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Abstract Recently there has been renewed interest in phylogenetic inference meth-
ods based on phylogenetic invariants, alongside the relatedMarkov invariants. Broadly
speaking, both these approaches give rise to polynomial functions of sequence site pat-
terns that, in expectation value, either vanish for particular evolutionary trees (in the
case of phylogenetic invariants) or have well understood transformation properties
(in the case of Markov invariants). While both approaches have been valued for their
intrinsic mathematical interest, it is not clear how they relate to each other, and to what
extent they can be used as practical tools for inference of phylogenetic trees. In this
paper, by focusing on the special case of binary sequence data and quartets of taxa, we
are able to view these two different polynomial-based approaches within a common
framework. To motivate the discussion, we present three desirable statistical proper-
ties that we argue any invariant-based phylogenetic method should satisfy: (1) sensible
behaviour under reordering of input sequences; (2) stability as the taxa evolve indepen-
dently according to a Markov process; and (3) explicit dependence on the assumption
of a continuous-time process. Motivated by these statistical properties, we develop
and explore several new phylogenetic inference methods. In particular, we develop a
statistically bias-corrected version of the Markov invariants approach which satisfies
all three properties. We also extend previous work by showing that the phylogenetic
invariants can be implemented in such a way as to satisfy property (3). A simulation
study shows that, in comparison to other methods, our new proposed approach based
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on bias-correctedMarkov invariants is extremely powerful for phylogenetic inference.
The binary case is of particular theoretical interest as—in this case only—the Markov
invariants can be expressed as linear combinations of the phylogenetic invariants. A
wider implication of this is that, for models with more than two states—for example
DNA sequence alignments with four-state models—we find that methods which rely
on phylogenetic invariants are incapable of satisfying all three of the stated statistical
properties. This is because in these cases the relevant Markov invariants belong to a
class of polynomials independent from the phylogenetic invariants.

Keywords Phylogenetic invariants · Quartets · Markov chains · Representation
theory

Mathematics Subject Classification 92B10 · 20G05 · 16W22

1 Introduction and motivation

In the late 1980s, Cavender and Felsenstein (1987) andLake (1987) introduced the idea
of phylogenetic invariants; a class of polynomials useful in the study of phylogenetic
trees. In subsequent years, these polynomials have proven useful for studying analyt-
ical questions of identifiability (Allman and Rhodes 2003) and for identifying local
maximum likelihood optima (Chor et al. 2000). However, beginning with the earliest
simulation studies (Hillis et al. 1994), there has been doubt as to the statistical effec-
tiveness of phylogenetic invariants for inference of phylogenetic trees from data sets.

Allman and Rhodes (2003, 2008) renewed interest in phylogenetic invariants. They
took the point of view of algebraic geometry to give a comprehensive description of
these polynomials and lay out several open questions [some of which have subse-
quently been solved (Allman et al. 2014; Bates and Oeding 2011; Friedland 2013;
Friedland and Gross 2012)]. Concurrently, Sumner et al. (2008) suggested an alterna-
tive perspective on algebraic methods as applied to phylogenetics. From this perspec-
tive, group representation theory (symmetries and transformations) takes center stage,
leading to the study of a different set of polynomials of special interest, the Markov
invariants. In contrast to phylogenetic invariants, the definition ofMarkov invariants is
detached from the notion of a phylogenetic tree; rather they are the polynomial invari-
ants for the matrix group induced by the action ofMarkovmatrices. As such, the appli-
cation ofMarkov invariants to the context of phylogenetics comes only after considera-
tion of the specific tree structures underlying phylogeneticmodels. In this vein, Sumner
and Jarvis (2009) showed how leaf permutation symmetries on a quartet tree, for
example, can be used to bringMarkov invariants into phylogenetics proper; effectively
showing there are phylogenetic invariants lurking within the ring ofMarkov invariants
applicable to this case. Recently, both perspectives have been applied to inferring phy-
logenetic trees byCasanellas and Fernández-Sánchez (2010) andHolland et al. (2013),
with further promising results given by Fernández-Sánchez and Casanellas (2015).

Most likely due to the disjointed historical development of these polynomial func-
tions, there is some confusion, already clear in the paragraph above, regarding the use
of “invariant” as applied to both phylogenetic and Markov invariants. In the litera-
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ture, “phylogenetic invariant” is used to refer to any polynomial which vanishes on
all distributions arising from a subset of phylogenetic tree topologies (understood as
leaf-labelled trees). If the subset is proper, the phylogenetic invariant is referred to as
“tree informative”. We, however, prefer to use “invariant” in the more mathematically
traditional sense to mean invariant under an invertible transformation [c.f. classical
invariant theory (Olver 2003)]. We argue that in the phylogenetic context, the relevant
transformations are adjustments of model parameters and leaf permutations of trees.
To avoid confusion, we followDraisma andKuttler (2008) and refer to any polynomial
which is useful for identifying tree topology as a phylogenetic identity. In contrast,
we say a polynomial is a Markov invariant (Sumner et al. 2008) if the polynomial
itself (rather than its particular value on subsets of distributions) is invariant under
adjustment of model parameters on a phylogenetic tree (the precise meaning of this
distinction is made clear in Sect. 2). Formally, these polynomials are invariant under
a specific action of a group of invertible transformations (at least “relatively”, that is,
they may attract a transformation constant). Clearly distinguishing Markov invariants
from phylogenetic identities is crucial in what follows.

Given that phylogenetic identities arise solely from algebraic conditions on phylo-
genetic probability distributions, we argue it is also essential to consider the statistical
structure of inference methods constructed using these polynomials more carefully
than has previously appeared in the literature. Toward this end, we provide a com-
prehensive discussion, including both analytical and statistical arguments and a
comparison of the algebraic geometry and representation theory perspectives, of using
the phylogenetic identities for the inference of phylogenetic trees. To simplify the dis-
cussion, we focus on the most elementary case: quartet trees with a binary state space.
We argue that the representation theoretic point of view and the ideas underlying
Markov invariants provide significant guidance as to how to construct statistically
powerful methods of phylogenetic inference.

Binary state spaces have longbeenof theoretical interest in the studyof phylogenetic
methods as the mathematical properties of two-state models are often more tractable,
and yet the results are still illuminating about general phylogenetic principles. We also
note that recently there has been increased interest in binary data from an applied point
of view due to thewidespread availability of bi-allelic single nucleotide polymorphism
(SNP) datasets derived from modern genome-wide sequencing technologies (Davey
et al. 2011; Lemmon and Lemmon 2013).

Our discussion is unified through two notions of symmetry that naturally arise in
phylogenetics. In Sect. 2 we develop these and refer to them as “leaf symmetries” and
the “Markov action”. In Sect. 3 we argue that any inference method that seeks to infer
tree topology alone (as is typical of phylogenetic identity methods) should respect
both of these symmetries. We show that respect for leaf permutation symmetry is
something that can (and should) be imposed upon any tree inference method based
on phylogenetic identities. Additionally, demanding the method respect the Markov
action symmetry leads directly to the definition of Markov invariants, with our main
example constructed in Sect. 4. An ideal situation arises in the quartet case: we show
that imposing the leaf permutation symmetry upon the Markov invariants identifies a
specific subset of phylogenetic identities, which in turn leads to a unique choice of
identities to apply to quartet tree inference.
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In Sect. 5 we discuss the properties of the edge identities; especially in relation to
the three statistical properties given in Sect. 3. We provide a detailed examination of
the behaviour of the edge identities under leaf permutation symmetries and, as for the
squangles, derive semi-algebraic constraints for their behaviour under the assumption
of a continuous-time Markov chain.

Along with our theoretical arguments for considering polynomials which respect
these two symmetries, we also use these symmetries to develop a statistical decision
rule for tree inference (via residual sums of squares). In Sect. 6, we provide simulation
studies which illustrate both the practical importance of these ideas and that the naive
application of phylogenetic identities (like that given by Cavender and Felsenstein
(1987)) can be statistically biased and not nearly as powerful as our approachmotivated
by the symmetries inherent to the problem.

In Sect. 7, we concludewith a discussion of how these ideas apply directly tomodels
with more than binary states, with specific results presented for the four state (DNA)
case. In particular, we find that it is only in the binary case that the Markov invariants
(squangles) lie in the same space of polynomials as the phylogenetic identities (edge
identities). Thus in the case of models with greater than two states, the attractive
transformation properties of the Markov invariants become a missed opportunity if
one restricts attention to edge identities (as is advocated by Casanellas and Fernández-
Sánchez (2010)). This result is derived using representation theoretical techniques
[particularly group characters (Jarvis and Sumner 2014)] for which full derivations
are provided in the Appendix (Online Resource 4).

2 Background

In phylogenetic inference, the topology of the evolutionary tree is difficult to determine
correctly and is often the unknown parameter which is themost biologically important.
It is well known that it is enough to correctly identify all the quartet trees corresponding
to all subsets of four taxa in order to determine the overall phylogenetic tree. Thus
correct identification of a single quartet topology remains a point of considerable
mathematical interest, and is the focus of the work presented here.

Remark 1 Throughout this paper we will exclusively consider phylogenetic quartet
inferencemethods that, given aligned sequence data on four taxa as input, solely return
confidence in each of the three possible quartet tree topologies. For methods (such
as maximum likelihood) that usually also return estimates of evolutionary divergence
times or other model parameters, we will consider the topology to be the only output.

