation of somites was first proposed
in Cooke and Zeeman (1976). Based on the experimental evidences in Dubrulle et al.
(2001), Dubrulle and Pourquié (2002), Pourquié (2004) and Baker et al. (2006) devel-
oped a “clock andwavefront”model to investigate pattern formation of somites, which
depends on the gradient of FGF8 expression along the antero-posterior axis of ver-
tebrate embryos. That when the boundaries of somites form was later found to be
determined by the clock gene (Özbudak and Lewis 2008). To depict the posterior-to-
anterior slowing of oscillation rate, Cinquin (2007) proposed a multicellular model
for zebrafish somitogenesis that involves heterodimerization of clock proteins Her1
and Her7, with the control protein Hes6; the later interacts with clock proteins and
controls the rate of oscillation (Kawamura et al. 2005; Sieger et al. 2006). Campanelli
and Gedeon (2010) constructed a delay model extended from Lewis’s model to study
how the transcription binding sites and decay rates for clock protein monomers and
dimers affect the formation of the gene-expressionwave. InUriu et al. (2009), traveling
wave solutions on a lattice system consisting of the ODEs with some of the reaction
rates formulated in gradient along the lattice was investigated. Contrary to this result,
a recent experimental and computational study indicates that Her7 protein degrades
uniformly along the PSM (Ay et al. 2014). Instead, it was asserted that an increasing
gradient of gene expression time delays from the posterior to the anterior leads to the
traveling wave patterns (Ay et al. 2013, 2014). We note that in the mathematical mod-
els, linear degradation was adopted in Lewis (2003), Cinquin (2007), Schröter et al.
(2012), Ay et al. (2013) and Jenkins et al. (2015), whereas theMichaelis–Menten reac-
tion for degradation was employed in Uriu et al. (2009, 2010). The reason for adopting
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Michaelis–Menten reaction is that degradation of proteins generally involves enzy-
matic reactions. We shall compare these formulations in Sect. 2.

The above-mentioned kinetic models were regarded complicated and difficult to
analyze mathematically, as commented in Baker and Schnell (2009). Researchers
turned to seek other theoretical framework to encompass both temporal and spatial
aspects of somitogenesis. By focussing on the collective behaviors in terms of the phase
in a collection of cells clocks, rather than concentrating on the internal machinery of
cells, a coupled phase oscillator model has been employed in Morelli et al. (2009) and
Herrgen et al. (2010). Such system of phase equations is adapted from the Kuramoto’s
model which is closely associated with the theory of weakly coupled system for neu-
ronal dynamics (Kuramoto 1984; Ermentrout and Terman 2010). Kuramoto’s model
was extended to incorporate time delay inYeung andStrogatz (1999). From thismodel,
under some assumptions, a collective frequencyΩ of coupled oscillations was derived
to satisfy

Ω = ωL − ε sin(Ωτ), (1)

where ωL is the intrinsic frequency and ε is the coupling strength. Much of the theory
and its fit to the experimental data are based on this relationship. While the kinetic
models are formulated at the level of single cells, the phase model can be regarded as
at the tissue level. However, the connection and correspondence between the kinetic
models and phasemodel have remained elusive, both biologically andmathematically.

Systems modeled with time delays and systems without time delays can certainly
exhibit disparate dynamics. In addition, systems employing linear degradation and the
ones using Michaelis–Menten degradation can have completely different dynamics.
Yet how the reaction rates, delay magnitudes, and coupling strength affect the collec-
tive behaviors for each of these systems is a complicated research task. In the context
of biological oscillations, dynamical properties for periodic orbits, such as variation
of periods and amplitudes with respect to parameters, are key targets. As these mathe-
matical models are differential equations, further mathematical studies shall definitely
help understand these models, and provide complements to purely numerical findings.
However, developing effectivemathematical approach to analyse thesemodels is itself
a challenge.

Theoretical analysis on the existence and stability of synchronous periodic solutions
for the ODE system proposed in Uriu et al. (2010) is a nontrivial task and has not
been reported. This is due to that as the parameters vary, the equilibrium, hence the
linearization at the equilibrium, along with its eigenvalues, all change. Nevertheless,
it is important to find conditions under which cells can achieve synchronization in a
sufficiently short time and to compare models with delay and without delay to clarify
which ismore suitable to generate stable synchronous oscillations.Oscillation-arrested
is another important dynamicalmode in the clock genemodels. Biologically, we regard
thismode as the phase of formed somites in the gene expression. For a nonlinear system
inmulti-dimensional phase space, it is another task to justify that there does not exist an
oscillation. Global convergence to an equilibrium provides such a scenario. However,
concluding such a convergence for coupled nonlinear delayed systems requires a new
idea, since for example, finding a global Lyapunov function for these systems does
not seem possible.
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In this paper, we shall perform mathematical analysis to investigate synchronous
oscillations and oscillation-arrested for the ODE system proposed by Uriu et al. (2009,
2010) as well as a modified systemwith delays.We are interested in seeing the dynam-
ics for the coupled cells as well as the parameter values corresponding to synchronous
oscillations and global convergence to equilibrium. Hopf bifurcation theory is a nat-
ural mathematical tool to analyze the existence and stability of synchronous periodic
orbits in the clock gene models. For the ODE system, we demonstrate that there are
two parameters, one representing the activation rate (coupling strength), and the other
expressing a synthesis rate, and each can serve as a bifurcation parameter inHopf bifur-
cation. For the delay system, we use the sum of transcriptional delay and translational
delay as the bifurcation parameter in delayHopf bifurcation theorem,while holding the
other parameters suitably fixed. The computation of Hopf bifurcation for delay system
is rather involved, especially for the stability of bifurcating periodic orbits, via normal
form theory and center manifold theorem. For both systems, under some conditions,
we can assert that all solutions remain nonnegative and bounded in forward time. In
addition, there exists a unique positive synchronous equilibrium, and a criterion for
the global convergence to the synchronous equilibrium can be established by using
the sequential-contracting argument developed in Shih and Tseng (2011). Moreover,
extended from the mathematical analysis, we shall pursue further numerical findings
and illustrate their connections with somitogenesis.

We shall also illustrate the dynamical differences between system modeled with
linear degradations and the one with Michaelis–Menten type degradations. Although
modeling with Hill-type functions which describe the repression and the Michaelis–
Menten type reaction for the degradations result in some complications on the
equations, we shall demonstrate that the mathematical analysis for such systems can
still be performed. We note that the equations considered in this paper, while serving
as basicmathematical models for segmentation clocks in zebrafish, carry typical forms
for models describing the kinetics of gene regulation.

The paper is organized as follows. In Sect. 2, we introduce and compare the math-
ematical models on the segmentation clock gene in zebrafish. In Sect. 3, we show
that the solutions remain nonnegative and bounded under some conditions. We then
discuss the global convergence to the unique equilibrium. In Sects. 4.1 and 4.2, we
discuss synchronous periodic solutions for the ODE system and the delay system,
respectively. Several numerical examples which are based on our analytical results are
illustrated. In Sect. 5, we compare the dynamics for systems with delays and without
delays.We also compare the present results with some previous works. The paper then
ends with a conclusion.

2 Cell-to-cell kinetic models

The prevailingmodels of segmentation clock for zebrafish are based on themechanism
of direct autorepression of the clock gene by its own product and interaction of neigh-
boring cells through positive feedback via Delta–Notch signaling. The basic model
contains only one cyclic gene, her1 or her7. Let x1, x2, x3, x4 (resp., y1, y2, y3, y4)
represent respectively, the concentrations of her mRNA, Her protein, delta mRNA,
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and Delta protein of the first cell (resp., the second cell). The cell-to-cell kinetic model
for the segmentation clock is expressed by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1(t) = gH (x2(t − τ1), y4(t − τ1)) − f1(x1(t))

ẋ2(t) = a2x1(t − τ2) − f2(x2(t))

ẋ3(t) = gD(x2(t − τ3)) − f3(x3(t))

ẋ4(t) = a4x3(t − τ4) − f4(x4(t))

ẏ1(t) = gH (y2(t − τ1), x4(t − τ1)) − f1(y1(t))

ẏ2(t) = a2y1(t − τ2) − f2(y2(t))

ẏ3(t) = gD(y2(t − τ3)) − f3(y3(t))

ẏ4(t) = a4y3(t − τ4) − f4(y4(t)).

(2)

Herein, a2 (resp., a4) is the protein synthesis rate per mRNA molecule for her
(resp., delta) gene; τ1, τ2, τ3, τ4 are the time delays in the processes of her gene
transcription, her gene translation, delta gene transcription, delta gene translation
and delivery to cell membrane, respectively; function gH relates the transcription
initiation rate to the suppression from Her protein and the activation from the
Delta protein of neighboring cells; function gD relates the transcription initiation
rate to the suppression from Her protein; − fi , i = 1, 2, 3, 4, represent the degra-
dations. In Lewis (2003) and Özbudak and Lewis (2008), linear degradations are
adopted:

fi (xi ) = di xi , di > 0, (3)

and gH and gD take the forms

gH (u, v) = kH
1 + v

PD0

1 + v
PD0

+ u2

P2
0

, gD(u) = kD

1 + u2

P2
0

, for u, v ≥ 0, (4)

where kH (resp., kD) is the maximal synthesis rate of her (resp., delta) mRNA, and
P0 (resp., PD0 ) is the critical number of molecules of Her (resp., Delta) protein per
cell for inhibition of transcription (resp., activation of Notch).

With the idea of considering more detailed components of the process and releas-
ing the concern of time delays, an ODE model was proposed and studied in Uriu
et al. (2009, 2010). Therein, the process of Her protein transport from cytoplasm
to nucleus is taken into account so that Her protein is decomposed into two com-
ponents: Her protein in cytoplasm and Her protein in nucleus. Let x1, x2, x3, x4, x5
(resp., y1, y2, y3, y4, y5) be the concentrations of her mRNA, Her protein in cyto-
plasm, Her protein in nucleus, delta mRNA, and Delta protein of the first cell
(resp., the second cell), respectively. The kinetics of gene regulation was modeled
by
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1(t) = gH (x3(t), y5(t)) − f1(x1(t))

ẋ2(t) = ν3x1(t) − f2(x2(t))

ẋ3(t) = ν5x2(t) − f3(x3(t))

ẋ4(t) = gD(x3(t)) − f4(x4(t))

ẋ5(t) = ν9x4(t) − f5(x5(t))

ẏ1(t) = gH (y3(t), x5(t)) − f1(y1(t))

ẏ2(t) = ν3y1(t) − f2(y2(t))

ẏ3(t) = ν5y2(t) − f3(y3(t))

ẏ4(t) = gD(y3(t)) − f4(y4(t))

ẏ5(t) = ν9y4(t) − f5(y5(t)),

(5)

where ν3 and ν9 are the synthesis rates of Her protein in cytoplasm and Delta protein,
respectively, and ν5 is the transportation rate of Her protein from cytoplasm to nucleus.
In addition, gH and gD are defined by

gH (u, v) = kn1
kn1 + un

· (ν1 + νcv), gD(u) = ν7
kh7

kh7 + uh
, for u, v ≥ 0, (6)

where h and n are the Hill coefficients related to the dimerization process of Her
proteins and the number of Her protein binding sites on DNA (Zeiser et al. 2007); ν1
is the Basal transcription rate of her mRNA, νc is the activation rate of her mRNA
transcription by Delta–Notch signal, ν7 is the synthesis rate of delta mRNA, and k1
and k7 are the threshold constants for the suppression of her mRNA and deltamRNA
transcriptions byHer protein in nucleus, respectively.As degradation of proteins gener-
ally involves enzymatic reactions, the Michaelis–Menten type reactions were adopted
therein:

f1(u) = ν2u

k2 + u
, f2(u) = ν4u

k4 + u
+ ν5u,

f3(u) = ν6u

k6 + u
, f4(u) = ν8u

k8 + u
, f5(u) = ν10u

k10 + u
, for u ≥ 0, (7)

where ν2, ν4, ν6, ν8, ν10 (resp., k2, k4, k6, k8, k10) are the maximum degradation rates
(resp., Michaelis constants for the degradation) of her mRNA, Her protein in cyto-
plasm, Her protein in nucleus, delta mRNA, and Delta protein, respectively. Note
that f2 contains the degradation term ν4u/(k4 + u) and the translocation term ν5u.
More detailed explanations for employing Michaelis–Menten type degradation in the
modeling can be found in Uriu et al. (2009).

A simplified model which combines the two equations for delta mRNA and Delta
protein into merely one equation for Delta protein was also investigated in Uriu et al.
(2010). This reduction led to a system of eight ODEs:
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1(t) = gH (x3(t), y4(t)) − f1(x1(t))
ẋ2(t) = ν3x1(t) − f2(x2(t))
ẋ3(t) = ν5x2(t) − f3(x3(t))
ẋ4(t) = gD(x3(t)) − f4(x4(t))

ẏ1(t) = gH (y3(t), x4(t)) − f1(y1(t))
ẏ2(t) = ν3y1(t) − f2(y2(t))
ẏ3(t) = ν5y2(t) − f3(y3(t))
ẏ4(t) = gD(y3(t)) − f4(y4(t)),

(8)

where gD relates both the transcription and translation initiation rates to Delta protein
concentration, and is still defined by (6); f4 is now the degradation for Delta protein,
and is defined in (7). In addition, in this model, ν7 is the synthesis rate of Delta
protein, k7 is the threshold constant for the suppression of Delta protein synthesis
by Her protein, ν8 is the maximum degradation rate of Delta protein, and k8 is the
Michaelis constant for Delta protein degradation in nucleus. It was reported therein
that both of these two ODE models (5) and (8) exhibit the main feature of her gene
regulation and the parameter regimes of stable synchronous periodic solution aremuch
alike.

Models containing more components of the segmentation clock have been studied
in Cinquin (2007), Schröter et al. (2012), Ay et al. (2013, 2014) and Jenkins et al.
(2015). For example, there are 44 parameters and 14 equations in each cell in the
model investigated in Ay et al. (2013, 2014), taking into account the mRNAmolecules
of her1, her7, hes6, deltaC, and their monomer proteins and dimer proteins. The
degradations in these models were all formulated in the form of linear functions (3).

A chief goal in modeling the segmentation clock is to be able to generate oscillatory
traveling wave patterns along the PSM. The wave starts from synchronous oscillation
at posterior of PSM, and then the oscillation slows down near the anterior of PSM,
and is finally arrested at the anterior of PSM. This can be achieved by considering a
lattice of cells, with a pertinent gradient of reaction rates or time delays along PSM.
Recently, it has been found that increasing effective time delays along the PSM is
responsible for the generation of traveling segmentation clock waves (Ay et al. 2013,
2014). An experimental evidence therein runs against some of the results in Uriu et al.
(2009) where the gradient of a degradation rate was formulated to generate traveling
waves. On the one hand, periods and amplitudes of oscillations depend also on other
parameters. On the other hand, the dynamics in systems with linear degradations can
be very different from the ones in systems with Michaelis–Menten type degradations.
We shall illustrate this by an example in Sect. 4. Mathematical analysis with numerical
simulation extended from the analysis is our approach for exploring how periods of
oscillations are influenced by parameters.

A formal linearization of system (8) around an equilibrium was performed and the
characteristic equation was derived in Uriu et al. (2010). However, the bifurcation
analysis was not completed therein, as there are too many variables and parameters
in the system. Therefore, basically, the results therein were obtained by numerical
simulations on the ODE systems (5) and (8). However, there are insufficiencies for
using purely numerical computations to find periodic solutions for systems with more
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than ten parameters in phase space of high dimension, as mentioned in Uriu et al.
(2010). In this paper, we shall illustrate that such analysis can be performed, even
though the equilibrium of nonlinear system (8) can not be computed exactly. The
analysis will then lead to a theoretical support of the existence and stability of the
synchronous periodic solutions. We shall also demonstrate that the parameter range
for synchronous oscillations adopted in Uriu et al. (2010) can be interpreted within
the Hopf bifurcation framework.

