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Abstract Evolutionary game theory is a mathematical approach to studying how
social behaviors evolve. In many recent works, evolutionary competition between
strategies is modeled as a stochastic process in a finite population. In this context, two
limits are both mathematically convenient and biologically relevant: weak selection
and large population size. These limits can be combined in different ways, leading
to potentially different results. We consider two orderings: the wN limit, in which
weak selection is applied before the large population limit, and the Nw limit, in which
the order is reversed. Formal mathematical definitions of the Nw and wN limits are
provided.Applying these definitions to theMoranprocess of evolutionary game theory,
we obtain asymptotic expressions for fixation probability and conditions for success
in these limits. We find that the asymptotic expressions for fixation probability, and
the conditions for a strategy to be favored over a neutral mutation, are different in the
Nw and wN limits. However, the ordering of limits does not affect the conditions for
one strategy to be favored over another.
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1 Introduction

Evolutionary game theory (Maynard Smith 1982;Maynard Smith andPrice 1973;Hof-
bauer and Sigmund 1998;Weibull 1997; Broom and Rychtár 2013) is a framework for
modeling the evolution of behaviors that affect others. Interactions are represented as a
game, and game payoffs are linked to reproductive success. Originally formulated for
infinitely large, well-mixed populations, the theory has been extended to populations
of finite size (Taylor et al. 2004; Nowak et al. 2004; Imhof and Nowak 2006; Lessard
and Ladret 2007) and awide variety of structures (Nowak andMay 1992; Blume 1993;
Ohtsuki et al. 2006; Tarnita et al. 2009; Nowak et al. 2010; Allen and Nowak 2014).

Calculating evolutionary dynamics in finite and/or structured populations can be
difficult—in some cases, provably so (Ibsen-Jensen et al. 2015). To obtain closed-form
results, one often must pass to a limit. Two limits in particular have emerged as both
mathematically convenient and biologically relevant: large population size and weak
selection. The weak selection limit means that the game has only a small effect on
reproductive success (Nowak et al. 2004). With these limits, many results become
expressible in closed form that would not be otherwise.

Often one is interested in combining these limits. However, a central theme in
mathematical analysis is that limits can be combined in (infinitely) many ways. It is
therefore important, when applying the large-population and weak-selection limits, to
be clear how they are being combined. As a first step, Jeong et al. (2014) introduced
the terms Nw limit and wN limit. In the Nw limit, the large population limit is taken
before the weak selection limit, while in thewN limit the order is reversed. Informally,
in the Nw limit, the population becomes large “much faster” than selection becomes
weak, while the reverse is true for the wN limit. While there are infinitely many ways
of combining the large-population and weak-selection limits, the Nw and wN limits
represent two extremes in which one limit is taken entirely before the other.

Here we provide formal mathematical definitions of the wN and Nw limits, which
were lacking in the work of Jeong et al. (2014). We then apply these limits to the
Moran process in evolutionary game theory (Moran 1958; Taylor et al. 2004; Nowak
et al. 2004). We obtain asymptotic expressions for fixation probability under these
limits, and show how these expressions differ depending on the order in which limits
are taken. We also analyze criteria for evolutionary success under these limits. Our
results are summarized in Table 1 and Fig. 1. We show how these limits shed new light
on familiar game-theoretic concepts such as evolutionary stability, risk dominance,
and the one-third rule. We also formalize and strengthen some previous results in the
literature (Nowak et al. 2004; Antal and Scheuring 2006; Bomze and Pawlowitsch
2008).

Our paper is organized as follows. First we describe the model and define the wN
and Nw limits. We then consider the case of constant fitness as a motivating example.
Finally, we present the results of our analysis, first for the wN limit and then the
Nw limit. For each limit, we derive the fixation probability for a strategy, as well as
determine two conditions that measure the success of that strategy. The first condition
compares the strategy’s fixation probability to that of a neutral mutation. The second
compares the fixation probability of one strategy to the other.
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Table 1 Summary of results

wN limit Nw limit

ρA
1
N + w

6 (a + 2b − c − 2d) + o(w)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

o(w) b ≤ d

o(w) b > d and a + b < c + d

(b − d)w + o(w) b > d and a + b > c + d
b−d
2 w + o(w) b > d and a + b = c + d

ρA > 1
N a + 2b > c + 2d, or (b > d and a + b ≥ c + d), or

(a + 2b = c + 2d and b > c) (b = d and a > c), or

(b = d, a = c and b > c)

ρA > ρB a + b > c + d, or a + b > c + d, or

(a + b = c + d and b > c) (a + b = c + d and b > c)

The asymptotic expansions of the fixation probability of strategy A (ρA) and the conditions for which this
fixation probability is larger than that of a neutral mutation (ρA > 1

N ) are different in the wN and Nw

limits. In contrast, conditions for the fixation probability of strategy A to be larger than that of strategy B
(ρA > ρB ) are the same in both limits

2 Model

In theMoran process (Moran 1958; Taylor et al. 2004;Nowak et al. 2004), a population
of size N consists of A and B individuals. Interactions are described by a game

(
A B

A a b
B c d

)

. (1)

The fitnesses of A and B individuals are defined, respectively, as expected payoffs:

f A(i) = a(i − 1) + b(N − i)

N − 1
,

fB(i) = ci + d(N − i − 1)

N − 1
,

(2)

where i indicates the number of A individuals. Each time-step, an individual is chosen
to reproduce proportionally to its fitness, and an individual is chosen with uniform
probability to be replaced.

This process has two absorbing states: i = N , where type A has become fixed, and
i = 0, where type B has become fixed. The fixation probability of A, denoted ρA, is
the probability that type A will become fixed when starting from a state with a single
A individual (i = 1). Similarly, the fixation probability of B is denoted ρB and defined
as the probability that type B will become fixed when starting from a state with single
B individual (i = N − 1). The fixation probability of A can be calculated as (Taylor
et al. 2004)

ρA = 1

1 +∑N−1
k=1

∏k
j=1

fB ( j)
f A( j)

. (3)
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1288 C. Sample, B. Allen

Fig. 1 Summary of our results. aAsymptotic expressions for ρA under the Nw limit in different parameter
regions. The dashed line indicates the border case a + b = c + d. b In both the wN limit and Nw limit,
ρA > ρB if a + b > c + d. c The order of limits matters when comparing the fixation probability of A
(ρA) with that of a neutral mutation (1/N ). In the Nw limit, ρA > 1/N if b > d and a + b ≥ c + d. d In
the wN limit, ρA > 1/N if a + 2b > c + 2d

The ratio of fixation probabilities is given by

ρA

ρB
=

N−1∏

j=1

f A( j)

fB( j)
. (4)

For weak selection, we use the rescaled payoffs FA(i) = 1+ w f A(i) and FB(i) =
1 + w fB(i) in place of the original payoffs f A(i) and fB(i), respectively. This is
equivalent to replacing the original game matrix (1) with the transformed matrix

(
1 + wa 1 + wb
1 + wc 1 + wd

)

. (5)
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The limits of weak selection and large population size in… 1289

Above, the parameter w > 0 quantifies the strength of selection. A result is said to
hold under weak selection if it holds to first order in w as w → 0 (Nowak et al. 2004).

