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Abstract We develop a mathematical model of platelet, megakaryocyte, and throm-
bopoietin dynamics in humans. We show that there is a single stationary solution that
can undergo a Hopf bifurcation, and use this information to investigate both normal
and pathological platelet production, specifically cyclic thrombocytopenia. Carefully
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estimating model parameters from laboratory and clinical data, we then argue that a
subset of parameters are involved in the genesis of cyclic thrombocytopenia based
on clinical information. We provide model fits to the existing data for both platelet
counts and thrombopoietin levels by changing four parameters that have physiological
correlates. Our results indicate that the primary change in cyclic thrombocytopenia is
an interference with, or destruction of, the thrombopoietin receptor with secondary
changes in other processes, including immune-mediated destruction of platelets and
megakaryocyte deficiency and failure in platelet production. This study contributes to
the understanding of the origin of cyclic thrombocytopenia as well as extending the
modeling of thrombopoiesis.

Keywords Platelet regulation dynamics · Thrombopoiesis · Megakaryopoiesis ·
Cyclic thrombocytopenia · Dynamic diseases · Delay differential equations

Mathematics Subject Classification 37N25 · 92B99 · 92C30 · 37G15

1 Introduction

Mammalian blood contains three major types of cells that are essential in the main-
tenance of life: the red blood cells whose intracellular hemoglobin carries oxygen to
tissues, the white blood cells responsible for all immune responses, and the platelets
which maintain the integrity of clotting mechanisms. This tricellular system is known
as the hematopoietic system.

The maintenance of hematological integrity in humans, as in all other mammals,
is essential for normal physiological function, and under most circumstances is won-
derfully maintained by several intricate control mechanisms that are only partially
understood. This control usually regulates the circulating levels of leukocytes (white
blood cells), erythrocytes (red blood cells), and thrombocytes (platelets) within rela-
tively narrow limits for a given individual notwithstanding the relativelywide variation
within populations. For example, human platelet levels remain relatively stable in the
range 150–450 × 109 platelets/L with an average of about 290 × 109 platelets/L of
blood (Giles 1981).
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Normal and pathological dynamics of platelets in humans 1413

The hematopoietic cells are estimated to constitute 90% of all cells in a human
(Sender et al. 2016), and the lifetime production of these cells in humans is rather
surprising as the average human produces the equivalent of their body weight in
hematopoietic cells every decade of life (Mackey 2001). Perhaps the most astonishing
thing about this enormous production is that it usually proceeds without a flaw.

Disturbances to this tightly controlled regulation, however, can be quite harmful
and often manifests as dynamic pathologies. Among these are a spectrum of periodic
hematological diseases documented in the clinical literature that have provided rich
fodder for those interested inmathematicallymodeling the regulation of hematopoiesis
(Foley and Mackey 2009). Many of these periodic hematological diseases appear to
be what are known as dynamic diseases (Glass and Mackey 1988). Perhaps one of
the best known and most studied of these periodic hematological diseases is cyclic
neutropenia (Haurie et al. 1998), a condition where the neutrophils, erythrocyte pre-
cursors, and platelets all oscillate at the same period in a given patient. A great deal is
known about the pathogenesis of cyclic neutropenia (Colijn et al. 2006), and it is now
generally believed that the disorder is linked to an abnormally high level of apoptosis
in neutrophil precursors. This, in turn, leads to an elevated efflux of hematopoietic
stem cells into the neutrophil lineage causing a destabilization of stem cell dynamics
and an ensuing oscillation that is propagated into all of the hematopoietic lines.

Though the control of neutrophil production as well as the regulation of erythro-
poiesis have been the subject of a number of modeling studies, there have been fewer
treating the regulation of platelet production. One of the earliest was that ofWichmann
et al. (1979), which was followed by an exposition of their complete hematopoiesis
model (Wichmann and Loeffler 1985). Scholz et al. (2010) used the same modeling
framework to try to understand the response to chemotherapy. Motivated by observed
oscillations in the platelet counts of healthy humans, von Schulthess and Gessner
(1986) devised a conceptually different model for thrombopoiesis, which was fol-
lowed by Bélair and Mackey (1987). Building on this, Santillan et al. (2000) and
Apostu and Mackey (2008) further refined the model to understand the origins of
cyclic thrombocytopenia (CT).

In thiswork,weuse recent laboratory and clinical data to develop amore physiologi-
cally realisticmodel for the regulation ofmammalian platelet production concentrating
on humans, which takes into account both the megakaryocytes and platelets and the
effects of thrombopoietin on their dynamics. Section 2 first reviews the relevant phys-
iology of normal thrombogenesis and then briefly discusses cyclic thrombocytopenia.
Next, in Sect. 3 we derive the model for the dynamics of megakaryocytes, platelets,
and thrombopoietin in humans. We present in Sect. 4 several mathematical results that
were derived for the model, including the existence of a unique positive equilibrium,
the linearization and stability analysis of the model equations about the equilibrium,
and a parameter sensitivity analysis for the model. In Sect. 5, we use data on cyclic
thrombocytopenia patients as a benchmark against which to test the model. Starting
with the parameters for a healthy subject, we change these parameters to those for a
CT patient, showing a parameter set where a Hopf bifurcation occurs. We conclude
with a brief discussion of our results and comparison with previous work in Sect. 6.

We have relegated more technical details to a series of appendices. “Appendix 1”
describes our estimation of model parameters, “Appendix 2” contains a proof of
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1414 G. P. Langlois et al.

the existence and uniqueness of the steady state solution of the model equations,
while “Appendix 3” contains a linearization of the full nonlinear model and a deriva-
tion of the characteristic equation for the stability analysis of the linearized model.
“Appendix 4” gives the full results of our study of the sensitivity to parameter changes
of the model when all parameters are held at the levels estimated for a healthy individ-
ual. “Appendix 5” continues the stability analysis of three CT patients from Sect. 5.4.
“Appendix 6” details the numerical techniques that we have used to fit the model to
the cyclic thrombocytopenia data that we have available, while “Appendix 7” gives
the details of the numerical code we have used to solve the model equations.

2 Physiological background

2.1 Normal thrombopoiesis

Platelets are the hematological cells responsible for clotting and do so by adhering to
the sites of damaged tissue to produce a hemostatic plug, which forms the surface on
which coagulation factors are activated for clot formation. The mean platelet volume
follows a log-normal distribution with respect to platelet count, with an average mean
platelet volume of 8.6 fL for an average platelet count of 290×109 platelets/L of blood
(Nakeff and Ingram 1970; Giles 1981). About one-third of the total mass of platelets
is sequestered in an exchangeable splenic pool (Aster 1966). Platelets have a life span
of about 8–10days, which is determined by an internal apoptotic regulating pathway,
and are destroyed by the reticuloendothelial system (Mason et al. 2007).

Platelets are derived from megakaryocytes, large polyploid cells found in the
bone marrow. Megakaryocytes in turn are produced by the hematopoietic stem cells,
also found in the bone marrow, which are responsible for generating all blood cells
in the body. Among others, hematopoietic stem cells give rise to early bi-lineage
progenitors that eventually undergo erythrocyte (red blood cell) or megakaryocyte
differentiation. The differentiation process eventually produces the colony-forming
unit-megakaryocyte (CFU-Meg), a precursor cell committed to megakaryocyte differ-
entiation. These cells undergo mitosis (cell division) (Nakeff 1977), which stops some
time after the CFU-Meg matures into a megakaryoblast, an early maturation stage of
megakaryocytes.

After cell division ceases, megakaryocytes begin endomitosis—a process in which
DNA replicates through nuclear division without cell division while the cytoplasm
remains intact (Kaushansky et al. 2012). DNA can replicate 2 to 7 times during
endomitosis, resulting in cells with DNA content between 8 and 128 times the nor-
mal diploid content of DNA in a single, highly lobated nucleus. Megakaryocytes are
generally classified by their ploidy, which is the number of chromosomes that they
have. A megakaryocyte ploidy of 2N refers to a megakaryocyte that has not under-
gone endomitosis. The modal megakaryocyte ploidy in humans is 16N (Jackson et al.
1984; Kuter et al. 1989), which corresponds to a megakaryocyte with 8 times the
normal diploid content of DNA. In general the higher the ploidy number, the larger
the megakaryocyte, with the diameter of megakaryocytes ranging from 20 to 60µm
depending on the ploidy (Tomer and Harker 1996).
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As DNA replicates, the cytoplasm of the megakaryocyte expands and develops
a demarcation membrane that eventually becomes the external membrane of each
platelet. Megakaryocytes are released from the bone marrow and travel to the lungs,
where the megakaryocytes shed platelets (Kaufman et al. 1965; Pedersen 1978; Trow-
bridge et al. 1982). On average, one megakaryocyte sheds between 1000 and 3000
platelets (Harker and Finch 1969). It is estimated that it takes 5–7days for a megakary-
ocyte to begin endomitosis, grow into a mature megakaryocyte, and shed platelets
(Kaushansky et al. 2012).

The principal hormone that regulates megakaryocyte and platelet development is
thrombopoietin (TPO). TPO is produced principally by the liver, and to a smaller
extent, in the kidney and bone marrow (Nomura et al. 1997; Qian et al. 1998). Its
crystal structure is that of an anti-parallel four-helix bundle fold with two different
binding sites for the TPO receptor (Tamada et al. 2004). It is released into blood as a 95
kDa glycoprotein (Kuter 2009), and acts as the ligand for the c-Mpl receptor, present
on the surface of CFU-Meg, megakaryocytes, and platelets (Debili et al. 1995; Li et al.
1999). On binding to thrombopoietin, the receptor dimerizes and initiates a number
of signal transduction events that eventually stimulate differentiation and mitosis of
CFU-Meg, increase the rate of endomitosis of megakaryocytes, and reduce the rate
of apoptosis of CFU-Meg and megakaryocytes (Kaushansky 1995; Majka et al. 2000;
Zauli et al. 1997). The thrombopoietin is then internalized, degraded, and removed
from circulation. This internalization process is the major mechanism of TPO removal
from the blood by platelets and megakaryocytes (Li et al. 1999).

Although TPO supports the survival of CFU-Meg and megakaryocytes, it is not
essential. Elimination of the thrombopoietin gene or its receptor in mice reduces
megakaryocyte and platelet levels to approximately 10% of normal (Sauvage et al.
1996). The residual platelets and megakaryocytes are normal and functional, and the
other blood cells are also at their normal levels. The same observation has also been
made in humans (Kaushansky, private communication).

2.2 Cyclical thrombocytopenia

Cyclic thrombocytopenia is a hematological disorder that causes the platelet count
of an affected individual to undergo large periodic fluctuations over time. In these
individuals, platelet counts oscillate from very low (1× 109 platelets/L) to normal or
very high levels (2000×109 platelets/L) (Swinburne andMackey 2000). At the nadir,
patients are at risk of bruising and excessive bleeding, whereas at very high levels
there is an increased risk of clot formation. Little is known about the pathogenesis
of the disease, which has been reviewed in Apostu and Mackey (2008), Cohen and
Cooney (1974), Go (2005), Swinburne and Mackey (2000). It is well established that
in premenopausal women with CT there is often a relation between blood hormonal
and platelet levels, but it is unclear whether this is causal. In other cases, clinical
findings suggest at least three possible origins: immune-mediated platelet destruction
(autoimmune CT), megakaryocyte deficiency and cyclic failure in platelet produc-
tion (amegakaryocytic CT), and possible immune interference with or destruction of
the TPO receptor (Go 2005). Autoimmune CT is thought to be an unusual form of
immune thrombocytopenia purpura (a disease in which the platelet count is abnor-
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mally low). The hematological profile of most affected patients reveals high levels
of antiplatelet antibodies, shorter platelet lifespans at the platelet nadir, and normal
to high levels of marrow megakaryocytes. Amegakaryocytic CT is postulated to be a
variant of acquired amegakaryocytic thrombocytopenic purpura and is mainly charac-
terized by the absence ofmegakaryocytes in the thrombocytopenia phase and increased
megakaryocyte number during thrombocytosis.