2.1 Taxon permutations and leaf symmetries

When discussing four general taxa, we label them A, B,C, D; and when we want
to discuss a fixed order on the taxa we label them 1, 2, 3, 4. This gives us a natural
way to talk both about the three different quartet trees and equivalent trees using
the common split notation. In this notation, the three distinct quartet trees are T1 =
12|34, T2 = 13|24 and T3 = 14|23, where formally i j |kl ≡ {{i, j}, {k, l}} is a
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bipartition of the set {1, 2, 3, 4}. Each quartet has symmetries under leaf permutations
which are captured by the equalities 12|34 = 21|34 = 34|12 . . . etc. These different
representations of the same quartet are of practical importance if one considers the
application of a phylogenetic method (usually via some computer software) on the
taxon set {A, B,C, D} with output one of the quartets T1, T2, T3. For instance, if the
list of taxa in the ordering A, B,C, D leads to T1 wewould expect the alternative input
ordering A,C, B, D to return the quartet T2 (since B now corresponds to 3, and C to
2), and the alternative input order D,C, A, B to also return T1 via the correspondence
12|34 = 43|12.

Such changes in taxon ordering can be understood as the symmetric group S4
permuting the four taxa in the natural way, thereby inducing permutations of the three
possible quartet trees. For example, the taxon permutation (13) ∈ S4 fixes T2 and
interchanges T1 ↔ T3. From the perspective of phylogenetic quartet inference, we
account for this redundancy by considering the subgroup of S4 that fixes a given
quartet. For example, T1 is invariant under the action of the subgroup ofS4 consisting
of the permutations which we refer to as the stabilizer of T1:

Stab(T1) = {e, (12), (34), (12)(34), (13)(24), (14)(23), (1324), (1423)}.
It is an easy exercise to write down the stabilizer subgroups for T2 and T3.

To understand the importance of these observations, consider the “black box” view
of a phylogenetic quartet method, where the black box (in the form of a computer
program1) takes an ordered set of taxon sequences A, B,C, D, and returns one of the
three possible quartets T1, T2 or T3. To say that the method “respects” the permutation
symmetries explained above is to demand that the method behaves in the appropriate
way given a permutation of the input sequences such as B, A,C, D corresponding
to (12), or C, D, A, B corresponding to the permutation (13)(24). We ensure that
the phylogenetic methods we develop in this paper respect these quartet tree leaf
permutation symmetries.

2.2 Tensors and group actions

The data we consider are frequency arrays F = (
fi jkl

)
arising from an alignment of

four binary {0, 1} sequences, where fi jkl is the number of times we observe the pattern
of states i, j, k, l for sequence 1, 2, 3, 4, respectively.

Wemodel this data by assuming F arises undermultinomial (independent) sampling
from a distribution P = (pi jkl) which itself is constructed from a binary Markov
chain on a quartet tree, where pi jkl is the probability of observing the binary states
i, j, k, l ∈ {0, 1} at the leaves 1, 2, 3, 4 of the tree, respectively. In the next section
we discuss the construction of such P in detail; for the moment we wish to consider
the generic structural properties of P irrespective of whether P arises as a probability
distribution on a tree or not.

1 It is sometimes important to distinguish between a method (as theoretically conceived) and its implemen-
tation in software (for example, ambiguities often arise in quartet methods in regard to random tie breaking).
Throughout this article we will assume the two match up perfectly without further comment.
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Considering P = (pi jkl) as a 2 × 2 × 2 × 2 array of numbers, and taking {e1 =[
1
0

]
, e2 = [ 01

]} as a basis for C
2, allows us to treat P more formally as belonging to

the 24 = 16 dimensional tensor product space

U := C
2 ⊗ C

2 ⊗ C
2 ⊗ C

2 =
⎧
⎨

⎩

∑

i, j,k,l∈{0,1}
pi jklei ⊗ e j ⊗ ek ⊗ el : pi jkl ∈ C

⎫
⎬

⎭
.

Of course, P has all real and non-negative components so P actually belongs to a
stochastic subset of this space. However, algebraically it is convenient to work over
the complex numbers in what follows. When speaking abstractly we refer to a general
member ofU as a tensor, and when we want to emphasize that the components in the
array should be considered as probabilities, we will refer to it as a distribution.

The taxon permutations discussed in the previous section act naturally on tensors
P ∈ U via permutation of the indices of pi jkl . To be concrete, suppose σ ∈ S4 is a per-
mutation, then we have the action P �→ σ P defined via the coordinate transformation
pi1i2i3i4 �→ piσ(1)iσ(2)iσ(3)iσ(4) .

Another key mathematical feature of working with tensor product spaces, essential
to our derivations, is the natural action of the general linear groupGL(2) on each factor
of the tensor product space, described as follows. Recall that GL(2) is the group of
2 × 2 invertible matrices with entries taken from C, that is

GL(2) =
{
A =

[
a11 a12
a21 a22

]
: a11, a12, a21, a22 ∈ C, det(A) �= 0

}
.

Recall also that GL(2) acts on column vectors v = [v1, v2]T ∈ C
2 via v �→ Av or,

equivalently, in component form: vi �→ ∑
i ′∈{0,1} aii ′vi ′ . This action extends to U by

taking four matrices A, B,C, D ∈ GL(2) and defining an analogous rule for tensor
component transformations:

pi jkl �→
∑

i ′, j ′,k′,l ′∈{0,1}
aii ′b j j ′ckk′dll ′ pi ′ j ′k′l ′ .

This provides an action of the direct product group ×4GL(2) ≡ GL(2) ×GL(2) ×
GL(2) ×GL(2) expressed in tensor form as the mapping P �→ A ⊗ B ⊗ C ⊗ D · P .

Inwhat follows,we consider the actions of bothS4 and×4GL(2) on tensors P ∈ U .
For the former with σ ∈ S4 we will generically write P �→ σ · P , and for the latter
with g = A⊗ B⊗C ⊗D ∈ ×4GL(2)we will generically write P �→ g · P . Although
in this notation there is ambiguity between which group action we are applying, we
will resolve this in all cases by providing the necessary context.

2.3 Tree tensors, clipped tensors

We will say that M is a (2 × 2)Markov matrix if

M =
[
1 − a21 a12
a21 1 − a12

]
,
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where 0 ≤ a12, a21 ≤ 1 are the probabilities of state changes 0 → 1 and 1 → 0,
respectively. We consider the rooted version of the quartet tree T1 obtained by placing
an additional vertex (the “root”) on the internal edge of T1. We label each edge of the
tree by the subset of leaves descendant to the edge. Let π = [π1, π2]T be a probability
distribution (that is, πi > 0 and π1 + π2 = 1), and let Me = (m(e)

i j ) be a collection of

Markov matrices indexed by the edges e ∈ T1.2 We set

p(1)
i jkl =

∑

x,y,r∈{0,1}
m(1)

i x m
(2)
j x m

(3)
ky m

(4)
ly m(12)

xr m(34)
yr πr .

Under this construction, the tensor P1 = (p(1)
i jkl) corresponds to the standard con-

struction of a probability distribution arising from the Markov process on T1 [as
described in textbooks such as Felsenstein (2004)]. Additionally, a well-known result
[a generalization of Felsenstein’s “pulley-principle” (Felsenstein 1981)] shows it is
possible to adjust the free parameters in this expression such that we can move the
root of T1 to anywhere we please, whilst fixing the distribution P1. Motivated by this:

Definition 2.1 We say that a tensor P1 is a tree tensor corresponding to the quartet
T1 = 12|34 if P1 arises under the construction just given, for any choice of Markov
matrices, root distribution, and root placement. Similarly, we say that P2 and P3 are
tree tensors corresponding to the quartets T2 = 13|24 and T3 = 14|23 if they arise in
the analogous way on the remaining two quartets.

We now connect this construction to our description of the natural action of
×4GL(2) on U described in the previous section. We do this by defining, for any
fixed tree tensor Pi , the clipped tensor P̃i , which is obtained by setting each Markov
matrix on the leaf edges of the quartet to be equal to the identity matrix. In this way,
generically we have (for example):

p̃(1)
i jkl =

{∑
r∈{0,1} m

(12)
ir m(34)

kr πr , if i = j and k = l;
0, otherwise.

(2.1)

From the definitions given in the previous section, we can now write

P1 = M1 ⊗ M2 ⊗ M3 ⊗ M4 · P̃1,

and consider P1 as arising from the clipped tensor P̃ under the action of ×4GL(2)
(provided we make the additional assumption that each of the Markov matrices
M1, M2, M3, M4 is invertible and hence belongs to GL(2)). This motivates:

Definition 2.2 The Markov group M2 is the set of matrices:

M2 =
{
M =

[
1 − a21 a12
a21 1 − a12

]
: a12, a21 ∈ C, det(M) �= 0

}
.

2 To avoid unimportant technicalities, we will assume “generic” parameter settings throughout this article.
In particular, we assume that all Markov matrices are non-singular and πi �= 0 for i = 1, 2.
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Notice we have removed the stochastic constraints on the matrix entries so thatM2
is a proper subgroup of GL(2) (as is easy to verify).

While this perspective excludes tree tensors constructed using non-invertible
Markov matrices, this is not a serious objection since, from a modelling perspec-
tive, we prefer to take the point of view of continuous-time Markov chains where all
relevant Markov matrices are invertible (since they occur as matrix exponentials). In
any case, within the set of Markov matrices the subset with zero determinant is of
measure zero and hence we may assume that any Markov matrix occurring in practice
(in a sufficiently random way) will indeed belong toM2. Thus we may consider tree
tensors Pi as arising under the action of×4M2, as a subgroup of×4GL(2), on clipped
tensors P̃i .

2.4 Markov action

Conceptually, we can extend the notion of the action of ×4M2 on clipped tensors P̃i
to an action on all tensors in U . Of particular importance is the following: if P1 ∈ U
is a tree tensor and M1, M2, M3, M4 ∈ M2 are Markov matrices, we can interpret the
action

P1 �→ M1 ⊗ M2 ⊗ M3 ⊗ M4 · P1

as corresponding to lengthening the leaves of the phylogenetic tree. Of course this
interpretation works for any tensor P ∈ U (whether P is a tree tensor or otherwise).