The success of strategy A is quantified in two ways (Nowak et al. 2004). The first,
ρA > 1/N , is the condition that selection will favor strategy A over a neutral mutation
(a type for which all payoff matrix entries are equal to 1). The second condition
compares the two fixation probabilities. If ρA > ρB , we say that strategy A is favored
over strategy B.

3 Limit definitions

We provide here formal mathematical definitions of the wN limit, in which the weak
selection is applied prior to taking the large population limit, and the Nw limit, in
which these are reversed. We define what it means for a statement to hold true, as well
as for a function to have a particular asymptotic expansion, in each of these limits.

First, we define a statement to be true in the wN limit if it holds for all sufficiently
large N and all sufficiently small w, where N must be fixed first and w may depend
on N . The formal statement is as follows:

Definition 1 Statement S(N , w) is True in the wN limit if

(∃N∗ ∈ N).(∀N ≥ N∗).(∃w∗ > 0).(∀w, 0 < w < w∗).(S(N , w) is True).

Second, we define what it means for two functions to be asymptotically equivalent
to first order in w in the wN limit:

Definition 2 For functions f (N , w) and g(N , w), we say that f (N , w) ∼ g(N , w)+
o(w) in the wN limit if and only if

f (N , w) = g(N , w) + wR(N , w),

where limN→∞ limw→0 R(N , w) = 0.

In words, f and g must differ by w times a remainder term that disappears as first
w → 0 and then N → ∞.

Third, we formalize what it means for a statement to be true in the Nw limit. As in
the wN limit, it must hold for all sufficiently large N and all sufficiently small w, but
here w must be fixed first and N may depend on w.

Definition 3 Statement S(N , w) is True in the Nw limit if

(∃w∗ > 0).(∀w, 0 < w < w∗).(∃N∗ ∈ N).(∀N ≥ N∗).(S(N , w) is True).

Finally, we define what it means for two functions to be asymptotically equivalent
to first order in w in the Nw limit. The only difference from Definition 2 is that the
order of limits is reversed:
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1290 C. Sample, B. Allen

Definition 4 For functions f (N , w) and g(N , w), we say that f (N , w) ∼ g(N , w)+
o(w) in the Nw limit if and only if

f (N , w) = g(N , w) + wR(N , w),

where limw→0 limN→∞ R(N , w) = 0.

4 Example: constant fitness

We illustrate the difference between the Nw and wN limits using the special case
of constant fitness. In this case, the payoffs to A and B are set to constant values
f A = 1 + s and fB = 1, independent of the population state i , where s > −1 is the
selection coefficient of A. The fixation probability of A is (Moran 1958)

ρA = 1 − (1 + s)−1

1 − (1 + s)−N
. (6)

In the limits of large population size (N → ∞) and weak selection (s → 0), the
asymptotic expansion of ρA is different depending on the order in which the limits
are taken (Fig. 2). (Note that in the constant-fitness case, selection strength can be
quantified by |s| rather than w.) In the wN limit, we have

ρA ∼ 1

N
+ s

2
+ o(s), (7)

whereas in the Nw limit,

ρA ∼
{
0 if s ≤ 0

s + o(s) if s > 0.
(8)

The asymptotic expressions (7) and (8) hold in the sense specified by Definitions 2
and 4, respectively. Note that ρA is linear in the wN limit and piecewise-linear in the
Nw limit. Moreover, the slope of ρA with respect to s in the wN limit is the average
of the two corresponding slopes in the Nw limit (see also Fig. 2d, e).

Although the asymptotic expressions (7) and (8) differ under the two limit orderings,
the conditions for the success of type A are the same. This is because, for any s > −1
and N ≥ 2, type A is favored over a neutral mutation (ρA > 1/N ), according to
Eq. (6), if and only if s > 0. Likewise, A is favored over B (ρA > ρB) if and only if
s > 0. Since these conditions apply to arbitrary s and N , they remain valid under any
limits of these parameters.

5 Results

Having motivated our investigation using the case of constant selection, we now con-
sider an arbitrary payoff matrix (1). We analyze the wN limit first, followed by the
Nw limit.
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The limits of weak selection and large population size in… 1291

(b)

(a)

(c)

(d) (e)

Fig. 2 Fixation probability versus selection coefficient for constant selection. a Fixation probability ρA ,
given by Eq. (6), is an increasing function of the selection coefficient s. bWhen selection is weak (|s| � 1),
fixation probability is approximately linear in s. c For large population size (N → ∞), fixation probability
goes to zero for s ≤ 0, and there is a corner in the graph at s = 0. d In the wN limit, weak selection is
applied first followed by large population size, resulting in ρA ∼ 1/N + s/2+ o(s). e In the Nw limit, the
limit N → ∞ is applied first followed by weak selection. The result is a piecewise-linear function which
is zero for s ≤ 0 and has slope 1 for s > 0. Population size is N = 5, 10, 103, 103, and 104 in panels a–e,
respectively
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1292 C. Sample, B. Allen

5.1 wN Limit

In the wN limit we first apply weak selection and then consider large population size.
Results for ρA are presented first, followed by conditions for success.

Theorem 1 In the wN limit,

ρA ∼ 1

N
+ w

6
(a + 2b − c − 2d) + o(w). (9)

This theorem formalizes a result of Nowak et al. (2004), and can also be considered
a special case of Eq. (92) of Lessard and Ladret (2007).

Proof We apply weak selection to the fitnesses in Eq. (2):

FA(i) = 1 + w
a(i − 1) + b(N − i)

N − 1
,

FB(i) = 1 + w
ci + d(N − i − 1)

N − 1
.

(10)

Substituting Eq. (10) for f A(i) and fB(i) in (3) and taking a Taylor expansion about
w = 0 gives

ρA = 1

N
+ w

6N
(N (a + 2b − c − 2d) − (2a + b + c − 4d)) + wQ(N , w), (11)

where limw→0 Q(N , w) = 0. We regroup,

ρA = 1

N
+ w

6
(a + 2b − c − 2d) + wR(N , w),

defining the remainder term as R(N , w) = Q(N , w) − 1
6N (2a + b + c − 4d). By

taking the limit of R(N , w) as first w → 0 and then N → ∞, we find that

lim
N→∞ lim

w→0
R(N , w) = lim

N→∞ lim
w→0

(

Q(N , w) − 1

6N
(2a + b + c − 4d)

)

= lim
N→∞

(

− 1

6N
(2a + b + c − 4d)

)

= 0.

By Definition 2, ρA ∼ 1
N + w

6 (a + 2b − c − 2d) + o(w) in the wN limit. �

5.1.1 Conditions for success

Theorem 2 In the wN limit, ρA > 1
N if and only if one of the following holds:

(i) a + 2b > c + 2d
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(ii) a + 2b = c + 2d and b > c.

An equivalent result was obtained by Bomze and Pawlowitsch (2008).

Proof Under weak selection, it is apparent fromEq. (11) that ρA > 1/N if N (a+2b−
c−2d)−(2a+b+c−4d) > 0 andρA < 1/N if N (a+2b−c−2d)−(2a+b+c−4d) <

0. Thus ρA > 1/N for sufficiently large N if a + 2b > c + 2d or if a + 2b = c + 2d
and 2a + b+ c− 4d < 0. The second condition is equivalent to a + 2b = c+ 2d and
b > c.

