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1 Introduction

In this paper we investigate, theoretically and numerically, the minimal time control,
viaOptogenetics, of somewidely used finite-dimensional deterministic neuronmodels
such as the Hodgkin–Huxley model (Hodgkin and Huxley 1952), the Morris–Lecar
model (Lecar and Morris 1981) and the FitzHugh–Nagumo model (FitzHugh 1961).
Control of neuron models has been addressed in the literature in different ways. One
popular way to investigate this problem is to look at phase reductions of non-linear
evolution systems, consisting of reducing the system of equations to a single first-order
differential equation (Brown et al. 2004; Nabi and Moehlis 2011). Integrate-and-
fire models, which are also a simplification of nonlinear systems to single first-order
linear differential equations, receiving stochastic inputs, have been studied in Feng
and Tuckwell (2003) in order to minimize the variance of the membrane potential,
arguably linked to the variance of the final time, while reaching a given membrane
potential threshold in fixed time. These simplifications allow the authors to obtain a
nice analytic expression for the optimal control. Stochastic integrate-and-fire models
have also been used in Lolov et al. (2014) to find an optimal electrical stimulation to
spike in a desired time, a problem close to ours, with numerical computation purposes.

All these studies were exclusively based on control via electrical stimulation. Opto-
genetics allows a control of excitable cells of a different nature. This recent and thriving
technique is based on light stimulation (Deisseroth 2011, 2015; Boyden 2015). It has
as its cornerstone the genetical modification of excitable cells for them to express new
ion channels whose opening and closing are triggered by the absorption of photons.
In particular, it is able to target specific populations of neurons. Indeed, by designing
viruses that will aim at these populations only, the light stimulation will have no effect
on the other populations that do not express the new ion channels. This makes Opto-
genetics a noninvasive technique, in contrast to electrical stimulation that reaches a
whole volume of tissue, regardless of the types of neurons that populate this volume.
Furthermore, optical devices such as optic fibers and lasers allow light to reach deeply
embedded populations of neurons. It then provides Optogenetics with a tremendous
advantage over electrical stimulation in the exploration of neural tissues and neural
functions. The risk of tissue damage is also decreased with this technique. The per-
spectives of applications inmedicine are thus colossal with, among others, the promise
to help understand and treat Alzheimer’s disease (Ryan et al. 2015), Parkinson’s dis-
ease (Chen et al. 2015), epilepsy (Paz and Huguenard 2015), vision loss (Gaub 2015),
narcolepsy (Adamantidis et al. 2007) and even depression (Lobo et al. 2012).

Ourwork is based on one of these light-gated ion channels calledChannelrhodopsin
(ChR2). It is a depolarizing non-selective cation channel that opens upon a stimulation
with blue light. One of the neural events that contains a lot of information is the latency
time between two consecutive action potentials or spikes (a large depolarization of the
membrane potentialwhen it goes beyond some threshold).Herewewant to specifically
address the time optimal control of the first spike in various neuron models, for two
different mathematical models of ChR2 introduced in Nikolic et al. (2009). Indeed,
the mathematical formulation of this problem is really close to the one of the optimal
control of the latency time between two spikes. In particular, the investigation of
singular trajectories is the same. To the best of our knowledge, this optimal control
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problem has never been studied before, neither in terms of electrical stimulation, nor
in terms of light stimulation.

In Sect. 2 we set the mathematical framework of conductance-based neuron models
andwe recall some results ofminimal time control problems for affine control systems,
and the role of singular controls. We then present in Sect. 3 the mathematical model
of ChR2 and how the resulting models can be incorporated in conductance-based
models. We apply our results to various neuron models in Sect. 4. For the ChR2-3-
state model, we prove that there are no singular optimal controls for two-dimensional
models (FitzHugh–Nagumo, Morris–Lecar, reduced Hodgkin–Huxley models) and
we give the expression of the bang–bang optimal control. We illustrate these results
with numerical computations of the optimal controls by means of a direct method.
For the ChR2-4-states model, we numerically observe optimal bang–bang controls.
Along the review of the different models, we insist on how optimal control appears
as a great tool to discuss and compare neuron models. In particular, it emphasizes a
peculiar behavior of the Morris–Lecar model, compared to the other ones, and gives
a new argument in favor of the reduced Hodgkin–Huxley model.

Although we focus in this paper on neuron models, our treatment of conductance-
based model can be applied to any excitable cells such as cardiac cells for example
[see Wong et al. (2012) for a work on application of Optogenetics in cardiac cells for
simulation purposes].