Definition 2.3 The Markov action is the group action of ×4M2 on U obtained by
restricting each copy of GL(2) in ×4GL(2) to the Markov group M2.

Importantly, this action encodes the conditional independence of Markov evolution
across lineages; and, if P happens to be a tree tensor, this action preserves the under-
lying tree topology. In other words, the Markov action provides a symmetry on the
set of quartet tree tensors. Connecting this with our previously discussed black box
view, where a quartet method is assumed to estimate tree topology only, we see that
the Markov action is essentially a nuisance parameter that ideally the method should
be insensitive to.

2.5 Markov invariants

With the Markov action in hand we can now formally define the polynomials that are
our main interest in this paper. This class of polynomials was first defined and explored
by Sumner et al. (2008).

Definition 2.4 Take q(P) to be a multivariate polynomial function on the indeter-
minates P = (pi jkl). We say that q is a Markov invariant if q transforms as a
one-dimensional representation under the Markov action.
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In the language of classical invariant theory, this is equivalent to saying q is a
“relative invariant” under the Markov action so, for all P ∈ U and all g = M1⊗M2⊗
M3 ⊗ M4 ∈ ×4M2:

q(g · P) = q(M1 ⊗ M2 ⊗ M3 ⊗ M4 · P) = λgq(P),

where λg ∈ C satisfies, for all g, g′ ∈ ×4M2, the multiplicative property: λgg′ =
λgλg′ . In the language of group representation theory, this means that λg provides a
one-dimensional representation of ×4M2. In the examples we discuss, λg is simply
a power of the determinant det(g) (from which the multiplicative property follows
easily).

As alluded to in the previous section, our interest in Markov invariants is moti-
vated by the desire to control the behaviour, under the Markov action, of a quartet
phylogenetic method founded on the evaluation of a set of polynomials. The Markov
invariants represent the optimal case where we have complete understanding of what
is happening under the Markov action. As we will see, the situation is quite different
for the classically constructed phylogenetic identities.

2.6 Flattenings, minors, and edge identities

Here we derive the so-called “edge identities”. In their most general form, these are
phylogenetic identities for phylogenetic trees, which can be used to detect the presence
or absence of a particular edge in the phylogenetic tree. These identities were first
derived using the general concepts of tensor flattenings and associated rank conditions
developed by Allman and Rhodes (2008). Here we specialize to the case of binary
states and quartet trees and take an approach which focuses on the role of the Markov
action.

Definition 2.5 Suppose P = (pi1i2i3i4) ∈ U is a generic tensor and suppose αβ|γ δ

is a bipartition of {1, 2, 3, 4}. The flattening of P corresponding to the bipartition
αβ|γ δ is the 22 × 22 matrix containing the entries pi1i2i3i4 with rows indexed by
iαiβ = 00, 01, 10, 11 and columns indexed by iγ iδ = 00, 01, 10, 11.

Up to row and column permutations, there are only three distinct flattenings of a
tensor P ∈ U , each corresponding to one of the possible quartet trees T1, T2 or T3.
Concretely, we denote the “12|34” flattening of P as the 4 × 4 matrix Flat1(P) with
entries

Flat1(P)i1i2,i3i4 = pi1i2i3i4 .

Similarly we define the “13|24” and “14|23” flattenings as the 4×4 matrices Flat2(P)

and Flat3(P) with entries

Flat2(P)i1i3,i2i4 = pi1i2i3i4 , Flat3(P)i1i4,i2i3 = pi1i2i3i4 ,

respectively.
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The action of ×4GL(2) discussed in Sect. 2.2, P → A ⊗ B ⊗ C ⊗ D · P , can be
shown to be expressed on the 12|34 flattening as

Flat1(P) → (A ⊗ B) · Flat1(P) · (C ⊗ D)T , (2.2)

where T indicates matrix transpose.3

Using the flattenings, it is not too hard to derive some phylogenetic identities for
quartet trees. Consider a clipped tensor P̃1 from the quartet tree T1 and its flattening

Flat1(P̃1) =

⎡

⎢⎢
⎣

x 0 0 y
0 0 0 0
0 0 0 0
z 0 0 w

⎤

⎥⎥
⎦ , (2.3)

where the x, y, z, w label the non-zero probabilities given in (2.1). From (2.2) we see
that

Flat1(P1) = M1 ⊗ M2 · Flat1(P̃1) · (M3 ⊗ M4)
T ,

andhence, assuming eachMi ∈ M2 is non-singular,we conclude that rank (Flat1(P1))
≤ 2. Therefore the 16 cubic polynomials obtained by taking 3-minors of this flattened
matrix form a set of phylogenetic identities for the quartet 12|34. We refer to these
minors as edge identities. (We will see in Sect. 4 that these minors are actually tree-
informative since they do not vanish on the other two quartets, at least generically.)

These observations generalize to:

Theorem 2.1 (Allman and Rhodes 2008) In each case i = 1, 2, 3; the 16 polynomial
functions in the indeterminates Pi = (p(i)

i1i2i3i4
) produced by taking the cubic 3-minors

of the flattening Flati (Pi ) form phylogenetic identities for probability distributions Pi
arising from the quartet tree Ti .

An attractive feature of this process of taking flattenings and minors is that the
construction can be generalized to phylogenetic tensors with any number of taxa, and
Markov chains with arbitrary state spaces (beyond the binary case discussed here).
This observation was first presented by Allman and Rhodes (2008) and generalized to
a wider class of models by Draisma and Kuttler (2008) and Casanellas and Fernández-
Sánchez (2010).

3 Quartet inference measures

We now describe some desirable properties of any quartet method which returns tree
topology only. We suppose the pattern frequency array F = ( fi jkl) ∈ U for four taxa

3 At a formal level (not strictly required here), the reader should note that since we are working over the
complex field, the flattening should be defined so in place of the matrix transpose in (2.2) we have the
conjugate transpose operation.
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arose as N independent samples from some fixed distribution P ∈ U . (In particular
one may like to consider the case where P = Pi arose on the tree Ti , but this is not
necessary for the discussion in this section.) We interpret N as sequence length of the
alignment, and denote this situation as F ∼ MultiNom(P, N ), noting this implies F
has (componentwise) expectation value E[F] = N P .

Definition 3.1 A tripleΔ(F) = (R1, R2, R3) is called a quartet inferencemeasure (or
simply a measure) for F if each R1,R2,R3 is a (statistically interpretable) confidence
in the respective statements F ∼ MultiNom(P1, N ), F ∼ MultiNom(P2, N ), F ∼
MultiNom(P3, N ), for some P1,P2,P3 arising in turn from the quartets T1,T2,T3.

Later, we set each Ri equal to a residual sum of squares under the quartet hypothesis
Ti , but for the moment we assume, without loss of generality, that Δ is designed so
that small values of Ri correspond to greater confidence in quartet Ti . Given this, we
assume the quartet inference measure Δ ranks the statistical confidence in the three
quartet trees T1, T2 and T3 using the relative ordering of R1, R2 and R3.

Considering quartet inference measures Δ in the abstract sense, in Table 1 we
describe three theoretical statistical properties a measure may, or may not, satisfy. On
the practical side, in the simulation study (Sect. 6), we apply several specific examples
of quartet measures Δ constructed from polynomial functions (both phylogenetic
identities and Markov invariants) on the tensor product space U . The results of the
simulations clearly establish the importance of each of the properties given in Table 1.

Presently, we illustrate the three properties by showing:

Theorem 3.1 The neighbor-joining algorithm (Saitou and Nei 1987) together with an
additive estimator of pairwise distance consistent with a fixed Markov model provides
a quartet inference measure satisfying Property I, Property II (strong), and Property
III.

Note: Supposing the pairwise distance estimator between taxa i and j input to
neighbor-joining is denoted as di j . By “additive” and “consistent with a givenMarkov
model” we mean the following:

1. A specific continuous-time Markov model on quartet trees is fixed;
2. The associated Markov matrices produce a matrix group (Sumner et al. 2012) so

the “Markov action” on the leaves is well defined (as in Definition 2.3) ;
3. The expectation value E[di j ] is equal to the sum of the branch lengths on the path

from leaf i to j .

Examples of Markov models where these conditions can be achieved include the
binary-symmetric and Jukes–Cantor models, together with their unbiased pairwise
distance estimators [see, for example, Felsenstein (2004)]. In the following we give
an outline of a proof.

Proof For quartets, the neighbor-joining algorithm returns the quartet corresponding
to the minimum of the three-tuple Δ = (R1, R2, R3) := (d12 + d34, d13 + d24, d14 +
d23). Under this definition, it is clear that Δ satisfies Property I, as required.

Further, if each di j is additive and consistent with a Markov model on the tree (as
described above), then under the Markov action it follows that E[Ri ] → E[Ri ] + λg ,
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where λg := t ′1 + t ′2 + t ′3 + t ′4 and each t ′i is the extension of branch length on
leaf i of the quartet. Setting Δ(F) = (R1, R2, R3) we have, under the leaf action:
E[Δ(F ′)] = E[Δ(F)] + (λg, λg, λg), and λg + λg′ = λgg′ (since the branch lengths
are additive under further extension of the leaves). This establishes that, under these
conditions, neighbor-joining satisfies Property II (strong), as required.

Finally, Property III is built into our assumption on the pairwise distance estimator.
(For example, the Jukes–Cantor distance estimator for DNA sequences will fail to
return a finite answer when the proportion of sites that differ in a pairwise sequence
alignment is greater than 0.75; this is a structural feature resulting from a continuous-
time assumption.) 
�

Thinking in a continuous-time formulation of Markov chains, in general one would
expect that such λg would have some monotonicity property with respect to time
so that, up to a fixed amount of statistical noise, our ability to discriminate quartets
using a measure Δ satisfying Property II decreases in time. This is indeed the case
for the example of neighbor-joining just given, and more generally corresponds to
the biological fact that the ability to detect homology between extant taxa (that is,
the “phylogenetic signal”) degrades as the divergence of common ancestry is pushed
further backwards in time. In our application of Markov invariants, we will see that
this is also the case where λg is multiplicative and λg ∼ e−γ t , with γ > 0.