A curious feature of the disease is that the fluctuations appear only to be present
in the platelet cell line and not in the white or red blood cell lines. Swinburne and
Mackey (2000) and Apostu and Mackey (2008) searched the English literature and
found and analyzed well-documented cases of cyclic thrombocytopenia. In no case
was there a report of fluctuations in the red or white blood cells. In other existing
cyclic hematological disorders like periodic chronic myelogenous leukemia (Colijn
and Mackey 2005a), fluctuations appear in all major blood cell lines and are all at
the same period in a given subject. These diseases are believed to evolve from the
hematopoietic stem cell compartment in the bonemarrow. In cyclic thrombocytopenia,
fluctuations are observed in the platelet line only, and therefore a destabilization of
a peripheral control mechanism could play an important role in the genesis of the
disorder. This hypothesis was the starting point of the investigation and mathematical
modeling of Santillan et al. (2000) and Apostu and Mackey (2008).

3 Mathematical model of thrombopoiesis

In this section, we develop our mathematical model for the regulation of megakary-
ocyte, platelet and thrombopoietin dynamics in humans. We describe the dynamics
of the megakaryocytes as an age-structured model (Sect. 3.1), which is divided in
two stages: mitosis (Sect. 3.1.1) and endomitosis (Sect. 3.1.2). Platelet (Sect. 3.2)
and thrombopoietin (Sect. 3.3) dynamics are dealt with last. In the discussion of the
development of the model, the reader may find Fig. 1 helpful.

3.1 Megakaryocyte compartment

3.1.1 Mitosis

We first model the megakaryocyte mitosis phase, starting from the moment the
hematopoietic stem cells differentiate into the megakaryocytic lineage. These early
cells, known asmegakaryoblasts (or CFU-Meg in tissue culture), undergomitosis (cell
division) for some time until they stop and begin endomitosis.

Let mm(t, a) be the cell density of megakaryoblasts as a function of time t and
age a, and Q∗ the equilibrium concentration of hematopoietic stem cells at time
(we assume here that the quiescent stem cells are at their normal steady state level
throughout this paper). We further assume that stem cells enter the megakaryoblasts
compartment at a rate κP , and that a megakaryoblast proliferates for τm days at a
thrombopoietin-dependent (T (t)) rate of ηm(T (t)). As discussed in Sect. 2, while
TPO stimulates mitosis of megakaryoblasts, it is not necessary. Therefore, we assume
a basal proliferation rate ofmegakaryoblasts even in absence of thrombopoietin. Based
on these assumptions, we model the proliferation rate ηm(T (t)) as a Hill function
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Fig. 1 A schematic view of the model of human thrombopoiesis. Solid lines denote fluxes, dashed lines
terminating in solid circles denote positive feedback, and dashed lines ending with perpendicular lines
denote negative feedback. Hematopoietic stem cells enter the megakaryocyte lineage as well as the other
blood lines, undergo cell division, or are removed from the HSC pool through death. HSCs differentiated
into the megakaryocyte lineage undergo cell divisions for τm days, after which they stop dividing and start
endomitosis (nuclear division). These megakaryocytes undergo endomitosis for τe days until they finally
start to shed platelets. Platelets remain in circulation until they are removed at random by degradation or
cleared by macrophages due to senescence, a platelet-dependent mechanism. Thrombopoietin is produced
constitutively at a rate Tprod , and is removed from circulation either at random by degradation or by binding
to receptors present on platelets and megakaryocytes

ηm(T ) = ηmin
m +

(
ηmax
m − ηmin

m

) T

bm + T
, (1)

where the parameter ηmin
m is the minimum effective rate of proliferation in absence

of thrombopoietin, ηmax
m is the maximum effective rate of proliferation, and bm is the

concentration of thrombopoietin at which the proliferation is half maximal.
Three comments are in order. First, since we are not trying to model the details

of megakaryoblast proliferation and apoptosis dynamics, equation (1) simply gives
an effective proliferation rate that includes both cellular birth and death. Second, the
choice of the Hill function in (1) is taken to reflect the fact that TPO has a stimulatory,
yet saturating, effect on the process. Third, in the absence of further experimental data,
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1418 G. P. Langlois et al.

the choice of Hill coefficient is unclear and we have therefore opted for an estimate
consistent with the qualitative observations by taking a Hill coefficient of 1.

The dynamics of megakaryoblasts, then, is modeled by means a time-age evolution
equation given by

∂mm

∂t
+ ∂mm

∂a
= ηm(T )mm, t ≥ 0, a ∈ [0, τm] . (2)

For the boundary condition,we takemm(t, 0) = κP Q∗,which is the rate hematopoietic
stem cells enter the megakaryocyte lineage.

We solve Eq. (2) using the method of characteristics to obtain

mm(t, a) = κP Q
∗ exp

[∫ t

t−a
ηm(T (s)) ds

]
, t ≥ a, a ∈ [0, τm], (3)

and

mm(t, a) = mm(0, a − t) exp

[∫ t

0
ηm(T (s)) ds

]
, t ∈ [0, a), a ∈ [0, τm]. (4)

It is convenient to define an initial function T (t) for t ∈ [−τm − τe, 0] and following
(3) let

mm(0, a) = κP Q
∗ exp

[∫ 0

−a
ηm(T (s)) ds

]
, a ∈ (0, τm)

so that equation (4) reduces to (3), and thus equation (3) can be applied for all t ≥ 0.

3.1.2 Endomitosis

Next we consider the endomitosis (endoreplication) phase, starting from the moment
megakaryocytes begin endomitosis until they start to shed platelets. During this period,
megakaryocytes no longer multiply, but rather grow in ploidy and size. Accordingly,
we model the volume growth of megakaryocytes during endomitosis and we assume
that megakaryocyte volume is an increasing function of megakaryocyte age so the two
may be simply related.

Let me(t, a) be the volume density of megakaryocytes in the endomitosis phase as
a function of time t and age a, Vm the volume of a single megakaryocyte of ploidy
2N at age a = 0. Suppose that a megakaryocyte undergoes endomitosis for τe days
and at a thrombopoietin-dependent rate of ηe(T (t)). As in the process of mitosis, TPO
stimulates endomitosis inmegakaryocytes but is not strictly essential. Thus we assume
a basal endoreplication rate of megakaryocytes even in absence of thrombopoietin.
Based on this fact, we model the proliferation rate ηe(T (t)) as a Hill function

ηe(T ) = ηmin
e +

(
ηmax
e − ηmin

e

) T

be + T
, (5)

where the parameter ηmin
e is the minimum effective rate of endomitosis in absence

of thrombopoietin, ηmax
e is the maximum effective rate of endomitosis, and be is the
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concentration of thrombopoietin at which the endomitosis rate is half maximal. The
comments relating to the choice of Hill function and coefficient following (1) also
apply here.

We model the volume growth of megakaryocytes, then, by means of a time-age
structured equation given by

∂me

∂t
+ ∂me

∂a
= ηe(T )me, t ≥ 0, a ∈ [0, τe] . (6)

For the boundary condition, we take

me(t, 0) = Vmmm(t, τm) = VmκP Q
∗ exp

[∫ t

t−τm

ηm(T (s)) ds

]
,

which is the product of the average volume of a megakaryocyte commencing endomi-
tosis and the number of megakaryocytes at the end of the mitotic phase.

As before we solve (6) using the method of characteristics and the initial function
T (t) for t ∈ [−τm − τe, 0] to obtain

me(t, a) = VmκP Q
∗ exp

[∫ t−a

t−a−τm

ηm(T (s)) ds

]

× exp

[∫ t

t−a
ηe(T (s)) ds

]
, t ≥ 0, a ∈ [0, τe]. (7)

The total megakaryocyte volume at time t is

Me (t) =
∫ τe

0
me (t, a) da. (8)

3.2 Platelet compartment

Platelet population dynamics are governed by the balance between platelet production
and destruction. The platelet population is comprised of both platelets in circula-
tion as well as those sequestered primarily in the spleen after their creation from
megakaryocytes at the end of the endomitosis stage. Platelets die at a random rate γP

proportional to platelet numbers. Platelets are also removed by senescence and cleared
by macrophages (Grozovsky et al. 2010) via a saturable mechanism, which we model
via a saturable Hill function

αP
(P)nP

(bP )nP + (P)nP
,

where αP is the maximal platelet-dependent removal rate, bP is the platelet concen-
tration at which the removal rate is half its maximum and nP is the Hill coefficient
modeling how steeply the platelet removal rate changeswith platelet levels.We assume
senescence will be reduced when platelet concentrations are low (the average age of
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platelets can be expected to be lower, since newly created platelets have age 0, and
there are few old platelets if the concentration is low), which implies nP > 1, and we
choose nP = 2. Based on these considerations, we model the dynamics of platelets
via the differential equation

dP

dt
= D0

βP
me(t, τe) − γP P − αP

(P)nP

(bP )nP + (P)nP
, (9)

where D0 is the fraction of megakaryocyte volume shed into platelets, and βP is the
average volume of a platelet.

3.3 Thrombopoietin compartment

Finally, as with platelets, we model TPO dynamics as the balance between production
and destruction. We assume that TPO is produced at a constant rate Tprod (Kuter
2013). As thrombopoietin is cleared mainly by receptors on megakaryocytes and
circulating platelets, its endogenous removal rate is proportional to the total volume of
megakaryocytes and circulating platelets. Since only a finite number of TPO receptors
can clear thrombopoietin, we assume the endogenous removal rate is proportional to
the saturable Hill function

(T )nT

(kT )nT + (T )nT
,

where kT is the thrombopoietin concentration at which the removal rate is half the
maximum removal rate and nT is the Hill coefficient modeling how steeply the TPO
removal rate changes with TPO levels. Here, the Hill coefficient nT will be determined
by the stoichiometry of TPO receptor interactions. We also assume a small renal
clearance rate of γT proportional to TPO levels. Thus, we model the dynamics of
thrombopoietin with

dT

dt
= Tprod − γT T − αT (Me(t) + kSβP P)

(T )nT

(kT )nT + (T )nT
, (10)

where αT is the maximum removal rate of thrombopoietin by internalization and kS
is the average fraction of platelets circulating in the blood.

3.4 Model summary

As detailed above, our model of thrombopoiesis consists of two integro-differential
equations with constant delays and an integral equation. The two differential equations
model the dynamics of platelets and TPO, while the integral equation models the
volume of megakaryocytes in the bone marrow. Thus, to summarize, our full model
is given by
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dP

dt
= D0

βP
me(t, τe) − γP P − αP

(P)nP

(bP )nP + (P)nP
, (11)

dT

dt
= Tprod − γT T − αT (Me(t) + kSβP P)

(T )nT

(kT )nT + (T )nT
, (12)

where

me(t, a) = VmκP Q
∗ exp

[∫ t−a

t−a−τm

ηm(T (s)) ds

]
exp

[∫ t

t−a
ηe(T (s)) ds

]
(13)

and

Me(t) =
∫ τe

0
me(t, a)da. (14)

The functions ηm(T ) and ηe(T ) are given by

ηm(T ) = ηmin
m +

(
ηmax
m − ηmin

m

) T

bm + T
(15)

and

ηe(T ) = ηmin
e +

(
ηmax
e − ηmin

e

) T

be + T
. (16)

All parameters are estimated in “Appendix 1”, and the results of that estimation for a
healthy human are given in Table 1.We show the existence and uniqueness of a positive
stationary solution to our model in “Appendix 2”. Of particular note, owing to the lack
of data specific to the HSC dynamics, to avoid issues of parameter identifiability
Q(t) = Q∗ throughout.

4 Model analysis

Themodel presented in Eqs. (11)–(16) is a nonlinear system of two integro-differential
equations that describes the process of thrombopoiesis. This section examines some
of the mathematical results which can be derived from the model. We establish the
existence of a unique positive equilibrium in “Appendix 2”. A local linear analysis
about this equilibrium provides a complicated characteristic equation, which is studied
numerically for stability and gives information on the parameter sensitivity for the
model. This local analysis provides the basis for examining Hopf bifurcations.

Themodel from Sect. 3.4 is condensed to two differential equations depending only
on P and T . The model equation for the platelets has the form

dP

dt
= D0VmκP Q∗

βP
exp

[∫ t−τe

t−τe−τm

ηm(T (s))ds

]

× exp

[∫ t

t−τe

ηe(T (s)) ds

]
− γP P − F(P), (17)
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where

F(P) = αP
(P)nP

(bP )nP + (P)nP
.

The model equation for the thrombopoietin is

dT

dt
= Tprod − γT T − αT

(∫ τe

0
VmκP Q

∗ exp
[∫ t−a

t−a−τm

ηm(T (s)) ds

]

× exp

[∫ t

t−a
ηe(T (s)) ds

]
da + kSβP P

)
G(T ),

(18)

where

G(T ) = (T )nT

(kT )nT + (T )nT
.