Examining and comparing whether themodel with time delay or without time delay
is more suitable for generating stable synchronous oscillation for the segmentation
clock are very interesting in mathematical modeling on somitogenesis. We echo this
interest and investigate the following system obtained by adding time delays into (8):

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1(t) = gH (x3(t − τ1), y4(t − τ1)) − f1(x1(t))
ẋ2(t) = ν3x1(t − τ2) − f2(x2(t))
ẋ3(t) = ν5x2(t) − f3(x3(t))
ẋ4(t) = gD(x3(t − τ4)) − f4(x4(t))

ẏ1(t) = gH (y3(t − τ1), x4(t − τ1)) − f1(y1(t))
ẏ2(t) = ν3y1(t − τ2) − f2(y2(t))
ẏ3(t) = ν5y2(t) − f3(y3(t))
ẏ4(t) = gD(y3(t − τ4)) − f4(y4(t)).

(9)

Herein, τ1, τ2, τ4 represent respectively the time delays in the processes of her
gene transcription, her gene translation, and delta gene transcription, translation, and
delivery to cell membrane. We neglect the time delay in the translocation process
in the third equation, as the time scale of the translocation is much smaller than the
transcription and translation (Görlich and Kutay 1999; Makarov 2009; Simon et al.
1992).

Let us compare the above-mentioned models:

(i) The transcription initiation rate for her, gH (u, v), which plays the role of coupling
function, is bounded in (4), but unbounded in (6).

(ii) The degradation terms in (3) are linear and unbounded, whereas the ones in (7)
are bounded but in more complicated nonlinear form.

(iii) Transcription and translation time delays are taken into account in system (2)
and system (9).

(iv) The translocation process is included in systems (5), (8), and (9), where Her
protein is decomposed into Her protein in cytoplasm and Her protein in nucleus.

(v) The Hill coefficients are formulated in gH and gD in (6). Their values are deter-
mined from dimerization process and DNA binding sites. Functions gH and gD
in (4) only represent the inhibitory protein as a dimer.

An analytical study for delay system (2) with degradation (3) and transcription
function (4) was reported in Liao et al. (2012). Designed from this delay model, a
nonautonomous lattice system which can generate normal traveling wave pattern was
presented in Liao and Shih (2012). In this work, we shall analyze ODE system (8)
and delay system (9), with transcription functions (6) and Michaelis–Menten type
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degradation (7). Our analysis can be extended to treat system (9) modified by adding
translocation time delay and system (5) modified with time delays incorporated.

3 Basic properties and global dynamics

In this section,wediscuss the basic properties for systems (8) and (9),with transcription
(6) and degradation (7), to ensure that they are proper in modeling gene regulation. In
particular, we shall assure that the mRNA concentrations and their protein products
remain nonnegative along time. We also want to confirm that their solutions remain
bounded throughout the evolutions. In addition, we shall discuss the existence of
synchronous equilibrium and derive globally convergence to this equilibrium. Such
convergence excludes oscillation and provides a regime for oscillation-arrested. The
properties discussed for system (9) in this section are also valid for system (8), as
system (9) reduces to (8) when the delays are zero: τ1 = τ2 = τ4 = 0.

The coupled system (9) has three time delays τ1, τ2, and τ4. Fundamental the-
ory for delay equations is established on the infinite-dimensional phase space
C ([−τM , 0],R8+), the space of continuous functions from [−τM , 0] to R8+, where

τM := max {τ1, τ2, τ4},
R
8+ := {(x1, . . . , x4, y1, . . . , y4)|xi ≥ 0, yi ≥ 0, i = 1, . . . , 4}.

LetΨ (t, φ) be the flowmap of (9) which depicts the evolution of the system at time
t from initial condition φ = (φ1, . . . , φ8) ∈ C ([−τM , 0],R8+) at initial time t0 = 0.
Denote by X(t;φ) the solution induced from (9), i.e., X(t + θ;φ) = Ψ (t, φ)(θ),
for θ ∈ [−τM , 0], and t > 0. We also denote X(t) = (x(t), y(t)) = X(t;φ) =
(x(t;φ), y(t;φ)), where x = (x1, x2, x3, x4), y = (y1, y2, y3, y4), if φ is not spec-
ified. When τ1 = τ2 = τ4 = 0, system (9) reduces to ODEs (8), with phase space
R
8+.
The following proposition ensures that the mRNA concentrations and their protein

products remain non-negative along evolution.

Proposition 1 C ([−τM , 0],R8+) is positively invariant under the flow generated by
system (9), provided that the Hill coefficients h and n are even integers.

Proof Assume that h = 2h̃ and n = 2ñ for h̃, ñ ∈ N. We shall show that xi (t) ≥
0, yi (t) ≥ 0, i = 1, . . . , 4, for solution X(t) = X(t;φ) evolved from an arbitrary
φ ∈ C ([−τM , 0],R8+). Let I = I (φ) be the maximal interval of existence forX(t;φ).

First,

ẏ4(t) = ν7
k2h̃7

k2h̃7 + y2h̃3 (t − τ4)
− ν8y4(t)

k8 + y4(t)
> − ν8y4(t)

k8 + y4(t)
,

for all t ∈ I , since gD(u) > 0, for any u ∈ R. The solution for u̇(t) = − ν8u(t)
k8+u(t)

remains nonnegative for all t ≥ 0, if u(0) ≥ 0. Hence, y4(t) ≥ 0 if y4(0) ≥ 0, for all
t ∈ I , by comparison arguments. Similarly, we obtain x4(t) ≥ 0, for all t ∈ I , from
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symmetry of system (9). With x4(t), y4(t) ≥ 0 for all t ∈ I , we use similar argument
to derive x1(t), y1(t) ≥ 0, for all t ∈ I . Hence, for x2(t), we have ẋ2(t) ≥ − ν4x2(t)

k4+x2(t)
.

Thus, x2(t) ≥ 0 for all t ∈ I , if x2(0) ≥ 0. Similarly and successively, we conclude
y2(t), x3(t), y3(t) ≥ 0, for all t ∈ I , if x2(0), x3(0), y3(0) ≥ 0. ��

Next we derive a condition for the existence of an attracting set for system (9) in
the following proposition. Notice that the degradation functions fi in (7) are bounded,
whereas the transcription function gH in (6) is unbounded. The following quantities
will be used to estimate the globally attracting set:

q̂1 := (ν1 + νcq̂4)k2
ν2 − (ν1 + νcq̂4)

,

q̂2 := ν3q̂1 − ν4 − k4ν5 + √
4k4ν3ν5q̂1 + (ν4 + k4ν5 − ν3q̂1)2

2ν5
,

q̂3 := k6ν5q̂2
ν6 − ν5q̂2

,

q̂4 := k8ν7
ν8 − ν7

, (10)

q̌1 := kn1k2ν1
ν2q̂n3 + kn1 (ν2 − ν1)

,

q̌2 := ν3q̌1 − ν4 − k4ν5 + √
4k4ν3ν5q̌1 + (ν4 + k4ν5 − ν3q̌1)2

2ν5
,

q̌3 := k6ν5q̌2
ν6 − ν5q̌2

,

q̌4 := kh7k8ν7

ν8q̂h3 + kh7 (ν8 − ν7)
. (11)

Proposition 2 Assume that h and n are even integers. If

ν8 > ν7, ν2 > ν1 + νcq̂4, and ν6 > ν5q̂2, (12)

then there exists a closed and bounded setQ := Π4
i=1Qi ×Π4

i=1Qi ⊂ R
8+, such that

X(t;φ) converges toQ for any φ ∈ C ([−τM , 0],R8+), where Qi := [q̌i , q̂i ], with q̂i ,
q̌i , i = 1, . . . , 4, defined in (10) and (11).

Proof The idea is to perform component estimation sequentially. With xi (t), yi (t) ≥
0, i = 1, . . . , 4, from Proposition 1, we have

−ν8y4(t)

k8 + y4(t)
< ẏ4(t) = ν7

kh7
kh7 + yh3 (t − τ4)

− ν8y4(t)

k8 + y4(t)

≤ ν7 − ν8y4(t)

k8 + y4(t)
, (13)
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for all t ∈ I . It follows that y4(t) exists on [0,∞) and converges to [0, k8ν7/(ν8 −
ν7)] =: [0, q̂4] =: Q̃4, as t → ∞, due to ν8 > ν7. Subsequently, for an ε > 0, there
exists a tε1 > 0 such that

−ν2x1(t)

k2 + x1(t)
< ẋ1(t) < ν1 + νc(q̂4 + ε) − ν2x1(t)

k2 + x1(t)
, for t ≥ tε1 .

Therefore, x1(t) exists on [0,∞) and converges to [0, k2(ν1 + νc(q̂4 + ε))/(ν2 −
(ν1 + νc(q̂4 + ε)))] for all ε > 0, and hence converges to [0, k2(ν1 + νcq̂4)/(ν2 −
(ν1 + νcq̂4))] =: [0, q̂1] =: Q̃1, as t → ∞, due to ν2 > ν1 + νcq̂4. Similarly, we can
confirm that x2(t) and x3(t) exist on [0,∞) and converge to

(

0,
ν3q̂1 − ν4 − k4ν5 + √

4k4ν3ν5q̂1 + (ν4 + k4ν5 − ν3q̂1)2

2ν5

)

=: (0, q̂2) =: Q̃2

(

0,
k6ν5q̂2

ν6 − ν5q̂2

)

=: (0, q̂3) =: Q̃3,

respectively, due to ν6 > ν5q̂2. In addition, by the symmetry of system (9), x4(t), y1(t),
y2(t), y4(t) also exist on [0,∞) and converge to sets Q̃4, Q̃1, Q̃2, Q̃3, respectively.

Next, according to the convergence of x3(t) to Q̃3 and y4(t) to Q̃4, for any given
ε > 0, there exists a tε2 > tε1 such that

gH (x3(t − τ1), y4(t − τ1)) >
kn1ν1

kn1 + q̂n3
− ε, for all t > tε2 − τM > 0.

Therefore,

kn1ν1
kn1 + q̂n3

− ε − ν2x1(t)

k2 + x1(t)
< ẋ1(t) < ν1

+νc(q̂4 + ε) − ν2x1(t)

k2 + x1(t)
, for all t ≥ tε2 .

Hence, x1(t) converges to [q̌1, q̂1] =: Q1, as t → ∞, with q̌1 := kn1k2ν1/(q̂
n
3 ν2 +

kn1 (ν2 − ν1)). By similar arguments, we can see that x2(t), x3(t), x4(t) converge to
Q2 := [q̌2, q̂2], Q3 := [q̌3, q̂3], Q4 := [q̌4, q̂4], respectively, with

q̌2 := ν3q̌1 − ν4 − k4ν5 + √
4k4ν3ν5q̌1 + (ν4 + k4ν5 − ν3q̌1)2

2ν5
,

q̌3 := k6ν5q̌2
ν6 − ν5q̌2

,

q̌4 := kh7k8ν7

ν8q̂h3 + kh7 (ν8 − ν7)
.

In addition, yi (t) converges to Qi , i = 1, . . . , 4, via the symmetry of system (9). ��
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Remark 1 (i) According to Propositions 1 and 2, if Hill coefficients h and n are even,
then under the conditions of Proposition 2, every solution of (9) exists on [0,∞),
and is boundedwith nonnegative components. There are examples where solutions
blow up when the conditions of Proposition 2 are violated.

(ii) We have performed only two iteration steps in the proof of Proposition 2 to obtain
an estimate for the attracting region. By continuing this process, the asymptotic
dynamics can be captured in even smaller regions. Therefore, we can assert that
every solution X(t) lies inQ after large time.

We say that an equilibrium (x∗
1 , . . . , x

∗
4 , y

∗
1 , . . . , y

∗
4 ) of (9) is synchronous if x

∗
i =

y∗
i , i = 1, . . . , 4. Note that delay system (9) and ODE system (8) share identical
equilibrium points. Next, we discuss synchronous equilibrium point for system (9).

Proposition 3 Assume ν8 > ν7. For any fixed integers h ≥ 1 and n ≥ 1, there exists
a unique positive synchronous equilibrium point

X̄ = (x̄, x̄) = (x̄1, x̄2, x̄3, x̄4, x̄1, x̄2, x̄3, x̄4)

for system (9), where

x̄1 = ν6 x̄3(k6(ν4 + k4ν5) + (ν4 + k4ν5 + ν6)x̄3)

ν3(k6 + x̄3)(ν6 x̄3 + k4ν5(k6 + x̄3))
,

x̄2 = ν6 x̄3
ν5(k6 + x̄3)

,

x̄4 = kh7k8ν7

kh7 (ν8 − ν7) + ν8 x̄ h3
,

and x̄3 is the unique solution to the equation

PL(x3) = PR(x3), (14)

with

PL(x3) = kn1 [kh7ν1(ν8 − ν7) + kh7k8ν7νc + ν1ν8xh3 ]
(kn1 + xn3 )[kh7 (ν8 − ν7) + ν8xh3 ] , (15)

PR(x3) = {[ν2ν6(ν4 + k4ν5 + ν6)]x23 + k6ν2ν6(ν4 + k4ν5)x3}
· {[k2ν3(k4ν5 + ν6) + ν6(ν4 + k4ν5 + ν6)]x23
+[k6(ν6(ν4 + k4ν5) + k2ν3(2k4ν5 + ν6))]x3 + k2k4k

2
6ν3ν5}−1.

(16)

Proof (x̄1, x̄2, x̄3, x̄4, x̄1, x̄2, x̄3, x̄4) is a synchronous equilibrium for (9) if and only
if (x1, x2, x3, x4) = (x̄1, x̄2, x̄3, x̄4) satisfies

⎧
⎪⎪⎨

⎪⎪⎩

gH (x3, x4) − f1(x1) = 0
ν3x1 − f2(x2) = 0
ν5x2 − f3(x3) = 0
gD(x3) − f4(x4) = 0.
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Accordingly,

x̄1 = ν6 x̄3(k6(ν4 + k4ν5) + (ν4 + k4ν5 + ν6)x̄3)

ν3(k6 + x̄3)(ν6 x̄3 + k4ν5(k6 + x̄3))
,

x̄2 = ν6 x̄3
ν5(k6 + x̄3)

,

x̄4 = kh7k8ν7

kh7 (ν8 − ν7) + ν8 x̄ h3
,

and x̄3 satisfies (14). Observe that there exists exactly one positive solution to (14),
due to ν8 > ν7, and

PR(0) = 0, P ′
R(x3) > 0, for all x3 ≥ 0,

PL(0) > 0, P ′
L(x3) < 0, for all x3 > 0,

and

lim
x3→∞ PR(x3) = ν2ν6(ν4 + k4ν5 + ν6)

k2ν3(k4ν5 + ν6) + ν6(ν4 + k4ν5 + ν6)
> 0,

lim
x3→∞ PL(x3) = 0.

Note that every component of X̄ is positive. The assertion thus follows. ��
Now, let us discuss the global convergence to the synchronous equilibrium point

X̄ for system (9). For simplicity, we change Qi to [0, q̂i ], i.e., we take q̌i = 0,
for i = 1, . . . , 4. First, we translate the equilibrium X̄ to the origin, i.e., we let
x̃(t) = x(t) − x̄, ỹ(t) = y(t) − x̄, and still denote x̃, ỹ by x, y, respectively. System
(9) becomes

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1(t) = gH (x3(t − τ1) + x̄3, y4(t − τ1) + x̄4) − f1(x1(t) + x̄1)
ẋ2(t) = ν3[x1(t − τ2) + x̄1] − f2(x2(t) + x̄2)
ẋ3(t) = ν5[x2(t) + x̄2] − f3(x3(t) + x̄3)
ẋ4(t) = gD(x3(t − τ4) + x̄3) − f4(x4(t) + x̄4)
ẏ1(t) = gH (y3(t − τ1) + x̄3, x4(t − τ1) + x̄4) − f1(y1(t) + x̄1)
ẏ2(t) = ν3[y1(t − τ2) + x̄1] − f2(y2(t) + x̄2)
ẏ3(t) = ν5[y2(t) + x̄2] − f3(y3(t) + x̄3)
ẏ4(t) = gD(y3(t − τ4) + x̄3) − f4(y4(t) + x̄4).