For the border case, a+ 2b = c+ 2d and b = c, we take a second-order expansion
of ρA:

ρA = 1

N
− w2 (a − b)2(N + 2)(N + 1)(N − 2)

240N (N − 1)
+ O(w3).

For N > 2 and a �= b, the second order term is always negative, which implies that
ρA < 1/N . Lastly, if a = b = c = d then ρA = 1/N . �
Theorem 3 In the wN limit, ρA > ρB if and only if one of the following holds:

(i) a + b > c + d
(ii) a + b = c + d and b > c.

Case (i) of this result was stated informally by Nowak et al. (2004).

Proof Substituting Eq. (10) for f A(i) and fB(i) into Eq. (4) and taking a Taylor
expansion about w = 0, we get

ρA

ρB
=

N−1∏

j=1

N − 1 + w (a( j − 1) + b(N − j))

N − 1 + w (cj + d(N − j − 1))

= 1 + w

2
(N (a + b − c − d) − 2a + 2d) + wQ(N , w),

where limw→0 Q(N , w) = 0. Clearly, ρA is greater than (less than) ρB under weak
selection if N (a + b − c − d) − 2a + 2d is positive (negative). The expression is
positive for sufficiently large N if a + b > c + d or if a + b = c + d and a < d.
The second condition is equivalent to a + b = c + d and b > c. Lastly, if b = c and
a = d, then from Eq. (4), ρA = ρB . �

5.2 Nw Limit

In this section, we first determine the limit of ρA as N → ∞ (Theorem 4) and then
find an asymptotic expression for ρA in the Nw limit. We then turn to conditions for
success, first in the N → ∞ limit (Theorems 5 and 6) and then the Nw limit.
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1294 C. Sample, B. Allen

Theorem 4 The fixation probability ρA has the following large-population limit:

lim
N→∞ ρA =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0 if b ≤ d

0 if b > d, a < c and I > 0
(b−d)(c−a)

b(c−a)+c(b−d)
√

ac
bd

if b > d, a < c and I = 0

b−d
b if b > d, a < c and I < 0

b−d
b if b > d, a ≥ c,

(12)

where

I =
∫ 1

0
ln f̃ (x)dx, (13)

and

f̃ (x) = d + x(c − d)

b + x(a − b)
for x ∈ [0, 1]. (14)

Some aspects of this result were obtained by Antal and Scheuring (2006), using a
mixture of exact and approximate methods. Our proof confirms the results of Antal
and Scheuring (2006) except in the case b > d, a < c, and I = 0, as we detail in the
Discussion.

Proof We first establish some basic definitions and results before considering various
cases. From Eq. (2), define the function f

( i
N , N

)
as

f

(
i

N
, N

)

= fB(i)

f A(i)
= d + i

N (c − d) − d
N

b + i
N (a − b) − a

N

. (15)

f̃
( i
N

)
of Eq. (14) serves as an approximation to f

( i
N , N

)
with error:

εN (i) = f

(
i

N
, N

)

− f̃

(
i

N

)

= 1

N
· ad − bd − i

N (2ad − bd − ac)
[
b + i

N (a − b)
] [
b + i

N (a − b) − a
N

] . (16)

Importantly, εN (i) is uniformly bounded in the sense that, for N sufficiently large, there
exists a positive constant L such that |εN (i)| ≤ L

N for all i = 1, . . . , N . Specifically,
for N ≥ 2a

min{a,b} , we can set

L = 2max {|ad − bd|, |ac − ad|}
(min {a, b})2 .

Therefore, limN→∞ f (x, N ) = f̃ (x) uniformly in x .
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Fig. 3 Plot of ln f̃ (x) versus x , where f̃ (x) is defined as in Eq. (14). This figure illustrates the case that

b > d, c > a and I > 0 (the net area under the curve is positive). The point x∗ satisfies
∫ x∗
0 ln f̃ (x) dx = 0

In our proof, we will make use of some properties of the function f̃ (x). The deriva-
tive

d f̃

dx
= bc − ad

(b + x(a − b))2

implies that f̃ (x) is monotonic; it is always constant (bc = ad), strictly increasing
(bc > ad), or strictly decreasing (bc < ad). Since extremamust occur at the endpoints
( f̃ (0) = d/b and f̃ (1) = c/a), set

m̃ = min
{
f̃ (0), f̃ (1)

}

M̃ = max
{
f̃ (0), f̃ (1)

}
.

(17)

Our proof also makes frequent use of the integral I of Eq. (13), which is evaluated
as:

I = ln

(
b

b
a−b c

c
c−d

a
a

a−b d
d

c−d

)

. (18)

An illustration of this integral is given in Fig. 3.
Our overall objective is to investigate the fixation probability of Eq. (3), which can

be written
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ρA = 1

1 + S
, (19)

where S is the sum defined as

S =
N−1∑

k=1

k∏

i=1

f

(
i

N
, N

)

. (20)

Since f̃ is a simpler function than f , we rewrite the product in Eq. (20) as
∏k

i=1

[
f̃
( i
N

)+ εN (i)
]
. The bound on εN (i) implies that for sufficiently large N ,

k∏

i=1

[

f̃

(
i

N

)

− L

N

]

≤
k∏

i=1

f

(
i

N
, N

)

≤
k∏

i=1

[

f̃

(
i

N

)

+ L

N

]

.

Using m̃, the minimum of f̃ given in Eq. (17), we obtain

(

1 − L

m̃N

)k k∏

i=1

f̃

(
i

N

)

≤
k∏

i=1

f

(
i

N
, N

)

≤
(

1 + L

m̃N

)k k∏

i=1

f̃

(
i

N

)

. (21)

These inequalities allow for the comparison between f and f̃ .
The main idea of the proof going forward is to determine under which conditions

the sum S diverges and under which conditions the sum converges (and to what value
it converges to) as N gets arbitrarily large. To accomplish this, we first split the
sum of Eq. (20) as S = S1 + S2, where S1 and S2 are non-negative sums defined
as

S1 =
�ln N�∑

k=1

k∏

i=1

f

(
i

N
, N

)

, (22)

S2 =
N−1∑

k=�ln N�+1

k∏

i=1

f

(
i

N
, N

)

. (23)

Let

m1 = min
1≤i≤�ln N�

{

f

(
i

N
, N

)}

,

M1 = max
1≤i≤�ln N�

{

f

(
i

N
, N

)}

,

m2 = min�ln N�+1≤i≤N−1

{

f

(
i

N
, N

)}

,

M2 = max�ln N�+1≤i≤N−1

{

f

(
i

N
, N

)}

.

(24)
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Since f converges uniformly to the monotonic function f̃ ,

lim
N→∞m1 = f̃ (0) = d

b
,

lim
N→∞ M1 = f̃ (0) = d

b
,

lim
N→∞m2 = m̃ = min

{
d

b
,
c

a

}

,

lim
N→∞ M2 = M̃ = max

{
d

b
,
c

a

}

.