4.1 Linearization about the single steady state

The study of a steady state solution begins by setting (17) and (18) equal to zero to
determine the equilibrium solution (P∗, T ∗). The steady state solution of (18) readily
gives P∗ depending on T ∗ and is shown to be a function monotonically decreasing
in T ∗ from +∞ to negative values for T ∗ > 0. This information is used in Eq. (17),
where the decay terms are set equal to the production term. The monotonicity of the
decay terms (decreasing in T ∗) combined with the positively bounded monotonicity
of the production terms (increasing in T ∗) result in the existence of a unique positive
equilibrium, (P∗, T ∗). Details of the proof are presented in “Appendix 2”.

The next step in the local analysis is linearizing Eqs. (17) and (18) about the
unique equilibrium (P∗, T ∗). See “Appendix 3” for the details of this process. Let
x(t) = P(t) − P∗ and y(t) = T (t) − T ∗, and denote by ∂P and ∂T the partial
derivatives with respect to the platelet and TPO variables, respectively. Linearizing
Eq. (17) about the equilibrium yields

dx

dt
= A2

[
∂T ηm(T ∗)

∫ t−τe

t−τe−τm

y(s) ds + ∂T ηe(T
∗)

∫ t

t−τe

y(s) ds

]

−(
γP + ∂P F(P∗)

)
x, (19)

where

A2 = D0VmκP Q∗

βP
eηm (T ∗)τm+ηe(T ∗)τe . (20)

Linearizing Eq. (18) about the equilibrium yields

dy

dt
= −αT kSβPG(T ∗)x − (

γT + αT (A1E1 + kSβP P
∗)∂T G(T ∗)

)
y
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−αT A1G(T ∗)
(

∂T ηm(T ∗)
∫ τe

0
eηe(T ∗)a

(∫ t−a

t−a−τm

y(s) ds

)
da

+ ∂T ηe(T
∗)

∫ τe

0
eηe(T ∗)a

(∫ t

t−a
y(s) ds

)
da

)
, (21)

where

A1 = VmκP Q
∗eηm (T ∗)τm and E1 = eηe(T ∗)τe − 1

ηe(T ∗)
. (22)

4.2 Characteristic equation

The analysis above produced the linear functional equations in the variables x(t) and
y(t), which are given byEqs. (19) and (21). The linear functional equation iswritten as

dX
dt

= L(X(t)), where X(t) =
(
x(t)
y(t)

)
. (23)

The characteristic equation is found by seeking solutions of the form

(
x(t)
y(t)

)
=

(
c1
c2

)
eλt

and inserting this into Eq. (23). Using the results of Appendix 3 (“Details for the
characteristic equation”) and dividing by eλt , the linear system becomes

λI
(
c1
c2

)
=

(−L1 L2(λ)

L3 −L4(λ)

)(
c1
c2

)
.

The coefficients L1, L2(λ), L3, and L4(λ) are given by

L1 = γP + ∂P F(P∗),

L2(λ) = A2

λ

[
∂T ηm(T ∗)e−λτe

(
1 − e−λτm

) + ∂T ηe(T
∗)

(
1 − e−λτe

)]
,

L3 = −αT kSβPG(T ∗),

L4(λ) = C1 + C2

λ

⎡
⎣∂T ηm(T ∗)

(
1 − e−λτm

)
(
1 − e−(λ−ηe(T ∗))τe

)

(λ − ηe(T ∗))

+ ∂T ηe(T
∗)

(
eηe(T ∗)τe − 1

ηe(T ∗)
+ e−(λ−ηe(T ∗))τe − 1

λ − ηe(T ∗)

)⎤
⎦ ,

where

C1 = γT + αT (A1E1 + kSβP P
∗)∂T G(T ∗) and C2 = αT A1G(T ∗).
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Thus, the characteristic equation is

det

∣∣∣∣
−L1 − λ L2(λ)

L3 −L4(λ) − λ

∣∣∣∣ = (λ + L1)(λ + L4(λ)) − L2(λ)L3 = 0. (24)

Appendix 3 (“Details for the characteristic equation”) shows that this characteristic
equation is a quartic in λ with three distinct linear polynomials multiplying exponen-
tials with λ and the delays. This exponential polynomial is readily programmed with
the model parameters, and numerical solutions to (24) can be found. Specifically, we
find the leading pair of complex eigenvalues, which allows for a stability analysis and
to search for Hopf bifurcations.

4.3 Parameter sensitivity of the model for healthy subjects

Using the parameters from Table 1 in the characteristic equation (24), the real and
imaginary parts of the eigenvalues are found numerically. The leading pair of eigen-
values is given by λ1 = −0.058953 ± 0.053015i , which shows that the equilibrium
state of the model is asymptotically stable.

Delay differential equations have characteristic polynomials with infinitely many
eigenvalues, and we proceeded to find the eigenvalues with the next largest real part,
λ2 = −0.11375±0.3588i . Laterwe showhow this secondpair of eigenvalues probably
lead to the oscillations observed in the cyclic thrombocytopenia patients as parameters
are varied.

To provide a measure of the parameter sensitivity of the eigenvalues of our model,
we varied each model parameter by ±10% and computed how much the eigenvalues
and equilibrium changed. See Tables 6 and 7 in “Appendix 4” for the eigenvalue and
equilibrium computations for these parameter changes. The tables show that shifting
any of the parameters by only 10% cannot lead to a Hopf bifurcation. In fact, these
small perturbations in the parameter values have very minimal effects on both the
eigenvalues and the equilibrium. Thus, this model is extremely stable near the set of
normal parameters.

Table 6 of “Appendix 4” shows that the leading pair of eigenvalues λ1 is most
destabilized by (in descending order) increasing bP , decreasing αP , decreasing kT ,
increasing βP , increasing kS , increasing bm , and decreasing Tprod . The greatest effect,
however, only shifts the leading pair of eigenvalues by 11.3%. Our study shows that
changing these top seven parameters by 20%only shifts the leading pair of eigenvalues
to λ1 = −0.02555 ± 0.06563i , which still gives a stable equilibrium. It is surprising
that varying the delays has little effect on the leading pair of eigenvalues λ1.

The next largest eigenvalue, λ2, are affected most by a different set of parameters as
detailed in Table 7 of “Appendix 4”. A change of only 10% in the parameters leads to at
most a 6.3% shift towards the loss of stability associatedwith theHopf bifurcation. The
most destabilizing changes for this pair of eigenvalues occur by (in descending order)
increasing τe, decreasing bm , decreasing kS , increasing βP , increasing τm , decreasing
bP , and increasing γP . Note here that the model delays are significant in changing
the real part of the eigenvalues. A 20% change in these top seven parameters shifts
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this pair of eigenvalues to λ2 = −0.09281 ± 0.3091i , which again yields a stable
equilibrium. Interestingly, the frequency is moving closer to the frequencies observed
in the oscillations in the cyclic thrombocytopenia patients.

5 Application of the model to the study of cyclic thrombocytopenia

Various modeling studies (see, e.g., Apostu and Mackey 2008; Bernard et al. 2003b;
Colijn and Mackey 2005a, b, 2007; Mahaffy et al. 1998; Santillan et al. 2000) have
associated oscillations in hematological diseases with a Hopf bifurcation induced by
the change of one or more physiological parameters. In the context of CT, Apostu
and Mackey (2008) found that changing the time for megakaryocyte maturity, reduc-
ing the relative growth rate of megakaryocytes, and increasing the random rate of
destruction of platelets could generate platelet oscillations akin to those observed in
CT. Their model, however, did not include an accurate description of the dynamics
of thrombopoietin, megakaryoblasts, and megakaryocytes, and so it is unclear if their
conclusions hold for the more physiologically realistic model presented here. In par-
ticular, the incorporation of a dynamic equation for thrombopoietin in our model could
change these conclusions, as it is believed most platelet diseases, possibly including
CT, arise due to disorders of TPO or its receptor (Hitchcock and Kaushansky 2014).

We revisit this issue here, and use our model to investigate the pathogenesis of CT
and find for which parameters the model can generate oscillatory solutions similar to
those observed in CT. We then use this knowledge to fit the model to various platelet
and TPO data sets of patients with CT.

All but one of the patient data sets in our study were found to have statistically sig-
nificant oscillations at the α = 0.05 confidence level or lower using the Lomb–Scargle
periodogram technique in previous analyses (Apostu and Mackey 2008; Swinburne
and Mackey 2000). The one exception, the data from Connor and Joseph (2011), was
published after Apostu andMackey (2008) and Swinburne andMackey (2000). There-
fore, we performed our own Lomb–Scargle periodogram analysis and confirmed the
presence of statistically significant oscillations at α = 0.01 (platelets) and α = 0.05
(TPO) confidence levels (data not shown).

5.1 Parameter changes for generating periodic solutions

As discussed in Sect. 2.2, the clinical literature suggests that CT may be caused by
immune-mediated platelet destruction (autoimmune CT), megakaryocyte deficiency
and cyclic failure in platelet production (amegakaryocytic CT), or possible immune
interferencewith or destruction of the TPO receptor. As a starting point for our analysis
we identify the parameters of our model that, when modified, best reproduce these
pathologies.

1. In the context of the model, we mimic an immune-mediated platelet destruc-
tion response by altering the parameters αP , which models the maximal platelet
removal rate due to macrophages.
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Fig. 2 Oscillation in platelet counts (top) and thrombopoietin (bottom) generated by our model. All param-
eters are at normal, except forαT and kT which are at 0.00075 and 0.003 times normal. The initial conditions
for the model are P(0) = P∗ and T (0) = T ∗ + 100

2. To replicate the effects of megakaryocyte deficiency and cyclic failure in platelet
production, we change the value of τe, the megakaryocyte proliferation duration,
while keeping the total production of megakaryocytes, namely ηe(T )τe, constant.
Thus, whenever we scale τe by a factor of a, we scale ηmin

e and ηmax
e by a factor

of 1/a, thereby keeping ηe(T )τe constant. Increasing τe in this manner therefore
amounts to reducing the rate of production of megakaryocytes, mimicking an
ineffective rate of production of megakaryocytes.

3. Finally, changing αT and kT , the maximum clearance rate of thrombopoietin and
TPO levels for half-maximal removal, respectively, replicate the possible interfer-
ence with or destruction of the TPO receptor.

In summary, based on clinical guidancewehave identified the following four param-
eters as likely candidates for generating oscillations: αP , τe (and indirectly ηmin

e and
ηmax
e ), αT , and kT .
Since most platelet diseases appear related to TPO or its receptor (Hitchcock and

Kaushansky 2014), we first examined the effects of changing the values of αT and kT .
We found that ourmodel could generate oscillationswhenαT and kT were significantly
reduced. Oscillations were not generated whenwe kept αT and kT at normal levels and
changedαP and τe alone. In Fig. 2, we show the oscillations generated by ourmodel by
setting αT and kT to 0.075 and 0.3% of their normal values, respectively. Alterations
to the delay τe change the period of oscillations of both platelets and thrombopoietin,
and modifying αP changes the shape of oscillations of platelet and thrombopoietin
levels (simulation data not shown).
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Fig. 3 Fits to the platelet and thrombopoietin data from: a Bruin et al. (2005); b Connor and Joseph (2011);
c Kimura et al. (1996); and d Zent et al. (1999)

5.2 Fitting to platelet and thrombopoietin data

As discussed in the preceding section, our model can generate oscillations by signifi-
cantly reducing the values of αT and kT . The shape and period of oscillations can be
changed by modifying the values αP and τe. With this knowledge, we now show that
our model can fit platelet and TPO patient data sets of patients with CT reported in
the literature.

We fitted 15 patient data sets via a statistical procedure called the ABCmethod (see
“Appendix 6” for more details on the method). The fits are shown in Figs. 3a–d, 4a–h,
5 and 6a–c. The parameters changed to obtain these fits are shown in Tables 2 and 3.

In every case, the parameters αT and kT had to be decreased by a significant amount
to obtain the fits (on average to 0.13512 and 0.43521% of the normal values of αT and
kT , respectively). In all cases the maximal platelet removal rate had to be increased
significantly (2140.9% of normal, on average), with the delay τe also being increased
but only by a moderate amount (236.42% of normal, respectively).