Previous work has discussed applying Property I (Eriksson 2008; Sumner and
Jarvis 2009; Rusinko and Hipp 2012) in the context of phylogenetic identities. To our
knowledge, Property II has never been explicitly discussed before. We will however
show in Sect. 4 that Property II (weak) is implicit in the quartet method based on
Markov invariants presented by Holland et al. (2013).

We are convinced that these properties of a quartet measure Δ are natural given
that the purpose of Δ is to deliver confidence in the choice of quartet from observed
data. We will explain how the Markov invariants are ideally tailored to the task of
constructing quartet measures that satisfy Property II in its strong version. As we will
see, this is contingent upon the construction of unbiased estimators of the Markov
invariants; a problem we solve completely in the binary quartet case, but is otherwise
open (see Sect. 7).

The next two sections contain the derivations of Markov invariants and the related
discussion of Properties I and II.

4 The squangles

As previously noted in Sect. 2.4, whether a phylogenetic pattern distribution F arises
as a sample from a specific quartet Ti depends only on the internal structure of the tree,
not on the lengths or model parameters on the leaf edges. This motivates Definition 2.4
of Markov invariants, which for historical reasons in the quartet case on four-state,
DNAmodels,we call “squangles” (stochasticquartet tangle, see Sumner et al. (2008)).
We work with an analogous construction in the binary case and, when needed, refer
to these polynomials as “binary squangles” or, whenever there is no risk of ambiguity,
simply as “squangles”.
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1632 J. G. Sumner et al.

In this section, we first derive the (binary) squangles, then use them to build a quartet
measure Δ which satisfies Properties I, II (weak), and III. We then consider issues of
statistical bias to build a second measure that satisfies Properties I, II (strong), and III.

4.1 Construction

Tomotivate and construct the squangles, we use an alternative basis forC
2. Our choice

of basis is motivated by the simple observation that a linear change of coordinates on
the probability vectors [p0, p1]T makes probability conservation, p0 + p1 = 1 an
explicitly conserved quantity under the action of Markov matricesM2.

To this end, we use the orthogonal similarity transformation h = 1√
2

[
1 1−1 1

]
with

inverse h−1 = hT , so that 2 × 2 Markov matrices M = [ 1−a b
a 1−b

]
are transformed

to M ′ = hT Mh = [
λ v
0 1

]
, where λ = 1 − a − b and v = b − a, and the second

row explicitly manifests probability conservation. In what is to come, we will have
additional recourse to consider only parameters that arise under a continuous-time
formulation of a Markov chain, so that M = eQt for some 2 × 2 “rate” (zero-column
sum) matrix Q. In this case we have the constraints 0 ≤ a, b < 1

2 which, in particular,
implies 0 < λ ≤ 1.

Let P ∈ U be a distribution with components pi jkl . Following the notation set out
in Sect. 2.6 we let Flat1(P) be the 12|34 flattening of P , which under the Markov
action transforms as

Flat1(P) → (M1 ⊗ M2) · Flat1(P) · (M3 ⊗ M4)
T .

In the alternative basis we have the 4 × 4 form

M ′
1 ⊗ M ′

2 =

⎡

⎢⎢
⎣

λ1λ2 λ1v2 v1λ2 v1v2
0 λ1 0 v1
0 0 λ2 v2
0 0 0 1

⎤

⎥⎥
⎦ ,

and a similar expression for M ′
3 ⊗ M ′

4. Commensurately, we let Flat′1(P) denote the
12|34 flattening in the alternate basis:

Flat′1(P) :=
(
hT ⊗ hT

)
· Flat1(P) · (h ⊗ h) .

This formulation allows us to identify the bottom right 3 × 3 sub-matrix F̂lat
′
1(P)

of Flat′1(P) as providing an invariant subspace for the Markov action, that is

F̂lat
′
1(P) → ̂(M ′

1 ⊗ M ′
2) · F̂lat′1(P) · ̂(M ′

3 ⊗ M ′
4)

T
,
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where4

̂M ′
1 ⊗ M ′

2 :=
⎡

⎣
λ1 0 v1
0 λ2 v2
0 0 1

⎤

⎦ ,

and similarly for ̂M ′
3 ⊗ M ′

4.
Further, this construction leads to a cubic Markov invariant using nothing more

than the multiplicative property of the determinant:

det(F̂lat
′
1(P)) → det

(
̂(M ′
1 ⊗ M ′

2) · F̂lat′1(P) · ( ̂M ′
3 ⊗ M ′

4)
T
)

= det( ̂M ′
1 ⊗ M ′

2) det(F̂lat
′
1(P)) det( ̂M ′

3 ⊗ M ′
4)

= λ1λ2λ3λ4 det(F̂lat
′
1(P)). (4.1)

As a polynomial on U , we set q1(P) := det(F̂lat
′
1(P)) and q1 is our first example

of a Markov invariant on the space of tensors U since, for all P ∈ U and g =
M1 ⊗ M2 ⊗ M3 ⊗ M4 ∈ ×4M2, we have:

q1(g · P) = det(g)q1(P),

where det(g) = det(M1) det(M2) det(M3) det(M4) ≡ λ1λ2λ3λ4. Thus:

Theorem 4.1 The polynomial q1 defined as q1(P) := det(̂Flat
′
1(P)) is a Markov

invariant accompanied by the one-dimensional representation of ×4M2 given by
λg = det(g) for all g ∈ ×4M2.

For the reasons explained at the start of this section, we refer to q1 as the “squangle”.
The reader should note that the squangle q1 is defined via (and depends absolutely

upon) both the 12|34 flattening and our particular choice of basis for C
2. On the

other hand, q1(P) is perfectly well defined for all tensors P ∈ U , and occurs as
a homogeneous, cubic polynomial in the indeterminates pi1i2i3i4 with 96 terms (the
explicit polynomial form is provided in Online Resource 1).

It is also important to note that (4.1) is valid only under the action of 2× 2Markov
matrices and certainly fails for more general 2×2 matrices in GL(2). Thus the squan-
gles are very much tailored for the probabilistic setting of Markov chains.

Having constructed q1 we now evaluate q1 specifically on a tensor P1 arising from
the quartet tree T1 with the goal of producing a quartet inference measure Δ. As
observed in Sect. 2.3, if P1 arises from a quartet we can certainly write P1 = M1 ⊗
M2 ⊗ M3 ⊗ M4 · P̃1, where P̃1 is the so-called clipped tensor. In particular, in the
original probability basis, this tensor has components p̃(1)

i jkl = 0 whenever i �= j or
k �= l.

4 This observation admits a significant generalization—developed by Sumner (2017)—to any number of
taxa and any number of states k.
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We also saw in (2.3) that, under the 12|34 flattening, Flat1(P̃1) generically has rank
at most 2. Hence, working in the alternative basis, F̂lat

′
1(P̃1) also has rank at most 2,

and being a cubic minor we obtain

q1(P̃1) = det(F̂lat
′
1(P̃1)) = 0 �⇒ q1(P1) = λ1λ2λ3λ4q1(P̃1) = 0,

for all tensors P1 arising on the quartet tree 12|34 under any choices of parameters.
Thus:

Theorem 4.2 TheMarkov invariant q1 is a phylogenetic identity for the quartet 12|34.
On the other hand if we suppose a distribution P2 arises from the quartet tree 13|24

we can write P2 = M1⊗M2⊗M3⊗M4 · P̃2, where, considered as the 12|34 flattening
in the original basis, we have generically:

Flat1(P̃2) =

⎡

⎢⎢
⎣

x 0 0 0
0 y 0 0
0 0 z 0
0 0 0 w

⎤

⎥⎥
⎦ .

Transforming to the alternative basis and evaluating q1(P̃2) we now find

q1(P̃2) = 1

4
(wyz + xyz + wxy + wxz).

Since P̃2 is a distributionwe have x, y, z, w > 0 and henceq1(P̃2) > 0. Sinceq1 is a
Markov invariant, we have q1(P2) = λ1λ2λ3λ4q1(P̃2), and we conclude q1(P2) > 0
for all choices of parameters such that P̃2 corresponds to a probability distribution
on the quartet 13|24 under continuous-time formulation of a Markov chain where
0 < λi = det(Mi ) = etr(Qi t) ≤ 1.

Finally if we suppose P3 arises from T3 we get

P3 = M1 ⊗ M2 ⊗ M3 ⊗ M4 · P̃3,

and again under the 12|34 flattening in the original basis, we have

Flat1(P̃3) =

⎡

⎢⎢
⎣

x 0 0 0
0 0 y 0
0 z 0 0
0 0 0 w

⎤

⎥⎥
⎦ ,

which follows simply from the structural property of the components of P3 in the
original basis: p̃i jkl �= 0 if and only if i = l and j = k. Transforming to the alternative
basis and evaluating q1(P̃3) we now find

q1(P̃3) = −1

4
(wyz + xyz + wxy + wxz).
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Since q1 is a Markov invariant, we have q1(P3) = λ1λ2λ3λ4q1(P̃3), and we conclude
q1(P3) < 0 for sensible choices of parameters, that is, parameters such that P̃3 really
does correspond to a probability distribution and, on the leaf edges, 0 < det(Mi ) ≤ 1.