(25)

Useful inequalities obtained from Eqs. (22) and (24) are

�ln N�∑

k=1

k∏

i=1

m1 ≤ S1 ≤
�ln N�∑

k=1

k∏

i=1

M1,

�ln N�∑

k=1

mk
1 ≤ S1 ≤

�ln N�∑

k=1

Mk
1 . (26)

The geometric series gives

m1 − m�ln N�+1
1

1 − m1
≤ S1 ≤ M1 − M�ln N�+1

1

1 − M1
, (27)

as long as m1 �= 1 and M1 �= 1, respectively.
Now that we have some basic definitions and results, we pursue limN→∞ ρA by

considering cases. We first compare b and d. If necessary, we then compare a and c
and if further required, consider the sign of I .

1. Case b < d In this case, limN→∞ m1 = d/b > 1 and

lim
N→∞

m1 − m�ln N�+1
1

1 − m1
= ∞.

It follows from Eq. (27) that limN→∞ S1 = ∞ and consequently, limN→∞ S =
∞. Eq. (19) gives limN→∞ ρA = 0.

2. Case b = d
In this case, limN→∞ m1 = d/b = 1. We will show that the sum

∑�ln N�
k=1 mk

1
diverges. Fix an arbitrary positive integer B so that

lim
N→∞

B+1∑

k=1

mk
1 = B + 1.
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This implies that for all sufficiently large N ,

B+1∑

k=1

mk
1 > B.

In particular, for �ln N� > B + 1,

�ln N�∑

k=1

mk
1 >

B+1∑

k=1

mk
1 > B.

Since B was arbitrary
∑�ln N�

k=1 mk
1 becomes larger than any positive integer as

N → ∞. This proves that

lim
N→∞

�ln N�∑

k=1

mk
1 = ∞.

From Eq. (26) we conclude that limN→∞ S1 = ∞ and consequently limN→∞ ρA

= 0.
3. Case b > d

Under this case limN→∞ m1 = limN→∞ M1 = d/b < 1. From Eq. (27), S1 is
bounded, and it follows from taking the limit as N → ∞ of Eq. (27) and applying
the Squeeze Theorem (Thomson et al. 2001) that

lim
N→∞ S1 = d

b − d
. (28)

We now turn our attention to S2, which requires the consideration of sub-
cases.
(a) Subcase a > c

Eq. (25) implies limN→∞ m2 < 1 and limN→∞ M2 < 1. Furthermore, S2 of
Eq. (23) is bounded:

N−1∑

k=�ln N�+1

mk
2 ≤ S2 ≤

N−1∑

k=�ln N�+1

Mk
2

m2
�ln N�+1 − m2

N

1 − m2
≤ S2 ≤ M2

�ln N�+1 − M2
N

1 − M2
.

Applying the Squeeze Theorem (Thomson et al. 2001),

lim
N→∞ S2 = 0. (29)

Eqs. (28) and (29) together give limN→∞ S = d/(b − d) and by Eq. (19),
limN→∞ ρA = (b − d)/b.
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(b) Subcase a < c
In this case, f̃ is an increasing function with minimum value of f̃ (0) =
d/b < 1 and maximum value of f̃ (1) = c/a > 1. The behavior of ρA

depends on the sign of the integral I . Therefore, we must consider sub-
cases to this subcase. An illustration is given in Fig. 3 for the subcase
I > 0.
i Subcase I < 0
We will show that S2 → 0 as N → ∞. Set

Ãk =
k∑

i=1

ln f̃

(
i

N

)

, (30)

and

S̃2 =
N−1∑

k=�ln N�+1

k∏

i=1

f̃

(
i

N

)

=
N−1∑

k=�ln N�+1

exp Ãk . (31)

We will prove S̃2 → 0 as N → ∞ by first showing that exp Ãk is less
than or equal to some constant multiple of ek I , where I is defined in
Eq. (13).
Consider the integral

∫ k/N
0 ln f̃ (x) dx . Since ln f̃ (x) is a monotonically

increasing function, the left Riemann sum is a lower bound:

∫ k/N

0
ln f̃ (x) dx >

1

N

k−1∑

i=0

ln f̃

(
i

N

)

= 1

N

(

Ãk + ln f̃ (0) − ln f̃

(
k

N

))

. (32)

Furthermore, the maximum value of ln f̃ (x) is ln f̃ (1). Substitut-
ing this bound into (32) and rearranging, we have that for all k =
1, ..., N ,

Ãk < N
∫ k/N

0
ln f̃ (x) dx + ln

f̃ (1)

f̃ (0)
. (33)

Since ln f̃ is increasing, the average value of ln f̃ (x) over intervals [0, y]
must be increasing in y. Hence for y ∈ [0, 1],

1

y

∫ y

0
ln f̃ (x) dx ≤

∫ 1

0
ln f̃ (x) dx = I.
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Let y = k/N to obtain

N
∫ k/N

0
ln f̃ (x) dx ≤ k I.

Combining with Eq. (33),

Ãk < k I + ln
f̃ (1)

f̃ (0)
. (34)

Substitute Eq. (34) into Eq. (31) to obtain

S̃2 <

N−1∑

k=�ln N�+1

f̃ (1)

f̃ (0)
ek I = f̃ (1)

f̃ (0)
· e

I (�ln N�+1) − eI N

1 − eI
.

Therefore since I < 0,

lim
N→∞ S̃2 = 0. (35)

We must now show how S̃2 relates to S2. Substitute m̃ = f̃ (0) =
d/b into Eq. (21) and sum over k to obtain an upper bound for
S2:

N−1∑

k=�ln N�+1

k∏

i=1

f

(
i

N
, N

)

≤
N−1∑

k=�ln N�+1

(

1 + bL

dN

)k k∏

i=1

f̃

(
i

N

)

≤
(

1 + bL

dN

)N N−1∑

k=�ln N�+1

k∏

i=1

f̃

(
i

N

)

.

Thus,

S2 ≤
(

1 + bL

dN

)N

S̃2.

The limit

lim
N→∞

(

1 + bL

dN

)N

= ebL/d , (36)

together with Eq. (35) gives

lim
N→∞ S2 = 0. (37)
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Adding Eqs. (28) and (37), we find limN→∞ S = d/(b − d) and conse-
quently limN→∞ ρA = (b − d)/b.

ii Subcase I > 0
We will show that S2 → ∞ as N → ∞. Break up S2 of Eq. (23) so that
S2 = S3 + S4, where

S3 =
�Nx∗�−1∑

k=�ln N�+1

k∏

i=1

f

(
i

N
, N

)

,

S4 =
N−1∑

k=�Nx∗�

k∏

i=1

f

(
i

N
, N

)

, (38)

and x∗ is defined as the point where
∫ x∗
0 ln f̃ (x) dx = 0 (see Fig. 3).

Define

m4 = min�Nx∗�≤i≤N−1

{

f

(
i

N
, N

)}

. (39)

This implies the inequality:

S4 ≥
N−1∑

k=�Nx∗�

k∏

i=1

m4 =
N−1∑

k=�Nx∗�
mk

4 = m�Nx∗�
4 − mN

4

1 − m4
. (40)

Since f̃ is increasing, m4 has the limit: limN→∞ m4 = f̃ (x∗) > 1.
Therefore, limN→∞ S4 = ∞, which implies that limN→∞ S = ∞ and
limN→∞ ρA = 0.

iii Subcase I = 0
We will show that limit of S2 as N → ∞ is positive and finite. Let
x̂ = (b−d)/(b−d+c−a) be the point for which f̃

(
x̂
) = 1 (see Fig. 3).