To quantify the significance of the parameter changes required in the cases of
patients diagnosed with CT, we used bootstrapping resampling techniques, which
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Fig. 4 Fits to the platelet data from: a Cohen and Cooney (1974); b Engström et al. (1966); c Helleberg
et al. (1995); d Kosugi et al. (1994); e Rocha et al. (1991); f Skoog et al. (1957); g Wilkinson and Firkin
(1966) and h Yanabu et al. (1993). Below each of the fitted platelet data we show the predicted behavior of
the thrombopoietin levels (which were not available for these patients)
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Fig. 5 Box plots of the bootstrap confidence intervals (CIs) from fits of patients diagnosed with CT. If the
box plot of CI of the difference in the mean bootstrap estimate and 1 crosses the dashed line, we cannot
reject the null hypothesis of no difference in mean relative error between the healthy and CT cases

require no assumptions on the underlying distribution. To perform the bootstrapping,
we used the bootci function inMATLAB (Mathworks 2015), which returns the sample
estimates and computes (1−α)% bootstrap confidence intervals (CIs). CIs were com-
puted on the difference in mean relative errors, as explained below. This construction
implies that if a resulting CI contained 0, we fail to reject the null hypothesis that there
is no difference in means. In this case, we conclude that there is no statistically sig-
nificant difference in the parameter value for a healthy individual versus one with CT.

Using the average relative difference for each of the parameter values as given
in Table 3, we considered the difference between the reported value and 1 (since a
relative change of 1 indicates no difference between the healthy individual and the
CT case). We then generated 10,000 bootstrap estimates and computed the bootstrap
CI interval about the samples’ mean relative differences minus 1 for each parameter
of interest. The results of this analysis are given in Table 4, alongside the difference
in the average relative change of each parameter of both the fitting and bootstrap
estimates and 1. In all cases, the value of the relative change for the estimates from
the fitting procedure of Sect. 5.2 and the bootstrap samples are similar (Columns 2
and 3), indicating that a sufficient number of samples was generated. None of the
CIs contain 0 and therefore we reject the null hypothesis and conclude that there are
statistically significant differences at the α = 0.05 level in all cases. The resulting
bootstrap confidence intervals are also reflected in Fig. 5, where the failure to reject
the null corresponds to CIs which cross the x-axis. As evidenced by the results in
Table 4 and Fig. 5, both αT and kT have particularly narrow bootstrap CIs, which
suggest a higher degree of certainty in those cases. Since we reject the null hypothesis
of no difference in means for these two parameters, the narrow CIs suggest that we
are confident that there are significant differences between the CT and the healthy
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Fig. 6 Fits to the platelet data from: a von Schulthess and Gessner (1986); b von Schulthess and Gessner
(1986); c Morley (1969). Again we show the predicted TPO variation though the data were not available

case. This leads us to believe that there may be an alteration in the TPO receptor or
the interaction of TPO with the platelet lineage in patients with CT, but much more
clinical investigation is required to substantiate this conclusion.

Based on our numerical experiments and the results, the platelet and thrombopoietin
oscillations in the model occur due to a destabilization of the TPO control mechanism,
in conjunction to an increased platelet-dependent removal rate and reduced megakary-
ocyte production. Though the relative change of the parameters αT and kT with the
normal parameters is very large, our results are nonetheless consistent with the clinical
literature on CT.

5.3 Platelet oscillations in healthy subjects

We have also identified three published data sets indicating significant oscillations in
platelets in apparently healthy male subjects without any obvious platelet pathology
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Table 4 Differences of relative changes and 1 for parameter values from fits of patients diagnosed with
CT and the bootstrap samples, and bootstrap 95% confidence intervals

Difference of average relative
change and 1 (fit values)

Difference of average relative
change and 1 (bootstrap
values)

95% bootstrap CI

τe 1.6261 1.6269 [1.1418, 2.3241]
αP 25.1496 25.1180 [17.0382, 25.9115]
αT −0.9988 −0.9988 [−0.9993,−0.9980]
kT −0.9960 −0.9960 [−0.9969,−0.9943]
Column 2: For each parameter fit in the cyclic thrombocytopenic case, the difference in its relative change
and 1 was calculated. Column 3: 10,000 bootstrap samples were generated and the difference in the mean
relative change and 1 were calculated. Column 4: the 95% bootstrap confidence interval
CI confidence interval

(Morley 1969; von Schulthess and Gessner 1986). Interestingly in all three of these
documented cases the oscillations are in the normal range of platelet levels. We were
able to fit the model to these data with changes in the parameters τe, αP , αT , and kT
(see Tables 2, 3) and the results of our fits are shown in Fig. 6.

As we did in Sect. 5.2 with the patients diagnosed with CT, we used bootstrapping
resampling techniques to assess the significance of parameter changes required in
these three cases. The results of this analysis are given in Table 5 and Fig. 7. Only the
CIs for αP contains 0, and therefore we reject the null hypothesis and conclude that
there are statistically significant differences at the α = 0.05 level in all other cases.
We believe that the lack of statistical significance of the changes to αP in the healthy
patient cases is likely related to small number of available datasets, as significant
changes to αP were required to fit the von Schulthess and Gessner cases. Nonetheless,
we are unable to conclude that the change toαP is statistically significant in the present
study. As in the bootstrap results from the patients diagnosed with CT, both αT and
kT have narrow bootstrap CIs, which suggests a higher degree of certainty in those
cases. It is possible that these patients have an alteration in the TPO receptor or the
interaction of TPO with the platelet lineage, just as in patients diagnosed with CT. We
posit that it may be that cases of oscillating platelets which do not lead to pathological
changes and that oscillations in the platelet lineage are far more common than the
literature suggests. Further clinical investigation is required, however, to validate these
hypotheses.

5.4 Hopf bifurcation for CT patients

In Sect. 4, our linear analysis, including sensitivity to perturbation of the parameters,
demonstrated a strong stability of ourmodel for a healthy subject. The previous section
provided fits to data for platelets and TPO in CT patients, but required shifts in four
parameters with some changes being quite substantial. As the parameters are varied
linearly between the two states, our numerical methods tracked the changes in the
equilibrium and the pair of eigenvalues, resulting in a Hopf bifurcation leading to the
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Table 5 Differences of relative changes and 1 for parameter values from fits of patients displaying oscil-
lations but diagnosed as healthy and the bootstrap samples, and bootstrap 95% confidence intervals

Difference of average relative
change and 1 (fit values)

Difference of average relative
change and 1 (bootstrap
values)

95% bootstrap CI

τe 0.3168 0.3173 [0.0326, 0.8070]
αP 1.4461 1.4572 [−0.4110, 4.9549]
αT −0.9979 −0.9979 [−0.9985,−0.9968]
kT −0.9944 −0.9944 [−0.9986,−0.9865]
Column 2: For each parameter fit, the difference in its relative change and 1 was calculated. Column
3: 10,000 bootstrap samples were generated and the difference in the mean relative change and 1 were
calculated. Column 4: the 95% bootstrap confidence interval
CI confidence interval

e P T kT

-1

0

1

2

3

4

5

Fig. 7 Box plots of the bootstrap confidence intervals (CIs) from fits of healthy individuals displaying
oscillations in circulating platelet levels. If the box plot of CI of the difference in the mean bootstrap
estimate and 1 crosses the x-axis, we cannot reject the null hypothesis of no difference in mean relative
error between the healthy and oscillating cases

cyclic behavior observed in the CT patients. As noted earlier, it is not the leading pair
of eigenvalues for the normal parameter set, but rather the second leading pair that
results in this bifurcation.

For this section we present details from the numerics for the CT patient of Bruin
et al. (2005). “Appendix 5” includes details for the other three CT patients for which
we have both platelet and thrombopoietin data. We used our analytic techniques to
follow a hyperline in the 4D-parameter space from the normal parameter values to each
of the parameter sets for the four CT patients with both platelet and TPO data, which
are listed in Table 2. The program computes the equilibrium (P∗, T ∗) at each set of
parameters along with the corresponding eigenvalues. The eigenvalues are computed
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Fig. 8 The curves on the left show the evolution of the equilibrium from healthy subject to CT patient as
parameters vary. The curves on the right follow the eigenvalues. The second row shows the curvesmagnified

from the characteristic equation (24) from Sect. 4.2. Specifically, if θ is the vector
of parameters (τe, αP , αT , kT ), θhomeo is the value of that vector of parameters at
homeostasis, and θpatient is the value of the vector of parameters for the CT patient,
then

θ = θhomeo + (θpatient − θhomeo)t, t ∈ [0, 1]. (25)

The results are displayed in Fig. 8.
The equilibrium for the normal parameters is (P∗, T ∗) = (31.071, 100), while

the equilibrium for the CT patient is (P∗, T ∗) = (4.4547, 90.92). The graphs on the
left of Fig. 8 show the evolution of the equilibrium as the parameters vary linearly
from normal to the values for the CT patient. The curve moves to the left, then starts
heading toward the origin. The T ∗ value reaches a minimum slightly below with
P∗ dropping to approximately 1.8. This curve then smoothly doubles back and passes
through (P∗, T ∗) = (1.927, 34.043), where theHopf bifurcation occurs and themodel
loses stability. Subsequently, the values of both P∗ and T ∗ increase to the CT patient
equilibrium with a low value of P∗ and T ∗ around 90, which is similar to a healthy
individual.
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1438 G. P. Langlois et al.

From numerically solving Eq. (24), the eigenvalues for the normal case begin at
λ = −0.11375±0.35888i , producing an asymptotically stable equilibrium. (We note
that the leading eigenvalue for this case is λ = −0.058953±0.053015i , and it simply
decreases in real and imaginary parts, becoming real along this change of parameters.)
The eigenvalues create an arc with the imaginary part decreasing, while the real part
first increases then decreases a little to a cusp-like region matching the similar region
seen for the equilibrium. The eigenvalue curve actually crosses itself before the real
part increases to the Hopf bifurcation at λ = ±0.2688i . The real part continues to
increase slightly before arcing down to a lower frequency, and the real part increases
to where the equilibrium of the CT patient is unstable with λ = 0.1089 ± 0.2337i .
This frequency is consistent with a period of approximately 26.9days, which agrees
well with the observed oscillations in the data.

Since four parameters are changing, it is hard to determine what kinetic effect is
most influencing the loss of stability. However, it is clear from our simulations that the
rapid shift in equilibrium results in a quick response of the eigenvalues. The cusp-like
behavior observed is likely caused by one of the Hill functions governing the platelet
model, which could rapidly transition to a different state in the equilibrium calculation.
However, more detailed studies are needed of this phenomenon.

6 Summary and discussion

Motivated by recent laboratory and clinical findings on thrombopoiesis in humans,
we have developed a model for the regulation of platelet production that, in contrast
to previous models (Apostu and Mackey 2008; Santillan et al. 2000), incorporates the
regulation mechanisms and dynamics of megakaryocytes and thrombopoietin. Our
model of thrombopoiesis consists of two integro-differential equations with constant
delays, describing the dynamics of platelets and thrombopoietin, and an integral equa-
tion of the dynamics of megakaryocytes in the bone marrow. As described in Sect. 3
and “Appendix 1”, we have estimated the parameters of the model as closely as possi-
ble from experimental and clinical data. The model has a unique positive steady state
solution, which we demonstrated in “Appendix 2”. Furthermore, we have extended
linear techniques to this complicated model and developed numerical methods for per-
forming a stability analysis. This analysis has provided a tool to compare the sensitivity
of the model to the many parameters and determine when stability changes occur.

To validate our approach to model development, we applied our model to the
investigation of the pathogenesis of cyclic thrombocytopenia. The clinical literature
speculates that CT may be caused by:

1. Immune-mediated platelet destruction (autoimmune CT).
2. Megakaryocyte deficiency and cyclic failure in platelet production (amegakary-

ocytic CT),
3. Possible immune interference with or destruction of the TPO receptor.

The results presented in Sect. 5 indicate that highly significant reductions (factor of
1000 and 100, respectively) in αT and kT , which are responsible for the platelet and
megakaryocyte-dependent TPO removal rates, are necessary to induce oscillations
roughly corresponding to those of CT. Those changes were also necessary to fit the

123



Normal and pathological dynamics of platelets in humans 1439

data ofMorley (1969) and von Schulthess andGessner (1986), in which the apparently
healthy subjects maintain platelet levels in the normal range in the face of statistically
significant oscillations. In addition, changes in τe (which represents the duration of
the megakaryocyte maturation stage) as well as in αP (which is responsible for the
maximum removal rate of platelets due to macrophages) allow the accurate replication
of clinical data on platelet and thrombopoietin dynamics. (The procedurewe employed
to fit the CT cases is described in detail in “Appendix 6”, and the numerics developed
to simulate the model are presented in “Appendix 7”.) These changes are consistent
with the results from our bootstrapping results as well as the dependence of eigenvalue
behavior that we have uncovered. Whether the changes in αT and kT are primary, with
the changes τe as well as in αP being secondary and due to an as yet unknown dynamic
interconnection, we cannot say.