(17)

We shall derive a criterion for global convergence to the origin in system (17). Let
X(t) = (x1(t), . . . , x4(t), y1(t), . . . , y4(t)) be an arbitrary solution of (17), which
exists on [0,∞), according to Proposition 2. With xi (t), yi (t) satisfying (17), by
mean value theorem, we obtain

{
ẋi (t) = − f ′

i (ζi (t))xi (t) + wi (t)
ẏi (t) = − f ′

i (ζi+4(t))yi (t) + wi+4(t),
(18)
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where ζi (t) (resp., ζi+4(t)) is between xi (t) + x̄i and x̄i (resp., yi (t) + x̄i and x̄i ),
i = 1, . . . , 4, for all t large enough and

w1(t) := ∂gH
∂u

(u1(t − τ1), v1(t − τ1))x3(t − τ1)

+∂gH
∂v

(u1(t − τ1), v1(t − τ1))y4(t − τ1),

w2(t) := ν3x1(t − τ2),

w3(t) := ν5x2(t),

w4(t) := g′
D(u4(t − τ4))x3(t − τ4),

w5(t) := ∂gH
∂u

(ũ1(t − τ1), ṽ1(t − τ1))y3(t − τ1)

+∂gH
∂v

(ũ1(t − τ1), ṽ1(t − τ1))x4(t − τ1),

w6(t) := ν3y1(t − τ2),

w7(t) := ν5y2(t),

w8(t) := g′
D(ũ4(t − τ4))y3(t − τ4),

where u1(t−τ1) (resp., v1(t−τ1), u4(t−τ4), ũ1(t−τ1), ṽ1(t−τ1), ũ4(t−τ4)) is some
quantity between x3(t − τ1)+ x̄3 and x̄3 (resp., y4(t − τ1)+ x̄4 and x̄4, x3(t − τ4)+ x̄3
and x̄3, y3(t − τ1) + x̄3 and x̄3, x4(t − τ1) + x̄4 and x̄4, y3(t − τ4) + x̄3 and x̄3). Note
thatX(t) converges toQ− X̄ = Π4

i=1Q
∗
i ×Π4

i=1Q
∗
i , where Q

∗
i := [q̌i − x̄i , q̂i − x̄i ],

i = 1, . . . , 4. Obviously, every component of (18) takes the form

v̇(t) = − f ′(ζ(t))v(t) + w(t), (19)

where ζ(t) lies in a compact set Q̃ for all t large enough and w(t) is a continuous
scalar function. We denote

|w|max(t) := sup{|w(s)| : s ≥ t}, for t ≥ 0

|w|max(∞) := lim
t→∞ |w|max(t),

ď := min{ f ′(ζ ) : ζ ∈ Q̃}.

It is straightforward to derive the following lemma; cf. Shih and Tseng (2008).

Lemma 1 Every solution of (19) converges to an interval [−δ̃, δ̃] as t → ∞, where

0 ≤ δ̃ ≤ |w|max(∞)/ď.

FromLemma1, there exist eight intervals Ii := [−δi , δi ], i = 1, . . . , 8, towhich the
i th component of solution X(t) of (18) converges respectively. Since ζi (t), ζi+4(t) ∈
Qi for all t large enough, we obtain
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0 ≤ δi ≤ |wi |max(∞)/ďi , for i = 1, . . . , 4,

0 ≤ δi ≤ |wi |max(∞)/ďi−4, for i = 5, . . . , 8,

where

ď1 := min{ f ′
1(ζ1) : ζ1 ∈ Q1} = k2ν2

(k2 + q̂1)2
,

ď2 := min{ f ′
2(ζ2) : ζ2 ∈ Q2} = k4ν4

(k4 + q̂2)2
+ ν5,

ď3 := min{ f ′
3(ζ3) : ζ3 ∈ Q3} = k6ν6

(k6 + q̂3)2
,

ď4 := min{ f ′
4(ζ4) : ζ4 ∈ Q4} = k8ν8

(k8 + q̂4)2
. (20)

Next, we shall estimate the value of δi through an iterative process. First, we define

ρ1 := max

{∣
∣
∣
∣
∂gH (u, v)

∂u

∣
∣
∣
∣ : u ∈ Q3, v ∈ Q4

}

,

ρ2 := max

{∣
∣
∣
∣
∂gH (u, v)

∂v

∣
∣
∣
∣ : u ∈ Q3, v ∈ Q4

}

,

ρ3 := max{|g′
D(u)| : u ∈ Q3}. (21)

Proposition 4 For each i = 1, . . . , 8, there exists a sequence of nonnegative numbers
{δ(k)

i }∞k=1 with δ
(k)
i ≥ δi such that for each k, the i th component for the solution X(t)

of system (17) converges to I (k)
i := [−δ

(k)
i , δ

(k)
i ], as t → ∞, and δ

(k)
i satisfies

0 ≤ δ
(k)
1 = δ

(k)
5 :=

(
ρ1δ

(k−1)
3 + ρ2δ

(k−1)
4

)
/ď1,

0 ≤ δ
(k)
2 = δ

(k)
6 := (ν3/ď2)δ

(k)
1 ,

0 ≤ δ
(k)
3 = δ

(k)
7 := (ν5/ď3)δ

(k)
2 ,

0 ≤ δ
(k)
4 = δ

(k)
8 := (ρ3/ď4)δ

(k)
3 , (22)

where k ≥ 1, δ
(0)
3 := max{|q̌3 − x̄3|, |q̂3 − x̄3|}, δ

(0)
4 := max{|q̌4 − x̄4|, |q̂4 − x̄4|},

and ρi is defined in (21).

The proof is similar to the one for Proposition 2.5 in Liao et al. (2012) and is
omitted.

Theorem 1 Every solution of system (9) converges to the synchronous equilibrium
point X̄ as t → ∞, if

ν3ν5(ρ1ď4 + ρ2ρ3) < ď1ď2ď3ď4. (23)
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Proof To justify the assertion, we shall prove that every solution of (18) converges
to the origin, as t → ∞. It suffices to show that δ

(k)
i introduced in Proposition 4

converges to zero as k tends to infinity, for all i = 1, . . . , 8. From (22), we obtain

δ
(k)
1 =

(
ρ1δ

(k−1)
3 + ρ2δ

(k−1)
4

)
/ď1

= ρ1ν3ν5

ď1ď2ď3
δ
(k−1)
1 + ρ2ν3ν5ρ3

ď1ď2ď3ď4
δ
(k−1)
1

= ν3ν5(ρ1ď4 + ρ2ρ3)

ď1ď2ď3ď4
δ
(k−1)
1

=: Rδ
(k−1)
1 .

Thus δ
(k)
1 → 0, as k → ∞, since 0 < R < 1, by (23). Subsequently, δ

(k)
i → 0, as

k → ∞, for i = 2, . . . , 8, according to (22). ��
Remark 2 (i) In fact, the upper bounds for the derivatives of gH and gD can be com-
puted as

0 ≤
∣
∣
∣
∣
∂gH (u, v)

∂u

∣
∣
∣
∣ ≤ n(ν1 + νcq̂4)q̂

n−1
3

kn1
=: ρ̂1, for u ∈ Q3, v ∈ Q4,

0 ≤
∣
∣
∣
∣
∂gH (u, v)

∂v

∣
∣
∣
∣ ≤ νc =: ρ̂2, for u ∈ Q3, v ∈ Q4,

0 ≤ |g′
D(u)| ≤ hν7q̂

h−1
3

kh7
=: ρ̂3, for u ∈ Q3. (24)

Note that ρ̂i is computable and ρ̂i ≥ ρi , i = 1, 2, 3. Therefore, condition (23) can be
replaced by an explicit inequality:

ν3ν5(ρ̂1ď4 + ρ̂2ρ̂3) < ď1ď2ď3ď4. (25)

(ii) By Theorem 1, X̄ is a unique equilibrium for system (9) under (23) or (25).

Since all solutions tend to a steady state, the parameter regime under (23) or (25)
corresponds to the non-oscillatory or oscillation-arrested phase for model (9), which
is associated with the state of formed somites. Moreover, under condition (23) or
(25), the magnitude of each x̄i determines the ultimate behavior of the system. In the
following proposition, we further discuss how the parameters affect the magnitude of
x̄i , for i = 1, . . . , 4.

Proposition 5 x̄4 increases and x̄i , i = 1, 2, 3, decreases, as one of k1, k2, ν1, νc
decreases or ν2 increases.

Proof From (16), we see that if k2 decreases or ν2 increases, then PR(x3) increases and
PL(x3) is unchanged, and thus x̄3 decreases. Similarly, if k1, ν1, or νc decreases, then
PL(x3) decreases and PR(x3) is unchanged, and therefore x̄3 decreases. The assertions
follow from ∂

∂ x̄3
x̄1 > 0, ∂

∂ x̄3
x̄2 > 0, and ∂

∂ x̄3
x̄4 < 0. ��
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Proposition 5 indicates that if the transcription rate of her mRNA decreases or the
degradation rate of her mRNA increases, then the steady state of her mRNA, Her
protein, and delta mRNA all decrease and the Delta protein increases.

All the results in this section hold for τ1 = τ2 = τ4 = 0, i.e., the ODE system (8)
proposed in Uriu et al. (2010). The discussions herein can be extended to transcription
functions gH and gD in more general form with ∂

∂u gH (u, v) < 0, ∂
∂v
gH (u, v) > 0,

and d
du gD(u) < 0, for all u, v ≥ 0.

4 Synchronous oscillations

To elucidate synchronous oscillations through cell–cell interaction in segmentation
clocks, we study synchronous periodic solutions generated in systems (8) and (9).
In Sect. 4.1, for the ODE system (8), we take one of the activation parameters as
bifurcation parameter and employ Hopf bifurcation theory to analyze the existence
and stability of periodic solutions. In Sect. 4.2, we fix suitable values of all parameters
in the delay system (9), and use the sum of transcription delay and translation delay as
bifurcation parameter to apply the delay Hopf bifurcation theory. It will be seen that
synchronous periodic solutions with periods around 30min exist in each of these two
systems, at certain parameter values.

4.1 ODE model (8)

We study the ODE model (8) with transcription function (6) and degradations (7). We
plan to investigate the periodic solutions bifurcating from the synchronous equilibrium
X̄ = (x̄, x̄), with x̄ = (x̄1, x̄2, x̄3, x̄4), of this system via Hopf bifurcation theorem.
Let x̃(t) = x(t) − x̄, ỹ(t) = y(t) − x̄, and still denote x̃, ỹ by x, y respectively. The
system becomes

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1 = kn1
kn1 + (x3 + x̄3)n

[ν1 + νc(y4 + x̄4)] − ν2(x1 + x̄1)

k2 + (x1 + x̄1)

ẋ2 = ν3(x1 + x̄1) − ν4(x2 + x̄2)

k4 + (x2 + x̄2)
− ν5(x2 + x̄2)

ẋ3 = ν5(x2 + x̄2) − ν6(x3 + x̄3)

k6 + (x3 + x̄3)

ẋ4 = ν7kh7
kh7 + (x3 + x̄3)h

− ν8(x4 + x̄4)

k8 + (x4 + x̄4)

ẏ1 = kn1
kn1 + (y3 + x̄3)n

[ν1 + νc(x4 + x̄4)] − ν2(y1 + x̄1)

k2 + (y1 + x̄1)

ẏ2 = ν3(y1 + x̄1) − ν4(y2 + x̄2)

k4 + (y2 + x̄2)
− ν5(y2 + x̄2)

ẏ3 = ν5(y2 + x̄2) − ν6(y3 + x̄3)

k6 + (y3 + x̄3)

ẏ4 = ν7kh7
kh7 + (y3 + x̄3)h

− ν8(y4 + x̄4)

k8 + (y4 + x̄4)
.

(26)
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The linearization of system (26) at the origin is given by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u̇1 = − ν2k2
(k2 + x̄1)2

u1 − kn1nx̄
n−1
3 (ν1 + νc x̄4)

(kn1 + x̄n3 )2
u3 + νckn1

(kn1 + x̄n3 )
v4

u̇2 = ν3u1 −
(

ν4k4
(k4 + x̄2)2

+ ν5

)

u2

u̇3 = ν5u2 − ν6k6
(k6 + x̄3)2

u3

u̇4 = −kh7hx̄
h−1
3 ν7

(kh7 + x̄ h3 )2
u3 − ν8k8

(k8 + x̄4)2
u4

v̇1 = − ν2k2
(k2 + x̄1)2

v1 − kn1nx̄
n−1
3 (ν1 + νc x̄3)

(kn1 + x̄n3 )2
v3 + νckn1

(kn1 + x̄n3 )
u4

v̇2 = ν3v1 −
(

ν4k4
(k4 + x̄2)2

+ ν5

)

v2

v̇3 = ν5v2 − ν6k6
(k6 + x̄3)2

v3

v̇4 = −ν7kh7hx̄
h−1
3

(kh7 + x̄ h3 )2
v3 − ν8k8

(k8 + x̄4)2
v4.

(27)

The characteristic equation for (27) is Δ = 0, where

Δ = det

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

λ + d1 0 γ1 0 0 0 0 −γ2
− ν3 λ + d2 0 0 0 0 0 0
0 −ν5 λ + d3 0 0 0 0 0
0 0 γ3 λ + d4 0 0 0 0
0 0 0 −γ2 λ + d1 0 γ1 0
0 0 0 0 −ν3 λ + d2 0 0
0 0 0 0 0 −ν5 λ + d3 0
0 0 0 0 0 0 γ3 λ + d4

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

and

d1 := ν2k2
(k2 + x̄1)2

, d2 := ν4k4
(k4 + x̄2)2

+ ν5,

d3 := ν6k6
(k6 + x̄3)2

, d4 := ν8k8
(k8 + x̄4)2

, (28)

γ1 := kn1nx̄
n−1
3

(kn1 + x̄n3 )2
(ν1 + νc x̄4),

γ2 := νckn1
kn1 + x̄n3

,

γ3 := ν7kh7hx̄
h−1
3

(kh7 + x̄ h3 )2
. (29)
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The characteristic equation Δ = 0 can be factored as

Δ+ · Δ− = 0, (30)

where

Δ± = λ4 + β1λ
3 + β2λ

2 + β3λ + β4 + ν3ν5γ1λ + ν3ν5(d4γ1 ± γ2γ3),

β1 := d1 + d2 + d3 + d3 > 0,

β2 := d3d4 + d1(d2 + d3 + d4) + d2(d3 + d4) > 0,

β3 := d2d3(d1 + d4) + d1d4(d2 + d3) > 0,

β4 := d1d2d3d4 > 0. (31)

Then, by the Routh–Hurwitz criterion, all roots of (30) have negative real parts if and
only if

α1 > 0, α3 > 0, α±
4 > 0, α1α2α3 − α2

3 − α2
3α

±
4 > 0, (32)

where α1 := β1, α2 := β2, α3 := β3 + ν3ν5γ1, α
±
4 := β4 + ν3ν5(d4γ1 ± γ2γ3). As

α1, α3, α
+
4 > 0, and α+

4 > α−
4 , condition (32) reduces to

α−
4 > 0, α1α2α3 − α2

3 − α2
3α

+
4 > 0, (33)

or α−
4 > 0, ν3ν5(γ2γ3 − d4γ1) < β4 <

α1α2α3 − α2
3

α2
1

−ν3ν5(d4γ1 + γ2γ3). (34)

Lemma 2 All roots of (30) have negative real parts if and only if (33) or (34) holds.

In fact, Routh–Hurwitz criterion leads to the condition under which a pair of purely
imaginary eigenvalues exist, while the rest of eigenvalues still have negative real parts
(Asada and Yoshida 2003). The following lemma can thus be derived.

Lemma 3 The equation Δ+ = 0 (resp., Δ− = 0) has a pair of purely imaginary
roots, and its remaining roots have negative real parts if and only if

α1 > 0, α3 > 0, α+
4 > 0, and α1α2α3 − α2

3 − α2
1α

+
4 = 0,

(resp., ) α1 > 0, α3 > 0, α−
4 > 0, and α1α2α3 − α2

3 − α2
1α

−
4 = 0.

The following proposition follows from (32) and Lemma 3, and α1 > 0, α3 >

0, α+
4 > 0, and α+

4 > α−
4 .