Consider a sequence βN that satisfies

x̂ < lim
N→∞

βN

N
< 1,

and converges to a limit β = limN→∞ βN/N . Split S2 of Eq. (23) at
k = βN , such that S2 = S5 + S6, where S6 is the right tail-end of the
sum. We will show that S5 → 0 and S6 approaches a positive constant as
N → ∞. Set

S5 =
βN−1∑

k=�ln N�+1

k∏

i=1

f

(
i

N
, N

)

S6 =
N−1∑

k=βN

k∏

i=1

f

(
i

N
, N

)

. (41)
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To obtain the limit of S5 we define

S̃5 =
βN−1∑

k=�ln N�+1

k∏

i=1

f̃

(
i

N

)

=
βN−1∑

k=�ln N�+1

exp Ãk,

where Ãk is given in Eq. (30). SetC = ∫ β

0 ln f̃ (x) dx . Importantly,C < 0
since β < 1, I = 0 and ln f̃ (x) is monotonic. Similar arguments as in
case 3(b)i show that

S̃5 <

βN−1∑

k=�ln N�+1

f̃ (1)

f̃ (0)
ekC = f̃ (1)

f̃ (0)
· e

C(�ln N�+1) − eCβN

1 − eC
.

Since C < 0, it follows that

lim
N→∞ S̃5 = 0. (42)

To relate S̃5 to S5, we substitute m̃ = d/b into Eq. (21) to obtain an upper
bound for S5,

S5 ≤
(

1 + bL

dN

)N

S̃5.

Consequently, from Eqs. (36) and (42),

lim
N→∞ S5 = 0. (43)

We now turn our attention to S6 of Eq. (41). Define

m6 = min
βN≤i≤N−1

{

f

(
i

N
, N

)}

,

M6 = max
βN≤i≤N−1

{

f

(
i

N
, N

)}

,

(44)

which have the limits limN→∞ m6 = f̃ (β) > 1 and limN→∞ M6 =
f̃ (1) = c/a > 1. Rewrite S6 as

S6 =
[
N−1∏

i=1

f

(
i

N
, N

)]
⎡

⎣1 +
N−2∑

k=βN

N−1∏

j=k+1

(

f

(
j

N
, N

))−1
⎤

⎦

=
[
N−1∏

i=1

f

(
i

N
, N

)]
⎡

⎣1 +
N−βN−1∑

�=1

�∏

h=1

(

f

(
N − h

N
, N

))−1
⎤

⎦ .

(45)
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Denote the second factor on the right-hand side of Eq. (45) by Ŝ6. From
Eq. (44), we have the bounds

1 +
N−βN−1∑

�=1

M−�
6 ≤ Ŝ6 ≤ 1 +

N−βN−1∑

�=1

m−�
6

1 + M−N+βN
6 − M−1

6

M−1
6 − 1

≤ Ŝ6 ≤ 1 + m−N+βN
6 − m−1

6

m−1
6 − 1

.

Now taking N → ∞,

lim
N→∞

M6

M6 − 1
≤ lim

N→∞ Ŝ6 ≤ lim
N→∞

m6

m6 − 1

f̃ (1)

f̃ (1) − 1
≤ lim

N→∞ Ŝ6 ≤ f̃ (β)

f̃ (β) − 1
. (46)

Since Eq. (46) is true for all β with x̂ < β < 1, then

lim
N→∞ Ŝ6 = f̃ (1)

f̃ (1) − 1
= c

c − a
. (47)

We now analyze the first factor of Eq. (45) by first investigating the inte-
gral I . Apply the Extended Trapezoidal Rule (Abramowitz and Stegun
1964) to I :

I =
∫ 1

0
ln f̃ (x)dx

= 1

N

[
ln f̃ (0) + ln f̃ (1)

2
+

N−1∑

i=1

ln f̃

(
i

N

)]

+ O
(
N−2

)
.

Recalling that I = 0, f̃ (0) = d/b and f̃ (1) = c/a, we obtain the asymp-
totic expansion:

N−1∑

i=1

ln f̃

(
i

N

)

= ln

√
ab

cd
+ O(N−1). (48)

Next we compare the sum in Eq. (48) with
∑N−1

i=1 ln f
( i
N , N

)
by looking

at their difference:
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N−1∑

i=1

ln f

(
i

N
, N

)

−
N−1∑

i=1

ln f̃

(
i

N

)

=
N−1∑

i=1

ln
f
( i
N , N

)

f̃
( i
N

)

=
N−1∑

i=1

ln

[

1 + 1

N

(
a

b + i
N (a − b) − a

N

− d

d + i
N (c − d)

)

− 1

N 2

ad
(
d + i

N (c − d)
) (
b + i

N (a − b) − a
N

)

]

.

As N → ∞, we have the asymptotic expression

N−1∑

i=1

ln f

(
i

N
, N

)

−
N−1∑

i=1

ln f̃

(
i

N

)

= 1

N

N−1∑

i=1

(
a

b + i
N (a − b)

− d

d + i
N (c − d)

)

+ O(N−1).

If we add and subtract (a − b)/(bN ) to the right-hand side, we obtain
a left Riemann sum, which can be replaced as N → ∞ by an inte-
gral:

N−1∑

i=1

ln f

(
i

N
, N

)

−
N−1∑

i=1

ln f̃

(
i

N

)

= 1

N

N−1∑

i=0

(
a

b + i
N (a − b)

− d

d + i
N (c − d)

)

− a − b

bN
+ O(N−1)

=
∫ 1

0

(
a

b + x(a − b)
− d

d + x(c − d)

)

dx + O(N−1)

Evaluate the integral to obtain:

N−1∑

i=1

ln f

(
i

N
, N

)

−
N−1∑

i=1

ln f̃

(
i

N

)

= ln

(
a

a
a−b d

d
c−d

b
a

a−b c
d

c−d

)

+ O(N−1).

(49)
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The logarithm can be simplified using the condition I = 0. Eq. (18) gives

a
a

a−b d
d

c−d = b
b

a−b c
c

c−d , therefore

ln

(
a

a
a−b d

d
c−d

b
a

a−b c
d

c−d

)

= ln

(
b

b
a−b c

c
c−d

b
a

a−b c
d

c−d

)

= ln
( c

b

)
.

Eq. (49) then simplifies to

N−1∑

i=1

ln f

(
i

N
, N

)

−
N−1∑

i=1

ln f̃

(
i

N

)

= ln
( c

b

)
+ O(N−1). (50)

Combining Eqs. (48) and (50) yields

N−1∑

i=1

ln f

(
i

N
, N

)

= ln

√
ab

cd
+ ln

( c

b

)
+ O(N−1)

= ln

√
ac

bd
+ O(N−1).