While it is believed that most platelet diseases, which may include CT, arise due to
disorders in TPO or its receptor (Hitchcock and Kaushansky 2014), we are unsure why
such a significant change in αT and kT is needed to obtain oscillations. In the context
of CT, our model suggests that a disorder in TPO or its receptor (destabilized TPO
removalmechanismand decreasedmegakaryocyte production) alongwith an immune-
mediated platelet destruction response are the main causes of CT. In contrast, Apostu
andMackey (2008) found that an increased random destruction of platelets (parameter
γP in this model) and decreased megakaryocyte production together could explain the
onset of oscillations. Their model, however, did not accurately describe the dynamics
of megakaryocytes and thrombopoietin. As such, our findings add further nuances to
their results.

Given our current understanding of the regulation of thrombopoiesis, it is safe to say
that there are unknown biological facets of the regulatory system that are not accounted
for in our model and which await further elucidation by experimental biologists and
clinicians. In addition, the mathematical analyses indicate that there remain details in
the nonlinear model, which could be explored further and possibly give insight into
the transitions from the stable normal state to the diseased state. At any rate, it is
clear that a better understanding of the mechanisms implicated in the interaction of
thrombopoietin and its receptor, specifically in patients with cyclic thrombocytopenia,
will allow for further modeling refinements and a more precise picture of the origins
of this dynamical disease, and thrombopoiesis in general.
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Appendix 1: Parameter estimation and constraints

This extensive appendix contains the details of the parameter estimation procedure for
this model largely based on experimental data. First, in “Homeostasis relationships”
section we consider the model at homeostasis.We then use TPO-knockout experimen-
tal observations in “TPO knock-out relationships” section to derive further parameter
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constraints. In “Parameters estimated from experimental data” section we provide
estimates for other parameters directly from experimental data. Finally, in “Parame-
ters calculated from experimental data and the model” section we calculate remaining
parameters using experimental data and the relationships derived in “Homeostasis
relationships” and “TPO knock-out relationships” sections.

Homeostasis relationships

Let Q∗ denote the stem cell concentration, M∗
e the total megakaryocyte volume, P∗

the platelet concentration, T ∗ the thrombopoietin concentration, η∗
m and η∗

e , the rate
of mitosis and endomitosis, respectively, and τm and τe, the average time megakary-
oblasts and megakaryocytes spend in the mitotic and endomitotic stages, respectively,
at homeostasis. At this steady state, the equations for megakaryocyte production rate
(3), platelet production rate (13), megakaryocyte volume (8), platelet balance (9), and
thrombopoietin balance (10) become

m∗
m(τm) = κP Q

∗eη∗
mτm , (26)

m∗
e(τe) = VmκP Q

∗eη∗
mτm+η∗

e τe , (27)

M∗
e = VmκP Q

∗eη∗
mτm

(
eη∗

e τe − 1

η∗
e

)
, (28)

D0

βP
m∗

e(τe) = γP P
∗ + αP

(P∗)nP
(bP )nP + (P∗)nP

, (29)

Tprod = γT T
∗ + αT (M∗

e + kSβP P
∗) (T ∗)nT

(kT )nT + (T ∗)nT
. (30)

TPO knock-out relationships

The elimination of TPO gene or its receptor in mice reduces megakaryocyte and
platelet levels to approximately 10% of normal (Sauvage et al. 1996), a finding also
observed in humans (Kaushansky, private communication). Therefore, themodel must
have a steady state solution at 10% normal platelet and megakaryocyte levels when
the thrombopoietin production rate and level are both zero, giving

τem
∗
m(T = 0, τm) = 1

10
τem

∗
m(τm),

and

D0

βP
m∗

e(T = 0, τe) = 1

10
γP P

∗ + αP
(P∗)nP

(10bP )nP + (P∗)nP
.

Using Eqs. (26) and (27), we rewrite these two relationships to obtain

eηmin
m τm = 1

10
eη∗

mτm , (31)
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D0

βP
VmκP Q

∗eηmin
m τm+ηmin

e τe = 1

10
γP P

∗ + αP
(P∗)nP

(10bP )nP + (P∗)nP
. (32)

Parameters estimated from experimental data

Megakaryocyte compartment

Mackey (2001) estimated the homeostatic concentration of HSCs using data from
cats and mice, giving an estimate of Q∗ = 1.1 × 106 cells/kg of body weight. We
assume that humans have roughly this same number of stem cells per kg of body
weight. We estimate the parameter κP , the rate at which stem cells commit to the
megakaryocyte lineage, from the model of stem cells dynamics Mackey (2001) and
Bernard et al. (2003a) developed, and the assumption that stem cells differentiate at
an equal rate into all blood lineages. This gives, to four significant digits, an estimate
of κP ≈ 0.0072419 cells/kg of body weight per day. See Craig et al. (2016) for more
details.

Tomer and Harker (1996) measured the diameters of megakaryocytes in the bone
marrowof 10 healthy individuals. They found thatmegakaryocytes of ploidy 2N (those
megakaryocytes which have not yet undergone endomitosis) had a mean diameter of
21 ± 4µm, while the average megakaryocyte had a mean diameter of 37 ± 4µm.
We set the average volume of a megakaryocyte of ploidy 2N to be approximately
that of a sphere with mean diameter 21µm, and hence, set Vm = 4π(21)3/24 fL. The
parameter τe, the time a megakaryocyte spends in endomitosis, is estimated by various
sources to range from 5 to 7days (Finch et al. 1977; Kuter 2013). We take τe = 5 days.

Platelet compartment

Giles (1981) measured the mean platelet count and volume in 1011 healthy human
adult blood specimens. He found the mean platelet count to be 290 × 109 platelets/L
of blood and the mean platelet volume to be 8.6 fL, so we set βP to be 8.6 fL. Since,
on average, one third of the total platelet mass in the body is sequestered by the
spleen (Aster 1966), we approximate the mean platelet count in the body is 1.5 times
this amount. The Hill coefficient for the platelet-dependent removal of platelets is
assumed to take the value nP = 2. Supposing that a healthy adult has roughly 5
L of blood per 70 kg of body weight gives P∗ = 1.5 × (5/70) × (290 × 109) ≈
3.1071 × 1010 platelets/kg of body weight.

Thrombopoietin compartment

Normal TPO concentrations in humans range from 50 to 150pg/ml of blood (Kuter
2013), and so we select the middle of the range as the homeostatic concentration,
T ∗ = 100pg/ml. Since only platelets in circulation, and not in the spleen, contribute
to the binding of TPO, we set kS = 2/3, which is the fraction of the platelet mass
in circulation (Aster 1966). As there are two thrombopoietin binding sites on a TPO
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receptor (Hitchcock and Kaushansky 2014), we set nT = 2 for the binding coefficient
of thrombopoietin.

Parameters calculated from experimental data and the model

Megakaryocyte and platelet compartments

At equilibrium, the total megakaryocyte volume is

M∗
e = VmκP Q

∗eη∗
mτm

(
eη∗

e τe − 1

η∗
e

)
, (33)

whereinη∗
e = ηe(T ∗). Tomer andHarker (1996) found that the averagemegakaryocyte

in humans has a mean diameter of 37±4µm, giving an approximate mean volume of
4π(37)3/24 fL. Assuming the average megakaryocyte volume predicted by our model
(total volume of megakaryocytes divided by the number of megakaryocytes) equals
this value, we have from (33) that

M∗
e

τem∗
m(τm)

= Vm

(
eη∗

e τe − 1

η∗
eτe

)
≈ 4π(37)3

24
, (34)

which can be rearranged as

eη∗
e τe − 1

η∗
eτe

=
(
37

21

)3

. (35)

Using the MATLAB (Mathworks 2015) function fsolve, which solves the equation
F(x) = 0 for x for some function F , we solved Eq. (35) for τeη

∗
e , yielding τeη

∗
e ≈

2.788. Since τe is known, we have η∗
e ≈ 0.5576.

Using 111 In-Oxine and 111 In-tropolone (more reliable markers than the previously
used 51Cr label), Tsan (1984) measured the mean platelet survival time τP to be
8.4 ± 0.25 days. We assume that the platelet production rate replenishes the full
platelet population (those circulating and in the spleen) in about τP days. Therefore,

1

τP
P∗ ≈ D0

βP
m∗

e(t, τe) = D0

βP
VmκP Q

∗eη∗
mτm+η∗

e τe , (36)

and, in particular,

1

τP
P∗ = γP P

∗ + αP
(P∗)nP

(bP )nP + (P∗)nP
. (37)
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Solving for αP , we have

αP = P∗
(

1

τP
− γP

)(
1 +

(
bP
P∗

)nP)
. (38)

All parameters in (38) except for bP and γP are known. The rates of removal of the
platelets from the blood should be positive, implying that γP and αP > 0. The latter
requires that

1/τP − γP > 0. (39)

One megakaryocyte sheds 1000–3000 platelets (Harker and Finch 1969). Assum-
ing, on average, that one megakaryocyte sheds 2000 platelets, then the rate of
production of megakaryocytes times the number of platelets shed per megakaryocyte
equals roughly the rate of production of platelets:

m∗
m(τm) × 2000 = κP Q

∗eη∗
mτm × 2000 = 1

τP
P∗, (40)

giving a rate of production of megakaryocytes of 1.85× 106 megakaryocytes/kg/day,
which is close to the value of 2 × 106 megakaryocytes/kg/day estimated to be the
normal production rate of megakaryocytes (Finch et al. 1977).

The parameter D0, the fraction ofmegakaryocytes shedding platelets, can be solved
for in (36) by equating (40) with (36) and using (27). This gives

D0 = 2000
βP

Vm
e−η∗

e τe ≈ 0.21829. (41)

Rearranging (40) and solving for η∗
mτm , we get

η∗
mτm = ln

(
1

2000

1

κP Q∗
1

τP
P∗

)
≈ 5.4394.

Substituting in Eq. (31) and solving for ηmin∗ , we have

ηmin
m = 1

τm
ln

(
1

20,000

1

κP Q∗
1

τP
P∗

)
. (42)

Using Eq. (1) at homeostasis to solve for ηmax
m in Eq. (31) gives

ηmax
m = ηmin

m + ln(10)

τm

(
1 + bm

T ∗

)
. (43)
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We can now use the steady state equation for the platelet numbers in absence of
thrombopoietin, Eq. (32), in combination with the expressions (40) and (41) to get

1

10τP
P∗e(ηmin

e −η∗
e )τe = 1

10
γP P

∗ + αP
(P∗)nP

(10bP )nP + (P∗)nP
.

Solving for ηmin
e − η∗

e , we get

ηmin
e = η∗

e + 1

τe
ln

[
τPγP + 10τPαP

(P∗)nP−1

(10bP )nP + (P∗)nP

]
. (44)

We can solve for ηmax
e via Eq. (5) at steady state:

ηmax
e = ηmin

e + (η∗
e − ηmin

e )

(
1 + be

T ∗

)
. (45)

Thrombopoietin compartment

Using Eq. (30), the homeostasis relationship for the thrombopoietin concentration, we
can solve for αT , yielding

αT = Tprod − γT T ∗

M∗
e + βP P∗

(
1 +

(
kT
T ∗

)nT )
. (46)

Parameters fit from experimental data

From the above calculations, it remains to estimate eight more parameters: τm , bm ,
be, γP , bP , Tprod , γT , and kT . The first five parameters pertain to megakaryocyte and
platelet dynamics, while the last three pertain to thrombopoietin dynamics.

We digitized data from Wang et al. (2010) for the circulating platelet and TPO
levels in healthy patients following a 1µg/kg of bodyweight intravenous infusion of
Romiplostim, a TPO mimetic with similar physiological activity to TPO. We then
fitted the parameters by simulating the response of our model (11)–(14) to an infusion
of 1µg/kg of TPO and minimizing the squared error between data and simulation.

Specifically, the platelet and TPO data points (and error bars, when available) were
interpolated and evaluated at 1000 points in each time interval (ranging from 0 to
42days for the platelet data and 0 to 1day for the TPO data), yielding the vectors of
pointsPdata andTdata . To simulate the response of ourmodel to a 1µg/kg intravenous
infusion of thrombopoietin, we ran the numerical algorithm described in “Appendix 7”
with initial history functions (Ph, Th) = (P∗, T ∗) and initial conditions P0 = P∗ and
T0 = Tdata(t = 0). We then evaluated the solution of our model at the interpolated
points Pdata and Tdata to obtain the model points Pmodel and Tmodel , respectively.