Proposition 6 The equation Δ = 0 has a pair of purely imaginary roots and the
remaining roots have negative real parts if and only if α−

4 > 0 and

α1α2α3 − α2
3 − α2

1α
+
4 = 0. (35)
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Notably, this pair of purely imaginary roots are roots of Δ+ = 0, and (35) is
equivalent to

β4 = α1α2α3 − α2
3

α2
1

− ν3ν5(d4γ1 + γ2γ3).

To apply the Hopf bifurcation theorem, one first need to find a set of parameter values
at which a pair of eigenvalues cross the imaginary axis of complex plane transversally
and real parts of the other eigenvalues remain negative. We denote by μ one of the
parameters in (8) and fix the other parameters, while allowμ to vary. The synchronous
equilibrium X̄, and hence the characteristic roots of (30) then depend on μ. We thus
obtain the following Hopf bifurcation theorem.

Theorem 2 Consider system (8) which has a synchronous equilibrium X̄ at certain
fixed parameters and μ = μ∗. Assume that the synchronous equilibrium is a function
of μ for μ near μ∗, i.e., X̄ = X̄(μ), and

α−
4 (μ∗) > 0

α1(μ
∗)α2(μ

∗)α3(μ
∗) − α2

3(μ
∗) − α2

1(μ
∗)α+

4 (μ∗) = 0,
d

dμ
[α1(μ)α2(μ)α3(μ) − α2

3(μ) − α2
1(μ)α+

4 (μ)]|μ=μ∗ �= 0, (36)

where the coefficients αi = αi (μ), i = 1, 2, 3, and α±
4 = α±

4 (μ) of Δ± are functions
of μ. Then the system undergoes a Hopf bifurcation at X = X̄ and μ = μ∗, and a
small-amplitude synchronous periodic solution surrounding X̄ emerges as μ < μ∗ or
μ > μ∗ and μ is close to μ∗.

The proof of this theorem is sketched in “Appendix 1”. Notably, the assumption that
the synchronous equilibrium is a function of μ for μ near μ∗ can be realized by the
implicit function theorem. System (8) consists of two identical cells under symmetric
coupling, and thus S := {x1 = y1, x2 = y2, x3 = y3, x4 = y4} is positively invariant
under the solution flow. The characteristic equation restricted to S is exactly Δ+ = 0.
Therefore, Theorem 2 leads to the existence of synchronous periodic solution. We
can transform the system into normal form, and apply the center manifold theorem
to analyze the stability of the bifurcating periodic solution. We summarize these for-
mulations in “Appendix 2”, following the theory in Hassard et al. (1981). From the
formulations, we obtain the following qualities

C1(μ
∗) = i

2ω0

(

g20g11 − 2|g11|2 − 1

3
|g02|2

)

+ g21
2

,

p2 = −Re(C1(μ
∗))

Re(λ′(μ∗))
,

ζ2 = 2Re(C1(μ
∗)),

T2 = −1

ω0
[Im(C1(μ

∗)) + p2Im(λ′(μ∗))],
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where λ(μ) is the eigenvalue crossing the imaginary axis at μ = μ∗, λ(μ∗) = iω0,
and g20, g11, g02, g21 are defined in “Appendix 2”. These quantities can be computed
numerically for the application of the following Hopf bifurcation theorem, recast from
Hassard et al. (1981).

Theorem 3 Under the conditions of Theorem 2, the following hold for system (8):

(i) The Hopf bifurcation is supercritical (resp., subcritical) and a bifurcating peri-
odic solution exists for μ > μ∗ (resp., μ < μ∗) with μ near μ∗, if p2 > 0 (resp.,
< 0).

(ii) The periodic solution is stable (resp., unstable), if ζ2 < 0 (resp., > 0).
(iii) The period increases (resp., decreases) as μ increases, if T2 > 0 (resp., < 0)

and p2 > 0; the period increases (resp., decreases) as μ decreases, if T2 < 0
(resp., > 0) and p2 < 0.

Performing bifurcation analysis in an ODE system with more than a dozen of
parameters, such as (8), appears to be a difficult task, as commented in Uriu et al.
(2010). One complication is that the equilibrium depends on the parameters, and
thus the linearization at the equilibrium varies with parameter values in an implicit
way. Nevertheless, our formulation above indicates that the Hopf bifurcation analysis
still can be carried out, if we combine the Routh–Hurwitz criterion with numerical
computation effectively. Let us demonstrate such analysis and computation in the
following examples.

4.1.1 Numerical illustrations

In the following examples, we adopt the parameter values in Uriu et al. (2010) and
illustrate that the numerically computed synchronous oscillation therein is generated
by the Hopf bifurcation presented in Theorem 2. Zebrafish segmentation clock is
around 30min, and thus we focus on periodic solutions with periods within [25, 35]
min.We takeμ = ν7 andμ = νc as the bifurcation parameter in Examples 4.1 and 4.2,
respectively. In Example 4.3, we show that the single-cell (decoupled-cell) system,
i.e., system (8) with νc = 0, does not admit periodic solution when the coupled-cell
system does. In Example 4.4, we illustrate the dynamical disparity between a system
with linear degradations and a system with Michaelis–Menten degradations.

Example 4.1 We chooseμ = ν7, the synthesis rate of Delta protein, as the bifurcation
parameter. The values of the other parameters are adopted from Uriu et al. (2010), and
shown in Tables 1 and 2. Note that ν7 appears in γ3 in the characteristic equation (30).
Thus, we single out ν7 from γ3 by setting

γ3 = ν7γ̃3, with γ̃3 := kh7hx̄
h−1
3

(kh7 + x̄ h3 )2
,

so that α+
4 = β4 + ν3ν5ν7γ2γ̃3. We look for a value for ν7 which satisfies

α1(ν7)α2(ν7)α3(ν7) − α2
3(ν7) − α2

1(ν7)α
+
4 (ν7) = 0.
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Table 1 The parameter values of the transcription rate, translation rate, transportation rate and degradation
rate in Uriu et al. (2010)

νc ν1 ν2 ν3 ν4 ν5 ν6 ν8

0.708 0.069 0.963 1.172 1.447 0.076 0.147 2.315

Table 2 The parameter values of the threshold constants and Michaelis constants in Uriu et al. (2010)

k1 k2 k4 k6 k7 k8 n h

0.103 9.916 0.182 0.302 1.87 0.377 2 2

From this equality, ν7 can be expressed by the other parameters and substituted into
system (8) to solve the equilibrium. Here, the synchronous equilibrium of (8) with
parameter values in Tables 1 and 2 can be computed as X̄ = (x̄, x̄), with x̄ =
(x̄1, x̄2, x̄3, x̄4), and x̄1 ≈ 1.040873, x̄2 ≈ 0.745985, x̄3 ≈ 0.189600, x̄4 ≈
0.469586. With this value of x̄, we then compute to obtain the potential bifurcation
value ν∗

7 ≈ 1.29729. Next, we compute to find

α1(ν
∗
7 ) = 1.862781 > 0, α3(ν

∗
7 ) = 0.212131 > 0,

α+
4 (ν∗

7 ) = 0.089593 > 0, α−
4 (ν∗

7 ) = 0.085631 > 0,

α1(ν
∗
7 )α2(ν

∗
7 )α3(ν

∗
7 ) − α2

3(ν
∗
7 ) − α2

1(ν
∗
7 )α

−
4 (ν∗

7 ) = 0.013745 > 0,
d

dν7
[α1(ν7)α2(ν7)α3(ν7) − α2

3(ν7) − α2
1(ν7)α

+
4 (ν7)]|ν7=ν∗

7
= −0.005298 �= 0.

Therefore, the conditions of Theorem 2 are met, and a small-amplitude periodic
solution emerges, as the value of ν7 passes through ν∗

7 , according to Theorem 2. The
solution evolved from initial value φ = (0.1, 0.1, 0.1, 0.1, 0.08, 0.08, 0.08, 0.08) is
shown in Fig. 1. The periods and amplitudes of the oscillations corresponding to
various values of ν7 are listed in Fig. 2. We observe that the periods of oscillations
increase as ν7 increases. When ν7 = 1.912, the parameter value used in Uriu et al.
(2010), this system generates a synchronous oscillation with period about 35min.

Example 4.2 We choose μ = νc, the activation rate of her mRNA transcription by
Delta–Notch signaling (the coupling strength), as the bifurcation parameter. The other
parameter values are taken from Tables 1 and 2, except that ν7 = 1.912 is fixed and
νc is varying. We single out νc from γ1 and γ2 by setting

γ1 = (ν1 + νc x̄4)γ̃1,with γ̃1 := kn1nx̄
n−1
3

(kn1 + x̄n3 )2
,

γ2 = νcγ̃2,with γ̃2 := kn1
kn1 + x̄n3

.

Then α3, α
+
4 , and β4 in the characteristic equation Δ+ become
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Fig. 1 Components
x1, y1, x2, y2 of the solution of
system (8), evolved from φ =
(0.1, 0.1, 0.1, 0.1, 0.08, 0.08,
0.08, 0.08), with parameter
values in Tables 1 and 2, and
ν7 = 1.912. The solution
converges toward a synchronous
periodic solution

Fig. 2 The periods and amplitudes of the oscillations corresponding to various values of ν7

α3 = β3 + (ν1 + νc x̄4)ν3ν5γ̃1,

α+
4 = β4 + (ν1 + νc x̄4)ν3ν5d4γ̃1 + ν3ν5νcγ̃2γ3.

We look for a value of νc which satisfies

α1(νc)α2(νc)α3(νc) − α2
3(νc) − α2

1(νc)α
+
4 (νc) = 0.

By expressing νc in terms of the other parameters, we find the equilibrium X̄ =
(x̄, x̄), with x̄ = (x̄1, x̄2, x̄3, x̄4), and x̄1 ≈ 1.038105, x̄2 ≈ 0.737551, x̄3 ≈
0.186135, x̄4 ≈ 1.692328, at which the bifurcation takes place. We then compute
to find ν∗

c ≈ 0.189266, and

α1(ν
∗
c ) = 0.857159 > 0, α3(ν

∗
c ) = 0.096632 > 0,

α+
4 (ν∗

c ) = 0.015588 > 0, α−
4 (ν∗

c ) = 0.014011 > 0,

α1(ν
∗
c )α2(ν

∗
c )α3(ν

∗
c ) − α2

3(ν
∗
c ) − α2

1(ν
∗
c )α

−
4 (ν∗

c ) = 0.0011589 > 0,
d

dνc
[α1(νc)α2(νc)α3(νc) − α2

3(νc) − α2
1(νc)α

+
4 (νc)]|νc=ν∗

c
= −0.040228 �= 0.
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Fig. 3 The periods and amplitudes of the oscillations corresponding to various values of νc

Thus, as the value of νc passes through ν∗
c , there emerges a small-amplitude periodic

solution which surrounds the synchronous equilibrium X̄. The periods and amplitudes
of oscillations corresponding to various values of νc are listed in Fig. 3, and it appears
that the period increases as νc increases. When νc = 0.708, the system generates a
synchronous oscillation, as in Example 4.1.

Example 4.3 Consider the single-cell or decoupled-cell system:

⎧
⎪⎪⎨

⎪⎪⎩

ẋ1(t) = gH (x3(t), 0) − f1(x1(t))
ẋ2(t) = ν3x1(t) − f2(x2(t))
ẋ3(t) = ν5x2(t) − f3(x3(t))
ẋ4(t) = gD(x3(t)) − f4(x4(t)),

(37)

i.e., system (8) with νc = 0. First, we are interested in seeing whether such single-cell
system (37) also admits a periodic solutionwith the parameter values in Tables 1 and 2,
and ν7 = 1.912.We compute to find that, with these parameter values, the eigenvalues
of the linearized system of (37) at the equilibrium x̄ = (x̄1, x̄2, x̄3, x̄4) all have negative
real parts, where x̄1 ≈ 0.673668, x̄2 ≈ 0.209108, x̄3 ≈ 0.036607, x̄4 ≈ 1.784716.
Numerical simulation shows that solutions originated from numerous initial values
converge to the equilibrium x̄, as shown in Fig. 4. Hence, it appears that the single-cell
system (37) does not generate periodic solution with these parameter values, whereas
there is a synchronous oscillation in the coupled-cell system with the same parameter
values and νc = 0.708.

One is curious about whether if the single-cell system (37) can ever generate oscil-
lation. By the Hopf bifurcation analysis, we observe that, with the parameter values in
Tables 1 and 2, except now taking ν1 near ν∗

1 ≈ 0.25209, a small-amplitude periodic
solution emerges, see Fig. 5. Note that ν1 is considered in the range [0.001, 0.1] in
Uriu et al. (2010), and ν∗

1 ≈ 0.25209 obviously lies out of this interval.

Example 4.4 We compare the dynamics for the system modeled with linear degrada-
tions and the system modeled with Michaelis–Menten degradation. The Michaelis–
Menten type degradation for the her mRNA is given by f1(x1) = ν2x1/(k2 + x1) in
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Fig. 4 The solutions (x1, x2, x3, x4) of system (37) with parameter values from Tables 1 and 2, evolved
from initial value a φ = (1, 0.01, 0.5, 0.5), and b φ = (2, 0.1, 2.5, 0.05), appear to converge to constants

Fig. 5 The solution
(x1, x2, x3, x4) of single-cell
system (37) with parameter
values in Tables 1 and 2, except
that ν1 = 0.069 is replaced by
ν1 = 0.42, evolved from initial
value φ = (2, 0.1, 2.5, 0.05).
The solution appears to converge
to a periodic solution

(7). We take two linear functions with larger slope dl1 and smaller slope ds1 to approx-
imate the graph of f1 respectively. When ν2 = 0.963, k2 = 9.916, the graph of f1 is
depicted in Fig. 6, where the graphs for linear functions with slopes dl1 = 0.095186
and ds1 = 0.01067 are also plotted. Similar approximations apply to f2, f3, f4 with
larger linear rates dli and smaller linear rates dsi , i = 2, 3, 4, respectively. When
ν4 = 1.447, k4 = 0.182, ν6 = 0.147, k6 = 0.302, ν8 = 2.315, k8 = 0.377,
we take dl2 = 4.892873, ds2 = 0.188497, dl3 = 0.274709, ds3 = 0.026188, dl4 =
3.835797, ds4 = 0.460283.

(i) We modify (8) by considering linear degradation in every component, i.e.,

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ẋ1 = kn1
kn1 + xn3

(ν1 + νc y4) − d1x1

ẋ2 = ν3x1 − d2x2 − ν5x2
ẋ3 = ν5x2 − d3x3

ẋ4 = ν7kh7
kh7 + xh3

− d4x4,

(38)
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Fig. 6 The graph of
Michaelis–Menten degradation
for her mRNA, with ν2 = 0.963,
k2 = 9.916. The blue line is the
linear degradation with larger
rate dl1 = 0.095186, and the
green line is the linear
degradation with smaller rate
ds1 = 0.01067 (color figure
online)

for x-components, and similarly for the y-components. If we take di = dli , i =
1, 2, 3, 4 or di = dsi , i = 1, 2, 3, 4, and the same values for the other parameters
as in Example 4.1, numerical simulations indicate that all solutions converge to an
equilibrium.

(ii) We employ linear degradations for x1, x4, y1, y4, while keeping Michaelis–
Menten degradations for x2, x3, y2, y3, i.e.,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1 = kn1
kn1 + xn3

(ν1 + νc y4) − d1x1

ẋ2 = ν3x1 − ν4x2
k4 + x2

− ν5x2

ẋ3 = ν5x2 − ν6x3
k6 + x3

ẋ4 = ν7kh7
kh7 + xh3

− d4x4,

(39)

for x-components, and similarly for the y-components. Let us use the linear degra-
dation with larger slopes d1 = dl1, d4 = dl4 to approximate the Michaelis–Menten
degradation, and take the same values for the other parameters (except νc) as in
Example 4.1. Then synchronous periodic solutions emerge. Herein, νc can serve
as a bifurcation parameter, and the Hopf bifurcation occurs at ν∗

c ≈ 0.774146. We
fix νc = 0.78 and vary only d4, the periods and amplitudes for the periodic solu-
tions are plotted in Fig. 7. It appears that the periods and amplitudes decrease as d4
increases.