Thus,
∏N−1

i=1 f
( i
N , N

) = √
ac/(bd) + O(N−1) and

lim
N→∞

N−1∏

i=1

f

(
i

N
, N

)

=
√
ac

bd
. (51)

Combine Eqs. (47) and (51) with (45) to obtain

lim
N→∞ S6 = c

c − a

√
ac

bd
. (52)

Altogether Eqs. (28), (43) and (52) give

lim
N→∞ S = lim

N→∞(S1 + S5 + S6) = d

b − d
+ c

c − a

√
ac

bd
,

and from Eq. (19),

lim
N→∞ ρA = (b − d)(c − a)

b(c − a) + c(b − d)
√

ac
bd

. (53)

(c) Subcase a = c
In this case, f̃ is a strictly increasing function with minimum value
f̃ (0) = d/b < 1 and maximum value f̃ (1) = c/a = 1. Thus,
ln f̃ (x) < 0 for all x ∈ [0, 1) implying that I < 0. The same argument
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used in the case 3(b)i applies here. We obtain the result limN→∞ ρA =
(b − d)/b. �

Theorem 4 gives the large-population limit of ρA. We now introduce weak selection
to obtain asymptotic expressions for ρA in the Nw limit.

Corollary 1 In the Nw limit,

ρA ∼

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

o(w) if b ≤ d

o(w) if b > d and a + b < c + d
b−d
2 w + o(w) if b > d and a + b = c + d

(b − d)w + o(w) if b > d and a + b > c + d.

(54)

Proof We introduce weak selection according to Eq. (5). The integral I , given in
closed form in Eq. (18), has the following expansion as w → 0:

I = w

2
(c − a + d − b) + O(w2). (55)

We now separate into the cases of Theorem 4.

1. Case (b ≤ d) or (b > d, a < c and I > 0)
First note that given the expansion of Eq. (55), the condition (b > d) ∧ (a <

c) ∧ (I > 0) is equivalent to (b > d)∧ (a + b < c+ d). Since limN→∞ ρA = 0,
ρA ∼ o(w) by Definition 4.

2. Case (b > d and a ≥ c) or (b > d, a < c and I < 0)
Using Eq. (55), these two conditions are described by one condition under weak
selection: (b > d)∧ (a+ b > c+ d). Apply weak selection to (b− d)/b and take
N → ∞ to get

lim
N→∞ ρA = w(b − d)

1 + wb
= w(b − d) + wR(w),

where limw→0 R(w) = 0. By Definition 4, ρA ∼ (b − d)w + o(w).
3. Case b > d, a < c and I = 0

Given Eq. (55), this case under weak selection is equivalent to (b > d)∧ (a+b =
c + d). In particular, we have b − d = c − a, which allows the cancellation of a
factor of b − d from the numerator and denominator of Eq. (53). Applying weak
selection and taking N → ∞ yields

lim
N→∞ ρA = b − d

2
w + wR(w),

where limw→0 R(w) = 0. By Definition 4, ρA ∼ b−d
2 w + o(w). �
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5.2.1 Conditions for success

To determine conditions for success (ρA > 1/N and ρA > ρB) in the Nw limit, we
must first determine such conditions in the limit of large population size. To do so, we
note that

Theorem 5 ρA > 1/N for sufficiently large N if and only if one of the following
holds:

(i) b > d and a ≥ c
(ii) b > d, a < c and I ≤ 0
(iii) b = d and a > c
(iv) b = d, a = c and b > c

Proof ρA > 1/N for sufficiently large N if limN→∞ NρA > 1. From Eq. (19), we
have the relation

lim
N→∞ NρA = lim

N→∞
N

1 + S
= lim

N→∞
1

1/N + S/N
=
(

lim
N→∞

S

N

)−1

. (56)

Consider the following cases.

1. Case (b > d and a ≥ c) or (b > d, a < c and I ≤ 0)
From Eq. (12), limN→∞ ρA is positive and finite. Thus, limN→∞ NρA = ∞.

2. Case b > d, a < c and I > 0
Given S ≥ S4 and limN→∞ m4 = f̃ (x∗) > 1, where S4 and m4 are defined in
Eqs. (38) and (39), respectively, we use the inequality of Eq. (40) to obtain

lim
N→∞

S

N
≥ lim

N→∞
m�Nx∗�

4 − mN
4

N (1 − m4)
= ∞.

Therefore from Eq. (56), limN→∞ NρA = 0.
3. Case b < d

Given Eq. (27),

S ≥ S1 ≥ m�ln N�+1
1 − m1

m1 − 1
.

Since limN→∞ m1 = d
b > 1,

lim
N→∞

S

N
≥ lim

N→∞
m�ln N�+1

1 − m1

N (m1 − 1)
= ∞.

Therefore, limN→∞ NρA = 0.
4. Case b = d

(a) Subcase a = b = c = d
f
( i
N , N

) = 1 for all i with ρA = 1
N . Therefore, limN→∞ NρA = 1.
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(b) Subcase a = c and a �= b
Here

∂ f

∂x
= − (a − b)2

N
(
a
( 1
N − x

)+ b(x − 1)
)2 .

Therefore, f is a decreasing function. Let

m = min
1≤i≤N−1

{

f

(
i

N
, N

)}

= f

(
N − 1

N
, N

)

= a − a
N

a + b−2a
N

,

M = max
1≤i≤N−1

{

f

(
i

N
, N

)}

= f

(
1

N
, N

)

= b + a−2b
N

b − b
N

.

Then

N−1∑

k=1

mk ≤ S ≤
N−1∑

k=1

Mk

mN − m

N (m − 1)
≤ S

N
≤ MN − M

N (M − 1)
(57)

Note that limN→∞ m = limN→∞ M = 1. To determine the limit of S/N as
N → ∞, requires the derivatives:

dm

dN
= a(b − a)

(Na + b − 2a)2
, (58)

dM

dN
= b − a

b(N − 1)2
. (59)

Applying L’Hôpital’s Rule (Abramowitz and Stegun 1964) and using Eqs. (58)
and (59), we obtain the following limits:

lim
N→∞ N (m − 1) = lim

N→∞

dm
dN

−N−2 = a − b

a
,

lim
N→∞ N (M − 1) = lim

N→∞

dM
dN

−N−2 = a − b

b
,

lim
N→∞ N lnm = lim

N→∞

1
m

dm
dN

−N−2 = a − b

a

lim
N→∞ N lnM = lim

N→∞

1
M

dM
dN

−N−2 = a − b

b
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Therefore,

lim
N→∞mN = lim

N→∞ eN lnm = exp

(
a − b

a

)

,

lim
N→∞ MN = lim

N→∞ eN lnM = exp

(
a − b

b

)

.

Take the limit of Eq. (57) to obtain

exp
( a−b

a

)− 1
a−b
a

≤ lim
N→∞

S

N
≤ exp

( a−b
b

)− 1
a−b
b

.

If a > b (equivalently b < c) then limN→∞ S/N > 1. If a < b (equivalently
b > c) then limN→∞ S/N < 1. Thus, limN→∞ NρA > 1 if b = d, a = c and
b > c by Eq. (56).

(c) Subcase a < c
Set

m7 = min
N−�ln N�≤i≤N−1

{

f

(
i

N
, N

)}

.

Note that limN→∞ m7 = f̃ (1) = c/a > 1 given that f converges uniformly
to f̃ . Then

lim
N→∞

S

N
≥ lim

N→∞
1

N

N−1∑

k=N−�ln N�
mk

7

= lim
N→∞

mN
7 − mN−�ln N�

7

N (m7 − 1)
= ∞

By Eq. (56), limN→∞ ρA = 0.
(d) Subcase a > c

Here

∂ f

∂x
= b(c − a) + 2ab−b2−ac

N

N 2
(
b + x(a − b) − a

N

)2 .