We can of course define two additional squangles q2, q3 using the other two choices
of tensor flattenings 13|24 and 14|23. This can be achieved using an analogous argu-
ment to the one we gave for q1 but it is simpler at this stage to utilize the natural action
of S4 on tensors P ∈ U to define:

q2(P) := −q1((23) · P), q3(P) := −q1((24) · P);

where the choice of signs is chosen for reasons of elegance that will become apparent.
Clearly q2 and q3 also form Markov invariants since:

q2(M1 ⊗ M2 ⊗ M3 ⊗ M4 · P) = −q1((23) · M1 ⊗ M2 ⊗ M3 ⊗ M4 · P)

= −q1(M1 ⊗ M3 ⊗ M2 ⊗ M4 · (23) · P)

= −λ1λ3λ2λ4q1((23) · P) = λ1λ2λ3λ4q2(P),

with a similar derivation for q3.

4.2 Signs for the squangles

A critical part of our construction of a useful measure for tree inference relies on
understanding the expected values of the polynomials, and particularly, their expected
signs. Thus, we use the invariance property established in the last subsection to infer
positivity conditions for q2 and q3 on the three possible quartets as follows (note we
have already established these conditions for q1 as part of our development of the last
section).

Suppose P2 is a tensor arising from the quartet 13|24. As before we can write
P2 = M1 ⊗ M2 ⊗ M3 ⊗ M4 · P̃2. Now taking P̃1 := (23) · P̃2, it is clear that P̃1 is a
clipped tensor taken from the quartet 12|34. Thus

q2(P̃2) = −q1((23) · P̃2) = −q1(P̃1) = 0,

since we concluded above that q1(P̃1) = 0 for all tensors from the quartet 12|34.
Conversely, choosing any clipped tensor P̃1 from 12|34 and defining P̃2 := (23) · P̃1,
we have:

q2(P̃1) = −q1((23) · P̃1) = −q1(P̃2) < 0.

Continuing in this fashion we infer the signs of the evaluations of the squangles on
tensors from the three possible quartets.

Before we summarize this information however, we note the squangles form a
vector space (linear combination of these invariant functions is again an invariant
function), and explicit computation shows that this vector space only has dimension
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Table 2 Expectation values of the three squangles q1, q2, q3 when evaluated on a tree tensor Pi corre-
sponding to quartet Ti

T1 T2 T3

E[q1(F)] 0 v −w

E[q2(F)] −u 0 w

E[q3(F)] u −v 0

Under a continuous-time assumption, the expectation values u ≡ u(P1), v ≡ v(P2), w ≡ w(P3) satisfy
the constraints u, v, w ≥ 0, but are otherwise unknown and depend upon the specific model parameters

two, that is, there is a linear dependence between the polynomials q1, q2, q3. In fact,
this dependency is exhibited by

q1 + q2 + q3 = 0,

as a polynomial identity. Thus only two of the squangles are needed to span the vector
space of these invariant functions. In the Appendix (Online Resource 4) we show
that this linear dependence follows directly from a representation theoretic argument
using group characters. Given this linear dependence, for reasons of symmetry it
makes sense to consider the pair {q2, q3} as a basis for the squangles when the quartet
12|34 is under consideration, the pair {q1, q3} as a basis when the quartet 13|24 is
under consideration, and the pair {q1, q2} as a basis when the quartet 14|23 is under
consideration.

Putting the information found so far together, we find expected values for the
squangles q1, q2, and q3 when evaluated on the three possible quartets as given in
Table 2. We use this table of expectation values to design an optimal quartet inference
measure Δ.

Theorem 4.3 Given a probability tensor Pi ∈ U arising from the quartet Ti , when
evaluated on a frequency array F ∼ MultiNom(Pi , N ), the Markov invariants
{q1, q2, q3} have the signed expectation values given in Table 2.

Proof Given the above observations regarding the signs of the squangles when eval-
uated on the three possible quartets, to complete the proof, we need only confirm,
for i = 1, 2, 3, the expectation values E[qi (F)] = N (N − 1)(N − 2)qi (P) for all
probability tensors P and F ∼ MultiNom(P, N ).

Under the multinomial distribution, we have E[F] = N P which is simply the
vector version of E[ fi jkl ] = Npi jkl . In general, the situation for higher monomial
powers in the fi jkl is not so straightforward. However, the explicit polynomial form
given in Online Resource 1 reveals that each monomial term in q1 is square free (and
hence the same result follows for the squangles q2 and q3). Considering a square
free cubic monomial fi1 j1k1l1 fi2 j2k2l2 fi3 j4k4l4 , one finds, using the moment generating
function for themultinomial distribution (see (4.2) and surrounding discussion below):

E[ fi1 j1k1l1 fi2 j2k2l2 fi3 j3k3l3] = N (N − 1)(N − 2)pi1 j1k1l1 pi2 j2k2l2 pi3 j3k3l3 .
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We then apply linearity of expectation value to conclude E[qi (F)] = N (N − 1)(N −
2)qi (P) for i = 1, 2, 3. Defining u := E[q1(F)], v := E[q2(F)], andw := E[q3(F)]
completes the proof. 
�

Before using this information to derive a quartet inference measure, we first need
to consider the behaviour of the squangles under taxon permutations.

4.3 Taxon permutations for the squangles

From the definition of the flattenings and the action of S4 on U it follows that

Flat1((12) · P) = KFlat1(P), Flat1((13)(24) · P) = Flat1(P)T ,

where K is the permutation matrix

K =

⎡

⎢⎢
⎣

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎤

⎥⎥
⎦ .

Further, since the permutations (12) and (13)(24) generate the stabilizer Stab(T1), we
see that the action of the eight permutations in Stab(T1) comes from compositions of
these basic two:

Flat1(P), KFlat1(P), Flat1(P)K , KFlat1(P)K ,

Flat1(P)T , KFlat1(P)T , Flat1(P)T K , KFlat1(P)T K .

Transforming this result into the alternative basis, it is straightforward to show:

Flat′1((12) · P) = KFlat′1(P), Flat′1((13)(24) · P) = Flat′1(P)T ,

where, in the first result, we have used (hT ⊗ hT ) · K · (h ⊗ h) = K . From this we
see that

q1((12) · P) = det(F̂lat
′
1((12) · P)) = det(K ) det(F̂lat

′
1(P))

= − det(F̂lat
′
1(P)) = −q1(P),

and similarly q1((13)(24)·P) = q1(P). Thus the squangle q1 spans a one-dimensional
subspace under the action of the stabilizer Stab(T1). In particular, q1 transforms as the
sgn representation of S4 restricted to the stabilizer:

Theorem 4.4 The squangle q1 transforms as sgn under the action of the stabilizer
Stab(T1) defined by q1(P) �→ q1(σ · P) = sgn(σ )q1(P), for all σ ∈ Stab(T1) and
P ∈ U.
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Following the approach of Sumner and Jarvis (2009) for the DNA (four-state)
case, this result provides an alternative route to establishing that the squangle q1 is
a phylogenetic identity for quartet T1 (Theorem 4.2) using the notion of the clipped
tensor, as follows. If P1 is a tree tensor corresponding to quartet T1, then it is clear
that the clipped tensor P̃1 is fixed under the (odd) permutation (12) ∈ Stab(T1), that
is (12) · P̃1 = P̃1. Hence,

q1(P1) = λ1λ2λ3λ4q1(P̃1) = λ1λ2λ3λ4q1((12) · P̃1)
= λ1λ2λ3λ4sgn((12))q1(P̃1) = −q1(P1),

and we conclude that q1(P1) = 0 for all tree tensors P1 corresponding to quartet T1.
Now considering the following calculation:

q2((12) · P) = −q1((23)(12) · P)

= −q1((132) · P)

= −q1((12)(13) · P) = q1((13) · P) = q1((13)(24)(24) · P)

= q1((24) · P) = −q3(P).

Where we have used the definition of q2 in the first equality, Theorem 4.4 in the fourth
and fifth equality, and the definition of q3 in the final equality. A similar calculation
shows:

q2((13)(24) · P) = q2(P).

From this, we conclude:

Theorem 4.5 The squangles q2 and q3 transform under the action of the stabilizer
Stab(T1) as a signed permutation representation. Specifically, for all σ ∈ Stab(T1)
and P ∈ U:

q2(σ P) =
{

q2(P), if sgn(σ ) = 1;
−q3(P), if sgn(σ ) = −1.

In the next section, we will apply these results to construct quartet measures which
explicitly satisfy Property I.

4.4 The measure and residual sum of squares

We are now ready to discuss specific examples of quartet inference measuresΔ. Given
the expectation values given in Table 2, we may construct a naive measure using the
squangles as Δ(F) = (|q1(F)|
, |q2(F)|
, |q3(F)|
) for some integer 
 > 0. We note
that Theorems 4.1, 4.4 and 4.5 suggest that this measure may satisfy Properties I, II
(possibly in the strong form), and III. However, we need to consider the statistical
situation carefully to establish this formally and, as we will see, this motivates us to
consider a more sophisticated measure.
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Table 3 Residual sums of squares for each quartet hypothesis and possible ordering of squangle values

RSS1 RSS2 RSS3

q2 ≤ q1 ≤ q3
1
2 q

2
1(F) q21 (F) + q23 (F) q21 (F) + q22 (F)

q3 ≤ q2 ≤ q1 q22 (F) + q23 (F) 1
2 q

2
2(F) q21 (F) + q22 (F)

q1 ≤ q3 ≤ q2 q22 (F) + q23 (F) q21 (F) + q23 (F) 1
2 q

2
3(F)

q1 ≤ q2 ≤ q3
1
2 q

2
1(F) q21 (F) + q23 (F) 1

2 q
2
3(F)

q3 ≤ q1 ≤ q2 q22 (F) + q23 (F) 1
2 q

2
2(F) 1

2 q
2
3(F)

q2 ≤ q3 ≤ q1
1
2 q

2
1(F) 1

2 q
2
2(F) q21 (F) + q22 (F)

For each ordering, residuals which are plausibly minimal are highlighted. The key point to observe is that
the first three orderings perfectly match the ordering of expectation values, and in this case there is only
one plausible minimal residual and hence we conclude that the corresponding quartet is most likely. In the
other three cases, the orderings do not match the ordering of expectation values and there are two competing
quartets

Firstly, we consider the signed expectations given in Table 2 and develop a residual
sum of squares measure—analogous to that developed by Holland et al. (2013)—
that takes these signs into account. For purposes of self-containment, we revisit the
derivation and then, after a consideration of statistical bias correction under multi-
nomial sampling, modify the quartet inference measure to produce one that satisfies
Properties I, II (strong), and III, as described in Sect. 3.