(iii) We use linear degradations with smaller rates d1 = ds1 and d4 = ds4 in (39)
to approximate the Michaelis–Menten degradations. Choosing νc as the bifurcation
parameter, it can be shown that Hopf bifurcation occurs at ν∗

c ≈ 0.072545. We fix
νc = 0.074 and vary only d4. The periods and amplitudes of the periodic solutions
appear to decrease as d4 increases, as shown in Fig. 8.
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Fig. 7 The periods and amplitudes of the oscillations corresponding to various values of d4 for system
(39) with larger degradation rates

Fig. 8 The periods and amplitudes of the oscillations corresponding to various values of d4 for system
(39) with smaller degradation rates

4.2 Delay model (9)

In this subsection, we discuss stable synchronous periodic orbits in delay model (9)
with τi > 0, i = 1, 2, 4, via delay Hopf bifurcation theory. We shall consider that all
parameters and τ4 are fixed and take r = τ1 + τ2 as the bifurcation parameter. One
can also take τ4 as a bifurcation parameter.

Assume that the synchronous equilibrium X̄ of system (9) exists, as in Sect. 4.1.We
consider system (17) which is a translation of (9) from the synchronous equilibrium
X̄ to the origin. The linearization of system (17) at the origin is given by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u̇1(t) = −d1u1(t) − γ1u3(t − τ1) + γ2v4(t − τ1)

u̇2(t) = −d2u2(t) + ν3u1(t − τ2)

u̇3(t) = −d3u3(t) + ν5u2(t)
u̇4(t) = −d4u4(t) − γ3u3(t − τ4)

v̇1(t) = −d1v1(t) − γ1v3(t − τ1) + γ2u4(t − τ1)

v̇2(t) = −d2v2(t) + ν3v1(t − τ2)

v̇3(t) = −d3v3(t) + ν5v2(t)
v̇4(t) = −d4v4(t) − γ3v3(t − τ4),

(40)
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where d1, d2, d3, d4, γ1, γ2, and γ3 are defined as (28) and (29), and are positive.
The characteristic equation for (40) is �(λ, τ1, τ2, τ4) = 0, where �(λ, τ1, τ2, τ4)

is given by

det

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

λ + d1 0 γ1e−τ1λ 0 0 0 0 −γ2e−τ1λ

−ν3e−τ2λ λ + d2 0 0 0 0 0 0
0 −ν5 λ + d3 0 0 0 0 0
0 0 γ3e−τ4λ λ + d4 0 0 0 0
0 0 0 −γ2e−τ1λ λ + d1 0 γ1e−τ1λ 0
0 0 0 0 −ν3e−τ2λ λ + d2 0 0
0 0 0 0 0 −ν5 λ + d1 0
0 0 0 0 0 0 γ3e−τ4λ λ + d4

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

By letting r := τ1 + τ2, the characteristic equation can be factored as

�+(λ, τ1, τ2, τ4) · �−(λ, τ1, τ2, τ4) = �+(λ, r, τ4) · �−(λ, r, τ4) = 0, (41)

where

�±(λ, r, τ4) := λ4 + β1λ
3 + β2λ

2 + β3λ + β4

+ν3ν5γ1(λ + d4)e
−rλ ± ν3ν5γ2γ3e

−(r+τ4)λ, (42)

and βi , i = 1, 2, 3, 4, are given in (31). From the structure of the characteristic equa-
tion, we employ r = τ1 + τ2 as the bifurcation parameter, while holding τ4 fixed. We
will analyze the existence of periodic solutions bifurcating from the origin of (17) for
r near the bifurcation value.

Assume that all parameters and τ4 are fixed. We need to carry out the following
steps to apply delay Hopf bifurcation theorem. Set σ = + or −.

(I) Find a pair of purely imaginary characteristic values λσ = ±iωσ with
ωσ > 0 and the corresponding bifurcation values {r (k)

σ (ωσ )}k∈Z such that
�σ (±iωσ , r (k)

σ (ωσ ), τ4) = 0, for all k ∈ Z.
(II) Examine that iωσ is a simple purely imaginary characteristic value.
(III) Examine the transversality: Reλ′(r (k)

σ (ωσ )) �= 0, for some k ∈ Z.

For step (I), we substitute λ = iω, into the characteristic equation (42), i.e.,
�±(iω, r, τ4) = R̃±(iω, r, τ4) + i Ĩ±(iω, r, τ4) = 0, where the real and imaginary
parts are respectively

⎧
⎪⎪⎨

⎪⎪⎩

R̃±(iω, r, τ4) = ω4 − β2ω
2 + β4 + ν3ν5γ1ω sin (rω) + d4ν3ν5γ1 cos (rω)

±ν3ν5γ2γ3 cos ((r + τ4)ω) = 0
Ĩ±(iω, r, τ4) = −β1ω

3 + β3ω + ν3ν5γ1ω cos (rω) − d4ν3ν5γ1 sin (rω)

∓ν3ν5γ2γ3 sin ((r + τ4)ω) = 0.
(43)
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Through a manipulation by some trigonometric function properties (shown in
“Appendix 3”), finding solutionω to�±(iω, r, τ4) = 0 becomes equivalent to solving

Q±(ω) = ν23ν
2
5 (d

2
4γ

2
1 + γ 2

2 γ 2
3 ) =: Γ, (44)

where

Q±(ω) = ω8 + (β2
1 − 2β2)ω

6 + (β2
2 − 2β1β3 + 2β4)ω

4

+(β2
3 − 2β2β4 − ν23ν

2
5γ

2
1 )ω2 ± 2ν23ν

2
5γ1γ2γ3 sin (τ4ω)ω

+β2
4 ∓ 2d4ν

2
3ν

2
5γ1γ2γ3 cos (τ4ω).

By considering the graphs of Q±, we can derive a condition for the existence of
solution to (44):

Proposition 7 (i) For any fixed τ4 ≥ 0, there exists a positive solution to Q+(ω) = Γ

if Q+(0) < Γ , i.e.,

0 < β4 = d1d2d3d4 < ν3ν5(d4γ1 + γ2γ3). (45)

(ii) For any fixed τ4 ≥ 0, each of Q−(ω) = Γ and Q+(ω) = Γ has a positive
solution if Q−(0) < Γ , i.e.,

0 < β4 = d1d2d3d4 < ν3ν5|γ2γ3 − d4γ1|. (46)

Proposition 7 provides some conditions for the existence of purely imaginary char-
acteristic values ±iωσ . Notice that the inequalities in (45) and (46) actually express
relations among parameters, rather than specifying the range for β4. Because of the
trigonometric functions in �σ , there is a sequence of values r = r (k)

σ , k ∈ Z at which
the characteristic values ±iωσ exist. The process for executing (I)-(III) is sketched
in “Appendix 3”, and the details are similar to those in Liao et al. (2012). With these
executions, we obtain the following delay-induced Hopf bifurcation.

Theorem 4 Let all parameters and τ4 ≥ 0 be fixed. Assume that there exists a pair
of purely imaginary characteristic values ±iω+ (resp., ±iω−) satisfying conditions
in (II) and (III) for a r (k)

+ (ω+) > 0 (resp., r (k)
− (ω−) > 0) at some k ∈ Z. Then

Hopf bifurcation occurs at r = r (k)
+ (ω+) (resp., r = r (k)

− (ω−)), and a periodic orbit
bifurcates from the zero solution of system (17). Moreover, the periodic orbit bifur-
cating at r (k)

+ (ω+) > 0 is synchronous, while the one bifurcating at r (k)
− (ω−) > 0 is

asynchronous.

We have discussed periodic solutions generated by r -induced Hopf bifurcation,
where the bifurcation values {r (k)

σ }k∈Z forma sequence. This is typical in delay-induced
Hopf bifurcations. Next, we discuss stability of the bifurcating periodic solution at the
first bifurcation value.
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If there exists a purely imaginary characteristic value iωσ at its corresponding
bifurcation values {r (k)

σ (ωσ )}k∈Z such that �σ (iωσ , r (k)
σ (ωσ ), τ4) = 0, for all k ∈ Z

and σ = + or −, then we define the first bifurcation value, rc of r as

rc := min{r : r = r (k)
+ (ω+) > 0 and r = r (k)

− (ω−) > 0, for all k ∈ Z}. (47)

Moreover, we denote by iωc the purely imaginary characteristic root of�(iωc, rc, τ4)
= 0. In “Appendix 4”, we show that the rc and ωc are well defined under some
condition.

The stability of bifurcating periodic solution of system (17) induced by r = τ1+τ2,
can be analyzed through carrying out the following steps:

(IV) Confirm that Hopf bifurcation occurs at r = rc and λ = iωc.
(V) Confirm the stability of the equilibrium for r < rc.
(VI) Analyze the stability of bifurcating periodic orbit, by constructing local coor-

dinates for the two-dimensional center manifold M0 at r = rc, with the center
manifold theorem and normal form method.

Locating all roots of �(·, ·, ·) = 0 is highly nontrivial. Steps (IV) and (V) ensure
that the first stability switch of the origin (from stability to instability) occurs at r = rc,
for any τ4 ≥ 0. It will be shown in “Appendix 4” that the origin of system (17) is
asymptotically stablewhen delays are zero, by theRouth–Hurwitz criterion.Moreover,
this stability continues to hold for r < rc and any τ4 ≥ 0, under some conditions,
as shown in Proposition 8 (in “Appendix 4”). The detail of step (VI) is arranged
in “Appendix 5”. In step (VI), there are certain terms g20, g11, g02, and g21 derived
from the vector field on M0. Subsequently, we obtain the following quantities which
determine the direction and stability of the bifurcating periodic solution at the minimal
bifurcation value rc:

C1(rc) = i

2ωc

(

g20g11 − 2|g11|2 − 1

3
|g02|2

)

+ g21
2

,

p2 = −Re(C1(rc))

Re(λ′(rc))
,

ζ2 = 2Re(C1(rc)),

T2 = −1

ωc
[Im(C1(rc)) + p2Im(λ′(rc))],

where λ(r) is the eigenvalue crossing the imaginary axis at r = rc, and λ(rc) = iωc.
Computation of these terms and the following theorem can be found in Hassard et al.
(1981).

Theorem 5 Let all parameters and τ4 ≥ 0befixed.Assume that system (17)undergoes
a Hopf bifurcation at the origin at a minimal bifurcation value r = rc, and the
conditions in (V) hold.

(i) If p2 > 0 (resp., < 0), then the bifurcation is supercritical (resp., subcritical)
and a periodic solution bifurcates for r > rc (resp., r < rc) with r near rc.
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(ii) If ζ2 < 0 (resp., > 0), then the bifurcating periodic solution is stable (resp.,
unstable).

(iii) If T2 > 0 (resp., < 0) and p2 > 0, then the period increases (resp., decreases)
as r increases. If T2 < 0 (resp., > 0) and p2 < 0, then the period increases
(resp., decreases) as r decreases.

According to Theorems 4 and 5, let us summarize the criteria for the occurrence of
stable synchronous and asynchronous oscillations, respectively.

Condition (S): The minimal bifurcation value rc and the corresponding purely
imaginary characteristic value iωc exist such that �+(iωc, rc, τ4) = 0; the equi-
librium X̄ is asymptotically stable for r < rc; the Hopf bifurcation occurs at rc,
and ζ2 < 0.
Condition (AS): The minimal bifurcation value rc and the corresponding purely
imaginary characteristic value iωc exist such that �−(iωc, rc, τ4) = 0; the equi-
librium X̄ is asymptotically stable for r < rc; the Hopf bifurcation occurs at rc,
and ζ2 < 0.

Corollary 1 If condition (S) (resp., (AS)) holds for the parameters and τ4 at some
fixed values, then there exists a stable synchronous (resp., asynchronous) periodic
solution of system (17), for |r − rc| small and r > rc if p2 > 0, and r < rc if p2 < 0.

Remark 3 (i) For the delaymodel (9), while holding all parameters and τ4 fixed, there
could be a phase exchange between synchronous oscillation and asynchronous
oscillation, as r varies. We shall illustrate this in the following subsection.

(ii) The conditions in Theorems 4 and 5 can all be examined numerically. In addi-
tion, the analysis in this subsection can be extended to coupled-cell system with
four time delays, τ1, τ2, τ3, and τ4, where τ3 is the time lag for the process of
translocation.

4.2.1 Numerical illustrations

In this subsection,we perform several numerical simulations to illustrate the dynamical
scenarios for system (9), and connect the dynamics to the somitogenesis mechanism.
We first illustrate Theorem 4 by Example 4.5, then pursue extended numerical findings
to explore further dynamical scenarios and properties for system (9). In numerical
simulations on the delay equations (9), when the conditions in Theorem4 or Theorem5
are met, periodic solution emerges if we choose r to be a little larger or smaller than
the bifurcation value rc. Often the periodic solution persists if we further increase or
decrease the bifurcation parameter r .

Example 4.5 We consider the following parameters

k1 = 9.10888, k2 = 8.94996, k4 = 0.945435,

k6 = 9.94208, k7 = 0.484885, k8 = 9.90454,

ν1 = 0.075653, ν2 = 8.07477, ν3 = 46.8125,

ν4 = 1.83792, ν5 = 0.554856,

ν6 = 2.28749, ν7 = 6.40892, ν8 = 6.73278,

νc = 0.335551, n = h = 2. (48)
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Fig. 9 The solution evolved from initial value φ = (0.06, 2.6, 17, 0.2, 0.07, 2.7, 18, 0.3), for a ODE
system (8) with parameter values in (48), tends to the synchronous equilibrium X̄, b system (9) with delays
in (49) and the same parameter values, tends to a stable synchronous solution

System (8) and system (9) both have a synchronous equilibrium at

X̄ = (x̄, x̄), x̄ = (0.04928, 1.93335, 8.77964, 0.02875).

If there is no delay: τ1 = τ2 = τ4 = 0, i.e., considering system (8), then all
eigenvalues of the linearized system at the equilibrium have negative real parts, as (33)
is met. Thus, X̄ is asymptotically stable in system (8). Numerical simulation further
indicates that all solutions converge to X̄ as t → ∞, as demonstrated in Fig. 9a. It
appears that there is no oscillation for ODE system (8) with parameters in (48).

On the other hand, if we consider delay system (9) with delays

τ1 = 3.86245, τ2 = 2.8, τ4 = 35, (49)

then the solution evolved from the same initial value tends to a stable synchronous
oscillation shown in Fig. 9b. The existence of this periodic solution follows from
Theorem 4, by taking τ1 + τ2 to be near the minimal bifurcation value τc = 6.66245.
This example illustrates that when the ODE model (8) does not have oscillation, by
adding suitable delays into the system, synchronous oscillation could be generated.

Example 4.6 Table 3 lists the ranges of all parameters considered in Uriu et al. (2010).
We like to see how likely system (9) with delays is able to generate synchronous
oscillation and asynchronous oscillation in these parameter ranges.We assume ν8 > ν7
so that the synchronous equilibrium exists, by Proposition 3. We take τ2 = 2.8, and
respectively, h = n = 1, 2, 3, 4, τ4 = 25, 35, 45, 55, 65, 75, and then randomly
choose 10,000 parameter sets of values from Table 3. We examine condition (S) and
condition (AS) to determine the existence of stable synchronous and asynchronous
periodic solutions when r near rc, respectively. The numbers of parameter sets that
satisfy each of these two conditions are recorded in Table 4.