For parameter estimation, we minimized the fitting error

Err = ‖ 2
3Pmodel(t) − Pdata‖2

max(Pdata)
+ ‖Tmodel − Tdata‖2

max(Tdata)
, (47)
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Fig. 9 Fit of our model to the platelet and thrombopoietin data fromWang et al. (2004) following a 1µg/kg
intravenous infusion of TPO

by using the fmincon function in MATLAB (Mathworks 2015) to find the set of
parameters that minimizes (47). (The factor of 2/3 accounts for the fraction of platelets
that circulate in blood in our model.) The fit obtained from this procedure is shown in
Fig. 9.

Appendix 2: Proof of existence and uniqueness of a positive steady state
solution

Here, we prove that the model has a unique, positive steady state solution by showing
that Eqs. (9) and (10) have a unique positive fixed point.

As discussed in “Appendix 1”, Eqs. (9) and (10) at steady state (homeostasis) are
given by

D0

βP
m∗

e(T
∗, τe) = γP P

∗ + αP
(P∗)nP

(bP )nP + (P∗)nP
, (48)

and

Tprod = γT T
∗ + αT (M∗

e (T ∗) + kSβP P
∗) (T ∗)nT

(kT )nT + (T ∗)nT
, (49)

where

m∗
e(T

∗, τe) = VmκP Q
∗eη∗

m (T ∗)τm+η∗
e (T

∗)τe ,

M∗
e (T ∗) = VmκP Q

∗eτmη∗
m (T ∗)

(
eη∗

e (T
∗)τe − 1

η∗
e (T

∗)

)
,
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ηm(T (t)) = ηmin
m +

(
ηmax
m − ηmin

m

) T

bm + T
,

and

ηe(T (t)) = ηmin
e +

(
ηmax
e − ηmin

e

) T

be + T
.

Unlike most population and blood cell regulation models, notice that (P∗ = 0, T ∗ =
0) is not an equilibrium of Eqs. (48) and (49). This is because of the nonzero constant
production rate of thrombopoietin reflected in the first term of (49), and is analogous
to infectious disease models for which there is a constant influx of susceptibles (see,
for example, Sect. 2.1.2 of Keeling and Rohani 2008).

Although finding (P∗, T ∗) involves solving two highly nonlinear equations in two
unknowns, we can use Eq. (49) to solve for P∗ explicitly in terms of T ∗, yielding

P∗ = 1

kSβP

[
Tprod − γT T ∗

αT

(
1 +

(
kT
T ∗

)nT )

−VmκP Q
∗eη∗

m (T ∗)τm

(
eη∗

e (T
∗)τe − 1

η∗
e (T

∗)

)]
.

(50)

Denote the right-hand-side of Eq. (50) by L (T ∗). Writing

L1(T
∗) = Tprod − γT T ∗

αT

(
1 +

(
kT
T ∗

)nT )

and

L2(T
∗) = VmκP Q

∗eη∗
m (T ∗)τm

(
eη∗

e (T
∗)τe − 1

η∗
e (T

∗)

)
,

we can rewrite Eq. (50) as

P∗ = L (T ∗) = 1

kSβP

[
L1(T

∗) − L2(T
∗)

]
.

We now show that L is a monotone decreasing function of T ∗, and thus defines
an injective function of P∗. First, notice thatL1 is a monotone decreasing function of
T ∗, approaching +∞ as T ∗ → 0, becoming negative-valued when T ∗ > Tprod/γT ,
and approaching −∞ as T ∗ → ∞. Second, as both ηm(T ∗) and ηe(T ∗) are mono-
tone increasing in T ∗ (taking values in the intervals (ηmin

m , ηmax
m ) and (ηmin

e , ηmax
e ),

respectively), the terms

VmκP Q
∗eη∗

m (T ∗)τm and
eη∗

e (T
∗)τe − 1

η∗
e (T

∗)
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in L2(T ∗) are both monotone increasing whenever τeη
∗
e (T

∗) > 0, which holds by
definition in our model. As L2 is the product of two monotone increasing functions,
it is also a monotone increasing function. Taken together, these results show that L
defines an injective function of P∗.

Now consider Eq. (48) and denote its left-hand-side and right-hand-side by g(T ∗)
and h(P∗), respectively. The function h is clearly monotone increasing in P∗, starting
from 0 and approaching +∞ as P∗ → ∞. Using the previous argument on η∗

m(T ∗)
and η∗

e (T
∗), we have that g is a monotone increasing function of T ∗ and uniformly

bounded above and below by

D0VmκP Q∗

βP
eηmin

m τm+ηmin
e τe ≤ g(T ∗) ≤ D0VmκP Q∗

βP
eηmax

m τm+ηmax
e τe .

Finding a positive stationary solution in (P∗, T ∗) therefore amounts to finding a value
of T ∗ satisfying

h(L (T ∗)) = g(T ∗) (51)

and then defining the corresponding value of P∗ being given byEq. (50).As h(L (T ∗))
ismonotone decreasing from+∞ to negative values and g(T ∗) ismonotone increasing
between two positive values, there is a unique positive solution to Eq. (51). That is,
Eqs. (17) and (18) have a unique positive steady state solution (P∗, T ∗).

Appendix 3: Linearization of the thrombopoiesis equations and bifurca-
tion analysis

Wetake themodel inSect. 4,whichhas a differential equation for the platelets, (17), and
one for the thrombopoietin, (18), depending only on P and T . From “Appendix 2”, the
model has a unique positive equilibrium, (P∗, T ∗). Linearizing about the equilibrium,
we let x(t) = P(t) − P∗ and y(t) = T (t) − T ∗. We use Taylor expansions for both
the exponential function and ηm(T (s)) to obtain the following linear approximation:

exp

[∫ t−τe

t−τe−τm

ηm(T (s)) ds

]
≈ exp

[∫ t−τe

t−τe−τm

(ηm(T ∗) + ∂T ηm(T ∗)y(s)) ds
]

= eηm (T ∗)τm exp

[
∂T ηm(T ∗)

∫ t−τe

t−τe−τm

y(s) ds

]

≈ eηm (T ∗)τm
(
1 + ∂T ηm(T ∗)

∫ t−τe

t−τe−τm

y(s) ds

)
.

Similarly,

exp

[∫ t

t−τe

ηe(T (s)) ds

]
≈ eηe(T ∗)τe

(
1 + ∂T ηe(T

∗)
∫ t

t−τe

y(s) ds

)
,
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exp

[∫ t−a

t−a−τm

ηm(T (s)) ds

]
≈ eηm (T ∗)τm

(
1 + ∂T ηm(T ∗)

∫ t−a

t−a−τm

y(s) ds

)
,

and

exp

[∫ t

t−a
ηe(T (s)) ds

]
≈ eηe(T ∗)a

(
1 + ∂T ηe(T

∗)
∫ t

t−a
y(s) ds

)
.

Linearizing the integral product in Eq. (18), we obtain the following approximation:

∫ τe

0
exp

[∫ t−a

t−a−τm

ηm(T (s)) ds

]
exp

[∫ t

t−a
ηe(T (s)) ds

]
da

≈
∫ τe

0
eηm (T ∗)τm+ηe(T ∗)a

(
1 + ∂T ηm(T ∗)

∫ t−a

t−a−τm

y(s) ds

) (
1 + ∂T ηe(T

∗)
∫ t

t−a
y(s) ds

)
da

≈ eηm (T ∗)τm

[
eηe(T ∗)τe − 1

ηe(T ∗)
+ ∂T ηm(T ∗)

∫ τe

0
eηe(T ∗)a

(∫ t−a

t−a−τm

y(s) ds

)
da

+ ∂T ηe(T
∗)

∫ τe

0
eηe(T ∗)a

(∫ t

t−a
y(s) ds

)
da

]
.

These results can be used to find the linearization of the platelet and thrombopoietin
equations. The platelet equation with only the constant and linear terms (higher order
terms dropped) is given by

dx

dt
= A2

[
1 + ∂T ηm(T ∗)

∫ t−τe

t−τe−τm

y(s) ds + ∂T ηe(T
∗)

∫ t

t−τe

y(s) ds

]

− γP (x + P∗) − (
F(P∗) + ∂P F(P∗)x

)
,

(52)

where

A2 = D0VmκP Q∗

βP
eηm (T ∗)τm+ηe(T ∗)τe .

The thrombopoietin equation can be written as

dy

dt
= Tprod − γT (y + T ∗) − αT

(
A1

[
E1 + ∂T ηm(T ∗)

∫ τe

0
eηe(T ∗)a

(∫ t−a

t−a−τm

y(s) ds

)
da

+ ∂T ηe(T
∗)

∫ τe

0
eηe(T ∗)a

(∫ t

t−a
y(s) ds

)
da

]
+ kSβP (x + P∗)

)
(G(T ∗) + ∂T G(T ∗)y),

where

A1 = VmκP Q
∗eηm (T ∗)τm and E1 = eηe(T ∗)τe − 1

ηe(T ∗)
.

The thrombopoietin equation with only the constant and linear terms (higher order
terms dropped) is given by:
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dy

dt
= Tprod − γT (y + T ∗) − αT

[
(A1E1 + kSβP P

∗)G(T ∗) + (A1E1 + kSβP P
∗)∂T G(T ∗)y

+ kSβPG(T ∗)x + A1G(T ∗)
(

∂T ηm(T ∗)
∫ τe

0
eηe(T ∗)a

(∫ t−a

t−a−τm

y(s) ds

)
da

+ ∂T ηe(T
∗)

∫ τe

0
eηe(T ∗)a

(∫ t

t−a
y(s) ds

)
da

)]
,

(53)
By the definition of an equilibrium, the constant terms in Eqs. (52) and (53) sum to
zero, yielding the linear equations for platelets, (19), and thrombopoietin, (21), given
in Sect. 4.1.

Details for the characteristic equation

We examine the integral terms in Eqs. (19) and (21), using the exponential form for
y(t) = eλt . There are four integrals, which we evaluate below:

∫ t−τe

t−τe−τm

eλs ds = eλ(t−τe)

λ

(
1 − e−λτm

)
,

∫ t

t−τe

eλs ds = eλt

λ

(
1 − e−λτe

)
,

∫ τe

0
eηe(T ∗)a

(∫ t−a

t−a−τm

eλs ds

)
da = eλt

(
1 − e−λτm

)

λ(λ − ηe(T ∗))

(
1 − eηe(T ∗)τe−λτe

)
,

and

∫ τe

0
eηe(T ∗)a

(∫ t

t−a
eλs ds

)
da = eλt

λ

(
eηe(T ∗)τe − 1

ηe(T ∗)
+ e−(λ−ηe(T ∗))τe − 1

λ − ηe(T ∗)

)
.

These expressions are used in the terms L2(λ) and L4(λ) in the characteristic equation
for the linear functional Eq. (23).
If Eq. (24) is multiplied by λ(λ − ηe), then the terms in the denominator can be
eliminated (at the expense of introducing the roots λ = 0 and ηe). The first polynomial
piece becomes

(λ + L1)(λ + C1)λ(λ − ηe) = λ4 + (L1 + C1 − ηe)λ
3

+ (L1C1 − (L1 + C1)ηe) λ2 − L1C1ηeλ.

Next we consider the portion L4(λ) − C1 in (24)

(L4(λ) − C1)λ(λ − ηe) = C2∂T ∂T ηm(T ∗)
(
1 − e−λτm

) (
1 − e−(λ−ηe)τe

)

+C2∂T ηe(T
∗)

(
eηeτe − 1

ηe
(λ − ηe) + (e−(λ−ηe)τe − 1)

)

= C2∂T ηm(T ∗)
(
1 − e−λτm − eηeτee−λτe + eηeτee−λ(τe+τm )

)
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+C2∂T ηe(T
∗)

(
eηeτe − 1

ηe

)
(λ − ηe)

+C2∂T ηe(T
∗)(eηeτee−λτe − 1).

We take the previous expression and multiply by λ + L1 and define

D1 = C2∂T ηe(T ∗) (eηeτe − 1)

ηe
, D2 = C2e

ηeτe (∂T ηe(T
∗) − ∂T ηm(T ∗)), and

D3 = C2e
ηeτe∂T ηm(T ∗).