Suppose we are interested in the hypothesis that the array of observed pattern
frequencies occurs as a multinomial sample F ∼ MultiNom(P1, N ) with P1 arising
on quartet T1 under some fixed set of parameters. Evaluating the squangles on the
array F , we see that our best estimate of the parameter u ≥ 0 is given by

û =
{ 1

2 (q3(F) − q2(F)), if q3(F) > q2(F);
0, otherwise.

If û > 0 then the residual sum of squares is

(q2(F) + û)2 + (q3(F) − û)2 = 1

2
(q2(F) + q3(F))2 = 1

2
q21 (F),

since q1 + q2 + q3 = 0. On the other hand, if û = 0, the residual sum of squares is
q22 (F) + q23 (F). The residuals for the other two quartet hypotheses can be obtained
similarly and all are presented in Table 3. These results exactly correspond to those
given by Holland et al. (2013) for the DNA squangles case. Presently, we take these
ideas further by considering issues of statistical bias to find an inference measure
which, in expectation value, satisfies Properties I, II (strong), and III.

To motivate the discussion, assume F ∼ MultiNom(P1, N ) where P1 is a distribu-
tion arising from quartet T1 and suppose q2(F) ≤ q1(F) ≤ q3(F). Then, under the
least squares approach, we have the residual sumof squares for each quartet hypothesis
Ti :
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Δ(F) = (RSS1,RSS2,RSS3) = ( 12q21 (F), q21 (F) + q23 (F), q21 (F) + q22 (F)
)
.

To ensure Property II (strong) we need the expected value of Δ for the situation
F ∼ MultiNom(P1, N ) to be proportional to the expected value of Δ for F ′ ∼
MultiNom(g · P1, N )with g ∈ ×4M2. However this is not true as the situation stands
since

E[Δ] = E[( 12q21 (F), q21 (F) + q23 (F), q21 (F)

+q22 (F))] �∝ (
1

2
q21 (P1), q

2
1 (P1) + q23 (P1), q

2
1 (P1) + q22 (P1)),

given that q2i (F) provides a biased estimator of q2i (P1) under multinomial sampling.
We can, however, remedy this situation by computing unbiased estimators of the
squares of the squangles. We denote these polynomials as Si , defined through the
condition

E[Si (F)] = q2i (P1).

Then we redefine our measure to be

Δ(F) := ( 12 S1(F), S1(F) + S3(F), S1(F) + S2(F)
)

and it follows that

E[Δ(F ′)] = det(g)2E[Δ(F)],

as required by Property II (strong).
We now discuss how to explicitly compute the unbiased forms Si . To simplify

the presentation, we will denote the probabilities of distinct patterns i jkl using the
symbols x1, x2, x3 . . . and the corresponding site pattern counts fi jkl using the symbols
X1, X2, X3 . . .. The moment generating function for the multinomial distribution is
then expressed as

f (s1, s2, s3, . . .) := E[es1X1+s2X2+s3X3+...] = (x1e
s1 + x2e

s2 + x3e
s3 + . . .)N ,

so the expectation value of a monomial in the site pattern counts can then be computed
via

E[Xn1
1 Xn2

2 Xn3
3 . . .] = ∂n1

∂sn11

∂n2

∂sn22

∂n3

∂sn33
. . . f (s1, s2, . . .)

∣∣∣∣
s1=s2=s3=...=0

. (4.2)

Aswas alluded to in the proof ofTheorem4.3, complications arisewhen considering
the expectation values of polynomials in the counts fi jkl . Even though the squangles
are square free (as the explicit form given in Online Resource 1 shows), when we
compute residuals according to Table 3, the relevant polynomials q2i (F)will no longer
be square free. However, we can at least say that each degree six monomial term in
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q2i (F) has no exponents of higher order than a square. Thus we need only consider the
monimals of the form X2

1X
2
2X

2
3, X

2
1X

2
2X3X4, X2

1X2X3X4X5, and X1X2X3X4X5X6.
Using (4.2), we found that, in each case, we can obtain bias-corrected forms by the
simple replacement X2

i → X2
i − Xi . Indeed, following this through one finds:

E[(X2
1 − X1)(X

2
2 − X2)(X

2
3 − X3)] = N (N − 1) . . . (N − 5)x21 x

2
2 x

2
3 ,

E[(X2
1 − X1)(X

2
2 − X2)X3X4] = N (N − 1) . . . (N − 5)x21 x

2
2 x3x4,

E[(X2
1 − X1)X2X3X4X5] = N (N − 1) . . . (N − 5)x21 x2x3x4x5,

E[X1X2X3X4X5X6] = N (N − 1) . . . (N − 5)x1x2x3x4x5x6.

We then applied this process to each monomial in q2i (F) and divided by the com-
binatorial factor N (N − 1)(N − 2) . . . (N − 5) to produce Si (F); inhomogeneous
polynomials with the defining property E[Si (F)] = q2i (P), as required.

Our computations showed that the expansion of each q2i has 4008 monomial terms
whereas the Si each have 6688 terms. This is a significant computational complication
as we can efficiently compute q2i (F) by simply taking the square (qi (F))2 (where we
recall each qi only has 96 monomial terms). However, having computed the explicit
polynomial form of each Si once (we did so in Mathematica (Wolfram Research, Inc
2010)), there is no need to do so again, and having done so repeated numerical evalu-
ation is no great computational obstruction. We have included the explicit polynomial
form of the Si in the Online Resource 2.

With the unbiased forms Si in hand, we found that the best performing quartet
inference method obtainable is as described by the pseudocode in Table 4. We close
this section with the conclusion:

Theorem 4.6 The quartet inference measure and decision rule described in Table 4
satisfies both Property I, Property II (strong), and Property III (see Table 1 for defini-
tions).

Table 4 Our proposed optimal decision rule for using the squangles to infer quartet trees from binary
sequence data

Input Four aligned binary sequences;
Compute the site pattern count tensor F = (fi1i2i3i4 );
Compute the squangles (q1(F ), q2(F ), q3(F ));
If Ordering perfectly matches that implied by quartet Ti (top three rows of Table 3);

Return Ti;
Else

Compute û1 = 1
2 (q3(F ) − q2(F )), û2 = 1

2 (q1(F ) − q3(F )), and û3 = 1
2 (q2(F ) − q1(F ));

For j, k such that ûj , ûk ≥ 0, compute the bias corrected residuals Sj(F ) and Sk(F ).
If Sj(F ) < Sk(F );

Return Tj ;
Else

If Sk(F ) < Sj(F );
Return Tk;

Else
Return tie Tj and Tk.
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Proof The result follows from E[Si (F)] = q2i (P) and Theorems 4.4, 4.5, 4.1, and
4.3. 
�

5 The edge identities

In this section we discuss the behaviour of the edge identities (defined in Sect. 2.6) in
terms of Properties I, II and III.

5.1 Property I

As we saw in Sect. 2.6, in the context of quartet trees and binary sequence data, the
edge identities are the cubic minors of the three flattenings Flat1(P), Flat2(P) and
Flat3(P). For the purpose of this discussion, we denote the (i, j) cubic minor of the
flattening Flat1(P) as mi j (Flat1(P)), or simply as mi j .

We begin our discussion of Property I for the edge identities with a focus on the
action of the stabilizer subgroup, Stab(T1), of the quartet T1 = 12|34. This includes
uncovering the exact representation of Stab(T1) acting on the minors.

From the results of Sect. 4.3, we find that Stab(T1) acts on the set of 16 cubic minors
by signed permutations. Specifically, for all i, j = 1, 2, 3, 4:

m1 j (KFlat1(P)) = −m1 j (Flat1(P)); m2 j (KFlat1(P)) = m3 j (Flat1(P));
m3 j (KFlat1(P)) = m2 j (Flat1(P)); m4 j (KFlat1(P)) = −m4 j (Flat1(P));

and

mi j (Flat1(P)T ) = m ji (Flat1(P)).

Thus we see that the minors break up into six (signed) orbits under this action:

{m11}, {m12,m21,m31,m13}, {m14,m41}, {m22,m32,m23,m33},
{m24,m34,m42,m43}, {m44}.

Taking a multinomial sample F ∼ MultiNom(P, N ) and fixing an orbit, we see
that the sum of squares

∑
mi j∈orbit |mi j (F)|2 is explicitly invariant under the action

of Stab(T1). If we define Δ1 to be this sum and analogously define Δ2 and Δ3, then
Δ(F) := (Δ1,Δ2,Δ3) is a quartet measure that satisfies Property I.

However, we could have instead used certain linear combinations of the minors
from each orbit and still produce a polynomial invariant under Stab(T1) and thus the
analogous polynomials together form a Property I satisfying quartet measure. For
example, we could define Δ1 to be |m11(F) + m44(F)|2 + |m11(F) − m44(F)|2. In
general, it is possible to take linear combinations of the minors which transform as
one-dimensional linear representations of the stabilizer Stab(T1) and then take sums
of squares of thereof as an inference measure (this can be done systematically using
the methods developed by Sumner and Jarvis (2009)). We performed this analysis but
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omit the details here, since we found that there was no particular gain in statistical
power over the straightforward sum of squares described above.