In Table 4a, each denominator (resp., numerator) accounts for the number of param-
eter sets with which system (9) admits stable synchronous periodic solutions (resp.,
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Table 3 The ranges of all parameters considered

k1, k2, k4, k6, k7, k8 ν2, ν4, ν6, ν7, ν8 ν1 ν3 ν5, νc

Range 0.1–10 0.1–10 0.001–0.1 0.5–50 0.01–1.0

Unit nM nM min−1 nM min−1 min−1 min−1

Table 4 For τ4 = 25, 35, 45, 55, 65, 75 and n = h = 1, 2, 3, 4, respectively, each denominator (resp.,
numerator) in (a) is the total number of parameter sets with which the system has a stable synchronous
oscillation (resp., stable synchronous oscillation with period within [25, 35] min), when r is near rc; (b)
the total number of parameter sets with which the system has a stable asynchronous oscillation when r is
near rc

τ4 = 25 τ4 = 35 τ4 = 45 τ4 = 55 τ4 = 65 τ4 = 75

(a) Synchronous oscillation

n = h = 1 62/1141 196/1096 7/1006 140/992 107/936 63/929

n = h = 2 30/549 97/536 0/481 54/489 66/492 28/461

n = h = 3 20/332 60/312 1/296 43/321 37/291 19/277

n = h = 4 11/235 43/220 2/210 27/206 31/199 19/204

(b) Asynchronous oscillation

n = h = 1 629 664 755 769 829 839

n = h = 2 366 382 438 426 424 456

n = h = 3 249 274 288 265 297 312

n = h = 4 201 216 224 228 239 233

stable synchronous periodic solutions with period within [25, 35] min), when r is
near the minimal bifurcation value rc (i.e., τ1 near rc − τ2 = rc − 2.8). It appears in
Table 4a that the most stable synchronous oscillations with period within [25, 35] min
generated is when n = h = 1 and τ4 = 35. We also record in Table 4b the number of
cases which generate stable asynchronous periodic solution, when r is near rc.

We then perform a statistics to the data in Table 4 and collect the parameter values
with which system (9) satisfies condition (S) and hence generates synchronous oscil-
lation. As an illustration, we display the frequency histograms for the case τ4 = 35
and n = h = 1. Figure 10 indicates that parameters ν6, ν8, k6 with ν6 < 4, ν8 > 5,
and k6 > 5 together tend to satisfy condition (S). Figure 11 indicates that ν3 > 25 or
ν4 < 5 or ν5 > 0.5, or ν7 < 5 tends to satisfy condition (S). Hence, if the degradation
rate ν6 of Her protein in nucleus is small, and the degradation rate ν8 of Delta protein
is large, then the system tends to generate stable periodic solutions. In addition, we
found that system with different Hill coefficients and τ4 has similar distribution for
synchronous and asynchronous oscillation. That is, the Hill coefficients do not affect
significantly the parameter distribution for oscillation, and this is consistent with the
observation in Uriu et al. (2010) for the ODE system (8).

Example 4.7 From our numerical simulations on system (9) with parameters satisfy-
ing condition (S) or condition (AS), we further observe the following properties:
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Fig. 10 The frequency histograms of the parameters k6, ν8, and ν6 that the corresponding system generates
stable synchronous oscillations when r near rc , τ4 = 35, and n = h = 1

(i) Phase exchange: We choose two sets of parameter values from the computa-
tion in Table 4 to demonstrate the phase exchange between synchronous and
asynchronous oscillations as bifurcation parameter r varies:

(k1, k2, k4, k6, k7, k8) = (1.65443, 1.39621, 8.06972, 8.61674,

9.71803, 3.87536),

(ν1, ν2, ν3, ν4, ν5, ν6, ν7, ν8, νc) = (0.075602, 2.07115, 10.9502, 5.59773,

0.1928248, 2.02374, 5.26644, 7.09196,

0.591048), (50)

(k1, k2, k4, k6, k7, k8) = (0.847943, 1.4226, 4.90274, 1.35171,

5.89576, 3.91132),

(ν1, ν2, ν3, ν4, ν5, ν6, ν7, ν8, νc) = (0.011547, 3.30484, 30.2745, 0.835863,

0.685058, 1.34702, 0.362676, 5.74838,

0.587321). (51)

System (9) with parameters (50) (resp., (51)) satisfies condition (S) (resp., (AS))
with minimal bifurcation value rsc (resp., rac ). When r is near rsc (resp., rac ),
there exists a stable synchronous (resp., asynchronous) periodic solution bifur-
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Fig. 11 The frequency histograms of the parameters ν3, ν4, ν5, and ν7 that the corresponding system
generates stable synchronous oscillations when r near rc , τ4 = 35, and n = h = 1

cating from the equilibrium X̄, by Corollary 1. If we take r near rsc (resp., rac ),
and then increase it to another bifurcation value larger than rsc (resp., rac ), then
the system undergoes a phase exchange from synchronous (resp., asynchronous)
oscillation to asynchronous (resp., synchronous) oscillation, as shown in Fig. 12
(resp., Fig. 13). In addition, if we set delays to zeros, then these periodic solu-
tions disappear, as shown in Fig. 14. Restated, holding a suitable τ4 and varying
r could generate a sequence of phase exchanges between synchronous and asyn-
chronous oscillations, and the oscillation disappears when delays are all zeros. In
Figs. 12, 13 and 14, we plot components x1(t) and y1(t) of the solution evolved
from the initial value φ = (0.1, 0.1, 0.1, 0.1, 0.2, 0.2, 0.2, 0.2).

(ii) Existence of stable synchronous or asynchronous periodic solution depends sen-
sitively on the magnitudes of delays r and τ4. One may not be able to find a
periodic solution when the value of r is not close enough to a bifurcation value.

(iii) We observe that the system tends to generate stable synchronous oscillations
with a period about 30min, if the system satisfies condition (S) and rc < 10.

(iv) For a set of fixed parameter values, the period of bifurcating periodic solution
is larger at larger bifurcation value. On the other hand, for system (9) with
parameters which yield larger minimal bifurcation value, the periodic solution
bifurcating at such value has larger period.
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Fig. 12 With τ4 = 35, the parameter values in (50), and r = 3.401106 near rsc , in a t ∈ [0, 600], b
t ∈ [2600, 3000], and r = 6.04389 near certain bifurcation value larger than rsc in c t ∈ [0, 600], d
t ∈ [2600, 3000], the system undergoes a phase exchange from a stable synchronous oscillation to a stable
asynchronous oscillation

5 Comparison between models

In this section, we summarize the dynamical properties according to our theories
in Sects. 3 and 4 and subsequent numerical computations, and make a comparison
between ODE model (8) and delay model (9). Such a comparison and the study on
whether the ODE model (8) or delay model (9) is more suitable for modeling the
segmentation clock have been an appealing research interest, as mentioned in the
Introduction.

Let us classify the basic dynamics for (9) with respect to parameters. Recall β4 =
d1d2d3d4 defined in (31) and β̌4 := ď1ď2ď3ď4 defined in (20). We introduce intervals

I1 := (0, ν3ν5|γ2γ3 − d4γ1|),
I2 := (ν3ν5|γ2γ3 − d4γ1|, ν3ν5(γ2γ3 + d4γ1)),

shown in Fig. 15a. According to Proposition 8 (in “Appendix 4”), and (25) in Remark
2(i), we summarize:

(i) Ifβ4 < ν3ν5|γ2γ3−d4γ1|, i.e.,β4 ∈ I1, then there exist iω+, iω−, {r (k)
+ (ω+)}k∈Z,

{r (k)
− (ω−)}k∈Z such that �+(iω+, r (k)

+ (ω+), τ4) = 0 and �−(iω−, r (k)
− (ω−), τ4)

= 0, for all k ∈ Z.
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Fig. 13 With τ4 = 35, the parameter values in (51), and r = 7.15282 near rac in a t ∈ [0, 600], b
t ∈ [2600, 3000], and r = 9.14428 near certain bifurcation value larger than rac in c t ∈ [0, 600], d
t ∈ [2600, 3000], the system undergoes a phase exchange from a stable asynchronous oscillation to a stable
synchronous oscillation

Fig. 14 With r = τ4 = 0, and the parameter values in a (50) and b (51), the solution tends to an equilibrium

(ii) If ν3ν5|γ2γ3 − d4γ1| < β4 < ν3ν5(γ2γ3 + d4γ1), i.e., β4 ∈ I2, then there exist
iω+ and {r (k)

+ (ω+)}k∈Z such that �+(iω+, r (k)
+ (ω+), τ4) = 0, for all k ∈ Z.

(iii) If β̌4 > ν3ν5(ρ̂1ď4 + ρ̂2ρ̂3), then there does not exist oscillation for both ODE
system (8) and delay system (9).

123



The kinetics in mathematical models... 135

0 4
)ˆˆˆ( 324153 d

4I

4
|d-| 143253

)d( 1432530

2I(a)

(b)

1I

Fig. 15 aPartition for the range ofβ4: I1 = (0, ν3ν5|γ2γ3−d4γ1|), I2 = (ν3ν5|γ2γ3−d4γ1|, ν3ν5(γ2γ3+
d4γ1)). b Partition for the range of β̌4: I4 = (ν3ν5(ρ̂1ď4 + ρ̂2ρ̂3), ∞). ρ̂i is defined in (24), i = 1, 2, 3

Notably, β̌4 ≤ β4, as ďi ≤ di for i = 1, 2, 3, 4, and γi ≤ ρ̂i , i = 1, 2, 3, where ρ̂i
is defined in (24). In addition, it has been shown in Lemma 2 that all eigenvalues of
the linearized system of (8) at the equilibrium have negative real parts if and only if

ν3ν5(γ2γ3 − d4γ1) < β4 <
α1α2α3 − α2

3

α2
1

− ν3ν5(d4γ1 + γ2γ3). (52)

Therefore, if γ2γ3 − d4γ1 > 0, β4 ∈ I2, and β4 lies in the range in (52), there does not
exist synchronous periodic solution for the ODE system (8), through Hopf bifurcation.
However, with such parameter values, synchronous periodic solution can exist for the
delay system (9), according to delay Hopf bifurcation. In fact, Example 4.5 is such
an instance. The Hopf bifurcation occurs for ODE system (8), when the right-hand
inequality in (52) becomes equality, as seen in Proposition 6. Let us summarize the
dynamical properties for systems (8) and (9):

• Synchronous oscillation: From our analytical and numerical results, it appears that
the delay system (9) has wider parameter regime for synchronous periodic solution
than the ODE system (8).

• Period with respect to coupling strength: In ODE system (8), the period of syn-
chronous oscillation increases as the coupling strength increases, as shown in Fig. 3
in Example 4.2. This is in contrast to the finding in Herrgen et al. (2010), which
was based on some experiment and the theory of coupled phase oscillator. On the
other hand, it is possible that the period of synchronous oscillation increases as
the coupling strength decreases in the delay system (9).

• Oscillation-arrested: For parameters satisfying (iii), both systems (8) and (9) admit
global convergence to the synchronous equilibrium and there is no oscillation.

• Gradient structure: The gradient structure was adopted to generate traveling waves
in N -cell systems extended from the cell–cell ODE system (8) in Uriu et al.
(2009), and Lewis’s delay system (2) in Liao and Shih (2012). Such wave patterns
depict spatial-temporal oscillatory gene expression in the PSM of zebrafish. These
oscillatory waves have larger periods at the anterior and smaller periods at the
posterior of the PSM.For the delay system (9), construction of such travelingwaves
is also feasible. According to the analytical results in Sects. 3 and 4, the degradation
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rates should be relatively large (resp., small) and the synthesis rates relatively
small (resp., large) at the anterior (resp., posterior) of PSM to generate oscillation-
arrested (resp., oscillation). We thus summarize the following distribution.

Distribution (D1):Oneof k1, k2, k4, k6, k7, k8, ν1, ν3, νc is relatively small (resp.,
large), or one of ν2, ν4, ν6, ν8 is relatively large (resp., small) to yield relatively large
(resp., small) degradation rates and small (resp., large) synthesis rates for the cells
located at the anterior (resp., posterior) of PSM.

In addition, from our numerical computation and Table 4, we see that relatively
large (resp., small) ν4 and ν6 and relatively small (resp., large) k6 and ν3, which
are consistent with the distribution (D1), tend to generate oscillation-arrested (resp.,
oscillation). On the other hand, the following distribution (D2) was adopted for the
ODE system (8) to generate normal traveling wave pattern in Uriu et al. (2009).

Distribution (D2): One of k4, k6, ν2, ν3, ν5, ν8 is relatively small (resp., large),
or one of k1, k2, k7, k8, ν1, νc is relatively large (resp., small) for the parameters
corresponding to cells located at the anterior (resp., posterior) of PSM.

The distributions (D1) for delay system (9) and (D2) for ODE system (8) are
disparate except k4, k6, and ν3, and so the regimes for generating normal traveling
wave patterns are distinct for these two systems.

6 Discussions and conclusions

In this paper, we analyzed the dynamics for two mathematical models on the kinetics
of zebrafish segmentation clock genes. The ODE system (8) takes into account the
translocation process in gene regulation to replace the consideration of time lags in
transcription and translation. The delay system (9) includes these time delays into
system (8). Mathematical analysis were performed to analyze the chief dynamics and
locate the associated parameter regimes for both the delay and ODE systems. For
oscillation-arrested, we derived conditions for global convergence to the synchronous
equilibrium. For synchronous oscillations, we computed the characteristic equations
of the linearized systems at the synchronous equilibrium for system (8) and system
(9) respectively, and analyzed the characteristic values for each of these systems. With
such computation, the Hopf bifurcation theory was applied to study the existence of
synchronous periodic solutions for each of these systems, and asynchronous periodic
solutions in delay system. For theODE system, we took the synthesis rate of Delta pro-
tein or the activation rate of her mRNA transcription by Delta–Notch signal (coupling
strength) as the bifurcation parameter. For the delay system, the sum of transcription
delay and translation delay for her gene was used as the bifurcation parameter. Cri-
terion for the existence of stable synchronous oscillations for each system was then
established subsequently. Both systems admit the basic dynamical phases for segmen-
tation clock genes and can accommodate the gradient structure associated with the
traveling wave patterns.

It has been an interesting issue to investigate and distinguish what kind of math-
ematical models is more suitable to model gene regulation in somitogenesis. This is
what we have pursued in this study. From our analysis and computation, it appears
that the delay model (9) has wider parameter range for generating synchronous oscil-
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lations. However, the synchrony of such oscillation depends on the magnitude of the
delay tightly, and may yield to asynchronous oscillation at larger or smaller delay
magnitudes. On the other hand, for the ODE system (8), we have seen that the period
of the periodic solution increases with increasing coupling strength νc in Example 4.2.
This is in contrast to the finding in the literature through experiments and the theory
of coupled phase oscillators. In this regard, delay models appear to be more pertinent
for modeling segmentation clock genes.

A mathematical reason for Lewis to consider delays in his model, (2) with (3), (4),
is that, without adding delay, the dynamics for the decoupled single-cell system is
determined by a two-dimensional ODE which can not generate oscillation, see Lewis
(2003). On the other hand, for the decoupled single-cell system corresponding to (8),
i.e., taking into account the translocation process and without adopting time delay,
the dynamics is determined by a three-dimensional ODE, and thus can accommodate
oscillations. However, the parameter values for such oscillation may not lie within the
suitable range, as shown in Example 4.3.

Another issue is about the degradations. Mathematical models on segmenta-
tion clocks in the literature largely employ linear degradations. On the other hand,
Michaelis–Menten type reactions for the degradation were adopted in Goldbeter and
Pourquié (2008) and Uriu et al. (2009, 2010). From the view point of mathematical
modeling, Michaelis–Menten reaction can be approximated by linear decay when the
protein level is low (Murray 2002). However, some of the simulated protein levels
in the literature are quite large (as large as hundreds). Certainly, the units for the
variables and parameters will be important with this concern. We have illustrated in
Example 4.4 that the dynamics in a system with linear degradations can be quite dif-
ferent from the ones in system with Michaelis–Menten degradations. Although some
degradation rates were estimated from halflives of mRNA and proteins, experimen-
tal measurement of other reaction rates and quantifying some of the parameters will
require further efforts, as mentioned in Ay et al. (2014) and Schwendinger-Schreck
et al. (2014). These quantifications are also associated with what function forms the
degradations are to be modeled with.

Systems (2), (8) and (9) actually represent typical forms of equations for mod-
eling the kinetics of gene regulation in coupled cells. To investigate such somehow
complicated equations, one certainly relies on numerical simulations. Nevertheless,
assertions established from numerical simulations can certainly be strengthened by
analytical supports. The analysis and techniques in this study are expected to provide
a paradigm for mathematical investigation in other gene regulation models, in addition
to the zebrafish somitogenesis.