The results are

(λ + L1)(L4(λ) − C1)λ(λ − ηe) = (λ + L1)
(
C2∂T ηm(T ∗)

+D1(λ − ηe) − C2∂T ηe(T
∗)

)

− (λ + L1)C2∂T ηm(T ∗)e−λτm

+ (λ + L1)D2e
−λτe + (λ + L1)D3e

−λ(τe+τm )

and

L2(λ)L3λ(λ − ηe) = L3(λ − ηe)A2
(
∂T ηm(T ∗)e−λτe

−∂T ηm(T ∗)e−λ(τe+τm ) + ∂T ηe(T
∗) − ∂T ηe(T

∗)e−λτe
)

.

Multiplying byλ(λ−ηe) produces a quartic exponential polynomial in the eigenvalues,
which can be analyzed using techniques we have developed earlier (Mahaffy 1982).
The characteristic equation can be written as

λ4 + K3λ
3 + K2λ

2 + K1λ + K0 + (α1λ + α0)e
−λτm

+(β1λ + β0)e
−λτe + (γ1λ + γ0)e

−λ(τe+τm ) = 0.

We examine the terms above and obtain the following coefficients:

K0 = L1C2(∂T ηm(T ∗) − ∂T ηe(T
∗)) − D1L1ηe + L3A2∂T ηe(T

∗)ηe,
K1 = −L1C1ηe + C2(∂T ηm(T ∗) + ∂T ηe(T

∗) + D1(L1 − ηe) − L3A2∂T ηe(T
∗),

K2 = L1C1 − (L1 + C1)ηe + D1,

K3 = L1 + C1 − ηe,

α0 = −C2∂T ηm(T ∗)L1,

α1 = −C2∂T ηm(T ∗),
β0 = D2L1 − L3A2ηe(∂T ηe(T

∗) − ∂T ηm(T ∗)),
β1 = D2 + L3A2(∂T ηe(T

∗) − ∂T ηm(T ∗)),
γ0 = D3L1 + L3A2ηe∂T ηm(T ∗)
γ1 = D3 − L3A2∂T ηm(T ∗).
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Appendix 4: Parameter sensitivity of the model for healthy subjects

The characteristic equation (24) from the linear analysis is used to study the sensi-
tivity of each parameter near its normal value. We developed MATLAB programs
from the linear analysis to compute the leading eigenvalues of the model. With the
normal parameters of Table 1 we obtained the equilibrium (P∗, T ∗) = (31.071, 100),
which has the leading pair of eigenvalues λ1 = −0.058953 ± 0.053015i . It fol-
lows that the model with these eigenvalues is asymptotically stable. It should be
noted that the frequency is equivalent to a period of 118.5days, which is far from
the observed oscillation periods in either the healthy subjects or patients with cyclic
thrombocytopenia.

To analyze the sensitivity of the model to the various parameters, we used our
MATLAB code to find the new equilibrium and leading eigenvalues as we varied
each parameter by ±10%. Table 6 gives a complete listing of how the equilib-
rium changes and leading eigenvalues shifts with all of the individual parameter
changes. We are most interested in stability changes, so the lowest ratio of the real
part of the leading eigenvalues gives the largest change in the direction of a Hopf
bifurcation.

For the sensitivity analysis, if we only consider the movement of the leading
pair of eigenvalues toward the imaginary axis, then the smallest values in the 7th
column (ratio Re) give the greatest shift toward instability. The parameter changes
that destabilize the model most are (in descending order) increasing bP , decreas-
ing αP , decreasing kT , increasing βP , increasing kS , increasing bm , and decreasing
Tprod .

As an experiment to extend this analysis, we chose to increase or decrease all seven
of these parameters by 20% to see what happened to the equilibrium and the leading
eigenvalues. The result of all seven changes resulted in the equilibrium (P∗, T ∗) =
(20.772, 85.117) and leading eigenvalues λ1 = −0.02555 ± 0.06563i . We note that
this more than halves the distance of the real part toward the imaginary axis, and also
the frequency shifts the period to 95.74days.

The analysis shows that near normal, there are several parameters to which the
model is very insensitive. Surprisingly, this includes all of the delay parameters, τe
and τm . It is also quite insensitive to changes in γP , γT , and be. However, our numerical
study shows that τe and τm can have effects on the imaginary part.

This analysis shows that the leading eigenvalues have the wrong frequency for the
observed oscillations in cyclic thrombocytopenia patients. This suggests the need to
examine the next, second leading pair of eigenvalues for this model. Its frequency
is closer to the range of interest and provides a starting point for a Hopf bifurcation
study of our cyclic thrombocytopenia patients. Again, with the normal parameters the
second eigenvalues are λ2 = −0.11375 ± 0.35888i , which gives a quasiperiod near
17.5days. Table 7 shows the effects on this pair of eigenvalues as the parameters are
changed by ±10%.

For the sensitivity analysis, we examine the movement of the second leading pair of
eigenvalues,λ2, toward the imaginary axis.Again, the smallest values in the 7th column
(ratio Re) give the greatest shift toward instability. The most destabilizing changes
for this pair of eigenvalues occur by (in descending order) increasing τe, decreasing
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Table 6 Parameter sensitivity to changes in the normal parameters of the leading pair of eigenvalues λ1

P∗ T ∗ Real Imag Ratio Re Ratio Im

Normal 31.071 100.0 −0.058953 0.053015

bP −10% 29.0196 100.9495 −0.067296 0.043747 1.142 0.825

bP +10% 32.8346 99.3905 −0.052283 0.058441 0.887 1.102

αP −10% 32.0273 99.7183 −0.055079 0.056355 0.934 1.063

αP +10% 30.0968 100.5067 −0.062686 0.049258 1.063 0.929

γP −10% 31.7203 99.8432 −0.058229 0.053277 0.988 1.005

γP +10% 30.3240 100.4136 −0.059747 0.052683 1.013 0.994

κP −10% 30.0012 102.4043 −0.057024 0.055546 0.967 1.048

κP +10% 31.9549 98.1063 −0.06075 0.050488 1.030 0.952

βP −10% 33.3576 100.5375 −0.062871 0.049083 1.066 0.926

βP +10% 29.0111 99.7651 −0.055601 0.055916 0.943 1.055

αT −10% 32.2845 102.8172 −0.060871 0.052074 1.033 0.982

αT +10% 29.9044 97.7452 −0.057327 0.053726 0.972 1.013

kT −10% 28.6234 94.9109 −0.055442 0.054430 0.940 1.027

kT +10% 33.3536 105.0196 −0.062445 0.051155 1.059 0.965

γT −10% 31.0302 100.1744 −0.058994 0.053038 1.001 1.000

γT +10% 30.9910 100.0910 −0.058940 0.052996 1.000 1.000

Tprod −10% 29.7700 97.4513 −0.056887 0.053955 0.965 1.018

Tprod +10% 32.1795 102.5986 −0.060925 0.052003 1.033 0.981

kS −10% 31.5216 101.2177 −0.062364 0.045469 1.058 0.858

kS +10% 30.5245 99.0902 −0.055813 0.058817 0.947 1.109

be −10% 31.4498 99.4983 −0.059528 0.052684 1.010 0.994

be +10% 30.6166 100.7105 −0.058451 0.053328 0.991 1.006

bm −10% 33.1719 95.6242 −0.062519 0.051101 1.060 0.964

bm +10% 29.2024 104.2848 −0.056023 0.054177 0.950 1.022

τm −10% 31.0106 100.1327 −0.057789 0.060694 0.980 1.145

τm +10% 31.0106 100.1327 −0.059777 0.045867 1.014 0.865

τe −10% 31.7286 101.6540 −0.059127 0.057713 1.003 1.089

τe +10% 30.3550 98.7243 −0.058709 0.048716 0.996 0.919

bm , increasing kS , increasing βP , increasing τm , decreasing bP , and decreasing γP .
We note that the delays τe and τm affect the movement of the real part of these
eigenvalues.

To extend this analysis, we chose to increase or decrease all seven of these param-
eters by 20% to see what happened to the equilibrium and eigenvalues. The result
of all seven changes resulted in the equilibrium (P∗, T ∗) = (26.505, 87.236) and
eigenvalues λ2 = −0.09281 ± 0.3091i . Note that the distance of the real part toward
the imaginary axis is slightly more than for the leading pair with its most significant
parameters, and also the frequency shifts the period to 20.33 days.

123



Normal and pathological dynamics of platelets in humans 1453

Table 7 Parameter sensitivity to changes in the normal parameters of the second leading pair of eigenvalues
λ2

P∗ T ∗ Real Imag Ratio Re Ratio Im

Normal 31.071 100 −0.11375 0.35888

bP −10% 29.0196 100.9495 −0.11375 0.3588 0.974 1.001

bP +10% 32.8346 99.3905 −0.11949 0.3577 1.024 0.998

αP −10% 32.0273 99.7183 −0.11826 0.35796 1.013 0.999

αP +10% 30.0968 100.5067 −0.11536 0.35853 0.988 1.001

γP −10% 31.7203 99.8432 −0.11799 0.35806 1.011 0.999

γP +10% 30.324 100.4136 −0.11551 0.35847 0.990 1.001

κP −10% 30.0012 102.4043 −0.11561 0.35761 0.990 0.998

κP +10% 31.9549 98.1063 −0.11776 0.35886 1.009 1.002

βP −10% 33.3576 100.5375 −0.11524 0.35855 0.987 1.001

βP +10% 29.0111 99.7651 −0.11809 0.358 1.012 0.999

αT −10% 32.2845 102.8172 −0.11411 0.35789 0.978 0.999

αT +10% 29.9044 97.7452 −0.11912 0.35858 1.020 1.001

kT −10% 28.6234 94.9109 −0.12202 0.35892 1.0453 1.002

kT +10% 33.3536 105.0196 −0.11204 0.35756 0.960 0.998

γT −10% 31.0302 100.1744 −0.11662 0.35831 0.999 1.000

γT +10% 30.991 100.091 −0.11684 0.35823 1.001 1.000

Tprod −10% 29.77 97.4513 −0.11874 0.35543 1.017 0.992

Tprod +10% 32.1795 102.5986 −0.11491 0.3607 0.984 1.007

kS −10% 31.5216 101.2177 −0.112 0.35762 0.959 0.998

kS +10% 30.5245 99.0902 −0.12118 0.35899 1.038 1.002

be −10% 31.4498 99.4983 −0.11717 0.35822 1.004 1.000

be +10% 30.6166 100.7105 −0.11632 0.35828 0.996 1.000

bm −10% 33.1719 95.6242 −0.11169 0.36068 0.957 1.007

bm +10% 29.2024 104.2848 −0.12133 0.35606 1.039 0.994

τm −10% 31.0106 100.1327 −0.12172 0.37874 1.043 1.057

τm +10% 31.0106 100.1327 −0.11224 0.33985 0.962 0.949

τe −10% 31.7286 101.654 −0.12517 0.37101 1.072 1.036

τe +10% 30.355 98.7243 −0.10939 0.34619 0.937 0.966

Appendix 5: Hopf bifurcation for CT patients

This appendix continues the studies of the CT patients from Sect. 5.4. The four param-
eters are varied linearly between the normal state and the best fitting parameters for
several CT patients. Again, our numerical methods tracked the changes in the equilib-
ria and the pairs of eigenvalues, which result in Hopf bifurcations leading to the cyclic
behavior observed in the CT patients.

Table 2 in Sect. 5.2 shows the best parameter fit to τe, αP , αT , and kT for the CT
patients of Connor and Joseph (2011), Kimura et al. (1996), and Zent et al. (1999).
As was done with the CT patient of Bruin et al. (2005) in Sect. 5.4, a hyperline in the
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Fig. 10 The curves on the left show the evolution of the equilibrium from healthy subject to CT patient
as parameters vary. The curves on the right follow the eigenvalues. The rows represent the evolution from
healthy subject to the CT patients of Connor and Joseph (2011), Kimura et al. (1996), and Zent et al. (1999),
respectively

4D-parameter space from the normal parameter values to each of the parameter sets
for these three CT patients was followed, and the numerical values of the equilibrium
(P∗, T ∗) and eigenvalues λ were tracked at each set of parameter values. As before,
the eigenvalues tracked were the ones from the second leading pair of the healthy
subject, which is the pair that undergoes a Hopf bifurcation as the hyperline extends
to any of the CT patients. The results are displayed in Fig. 10.