The theoretical conclusion is that leaf permutation symmetries alone are not enough
to uniquely determine a choice of measure constructed from the minors. Further, there
is no reason at all to expect this measure will satisfy Property II in the weak or strong
form. This discussion does however raise the natural question of whether there perhaps
exists a linear combination of minors which satisfies both Property I and II. Of course,
this linear combination is exactly the (binary) squangle constructed in the previous
section. Importantly, this fact is specific to this binary case, and in Sect. 7 and the
appendix we discuss why this is a special feature restricted to the binary Markov
model.

5.2 Signs for the edge identities

We now turn to exploring Property III in relation to the edge identities. The results
presented in this section will only be valid under a continuous-time Markov process.

Explicit computation shows that, as a polynomial in the variables
P = (pi jkl)i, j,k,l∈{0,1}, each minor of the flattening Flat1(P) can be expressed as
a linear combination of a minor of Flat2(P) with a minor of Flat3(P). We present
these relationships in Table 5. We stress that these are algebraic relationships between
the minors as polynomials in the variables (pi jkl), valid for all tensors P .

If we fix a tensor P1 arising from T1, we see that we may re-express the vanishing
of a given minor of Flat1(P1) as an equality between the corresponding minors in
Flat2(P1) and Flat3(P1). Importantly, it then turns out that (under mild conditions
discussed shortly) there exists a positive parameter u (whose exact value depends on
the specific choice of the model parameters defining P1) such that the value of the
respective minors is either +u or −u. The relevant signs are also provided in Table 5.

Taking this sign information into account leads to an important modification of the
quartet inference measure obtained using the edge identities. This is implemented in
the least squares framework with residual sums of squares exactly analogous to the
signed squangles described in Table 3. Presently, we describe the conditions that lead
to this additional sign information.

The (mild) condition we impose is that the 2× 2 Markov matrices M on the leaves
of the quartet tree have positive determinant: det(M) > 0. The reader should note
that this is a biologically reasonable condition where evolutionary times are generally
of the order where a probability of substitution is smaller than the probability of no
substitution. This is also the case when we consider a continuous-time implementation
of the underlying Markov process, so M = eQt for some rate matrix Q and hence
det(M) = etr(Qt) > 0.

Assuming this condition, the inverses of such Markov matrices have entries with
signs given by:

M−1 =
(+ −

− +
)

.
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Hence, if we take a Kronecker product of two such matrices we have the signed form:

M−1 ⊗ M−1 =

⎛

⎜⎜
⎝

+ − − +
− + + −
− + + −
+ − − +

⎞

⎟⎟
⎠ .

Arguing as we did in Sect. 4.1, taking a clipped tensor P̃1 arising on T1, we have

Flat2(P̃1) = Flat3(P̃1) =

⎛

⎜⎜
⎝

x 0 0 0
0 y 0 0
0 0 z 0
0 0 0 w

⎞

⎟⎟
⎠ ,

where x, y, z, w > 0.Organizing theminors of theseflattenings into the corresponding
cofactor matrices (that is, the 4× 4 matrix where the (i, j) entry is (−1)i+ j times the
(i, j) minor), we have

Cof(Flat2(P̃1)) = Cof(Flat3(P̃1)) =

⎛

⎜
⎜
⎝

yzw 0 0 0
0 xzw 0 0
0 0 xyw 0
0 0 0 xyz

⎞

⎟
⎟
⎠ .

Recalling that the cofactor matrix can be expressed as

Cof(A) = det(A)A−1T ,

it follows that the cofactor matrix is multiplicative: Cof(AB) = Cof(A)Cof(B). From
the above expressions we may conclude that the cofactor matrices of the flattenings
have, for any P1 = M1 ⊗ M2 ⊗ M3 ⊗ M4 · P̃1 arising on quartet T1, the signed form:

Cof(Flat2(P1)) = Cof(M1 ⊗ M3) · Cof(Flat2(P̃1)) · Cof((M2 ⊗ M4)
T )

=

⎛

⎜⎜
⎝

+ − − +
− + + −
− + + −
+ − − +

⎞

⎟⎟
⎠ ,

and, similarly, the same result holds for the signed form of Cof(Flat3(P1)).
We have used this result to produce the sign information given in Table 5. The

information in this table can be used to produce a measure that we refer to as the
“signed minor”, with the specific algorithm described in Table 6.
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Table 5 Algebraic relationships between the minors of the three flattenings

Flat1 Flat2 Flat3 a ± (b − c) = 0 ±u

(1, 1) (1, 1) (1, 1) − +
(1, 2) (1, 2) (2, 1) − +
(2, 1) (1, 3) (1, 3) + −
(2, 2) (1, 4) (2, 3) + −
(1, 3) (2, 1) (1, 2) + +
(1, 4) (2, 2) (2, 2) + +
(2, 3) (2, 3) (1, 4) − −
(2, 4) (2, 4) (2, 4) − −
(3, 1) (3, 1) (3, 1) − −
(3, 2) (3, 2) (4, 1) − −
(4, 1) (3, 3) (3, 3) + +
(4, 2) (3, 4) (4, 3) + +
(3, 3) (4, 1) (3, 2) + −
(3, 4) (4, 2) (4, 2) + −
(4, 3) (4, 3) (3, 4) − +
(4, 4) (4, 4) (4, 4) − +
Each row is interpreted as specifying the choice of algebraic relationship a+(b−c) = 0 or a−(b−c) = 0 for
the three minors a, b, c indicated in the row evaluated on the flattenings Flat1, Flat2, and Flat3, respectively.
Additionally, for each row, the fifth column indicates that, on any tree tensor P1 arising from tree T1, the
non-zero minors b and c satisfy b = c = ±u for some positive parameter u ≡ u(P1) > 0 (under the
condition that the 2× 2 Markov matrices on the leaves of the tree have positive determinant). For example,
the fourth row indicates that: (i) for all tensors P ∈ U , the (2, 2) minor of Flat1(P), plus the (1, 4) minor
of Flat2(P), minus the (2, 3) minor of Flat3(P) is equal to zero, and (ii) for all tree tensors P1 arising from
T1, the (1,4) minor of Flat2(P1) is negative and equal to the (2,3) minor of Flat3(P1)

Table 6 The “signed minor” method for computing the measure Δ1 for tree T1

Input Four aligned binary sequences;
Compute the site pattern tensor F ;
Compute the flattenings Flat1(F ), Flat2(F ), Flat3(F );
Set RSS = 0;
For each row (a, b, c, ±) in Table 5;

û = (b + c)/2;
If ±û > 0 (i.e. û has the expected sign);

RSS ← RSS + 0.5a2.
Else

RSS ← RSS + b2 + c2.
Δ1 = RSS

The measures Δ2 and Δ3 are computed similarly

123



1646 J. G. Sumner et al.

6 Simulation study

6.1 Phylogenetic methods tested

We conducted a comprehensive simulation study to compare the accuracy of the infer-
ence methods described in this paper. To facilitate the discussion we use the following
abbreviations:

– Themeasure formed from the binary squangleswithout the residual sumof squares
decision rule (Sect. 3). In other words, compute the squangles q1, q2, and q3 and
return the tree with the squangle that is closest to zero: “unsigned squangles” or
US;

– The binary squangles using the residual sum of squares decision rule given in
Table 3: “signed squangles” or SS;

– The binary squangles with the residual sum of squares decision rule and corrected
for bias in the estimators, as described inTable 4: “bias-corrected signed squangles”
or CSS;

– The measure Δk = �i, j=1,2,3,4m2
i j (Flatk(F)) formed from the sum of squares

of the 16 matrix minors (the edge identities) without the residual sum of squares
decision rule: “unsigned minors” or UM;

– The measure formed from the 16 matrix minors (the edge identities) with the
residual sum of squares decision rule, as described in Table 6: “signed minors” or
SM;

– Neighbor-joining on distances that have been corrected for multiple substitutions
using the formula dcor = −0.5 log(1 − 2dobs), where dobs is the proportion of
sites that differ between two aligned sequences: “neighbor-joining” or NJ;

– Neighbor-joining on distances that have not been corrected for multiple substitu-
tions: “uncorrected neighbor-joining” or UNJ;

– The method proposed by Eriksson (2008) that is based on singular value decom-
position of tensor flattenings: “ErikSVD”;

– The subsequent modification to the ErikSVD method proposed by Fernández-
Sánchez and Casanellas (2015) that normalises the tensor flattening before
applying singular value decomposition: “Erik+2”.

Where known, the statistical properties of thesemethods are summarised in Table 7.

6.2 Generation of simulated data

All the simulations use a continuous time, symmetric Markov model. Edge length
parameters correspond to the probability of a change along an edge (as opposed to
the expected number of changes). Data were simulated on one of four types of tree:
“Felsenstein”, “Farris”, “balanced”, or “unbalanced star” (Fig. 1). These trees were
chosen as they have beenwidely studied in the literature concerning accuracy of differ-
ent phylogenetic methods (Felsenstein 1978; Huelsenbeck and Hillis 1993; Swofford
et al. 2001).Manymethods are known to have biases on these tree shapes either (i) neg-
atively, towards getting an incorrect tree (for the Felsenstein shape), or (ii) positively,
towards getting the correct tree (for the Farris shape).
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Table 7 Properties of the quartet inference methods discussed in this work (see Table 1 for definitions)

Method Prop. I Prop. II (weak) Prop. II (strong) Prop. III References (resp.)