Acknowledgements The authors are grateful to Chia-Chieh Jay Chu for his advice on computing the
bifurcation value in ODEs. The authors were supported, in part, by theMinistry of Science and Technology,
Taiwan.

Appendix 1: Proof of Theorem 2

Under the conditions of the theorem, the characteristic equation (30) has a pair of
complex roots R(μ) ± i I (μ) for μ near μ∗. At μ = μ∗, this pair becomes purely
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imaginary, and the other roots have negative real parts, i.e.,

R(μ∗) = 0, I (μ∗) > 0,

according to Proposition 6. Substituting λ(μ) = R(μ)+i I (μ) intoΔ+, and collecting
the real and imaginary parts, we have

R4 + α1R
3 + α2R

2 + α3R + α+
4 − (6R2 + 3α1R + α2)I

2 + I 4 = 0, (53)

I [−(4R + α1)I
2 + 4R3 + 3α1R

2 + 2α2R + α3] = 0, (54)

where R = R(μ), I = I (μ). If (54) has a solution with I (μ) �= 0, then

−(4R + α1)I
2 + 4R3 + 3α1R

2 + 2α2R + α3 = 0.

Thus,

I 2 = 4R3 + 3α1R2 + 2α2R + α3

4R + α1
. (55)

Substituting (55) into (53), using α1(μ
∗)α2(μ

∗)α3(μ
∗)−α2

3(μ
∗)−α2

1(μ
∗)α+

4 (μ∗) =
0, differentiating with respect to μ, and utilizing R(μ∗) = 0 and I (μ∗) �= 0, we
obtain

dR

dμ
(μ∗) =

d
dμ

[α1(μ)α2(μ)α3(μ) − α2
3(μ) − α2

1(μ)α+
4 (μ)]|μ=μ∗

−2α1(μ∗)[α1(μ∗)α3(μ∗) + (
2α3(μ∗)
α1(μ∗) − α2(μ∗))2] �= 0,

by the assumption of the theorem. Thus the transversality condition is met. We con-
clude that system (8) undergoes a Hopf bifurcation at X̄ and μ = μ∗. ��

Appendix 2: Stability of bifurcating periodic solution, ODE case

We express system (26) into the form:

Ẋ = A(μ)X + f(X, μ),

where X = (x1, . . . , x4, y1, . . . , y4), A(μ) is the linear part, and f = ( f1, . . . , f8)
is the nonlinear term. At μ = μ∗, A(μ∗) has a pair of purely imaginary eigenvalues
λ(μ∗) = ±iω0. Let us make a transformation so that the linear part is in normal form.
We consider the change of variables X = PZ, where

P = [
Im(u) Re(u) v3 · · · v8

]

8×8 ,
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and u ∈ R
8 is the eigenvector of A(μ∗) corresponding to the eigenvalue iω0 and

v3, . . . , v8 are the generalized eigenvectors for the remaining eigenvalues. Thus

P−1A(μ∗)P =

⎡

⎢
⎢
⎣

0 −ω0
...

ω0 0
...

· · · · · · D

⎤

⎥
⎥
⎦ , (56)

where D is an 6 × 6 matrix. Then the transformed system becomes

Ż = P−1A(μ)PZ + F(Z, μ),

where Z = (z1, . . . , z8) and F(Z, μ) = P−1f(PZ, μ) with F = (F1, . . . , F8). At
μ = μ∗, Z = 0, we define

g11 = 1

4

[(
∂2F1
∂z21

+ ∂2F1
∂z22

)

+ i

(
∂2F2
∂z21

+ ∂2F2
∂z22

)]

,

g02 = 1

4

[(
∂2F1
∂z21

− ∂2F1
∂z22

− 2
∂2F2

∂z1∂z2

)

+ i

(
∂2F2
∂z21

− ∂2F2
∂z22

+ 2
∂2F1

∂z1∂z2

)]

,

g20 = 1

4

[(
∂2F1
∂z21

− ∂2F1
∂z22

+ 2
∂2F2

∂z1∂z2

)

+ i

(
∂2F2
∂z21

− ∂2F2
∂z22

− 2
∂2F1

∂z1∂z2

)]

,

G21 = 1

8

[(
∂3F1
∂z31

+ ∂3F1
∂z1∂z22

+ ∂3F2
∂z21∂z2

+ ∂3F2
∂z32

)

+ i

(
∂3F2
∂z31

+ ∂3F2
∂z1∂z22

− ∂3F1
∂z21∂z2

− ∂3F1
∂z32

)]

.

Next, for k = 3, . . . , 8, we set

hk−2
11 = 1

4

(
∂2Fk
∂z21

+ ∂2Fk
∂z22

)

,

hk−2
20 = 1

4

[(
∂2Fk
∂z21

− ∂2Fk
∂z22

)

− 2i

(
∂2Fk

∂z1∂z2

)]

,

and let wk−2
11 , wk−2

20 ∈ C
6 be the solutions of

Dwk−2
11 = −hk−2

11 , (D − 2iω0 I )w
k−2
20 = −hk−2

20 ,

where D is defined in (56). For k = 3, . . . , 8, let
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Gk−2
110 = 1

2

[(
∂2F1

∂z1∂zk
+ ∂2F2

∂z2∂zk

)

+ i

(
∂2F2

∂z1∂zk
− ∂2F1

∂z2∂zk

)]

,

Gk−2
101 = 1

2

[(
∂2F1

∂z1∂zk
− ∂2F2

∂z2∂zk

)

+ i

(
∂2F2

∂z1∂zk
+ ∂2F1

∂z2∂zk

)]

.

Then we define

g21 = G21 +
6∑

k=1

(2Gk
110w

k
11 + Gk

101w
k
20).

Appendix 3: Sketch of steps (I)–(III) in Sect. 4.2

Step (I): For any fixed τ4 ≥ 0, we substitute λ = iω with ω > 0 into the characteristic
equation (42), i.e., �±(iω, r, τ4) = R̃±(iω, r, τ4) + i Ĩ±(iω, r, τ4) = 0, where the
real and imaginary parts are respectively

⎧
⎪⎪⎨

⎪⎪⎩

R̃±(iω, r, τ4) = ω4 − β2ω
2 + β4 + ν3ν5γ1w sin (rω) + d4ν3ν5γ1 cos (rω)

±ν3ν5γ2γ3 cos ((r + τ4)ω) = 0
Ĩ±(iω, r, τ4) = −β1ω

3 + β3ω + ν3ν5γ1ω cos (rω) − d4ν3ν5γ1 sin (rω)

∓ν3ν5γ2γ3 sin ((r + τ4)ω) = 0.
(57)

By the properties of trigonometric functions, (57) can be written as

{√
L±(ω) · sin (φ± + rω) = −ω4 + β2ω

2 − β4√
L±(ω) · cos (φ± + rω) = β1ω

3 − β3ω,
(58)

where L±(ω) := [ν3ν5(d4γ1±γ2γ3 cos (τ4ω))]2+[ν3ν5(γ1ω∓γ2γ3 sin (τ4ω))]2 > 0,
if ω is a solution of (58), and φ± ∈ [0, 2π) with

sin (φ±) = ν3ν5[d4γ1 ± γ2γ3 cos (τ4ω)]/√L±(ω),

cos (φ±) = ν3ν5[γ1w ∓ γ2γ3 sin (τ4ω)]/√L±(ω).

In order to find solution ω to (58), we sum up the square of equations (58) and obtain

Q±(ω) = ν23ν
2
5 (d

2
4γ

2
1 + γ 2

2 γ 2
3 ) =: Γ,

where

Q±(ω) = ω8 + (β2
1 − 2β2)ω

6 + (β2
2 − 2β1β3 + 2β4)ω

4

+(β2
3 − 2β2β4 − ν23ν

2
5γ

2
1 )ω2

±2ν23ν
2
5γ1γ2γ3 sin (τ4ω)ω + β2

4 ∓ 2d4ν
2
3ν

2
5γ1γ2γ3 cos (τ4ω).

Since Q±(0) = β2
4 ∓2d4ν23ν

2
5γ1γ2γ3 and both Q+(ω) and Q−(ω) are strictly increas-

ing eventually and blow up as ω → ∞, we thus establish Proposition 7.
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Proposition 7 guarantees the existence of the minimal bifurcation value rc and its
corresponding purely imaginary eigenvalue iωc. In the sequel, we denote byω+ (resp.,
ω−) a positive solution to Q+(·) = Γ (resp., Q−(·) = Γ ). By using (58), we have

tan (φ± + rω) = S(ω)/C(ω),

S(ω) := −ω4 + β2ω
2 − β4,

C(ω) := β1ω
3 − β3ω. (59)

Let σ = + or −. For each solution ωσ to Qσ , there exists a sequence {r (k)
σ (ωσ )}k∈Z:

r (k)
σ (ωσ ) :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

1
ωσ

[
tan−1

(
S(ωσ )
C(ωσ )

)
− φσ + 2kπ

]
, if C(ωσ ) > 0 ,

1
ωσ

[
tan−1

(
S(ωσ )
C(ωσ )

)
− φσ + (2k − 1)π

]
, if C(ωσ ) < 0 ,

1
ωσ

[ 3π
2 − φσ + 2kπ

]
, if C(ωσ ) = 0, S(wσ ) < 0,

1
ωσ

[
π
2 − φσ + 2kπ

]
, if C(ωσ ) = 0, S(ωσ ) > 0,

such that �σ (iωσ , r (k)
σ (ωσ ), τ4) = 0. To simplify the notation, we denote r (k)

σ :=
r (k)
σ (ωσ ) as the bifurcation value. In particular, we shall take into account the case
that r (k)

σ > 0 in the following discussions. Accordingly, a positive solution ω+ (resp.,
ω−) of Q+(·) = Γ (resp., Q−(·) = Γ ) corresponds to a pair of purely imaginary
roots ±iω+ (resp., ±iω−) of �+(·, r (k)

+ , τ4) = 0 (resp., �−(·, r (k)
− , τ4) = 0). This

completes the first step.
Step (II): Since every solution of (58) is also a solution toQ+ or Q−, if Q

′
σ (ωσ ) �= 0,

and all other positive solutions to Q+(·) = Γ and Q−(·) = Γ are not integermultiples
of ωσ , then iωσ is a simple purely imaginary eigenvalue, with σ = + or −.

Step (III): The following conditions guarantee the transversality property:

[Rσ (ωσ , r (k)
σ )]2 + [Iσ (ωσ , r (k)

σ )]2 �= 0, W 2
1,σ (ωσ , r (k)

σ ) + W 2
2,σ (ωσ , r (k)

σ ) �= 0,

Q1,σ (ωσ , r (k)
σ )W1,σ (ωσ , r (k)

σ ) + Q2,σ (ωσ , r (k)
σ )W2,σ (ωσ , r (k)

σ ) �= 0,

where

R±(ω, r) := −3β1ω
2 + β3 + ν3ν5[(1 − d4r)γ1 cos (rω)

∓γ2γ3(r + τ4) cos ((r + τ4)ω) − γ1rω sin (rω)],
I±(ω, r) := −4ω3 + 2β2ω − ν3ν5[γ1rω cos (rω) + (1 − d4r)γ1 sin (rω)

∓γ2γ3(r + τ4) sin ((r + τ4)ω)],
Q1,±(ω, r) := ν3ν5ω[−γ1ω cos (rω) + d4γ1 sin (rω) ± γ2γ3 sin ((r + τ4)ω)],
Q2,±(ω, r) := ν3ν5ω[d4γ1 cos (rω) + γ1ω sin (rω) ± γ2γ3 cos ((r + τ4)ω)],
W1,±(ω, r) := −3β1ω

2 + β3 + ν3ν5[(1 − d4r)γ1 cos (rω)

∓γ2γ3(r + τ4) cos ((r + τ4)ω) − γ1rω sin (rω)],
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W2,±(ω, r) := −4ω3 + 2β2ω − ν3ν5[γ1rω cos (rω) + (1 − d4r)γ1 sin (rω)

∓γ2γ3(r + τ4) sin ((r + τ4)ω)].

Appendix 4: Sketch of steps (IV) and (V) in Sect. 4.2

Step (IV): Let us consider the characteristic equation (41) with r = 0:

�+(λ, 0, τ4) · �−(λ, 0, τ4) = 0. (60)

Our goal is to derive the condition for parameters under which all roots of (60) have
negative real parts for all τ4 ≥ 0. If so, then the stability switch will not occur for any
τ4 ≥ 0 and r = 0.Moreover, for any fixed τ4 ≥ 0, there is also no stability switchwhen
r < rc. Combining these properties, we can then confirm the asymptotical stability of
the origin for system (17) for any τ4 ≥ 0 and r < rc.

We have seen that all characteristic values of (60) have negative real parts when
τ4 = 0, under condition (33) or (34). Therefore, it suffices to show that all characteristic
values of (60) remain to have negative real parts for any τ4 ≥ 0 and r = 0.

Proposition 8 For any τ4 ≥ 0, all characteristic values of (60) have negative real
parts if

E1 > 0, E3 > 0, E5 > 0, (61)

β4 > ν3ν5(γ2γ3 − d4γ1), (62)

where

E1 = 2[d21d22 (d23 + d24 ) + (d21 + d22 )d
2
3d

2
4 + 2(d1d2d3 − (d1

+d2 + d3)d
2
4 )ν3ν5γ1 + ν23ν

2
5γ

2
1 ],

E3 = 4[d21 (d22 + d23 + d24 ) + d22 (d
2
3 + d24 ) + d23d

2
4

− 2(d1 + d2 + d3)ν3ν5γ1],
E5 = 6(d21 + d22 + d23 + d24 ). (63)

Proof We substitute λ = iν with ν ≥ 0 into �±(λ, 0, τ4) = 0 and collect the real and
imaginary parts to obtain

{∓ν3ν5γ2γ3 cos (rν) = ν4 − β2ν
2 + β4 + d4ν3ν5γ1

±ν3ν5γ2γ3 sin (rν) = −β1ν
3 + ν(ν3ν5γ1 + β3).

(64)

Next, we sum up the square of equations (64) to get

E(ν) = (ν3ν5γ2γ3)
2, (65)
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where

E(ν) := ν8 + (β2
1 − 2β2)ν

6 + [2d4ν3ν5γ1 + β2
2 − 2β1(ν3ν5γ1 + β3) + 2β4]ν4

+[ν23ν25γ 2
1 + β2

3 + 2ν3ν5γ1(−d4β2 + β3) − 2β2β4]ν2 + (d4ν3ν5γ1 + β4)
2.

Then E ′(ν) = 8ν7 + E5ν
5 + E3ν

3 + E1ν, where E1, E3, E5 are defined in
(63). Thus E(ν) is strictly increasing on [0,∞), under condition (61). Moreover, it is
straightforward to verify that E(0) = (d4ν3ν5γ1 + β4)

2 > (ν3ν5γ2γ3)
2 if (62) holds.

Consequently, E(ν) > (ν3ν5γ2γ3)
2, for all ν ≥ 0, and hence for all ν ∈ R, as E

is an even function. Therefore, there does not exist any real solution to (65) under
conditions (61) and (62). The assertion thus follows from continuity of characteristic
values. This completes the proof.

Step (V): Setting σ = + (resp., σ = −) if Q+(ωc) = Γ (resp., Q−(ωc) = Γ ), the
following conditions ensure that the Hopf bifurcation occurs at r = rc and λ = iωc:

Condition (B1): Q
′
σ (ωc) �= 0, and all other positive solutions to Q+(·) = Γ and

Q−(·) = Γ satisfy ω �= mωc for any integer m;
Condition (B2): [Rσ (ωc, rc)]2+[Iσ (ωc, rc)]2 �= 0,W 2

1,σ (ωc, rc)+W 2
2,σ (ωc, rc) �=

0, and Q1,σ (ωc, rc)W1,σ (ωc, rc) + Q2,σ (ωc, rc)W2,σ (ωc, rc) �= 0.

Appendix 5: Stability of bifurcating periodic solution, delay case

Step (VI): The stability of the bifurcating periodic solution is determined by the non-
linear terms of the equations. The condition for the stability can be expressed after the
equations are put in a suitable form, under the theory of center manifold and normal
form. Let us outline the main process for this step, following Hassard et al. (1981),
see also Liao et al. (2012) and Yu and Cao (2006).