The equilibrium for the normal parameter set is (P∗, T ∗) = (31.071, 100.00).
As the parameter sets move along each of the hyperlines, the equilibria first shift
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Table 8 The second and third columns give the equilibria and eigenvalues at the Hopf bifurcation

(P∗
h , T ∗

h ) λh (P∗
e , T ∗

e ) λe

Connor (10.118, 59.244) ±0.2311i (19.326, 101.31) 0.07348 ± 0.2111i

Kimura (2.809, 35.484) ±0.2000i (16.118, 172.57) 0.08832 ± 0.1641i

Zent (4.286, 38.329) ±0.2798i (5.1706, 48.709) 0.06605 ± 0.2698i

The fourth and fifth columns give the equilibria and eigenvalues for the specific CT patient

slowly in an arc toward the origin. For all of our examples, this first arc of equilibria
takes over 98% of the hyperline, that is, in Eq. (25) if the arc is created by t ∈
[0, t1), then t1 > 0.98. For an unknown reason (likely a transition in one of the Hill
functions), the equilibrium rapidly shifts away from this slow path toward the origin
along a different trajectory. This new direction roughly doubles back, but heads to the
different states of equilibria for each of the different patients. It is along this rapidly
evolving path that the Hopf bifurcation occurs. Figure 10 (and Fig. 8) shows that
the cusp-like behavior is similar in all cases, but the evolving paths are distinct for
each patient. This complicates the interpretation of how the cyclic thrombocytopenia is
explained through the parameters. Table 8 gives the values for the equilibria of theHopf
bifurcation along with the equilibria for the best fitting parameters of the different CT
patients.

We numerically solve Eq. (24), starting at the eigenvalues for the normal case
with λ = −0.11375 ± 0.3588i . In all cases, the eigenvalues create an arc with the
imaginary part decreasing, while the real part first increases then decreases. This
arc is created quite slowly and follows the slowly evolving equilibria above. When
the equilibria start evolving rapidly, the values of the eigenvalues rapidly shift with
increasing real part. Specifically, the real part turns around and increases very rapidly
to the Hopf bifurcation. The different CT patients have slightly different changes
in their eigenvalues, particularly in what happens to the imaginary part. All cases
of the CT patients have their eigenvalues with positive real part, which is to be
expected. The frequency of the eigenvalues varies from 0.1641 to 0.2698, yielding
periods in the range of 23.3 to 38.3days, which are consistent with the simulations in
Sect. 5.2.

Appendix 6: Fitting of cyclic thrombocytopenia patient data

In this appendix, we describe the statistical procedure used in Sect. 5 to fit the param-
eters τe, αP , αT , and kT of our model to 15 published platelet and TPO data sets of
patients with CT (Bruin et al. 2005; Cohen and Cooney 1974; Connor and Joseph
2011; Engström et al. 1966; Helleberg et al. 1995; Kimura et al. 1996; Kosugi et al.
1994; Morley 1969; Rocha et al. 1991; von Schulthess and Gessner 1986; Skoog et al.
1957; Wilkinson and Firkin 1966; Yanabu et al. 1993; Zent et al. 1999). Of these 15
data sets, only four contained both platelet and TPO data (Bruin et al. 2005; Connor
and Joseph 2011; Kimura et al. 1996; Zent et al. 1999). We chose to analyze data
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sets of untreated CT patients only, as treatments may have altered platelet or TPO
dynamics or both and is thus outside the scope of this model.

We first introduce some notation before describing the ABC-MCMC algorithm and
the fitting procedure (Marjoram et al. 2003). Let θ be the vector of all the parameters,
that is, θ = (τe, αP , αT , kT )
. Let D denote the observed data, including Pdata and
Tdata . LetD

′
denote the model response, including Pmodel and Tmodel . Let ρ(D

′
,D)

denote the distance between D
′
and D . Let ε be a prefixed threshold. The gist of the

fitting procedure for a data set is as follows.

1. Choose an initial set of values of parameters for θ .
2. Propose a move from the current value of θ to θ

′
according to a transition kernel

q(·|θ).
3. Simulate D

′
using the model with parameters θ

′
.

4. If ρ(D
′
,D) ≤ ε, go to step 5, and otherwise stay at θ and return to step 2.

5. Calculate

α(θ, θ
′
) = min

(
1,

π(θ
′
)q(θ |θ ′

)

π(θ)q(θ
′ |θ)

)
,

update θ to θ
′
with this probability, and store the value of θ

′
.

6. Repeat steps 2–5 using θ ′ as the new initial set of values of parameters for a
sufficient number of times, and finally pick θ ′ that minimizes ρ(D

′
,D) among all

stored values of θ ′.

To measure the distance between the simulated data D
′
and the observed data D , we

use the following sum of squared errors (SSE):

ρ(D
′
,D) = ‖ 2

3Pmodel − Pdata‖2
‖Pdata‖2 + ‖Tmodel − Tdata‖2

‖Tdata‖2 , (54)

where the factor of 2/3 accounts for the fraction of platelets that circulate in blood in
our model.

For the fits in this paper, in step 1 we chose the initial parameters so that the model
generated oscillations, as discussed in Sect. 5.1, and gave a rough approximation to the
data set. These parameters defined the initial dataD , and the initial SSEwas computed
using Eq. (54). We fixed the threshold ε to 1.15 times the initial SSE and computed
steps 2–5 for 250 successful iterations before choosing the vector of parameters θ

minimizing ρ(D
′
,D).

In step 5 of the ABC-MCMC implementation, we use a uniform distribution as
the prior distribution for the parameters, which leads to π(θ

′
)/π(θ) = 1. In addi-

tion, we choose a Gaussian distribution to be the transition kernel, which implies
q(θ |θ ′

)/q(θ
′ |θ) = 1. As a result, α(θ, θ

′
) is simplified to 1.

The stationary distribution of the MCMC chain is the posterior distribution of the
parameters given the simulated data are close enough to the observed data (ρ(D

′
,D) ≤

ε). In other words, with a good initial choice of parameter values, this ABC-MCMC
algorithm guarantees convergence to a good fit.
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Appendix 7: Numerical analysis

Numerical simulations of the system of equations (12) and (13) are necessary both
to illustrate results for any parameter set, and also as part of the parameter fitting
described in “Appendix 6”. Accurate numerical solution of these equations is com-
plicated by their structure as distributed delay differential equations (DDEs) with the
terms me(t, τe) and Me(t) both defined by integrals of the solution functions from
time t − τe − τm to t , with Me(t) requiring the computation of the integral of the
product of the exponential of two integrals.

Traditional Runge–Kutta methods for ordinary differential equations (ODEs) only
define a numerical approximation to the solution on a discrete set of time points. This
is problematical when the solution is required at off mesh time values, which arises for
example for the accurate evaluation of integrals, as is the case in our problem. Contin-
uous Runge–Kutta (CRK) methods were developed (Bellen and Zennaro 2003; Hairer
et al. 1993) to produce continuous output suitable for the numerical solution of both
ODEs and DDEs. These are the methods currently most often used to solve discrete
DDEs, with the Matlab (Mathworks 2015) software package containing built in func-
tions (dde23, ddesd) for the solution of discrete constant delay and state-dependent
variable delay DDEs. However, these methods are not appropriate for problems with
vanishing or distributed delays, because they become fully implicit. To see how this
arises suppose the system (12)–(13) is already solved up to time tn and consider the
computation of the next step. To compute the j th stage of the CRK method for the
next step requires the computation of the right-hand side of the system of equations
at time tn + c j h, where h = tn+1 − tn is the step-size of the method and the c j are
the abscissa of the CRK method. But this requires us to evaluate me(tn + c j h, τe) and
Me(tn + c j h), for which we need integrals of T (t) up to time tn + c j h, but until all the
stages of the current step are computed we only have the solution of T (t) available up
to time tn . This problem does not arise in the first order forward Euler method (which
has just one stage with c1 = 0), but all higher order CRK methods become fully
implicit. Ad-hoc methods for approximating the missing integral result in a reduction
in the order of the method, and so the only CRK methods that are appropriate for our
problem are the first order forward Euler method or higher order implicit methods. To
obtain accurate solutions efficiently we do not use such methods.

Methods that remain explicit for distributed DDEs and DDEswith vanishing delays
were first proposed by Tavernini (1971), and have more recently been developed
into a class of methods called Functional Continuous Runge–Kutta (FCRK) methods
(Bellen et al. 2009; Maset et al. 2005). In Bellen et al. (2006) it was proposed to apply
FCRK methods to distributed DDEs in biomathematics, but we are not aware of any
implementation of FCRK methods for distributed DDEs before the current work.

To solve the system (12)–(13) we implemented the explicit two-stage second order
Heun FCRKmethod proposed inCryer andTavernini (1972). This hasButcher tableau

c A(α)

b(α)
=

0 0 0

1 α 0

α − 1
2α

2 1
2α

2
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which defines the parameters ci , bi (α) and ai j (α) in the explicit FCRK method

Ki = hG(tn + ci h,Y i
tn+ci h)

Y i (s) = un(s) for s ≤ tn Y i (tn + αh) = un(tn) +
i−1∑
j=1

ai j (α)K j for α ∈ (0, 1]

un+1(s) = un(s) for s ≤ tn un+1(tn + αh) = un(tn) +
s∑

i=1

bi (α)Ki for α ∈ (0, 1]

where the Ki are said to be the stage variables. In the method, un is the numerical
solution with step-size h generated by the nth step of the method defined up to time
tn for the delayed functional differential equation

u′(t) = G(t, ut ) for t > t0, u(t) = φ(t) for t ≤ t0,

where φ is said to be the starting data, t0 is the initial time, and ut is the continuous
function ut (σ ) = u(t + σ) for σ ∈ [−τ, 0], where τ is the largest delay in the system
(which is τ = τe + τm for our problem).

The fundamental difference between CRKs and FCRKs which enables the FCRK
methods to remain explicit is that the FCRKs are endowed with a continuous approx-
imation Y i (t) associated with each stage, whereas the CRK methods only have the
single continuous approximation un+1(t) defined once the step is computed.

To implement this FCRK method for the system (12)–(13), the integrals need to
be evaluated numerically to sufficient accuracy to maintain the convergence order of
the method. Although the composite trapezoidal rule would be sufficient for second
order accuracy we used fourth order composite methods, to allow for the possible
later implementation of a fourth order FCRK method. It is necessary to evaluate the
integrals on the same computational mesh as the underlying FCRK method. Since the
numerical approximation Tn+1(t) to T (t) is smooth on each interval [tn, tn+1], but
not differentiable at the mesh points tn , the functions ηm(Tn+1(t)) and ηm(Tn+1(t))
will also not be differentiable at the mesh points, and the convergence theory of
the composite quadrature methods will break down unless the mesh points tn of
the FCRK method are included as quadrature points for the integration. The exact
solutions of delayed functional differential equations also have discontinuous deriva-
tives at breaking points as outlined in Bellen and Zennaro (2003), which requires
certain time points to be included in the computational mesh. But because of the addi-
tional smoothing afforded by the integrals in (12)–(13) the only breaking point that
needs to be included in the mesh to obtain second order convergence is the initial
point t0.

Taking account of these considerations we used Simpson’s method to evaluate
Me(tn + c j h) using values of me(tn + c j h, kh) and me(tn + c j h, (k + 1/2)h), where
c j = 0 or 1 for Heun’s method, and k ∈ {0, 1, ..., N } is an integer with the step-size h
of the FCRK method chosen so that τe = Nh. The necessary values of me(t, a) were
obtained from (13), evaluating the integrals in this formula using Milne’s method. To
evaluate the nested integrals efficiently we store values of ηm(T (t)) and ηe(T (t)) at
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relevant points (tn + kh/4 for k = 0, 1, 2, 3) and also store integrals which would
otherwise be recomputed at multiple steps, including

∫ t j

t j−τm

ηm(T (s)) da,

which appears in me(t j + kh, kh) and hence is required to evaluate Me(t j+k) for each
of k = 0, 1, . . . , N .

Themethod is written to return a function handle that is created from the continuous
approximation to the solution generated by the method. This is returned to the user,
which allows for the evaluation of P(t) and T (t) at all points in the computational
interval (not just at mesh points).

The explicit fourth order FCRK method proposed in Cryer and Tavernini (1972)
could be similarly implemented, but requires 6 stages to evaluate one step to fourth
order, and so is not as advantageous as the 4-stage fourth order RK method for ODEs,
and would require the computation of some complicated integrals over 6 stages.
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