Therefore for N > 2ab−b2−ac
b(a−c) , f is strictly decreasing.
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Break up the sum S as S = S8 + S9, where

S8 =
�√N�−1∑

k=1

k∏

i=1

f

(
i

N
, N

)

S9 =
N−1∑

k=�√N�

k∏

i=1

f

(
i

N
, N

)

.

Given N > 2ab−b2−ac
b(a−c) , define

M8 = max
1≤i≤�√N�−1

f

(
i

N
, N

)

= f

(
1

N
, N

)

= b + c−2b
N

b − b
N

,

M9 = max
�√N�≤i≤N−1

f

(
i

N
, N

)

= f

(
�√N�
N

, N

)

=
b + 1

�√N� (c − b) − b
N

b + 1
�√N� (a − b) − a

N

.

If c = b then M8 = 1 and we have the bound

S8 ≤
�√N�−1∑

k=1

Mk
8 = �√N� − 1.

Dividing by N and taking N → ∞ we obtain

lim
N→∞

S8
N

≤ �√N� − 1

N
= 0.

If c �= b, we have the bound

S8 ≤
�√N�−1∑

k=1

Mk
8 = M�√N�

8 − M8

M8 − 1
. (60)

Note that limN→∞ M8 = 1.We use L’Hôpital’s Rule (Abramowitz and Stegun
1964) to determine the limit of S8/N as N → ∞, which requires the derivative:
dM8
dN = b−c

b(N−1)2
. It follows that

lim
N→∞ N (M8 − 1) = lim

N→∞

dM8
dN

−N−2 = c − b

b
,

lim
N→∞�√N� lnM8 = lim

N→∞

1
M8

dM8
dN

− 1
2N

−3/2
= 0.
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Therefore, limN→∞ M�√N�
8 = 1, and consequently from Eq. (60),

lim
N→∞

S8
N

≤ lim
N→∞

M�√N�
8 − M8

N (M8 − 1)
= 0. (61)

We also have an upper bound for S9:

S9 ≤
N−1∑

k=�√N�
Mk

9 ≤ 1

1 − M9
=

b + a−b
�√N� − a

N

a−c
�√N� + b−a

N

Divide by N and take the N → ∞ limit to obtain

lim
N→∞

S9
N

≤ lim
N→∞

b + a−b
�√N� − a

N√
N (a − c) + b − a

= 0 (62)

Equations (61) and (62) imply limN→∞ S/N = 0, and consequently
limN→∞ NρA = ∞. �

We now apply weak selection to find conditions for which ρA > 1/N in the Nw

limit.

Corollary 2 Given the game matrix (1), ρA > 1/N in the Nw limit if and only if one
of the following holds:

(i) b > d and a + b ≥ c + d
(ii) b = d and a > c
(iii) b = d, a = c and b > c

Proof In Theorem 5, we found conditions for which ρA > 1/N for sufficiently
large populations. We introduce weak selection according to Eq. (5). Given the
weak selection expansion of I in Eq. (55), Condition (ii) of Theorem 5 becomes
(b > d) ∧ (a < c) ∧ (a + b ≥ c + d). Note that Condition (i) of Theorem 5 is
equivalent to (b > d) ∧ (a ≥ c) ∧ (a + b ≥ c + d). Therefore, Conditions (i) and (ii)
of Theorem 5 together give the one condition (b > d) ∧ (a + b ≥ c + d). Conditions
(iii) and (iv) of Theorem 5 remain the same under weak selection. �

Finally, we will determine conditions for which ρA > ρB in the Nw limit by first
investigating the large N limit.

Theorem 6 Given the game matrix (1), ρA > ρB for sufficiently large N if and only
if one of the following conditions holds:

(i) I < 0
(ii) I = 0 and ac < bd

123



1312 C. Sample, B. Allen

Proof Eq. (4) with Eq. (15) give

ρB

ρA
=

N−1∏

i=1

f

(
i

N
, N

)

(63)

Given that ρA > ρB for sufficiently large N if and only if limN→∞ ρB/ρA < 1, we
will find this limit and compare it to 1 for various cases.

We will first look at the product of f̃ -terms and then compare it to the product of f -

terms. Since f̃ is monotonic, the left and right Riemann sums, 1
N

(
ÃN−1 + ln f̃ (0)

)

and 1
N

(
ÃN−1 + ln f̃ (1)

)
, respectively, serve as bounds for the definite integral I

(where ÃN−1 is defined in Eq. (30)). This implies

N I − ln M̃ ≤ ÃN−1 ≤ N I − ln m̃, (64)

where the minimum, m̃, and maximum, M̃ , of f̃ are defined in Eq. (17). Keeping in

mind that
∏N−1

i=1 f̃
( i
N

) = exp
(
ÃN−1

)
, exponentiate Eq. (64) to obtain

eN I

M̃
≤

N−1∏

i=1

f̃

(
i

N

)

≤ eN I

m̃
.

Combining this with the inequality of Eq. (21), which compares f to f̃ , and using
Eq. (63), we obtain

(

1 − L

m̃N

)N−1 eN I

M̃
≤ ρB

ρA
≤
(

1 + L

m̃N

)N−1 eN I

m̃
.

Thus, if I > 0 then limN→∞ ρB/ρA = ∞. If I < 0 then limN→∞ ρB/ρA = 0. The
only case left to consider is I = 0. In this case, Eq. (51) implies that limN→∞ ρB/ρA =√
ac/(bd). If ac > bd then the limit is greater than 1, if ac < bd then the limit is less

than 1, and if ac = bd then the limit equals 1. �
Corollary 3 Given the game matrix (1), ρA > ρB in the Nw limit if and only if one
of the following holds:

(i) a + b > c + d
(ii) a + b = c + d and b > c

Proof We introduce weak selection according to Eq. (5). Given the weak selection
expansion of integral I in Eq. (55), I < 0 implies a + b > c + d and I = 0 implies
a + b = c + d. Furthermore, the inequality ac < bd is

(1 + wa)(1 + wc) < (1 + wb)(1 + wd),
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which reduces as w → 0 to
a + c < b + d. (65)

Thus, Condition (i) of Theorem 6 becomes a + b > c+ d and Condition (ii) becomes
a + b = c + d and b > c (equivalently a + b = c + d and a < d) in the Nw limit. �

6 Discussion

In the analysis of evolutionary models, the limits of large population size and weak
selection are biologically relevant and mathematically convenient. We have analyzed
the effect of combining these limits, in different orders, on the fixation of strategies in
the Moran process with frequency dependence. Our results (summarized in Table 1)
show that the Nw and wN limits yield different asymptotic expressions for fixation
probability, as well as different conditions for a strategy to have larger fixation proba-
bility than a neutral mutation. Interestingly, however, the conditions are the same for
ρA > ρB .

To understand the relationship between the Nw and wN results, it is helpful to
rewrite them in terms of two payoff differences:

α = a + b − c − d = lim
N→∞

(
f A
( N
2

)− fB
( N
2

))

β = b − d = lim
N→∞ ( f A(1) − fB(1)) .