We write system (17) into the form:

Ẋ(t) = LμXt + Gμ(Xt ), (66)

whereX(t) = (x1(t), . . . , x4(t), y1(t), . . . , y4(t))T ,Xt (θ) = X(t+θ), θ ∈ [−τM , 0],
Lμ : C → R

8 is a linear operator, and Gμ : C → R
8 is a nonlinear operator, and

the phase space C := C ([−τM , 0],R8+) is a Banach space under the supremum norm
‖φ‖ = sup{|φ(θ)| : −τM ≤ θ ≤ 0}. We label these operators by μ := r − rc =
τ1 + τ2 − rc, for a fixed minimal bifurcation value rc. Herein, Lμ is defined by

Lμφ = M0φ(0) + M1φ(−τ1) + M2φ(−τ2) + M4φ(−τ4),

where

(M0)i j =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

−d1, if i j = 11, 55
−d2, if i j = 22, 66
−d3, if i j = 33, 77
−d4, if i j = 44, 88
ν5, if i j = 32, and i j = 76
0, otherwise,
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(M1)i j =
⎧
⎨

⎩

−γ1, if i j = 13, and i j = 57
γ2, if i j = 18, and i j = 54
0, otherwise,

(M2)i j =
{

ν3, if i j = 21, and i j = 65
0, otherwise,

(M4)i j =
{−γ3, if i j = 43 and i j = 87
0, otherwise,

as expressed in (40), with d1, d2, d3, d4 and γ1, γ2, γ3 defined in (28) and (29), respec-
tively. In fact, according to the Riesz representation theorem, by choosing

η(θ, μ) = M0δ(θ) + M1δ(θ + τ1) + M2δ(θ + τ2) + M4δ(θ + τ4),

we see that

Lμφ =
∫ 0

−τM

dη(θ, μ)φ(θ),

where δ(·) is theDirac delta function. For operatorGμ : C → R
8, its eight components

are

m11φ
2
3(−τ1) + m12φ3(−τ1)φ8(−τ1) + m13φ

2
8(−τ1) + m14φ

3
3(−τ1)

+m15φ
2
3(−τ1)φ8(−τ1) + m16φ3(−τ1)φ

2
8(−τ1)

+m17φ
3
8(−τ1) + m18φ

2
1(0) + m19φ

3
1(0) + h.o.t.,

m21φ
2
2(0) + m22φ

3
2(0) + h.o.t.,

m31φ
2
3(0) + m32φ

3
3(0) + h.o.t.,

m41φ
2
3(−τ4) + m42φ

3
3(−τ4) + m43φ

2
4(0) + m44φ

3
4(0) + h.o.t.,

m11φ
2
7(−τ1) + m12φ7(−τ1)φ4(−τ1) + m13φ

2
4(−τ1)

+m14φ
3
7(−τ1) + m15φ

2
7(−τ1)φ4(−τ1)

+m16φ7(−τ1)φ
2
4(−τ1) + m17φ

3
4(−τ1) + m18φ

2
5(0) + m19φ

3
5(0) + h.o.t.,

m21φ
2
6(0) + m22φ

3
6(0) + h.o.t.,

m31φ
2
7(0) + m32φ

3
7(0) + h.o.t.,

m41φ
2
7(−τ4) + m42φ

3
7(−τ4) + m43φ

2
8(0) + m44φ

3
8(0) + h.o.t.,

successively, where φ = (φ1, . . . , φ8), and

m11 := 1

2

∂2gH
∂u2

(x̄3, x̄4),m12 := ∂2gH
∂u∂v

(x̄3, x̄4),

m13 := 1

2

∂2gH
∂v2

(x̄3, x̄4),m14 := 1

6

∂3gH
∂u3

(x̄3, x̄4),

m15 := 1

2

∂3gH
∂u2∂v

(x̄3, x̄4),m16 := 1

2

∂3gH
∂u∂v2

(x̄3, x̄4),
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m17 := 1

6

∂3gH
∂v3

(x̄3, x̄4),m18 := −1

2
f ′′
1 (x̄1),

m19 := −1

6
f ′′′
1 (x̄1),m21 := −1

2
f ′′
2 (x̄2),

m22 := −1

6
f ′′′
2 (x̄2),m31 := −1

2
f ′′
3 (x̄3),

m32 := −1

6
f ′′′
3 (x̄3),m41 := 1

2
g′′
D(x̄3),

m42 := 1

6
g′′′
D(x̄3),m43 := −1

2
f ′′
4 (x̄4),

m44 := −1

6
f ′′′
4 (x̄4).

To put (66) in a suitable form, we define two operators on C 1 := C 1([−τM , 0],R8):

(Aμφ)(θ) =
{
dφ(θ)/dθ, θ ∈ [−τM , 0),
∫ 0
−τM

dη(ζ, μ)φ(ζ ), θ = 0,

(Rμφ)(θ) =
{
0, θ ∈ [−τM , 0),
Gμ(φ), θ = 0.

Then (66) can be recast into

Ẋt = AμXt + RμXt . (67)

The adjoint operator A∗
μ of Aμ can be computed as

(A∗
μψ)(θ∗) =

{
−dψ(θ∗)/dθ∗, θ∗ ∈ (0, τM ],
∫ 0
−τM

dηT (ζ, μ)ψ(−ζ ), θ∗ = 0,

whereψ ∈ C 1([0, τM ],R8). In the following computation, for convenience, we allow
functions to take values in C8. We use the bilinear form

〈ψ, φ〉 = ψ
T
(0)φ(0) −

∫ 0

θ=−τM

∫ θ

ξ=0
ψ

T
(ξ − θ)dη(θ)φ(ξ)dξ,

for φ ∈ C ([−τM , 0],C8), ψ ∈ C ([0, τM ],C8), to determine the coordinates of the
center manifold near the origin of (66), where η(θ) := η(θ, 0).

Next, denote by q(θ) the eigenvector of A := A0, and q∗(θ∗) of A∗ := A∗
0

corresponding to purely imaginary eigenvalues iωc and −iωc, respectively, namely,

Aq(θ) = iωcq(θ), and A∗q∗(θ∗) = −iωcq
∗(θ∗). (68)

We also impose the normalized condition 〈q∗, q〉 = 1 and 〈q∗, q̄〉 = 0. To this end,
we assume that

q(θ) = q(0)eiωcθ , q∗(θ∗) = q∗(0)eiωcθ
∗
, (69)
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for θ ∈ [−τM , 0), θ∗ ∈ (0, τM ], andq(0) = (q1, . . . , q8)T , q∗(0) = 1
ρ
(q∗

1 , . . . , q∗
8 )T ,

where ρ, qi and q∗
i , i = 1, . . . , 8, are to be determined. Substituting (69) into (68) and

evaluating at θ = 0, we obtain

q1 = 1, q2 = ν3U2

V2
, q3 = ν3ν5U2

V2V3
, q4 = ν3ν5γ3U2U4

V2V3V4
,

q5 = U4V4(ν3ν5γ1 +U 1U2V1V2V3)

−ν3ν5γ2γ3
, q6 = U 4V3V4(U1V1V2V3 + ν3ν5γ1U2)

−ν5γ2γ3V2V3
,

q7 = U4V4(U 1V1V2V3 + ν3ν5γ1U2)

−γ2γ3V2V3
, q8 = U 1V1V2V3 + ν3ν5γ1U2

γ2V2V3
,

q∗
1 = 1, q∗

2 = U2V 1

ν3
, q∗

3 = U2V 1V 2

ν3ν5
,

q∗
4 = ν3ν5γ1U 1U4 +U2U4V 1V 2V 3

−ν3ν5γ3
, q∗

5 = ν3ν5γ1U4V 4 +U1U2U4V 1V 2V 3V 4

−ν3ν5γ2γ3
,

q∗
6 = −U1U 2

2U4V 4(−ν3ν5γ1U 1U2V 1 − V
2
1V 2V 3)

−ν23ν5γ2γ3
,

q∗
7 = U1U 2

2U4V 1V 2V 4(ν3ν5γ1U1U 2 + V 1V 2V 3)

−ν23ν
2
5γ2γ3

, q∗
8 = γ2U1

V 4
,

where Uj = e−iωcτ j , j = 1, 2, 4, and Vj = iωc + d j , for j = 1, . . . , 4. Notice that
〈q∗, q〉 = 1 and 〈q∗, q̄〉 = 0, if we set

ρ̄ = (q1q∗
1 + q2q∗

2 + · · · + q8q∗
8 )

+J1τ1e
−iωcτ1 + J2τ2e

−iωcτ2 + J4τ4e
−iωcτ4 ,

where J1 := −γ1(q3q∗
1 + q7q∗

5) + γ2(q8q∗
1 + q4q∗

5), J2 := ν3(q1q∗
2 + q5q∗

6), and
J4 := −γ3(q3q∗

4 + q7q∗
8).

Now, we use q and q∗ to construct a coordinate on the center manifold M0
at μ = 0. For each φ ∈ C ([−τM , 0],C8), we associate a pair (z, w), with
z = 〈q∗, φ〉, w = φ − zq − zq = φ − 2Re(zq). Let Xt = Xt (θ) =
(x1,t (θ), . . . , x4,t (θ), y1,t (θ), . . . , y4,t (θ))T be a solution of (67), and let

z(t) := 〈q∗, Xt 〉,
W (t, θ) := Xt (θ) − 2Re(z(t)q(θ)).

On the center manifold M0, W (t, θ) = w(z(t), z̄(t), θ), where

w(z(t), z̄(t), θ) = w20(θ)
z2(t)

2
+ w11(θ)z(t)z̄(t) + w02(θ)

z̄2(t)

2
+ · · · .

Herein, z and z̄ are the local coordinates of the center manifold M0 in directions q∗
and q∗, respectively.
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Hence, the solution Xt ∈ M0 of (67), at μ = 0, satisfies

ż(t) = iωcz(t) + g(z(t), z̄(t)),

where

g(z, z̄) = q∗T (0)G0(z, z) = g20
z2

2
+ g11zz̄

+g02
z̄2

2
+ g21

z2 z̄

2
+ · · · ,

and

g20 = 2

ρ̄
{m18(q

2
1q

∗
1 + q25q

∗
5) + m12(q

2
2q

∗
2 + q26q

∗
6)

+m31(q
2
3q

∗
3 + q27q

∗
7) + m43(q

2
4q

∗
4 + q28q

∗
8)

+ e−2iωcτ1 [(m11q
2
3 + q8(m12q3 + m13q8))q

∗
1 + (m13q

2
4

+ q7(m12q4 + m11q7))q
∗
5] + e−2iωcτ4m41(q

2
3q

∗
4 + q27q

∗
8)},

g11 = 1

ρ̄
{[2m18q1q1 + 2m11q3q3 + m12(q8q3 + q3q8)

+ 2m13q8q8]q∗
1 + (2m14q3q3 + 2m43q4q4)q

∗
4

+[2m13q4q4 + 2m18q5q5 + m12(q7q4 + q4q7) + 2m11q7q7]q∗
5

+ (2m14q7q7 + 2m43q8q8)q
∗
8 + 2m21(q2q2q

∗
2 + q6q6q

∗
6)

+ 2m31(q3q3q
∗
3 + q7q7q

∗
7)},

g02 = 2

ρ̄
{m18(q

2
1q

∗
1 + q25q

∗
5) + m21(q

2
2q

∗
2 + q26q

∗
6) + m31(q

2
3q

∗
3 + q27q

∗
7)

+m43(q
2
4q

∗
4 + q28q

∗
8) + e2iωcτ1 [(m11q

2
3 + m12q3q8 + m13q

2
8)q

∗
1

+ (m13q
2
4 + m12q4q7 + m11q

2
7)q

∗
5] + e2iωcτ4m41(q

2
3q

∗
4 + q27q

∗
8)},

g21 = 1

ρ̄
{6m19(q

2
1q1q

∗
1 + q25q5q

∗
5) + 6m22(q

2
2q2q

∗
2 + q26q6q

∗
6)

+ 6m32(q
2
3q3q

∗
3 + q27q7q

∗
7) + 6m44(q

2
4q4q

∗
4 + q28q8q

∗
8)

+ 4m18(q1q
∗
1w

(1)
11 (0) + q5q

∗
5w

(5)
11 (0))

+ 4m21(q2q
∗
2w

(2)
11 (0) + q6q

∗
6w

(6)
11 (0))

+ 4m31(q3q
∗
3w

(3)
11 (0) + q7q

∗
7w

(7)
11 (0))

+ 4m43(q4q
∗
4w

(4)
11 (0) + q8q

∗
8w

(8)
11 (0))

+ e−iωcτ4 [6m42q
2
3q3q

∗
4 + 4m41q3q

∗
4w

(3)
11 (−τ4)

+ 2q7q
∗
8(3m42q7q7 + 2m41w

(7)
11 (−τ4))]

+ 2e−iωcτ1 [(3m14q
2
3 + q8(2m15q3 + m16q8))q3q

∗
1

+ (m15q
2
3 + q8(2m16q3 + 3m17q8))q8q

∗
1
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+ (2m11q3 + m12q8)q
∗
1w

(3)
11 (−τ1)

+ q∗
5((3m17q

2
4 + q7(2m16q4 + m15q7))q4

+ (m16q
2
4 + 2m15q4q7 + 3m14q

2
7 )q7 + (2m13q4 + m12q7)w

(4)
11 (−τ1)

+ (m12q4 + 2m11q7)w
(7)
11 (−τ1)) + (m12q3 + 2m13q8)q

∗
1w

(8)
11 (−τ1)]

+ 2m18(q1q
∗
1w

(1)
20 (0) + q5q

∗
5w

(5)
20 (0))

+2m21(q2q
∗
2w

(2)
20 (0) + q6q

∗
6w

(6)
20 (0))

+ 2m31(q3q
∗
3w

(3)
20 (0) + q7q

∗
7w

(7)
20 (0))

+ 2m43(q4q
∗
4w

(4)
20 (0) + q8q

∗
8w

(8)
20 (0))

+ 2eiωcτ4m41(q3q
∗
4w

(3)
20 (−τ4) + q7q

∗
8w

(7)
20 (−τ4))

+ eiωcτ1 [q∗
5((2m13q4 + m12q7)w

(4)
20 (−τ1)

+m12q4 + 2m11q7)w
(7)
20 (−τ1))

+ q3q
∗
1(2m11w

(3)
20 (−τ1) + m12w

(8)
20 (−τ1))

+ q8q
∗
1(m12w

(3)
20 (−τ1) + 2m13w

(8)
20 (−τ1))]},

wherew
(k)
20 (θ) andw

(k)
11 (θ) are the kth components ofw20(θ) andw11(θ) respectively.

And for −τM ≤ θ < 0, it can be computed that

⎧
⎨

⎩

w20(θ) = ig20
ωc

q(0)eiωcθ − ḡ02
3iωc

q̄(0)e−iωcθ + E1e2iωcθ

w11(θ) = g11
iωc

q(0)eiωcθ − ḡ11
iωc

q̄(0)e−iωcθ + E2,

where

E1 =
(

2iωc I −
∫ 0

−τM

e2iωcθdη(θ, 0)

)−1

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

2[m18q21 + e−2iωcτ1(m11q23 + q8(m12q3 + m13q8))]
2m21q22

2m31q23

2(e−2iωcτ4m41q23 + m43q24 )

2[m18q25 + e−2iωcτ1(m13q24 + q7(m12q4 + m11q7))]
2m21q26

2m31q27

2(e−2iωcτ4m41q27 + m43q28 )

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

E2 =
[

−
∫ 0

−τM

dη(θ, 0)

]−1
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⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

2m18q1q1 + 2m11q3q3 + m12(q8q3 + q3q8) + 2m13q8q8
2m21q2q2
2m31q3q3

2m41q3q3 + 2m43q4q4
2m13q4q4 + m12(q7q4 + q4q7) + 2m18q5q5 + 2m11q7q7

2m21q6q6
2m31q7q7

2m41q7q7 + 2m43q8q8

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

With g20, g11, g02, and g21, we can compute C1(rc), p2, ζ2, and T2 for the stability
and the other properties for the bifurcating periodic solution.
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