US ✓ ✓ ✗ ✗ Theorems 4.4, 4.5, 4.1

SS ✓ ✓ ✗ ✓ Theorems 4.4, 4.5, 4.1, 4.3

CSS ✓ ✓ ✓ ✓ Theorems 4.4, 4.5, 4.1, 4.3, 4.6

UM ✓ ✗ ✗ ✗ Section 5.1

SM ✓ ✗ ✗ ✓ Section 5.1, Table 5

NJ ✓ ✓ ✓ ✓ Theorem 3.1

For each property that is satisfied, the final column provides a reference to the relevant result and/or
discussion

Fig. 1 Left to right “Felsenstein tree”, “Farris tree”, “balanced tree”, and “unbalanced star”

We conducted three different sets of simulations. For all scenarios we simulated
1000 trees for each parameter combination and recorded how many were correctly
inferred.

The first set of simulations explored the effect of sequence length on accuracy of
the different methods. Data were simulated on each type of tree. Long branches had
a 0.3 probability of a change and short branches had a 0.05 probability of a change.
The sequence length was varied from 50 to 1600 in steps of 50.

The second set of simulations explored the effect of internal branch length on
accuracy of the different methods. Data were simulated on each type of tree excluding
the star tree. Long pendant branches had a 0.3 probability of a change and short pendant
branches had a 0.05 probability of a change. The internal branch length was varied
from 0 to 0.1 in steps of 0.01. Sequence length was fixed at 800 characters.

The third set of simulations solely focused on the “Felsenstein” tree and explored
the effect of varying both the length of the two long branch lengths and the length of
the three short branches. The short branch length was varied from 0.01 to 0.1 in steps
of 0.01. The long branch length was varied from 0.1 to 0.4 in steps of 0.03. Sequence
length was fixed at 400.

6.3 Simulation results

We present results for a subset of themethods and generating trees. The full simulation
results, including heat maps, are available in Online Resource 3.
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Fig. 2 Accuracy of nine different phylogenetic methods for data simulated under varying sequence lengths
on the “Felsenstein” tree (short branch lengths 0.05 and long branch lengths 0.3). The performance of NJ
and SS is almost indistinguishable

The results of the first set of simulations on the “Felsenstein” tree are presented in
Fig. 2. The unsigned variants both perform poorly, while SM, SS, and NJ perform
roughly equally well and CSS, the bias-corrected squangles, is the most accurate. The
results on the “Farris” tree are presented in Fig. 3. For this tree the unsigned variants
are most accurate, particularly for shorter sequence lengths. UM is more than 80%
accurate even for sequence lengths of 50. SM, SS, and NJ perform roughly equally
well and CSS, the bias-corrected squangles, is the least accurate. For the “balanced
tree” (Fig. 4) all the signed methods and NJ performed about equally and were much
more accurate than the unsigned methods and the methods based on singular value
decomposition.

The simulations on the “unbalanced star” tree give us a more explicit opportunity to
investigate the effect of (positive) bias inherent in the results for the Farris tree (Fig. 3).
If a method is unbiased it should have no preference for any one quartet (and hence
return each quartet roughly 1/3 of the time). In order to investigate this, the number of
times the tree which groups the two long edges together was recorded (Fig. 5). UNJ
is by far the most biased method. This is followed by UM which returns the tree that
pairs the two long branches over 80% of the time, and USwhich returns this tree about
65% of the time. SM, SS and NJ are all less biased but return the tree that pairs the
two long branches about 40% of the time. CSS is the only method tested that appears
to be unbiased.

Overall the simulation scenarios, performance of our binary (two-state) implemen-
tations of ErikSVD and Erik+2 was relatively poor. This is in contrast to the excellent
performance of this approach for four-state data reported by Fernández-Sánchez and
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Fig. 3 Accuracy of nine different phylogenetic methods for data simulated under varying sequence lengths
on the “Farris” tree (short branch lengths 0.05 and long branch lengths 0.3). Note that performance of NJ
and SS is almost indistinguishable. The high accuracy for some methods reflects bias towards inferring the
correct tree (c.f. the results for the “unbalanced star” in Fig. 5)
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Fig. 4 Accuracy of nine different phylogenetic methods for data simulated under varying sequence lengths
on the balanced tree (internal branch length 0.05 and pendant branch lengths 0.3). Performance of the
methods SM, CSS, SS, NJ and UNJ is almost indistinguishable and better than the performance of UM,
US, ErikSVD and Erik+2
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Fig. 5 Performance of nine different phylogenetic methods for data simulated under varying sequence
lengths on the unbalanced star tree (short branch lengths 0.05 and long branch lengths 0.3). The dashed
horizontal line at 333.3 indicates ideal performance of an unbiased method

Casanellas (2015). It is not immediately obvious why these methods are less effective
on binary sequences.

The results of the second set of simulations on the “Felsenstein” tree are presented
in Fig. 6. The unsigned variants both perform relatively poorly, SM, SS andNJ perform
roughly equally well, and the CSS is the most accurate for all internal branch lengths
tested.

The results of the third set of simulations are presented as a series of heatmaps in the
OnlineResource 3.Averagedover all the combinations of short and longbranch lengths
tested the methods ranked as follows for accuracy: CSS (81.4%), NJ (77.4%), SS
(77.4%), SM (76.7%), Erik+2 (71.8%), US (56.1%), ErikSVD (56.0%), UM (52.1%),
UNJ (40.3%).

Overall our results indicate that using amethod (CSS) which has Properties I, II and
III provides a highly accurate and unbiased method of quartet topology inference. The
moderately improvedperformance ofCSS relative toSS shows the benefit of correcting
for the bias in the squangles, but that we can still reasonably use the squangles without
this correction. For more on the future of bias correcting methods based on Markov
invariants beyond binary state models, see Sect. 7.

7 Discussion and future work

The above analysis focuses exclusively on the binary case k = 2. However, biologists
are usually interested in studies where k = 4, the DNA case. Here we discuss the
extension of the above results to k = 4.
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Fig. 6 Accuracy of nine different phylogenetic methods for varying internal edge lengths on the “Felsen-
stein” tree (short pendent branch lengths 0.05 and long pendent branch lengths 0.3). The internal branch
length was varied from 0 to 0.1 in steps of 0.01. Sequence length was fixed at 800 characters

7.1 The minors

In the Appendix (Online Resource 4) we establish that, when k = 2, the 48 minors
(16 minors from each of the 3 flattenings) form a 32-dimensional invariant subspace
under the action of GL(4)×GL(4) (expressed as left and right matrix multiplication).
Further, in this scenario the binary squangles are elements of this invariant subspace
and thus occur as certain linear combinations of the minors.

For the DNA case of k = 4, similar representation theoretic arguments (as given
in the Appendix, Online Resource 4) establish that the invariant subspace formed
from the minors of the flattenings (now degree 5 minors of 16 × 16 matrices) does
not contain any Markov invariants. This happens because the rank conditions on
flattenings are invariant under the action of GL(16)×GL(16) (again expressed as left
and right matrix multiplication), whereas the Markov invariants are valid only under
the two-step subgroup restriction:

1. GL(16) × GL(16) to ×4GL(4) ≡ (GL(4) × GL(4)) × (GL(4) × GL(4));
2. each copy GL(4) thereof to Markov matrices M4.

For k = 2, it turns out there are so few possible invariant subspaces that the Markov
invariants (binary squangles) happen to be in the subspace of polynomials spanned by
the minors, i.e. they are linear combinations of the minors. For k = 4, the minors and
DNA squangles lie in distinct ×4GL(4) invariant subspaces and it follows there is no
linear combination of minors forming a Markov invariant (see the Appendix, Online
Resource 4) and hence no chance a quartet inference measure formed from the minors
can be made to satisfy Property II (strong).
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Theorem 7.1 The DNA squangles (k = 4) do not occur as linear combinations of
minors of flattenings. As a consequence, there is no quartet inference measure based
on minors and edge identities satisfying Property II (weak or strong).

Proof See Appendix, Online Resource 4. 
�

On the other hand, for any k the minors will continue to transform as a signed
permutation representation of the relevant stabilizer subgroups so it is no problem to
ensure Property I by a suitable choice of measure (any sum of squares of an orbit under
the stabilizer subgroup will do).

Additionally, assuming that the relevant Markov matrices are sufficiently close to
the identity matrix, similar arguments to those given in Sect. 5.2 can be made to
determine the signs for the edge identities on quartets for any k (we leave the details
of this for future work).

7.2 The squangles

As described by (Holland et al. 2013), the theory we presented here to build the basic
residual sum of squares rule for k = 2 extends to k = 4 to provide a signed residual
sum of squares rule for DNA data. However, this derivation does not include the
computation of the unbiased forms Si of the squares of the DNA squangles. While the
representation-theoretic arguments for existence of the Markov invariants are similar,
their construction is more complicated and there is no known way to compute them
as a minor of a transformed flattening. We emphasize that the representation theory
showing our tree measure has Property II (strong) extends to showing there is such
a measure for k = 4, as well as the behaviour under taxon permutations ensuring
Property I.

An important addition to this paper over the results given by Holland et al. (2013)
is our discussion of unbiased estimators of the parameters involved in the decision
rule as discussed in Sect. 3. Since the binary squangles have relatively few terms,
computing the unbiased forms of their squares is feasible by explicit squaring and bias
correcting term by term. In particular, the binary squangles are cubic and square-free
and thus we know that the only correction we need to make is for squared variables.
However, for k = 4 the DNA squangles are degree 5 polynomials in 256 variables
with 66,744 terms each. Additionally, and most importantly, their explicit polynomial
form is only known in a non-standard basis analogous to the change of basis used at
the start of Sect. 4 (details are given by Sumner and Jarvis (2009)). Given that these
polynomials would need to be squared and transformed to the natural (probability)
basis, we consider the development of an unbiased square of the squangles for k = 4
a challenging open problem.
Open Problem: Compute unbiased forms for the DNA squangles.

We close by pointing out that it is easy to argue that the SVD approach satisfies
Property I but certainly does not satisfy Property II and it is not at all clear how to
construct a correspondingly unbiased version of the SVD approach.
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