2 Preliminaries

2.1 Conductance based models

Conductance based models form a popular class of simple biophysical models used to
represent the activity of an excitable cell, such as a neuron or a cardiac cell. The prin-
ciple is to give an equivalent circuit representation of the cell by assigning an electrical
component to each meaningful biological component of the cell. Finite-dimensional
conductance-based models represent the cell as a single isopotential electrical com-
partment. The lipid bilayer membrane of the cell is represented by a capacitance
C > 0. Across the membrane are disposed voltage-gated ion channels, represented
by conductances gx > 0 whose values depend on the type x of the channel. An ion
channel is a protein that constitutes a gate across the membrane. It has the ability to let
ions flow across the membrane or to prevent them from doing so. Ion channels are said
selective in the sense that they act as a filter of certain types of ions. The main types
of ion channel are potassium (K +) channels, sodium (Na+) channels and calcium
(Ca2+) channels. The ion flows are driven by electrochemical gradients represented
by batteries whose voltages Ex ∈ R equal the membrane potential corresponding
to the absence of ion flow of type x . For that reason, they are called equilibrium
potentials. The sign of the difference between the membrane potential and Ex gives
the direction of the driving force. The channels are all called voltage-gated because
their opening and closing depend on the potential difference across the membrane.
This means that the conductances gx are variable conductances, depending on the
membrane potential.
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Fig. 1 Ion channel of type xi
with C a closed state and O an
open state

C O

αxi(V )

βxi(V )

The ion flow across the membrane generates an electrical current in the circuit,
the possible movements of ions inside the cell being neglected. To each type x of ion
channels is associated a macroscopic ion current Ix . The total membrane current is
the sum of the capacitive current and all of ionic currents considered. In all models we
consider in this paper, the ionic currents include a leakage current that accounts for
the passive flow of some other ions across the membrane. This current is associated
to a fixed conductance gL and is always denoted by IL .

Every macroscopic ion current Ix is the result of the ion flow through all the ion
channels of type x . Since the number of ion channels in an excitable cell is very large,
the macroscopic conductance gx is a function of the probability nx ∈ [0, 1] that a
channel of type x opens. In fact, the channels of type x are constituted by several
subpopulations of gates that have different dynamics. Let kx ∈ N

∗ be the number
of subpopulations of the channels of type x and write (nx1 , . . . , nxkx

) ∈ [0, 1]kx the
probabilities that each gate of the subpopulation opens, that is, nxi represents the
probability that a gate of type xi opens. The time evolution of these probabilities
in each subpopulation depends on the membrane potential and is of first order. For
i ∈ {1, . . . , kx }, it is represented on Fig. 1, and the dynamical system governing nxi

is the following

ṅxi (t) = αxi (V )(1 − nxi ) − βxi (V )nxi , (2.1)

where αxi and βxi are smooth functions of the membrane potential V .
This dynamics can be easily interpreted as follows : when the potential across the

membrane is equal to V , ion channels in the subpopulation of type xi open at rate
αxi (V ) and close at rate βxi (V ).

The macroscopic conductance gx is then given by

gx (nx ) = ḡx fx (nx1 , . . . , nxkx
),

where ḡx is the maximum conductance of the channel (i.e., the conductance when all
the channels of type x are open) and fx is a smooth function depending on the type
of the channel.

The macroscopic current Ix of type x is given by Ohm’s law. Taking into account
the equilibrium potential Ex , we get

Ix = gx (V − Ex )

= ḡx fx (nx1 , . . . , nxkx
)(V − Ex ).
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Fig. 2 Equivalent circuit for a conductance-based model with two types of channels

In Fig. 2 below we give the example of a conductance-based model with two types of
channels with conductances g1 and g2.

The total current Itot is given by

Itot = I + I1 + I2 + IL ,

where I = C dV
dt , I1,2 = g1,2(V )(V − E1,2) and IL = gL(V − EL).

The first conductance-based model dates back to the seminal work of Hogkin and
Huxley (1952) on the squid giant axon. In voltage-clamp experiments (i.e., experi-
ments in which the membrane potential was held fixed), they showed how the ionic
currents could be interpreted in terms of changes in Na+ and K + conductances.
From the experimental data, they inferred the dependencies, on the membrane poten-
tial and the time, of these conductances. The resulting mathematical model became
very popular because it was able to reproduce all key biophysical properties of an
action potential. The K + channels are composed of a single population. Let us denote
by n the probability that a channel of type K + opens. The K + conductance is given
by

gK = ḡK n4.

The population of Na+ is composed of two subpopulations and we write m and h the
corresponding probabilities that a certain type of gate opens. The Na+ conductance
is given by

gNa = ḡNam3h.

The total membrane current Itot is then given by

Itot = C
dV

dt
+ ḡK n4(V − EK ) + ḡNam3h(V − ENa) + gL(V − EL),
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with V the membrane potential. If an external current Iext is applied to the cell, we
can write the dynamic system (HH) for the evolution of the membrane potential

(H H)

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

CV̇ (t) = ḡK n4(t)(EK − V (t)) + ḡNam3(t)h(t)(ENa − V (t))

+ gL(EL − V (t)) + Iext (t),

ṅ(t) = αn(V (t))(1 − n(t)) − βn(V (t))n(t),

ṁ(t) = αm(V (t))(1 − m(t)) − βm(V (t))m(t),

ḣ(t) = αh(V (t))(1 − h(t)) − βh(V (t))h(t).