In words, α is the payoff difference when both types are equally abundant, while
β is the payoff difference when A is rare, with both differences taken in the large-
population limit. These quantities relate to familiar concepts in evolutionary game
theory: If β < 0 then B is an evolutionary stable strategy (ESS; Maynard Smith and
Price, 1973), whereas the sign of α determines which of the two types is risk dominant
(Harsanyi and Selten 1988; Nowak et al. 2004).

In the Nw limit, for a A-mutant to be favored in the senseρA > 1/N in the Nw limit
requires that bothα andβ are positive. Thismeans that Amust have a payoff advantage
both when rare and when 50% abundant. A deficiency in either of these two situations
will prevent A from reaching fixation when the large-population limit is taken first. In
contrast, for thewN limit, it is only necessary that the sum α+β = a+2b−c−2d be
positive, effectively averaging over the two situations. Thus, when the weak-selection
limit is taken first, a selective disadvantage in one situation is not prohibitive, and can
be compensated for by an advantage in the other.

The condition a + 2b > c + 2d for ρA > 1/N in the wN limit is an instance
of the one-third law of evolutionary game theory (Nowak et al. 2004; Ohtsuki et al.
2007; Bomze and Pawlowitsch 2008; Lessard and Ladret 2007; Lessard 2011; Zheng
et al. 2011). This rule can be understood as stating that type A is favored to invade
(in the sense ρA > 1/N in the wN limit, excluding borderline cases) if and only if A
has a payoff advantage when comprising one-third of the population. Previous works
(Traulsen et al. 2006b; Wu et al. 2010) have shown that the one-third law breaks down
away from the regime Nw � 1; correspondingly, we do not find any one-third law in
the Nw limit. In light of our results, the one-third condition a + 2b > c + 2d can be
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1314 C. Sample, B. Allen

interpreted as a superposition of the separate conditions α > 0 and β > 0, which are
jointly necessary in the Nw limit but which only need be satisfied in sum (α +β > 0)
in the wN limit.

Our other results can also be expressed in terms of the payoff differences α and β.
The asymptotic expressions for fixation probability, Eqs. (9) and (54), can be written
as

ρA ∼ 1

N
+ w

6
(α + β) + o(w) (wN limit)

ρA ∼ θ(α)max{β, 0}w + o(w) (Nw limit).

Above, θ(x) is the Heaviside step function:

θ(x) =

⎧
⎪⎨

⎪⎩

0 x < 0
1
2 x = 0

1 x > 0.

The success condition ρA > ρB reduces to α > 0 in both limit orderings, and is
therefore equivalent (up to borderline cases) to the statement that type A is risk-
dominant (Harsanyi and Selten 1988; Nowak et al. 2004).

Our analysis of the Nw limit required us to first examine the large-population limit
of ρA. Our results in Theorem 4 confirm the earlier results of Antal and Scheuring
(2006), except in the borderline case b > d, a < c and I = 0, for which

lim
N→∞ ρA = (b − d)(c − a)

b(c − a) + c(b − d)
√

ac
bd

.

Antal and Scheuring obtained limN→∞ ρA = (b − d)/2b. These results differ, for
example, for the payoff matrix

(
e 2e
4 4

)

,

which satisfies b > d, a < c, and I = 0. The difference arises fromAntal and Scheur-
ing’s replacement of the sum Ãk , defined in our Eq. (30), by its integral approximation.

Here we have focused on the Moran model of a well-mixed population with over-
lapping generations. The Nw and wN limits can also be applied to other models,
where they may lead to novel questions or shed new light on existing results. Instead
of Moran updating, one can consider Wright–Fisher updating (Fisher 1930; Wright
1931; Imhof and Nowak 2006), in which generations are non-overlapping. In the case
of a constant selection coefficient s > 0, Haldane (1927) obtained the well-known
approximation ρ ≈ 2s.We expect that this approximationwill be asymptotically exact
in the Nw limit. For the wN limit, results of Imhof and Nowak (2006) imply

ρ ∼ 1

N
+ s + o(s)
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for constant selection, and more generally,

ρA ∼ 1

N
+ w

3
(a + 2b − c − 2d) + o(w)

for an arbitrary 2 × 2 matrix game (1). The pairwise-comparison process is another
model of evolutionary game dynamics for which some limit results have been derived
(Traulsen et al. 2005, 2006a, 2007;Wu et al. 2010, 2013, 2015). TheMoran,Wright–
Fisher, and pairwise comparison models all fall into a class of exchangeable selection
models considered by Lessard and Ladret (2007), who derived general results that we
can now recognize as pertaining to the wN limit. Finally, one can consider structured
populations in which individuals occupy vertices of a graph (Ohtsuki et al. 2006;
Szabó and Fáth 2007; Allen and Nowak 2014). For the case of the cycle (Ohtsuki and
Nowak 2006), the wN and Nw limits were studied by Jeong et al. (2014), although
without formal definitions andwithout consideringborderline cases. For regular graphs
of degree greater than two, there are results that appear to pertain to the wN limit
(Ohtsuki et al. 2006; Chen 2013; Allen and Nowak 2014), but the Nw limit remains
open.

Our results were obtained via exact computation of fixation probabilities according
to Eq. (3). Alternatively, one can use the diffusion approximation (Kimura 1964;
Helbing 1996; Traulsen et al. 2006a, b; Bladon et al. 2010), inwhich a finite-population
process is approximated by a stochastic differential equation of Langevin form,

ẋ = a(x) + b(x)ξ, (66)

where x represents the frequency of type A, ξ is uncorrelated Gaussian white noise
with variance 1, and both a(x) and b(x) vanish at the endpoints x = 0, 1. The first
term of Eq. (66) represents directional selection, while the second represents ran-
dom genetic drift. The Moran, Wright–Fisher, and pairwise comparison models can
all be approximated this way. In the diffusion context, the product Nw appears to
determine how the dynamics behave under the large-population and weak-selection
limits. If Nw → ∞ as N → ∞ and w → 0, the second term in Eq. (66) vanishes
and the dynamics become deterministic (Traulsen et al. 2005). If instead Nw → 0,
stochasticity is preserved (Traulsen et al. 2006b). An important question, still under
active investigation (Lessard and Ladret 2007; Saakian and Hu 2016), is to determine
conditions under which the diffusion approximation is asymptotically exact.

The Nw and wN limits represent two extremes out of the infinitely many ways
to combine the large-population and weak-selection limits. In the most general case,
one considers an arbitrary sequence of pairs {(w j , N j )}∞j=1 such that w j → 0 and
N j → ∞ as j → ∞. It may be supposed that results for other limiting schemes
will lie between the Nw and wN extremes in some sense. Based on results from
the diffusion approximation (Traulsen et al. 2006b) and other approaches (Lessard
and Ladret 2007), it appears plausible that the Nw results extend to all limits with
Nw → ∞ and the wN results extend to all limits with Nw → 0, but we have not
shown this formally.
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1316 C. Sample, B. Allen

Finally, we caution that results obtained in the weak selection limit—either alone
or combined with other limits—do not always extend to stronger selection (Wu et al.
2010, 2013). Indeed, when there are more than two strategies, it is possible to find
one ranking of strategies for both the weak selection and strong selection limits, but
a different ranking for intermediate selection strengths (Wu et al. 2013). Such results
underscore the need to assess selection strength when applying evolutionary game-
theoretic results to biological populations.
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