The expression of the functions αx and βx and the numerical values of the constants
can be found in “Appendix 2”.

To end this section, we give a formal mathematical definition of what we will refer
to as a conductance-based model in the sequel.

Definition 1 Conductance based model. Let n ∈ N
∗. Let also k ∈ N

∗ and for all
i ∈ {1, . . . , k}, let ji ∈ N

∗ such that
∑k

i=1 ji = n − 1. We call n-dimensional
conductance-based model the following dynamical system in Rn

ẋ1(t) = 1

C

(
k∑

i=1

ḡi fi (x1+ j1+···+ ji−1+1(t), . . . , x1+ j1+···+ ji−1+ ji (t)) (Ei − x1(t))

)

,

with the convention that 1+ j1+· · ·+ ji−1+1 = 2 and1+ j1+· · ·+ ji−1+ ji = 1+ j1 for
i = 1, and that 1+ j1+· · ·+ ji−1+1 = 1+ j1+1 and1+ j1+· · ·+ ji−1+ ji = 1+ j1+ j2
for i = 2. The dynamics of the gating variables is then defined, for l ∈ {2, . . . , n}, by

ẋl(t) = αl(x1(t))(1 − xl(t)) − βl(x1(t))xl(t),

where C > 0 and for all i ∈ {1, . . . , k} and l ∈ {2, . . . , n}
• ḡi > 0, fi : [0, 1] ji → R+ is a smooth function,
• αl , βl : R → R are smooth functions such that for all v ∈ R, αl(v) + βl(v) �= 0.

We finally require that the previous dynamical system exhibits an equilibrium point
x∞ ∈ R

n , that we call resting state, defined by the following equations

x∞
l = αl(x∞

1 )

αl(x∞
1 ) + βl(x∞

1 )
, ∀l ∈ {2, . . . , n},

and

0 =
k∑

i=1

ḡi fi

(
x∞
1+ j1+···+ ji−1+1, . . . , x∞

1+ j1+···+ ji−1+ ji

) (
Ei − x∞

1

)
.

Conductance based models are uniquely defined onR+. The initial conditions y ∈ R
n

that we consider are physiological conditions with y1 in a physiological range for
the membrane potential of the cell considered, basically y1 ∈ [Vmin, Vmax ] with
−∞ < Vmin < Vmax < +∞, and yi ∈ [0, 1] for all i ∈ {2, . . . , n}.
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Based on Definition 1, the Hodgkin–Huxley model (HH) defined above is 4-
dimensional conductance based model with 2 types of ion channels (k = 2, and
j1 = 1 for the potassium channel, and j2 = 2 for the sodium channel). We also have
f1(n) = f1(x2) = x42 , and f2(m, h) = f2(x3, x4) = x33 x4.

2.2 The Pontryagin Maximum Principle for minimal time single-input affine
problems

In this section we recall how the necessary optimality conditions of the Pontryagin
Maximum Principle conveniently read for the specific affine problem that we investi-
gate in the sequel. We first define the minimal time affine control problem and embed
it in a general optimal control problem. We then show how the first-order optimality
conditions of the Pontryagin Maximum Principle can be understood under the light of
the well-known Lagrange multipliers rule. We refer the reader to Trélat (2012) for a
short survey on optimal control, from theoretical and numerical points of view. Finally,
we apply these first-order conditions to the minimal time affine control problem.

2.2.1 The minimal time single-input affine control problem

Consider the minimal time problem for a smooth single-input affine system:

ẋ(t) = F0(x(t)) + u(t)F1(x(t)), x(0) = xeq ∈ R
n, (2.2)

where x(t) ∈ R
n and xeq is a solution of F0(x) = 0 (i.e., an equilibrium point for the

uncontrolled system). The control domain U := [0, umax ] is a segment of R+, with
umax > 0. The state variable must satisfy the final condition x(t f ) ∈ M f where

M f := {x ∈ R
n|x1 = V f },

with V f > 0 a given constant that will later correspond to the potential of a spike. The
set of admissible controls, denoted Uad , is the subset of the measurable applications
from R+ to U , denoted by L(R+, U ), such that (2.2) has a unique solution on R+.

We introduce the Hamiltonian H : R
n × R

n × R− × U → R defined for
(x, p, p0, u) ∈ R

n × R
n × R− × U by

H(x, p, p0, u) := 〈p, F0(x)〉 + u〈p, F1(x)〉 + p0, (2.3)

where 〈·, ·〉 is the scalar product on R
n , p ∈ R

n is the adjoint vector and p0 ≤ 0 a
non-positive number.

2.2.2 The Pontryagin Maximum Principle for general optimal control problems

The control problemof the previous section is a particular case of the following optimal
control problem. Let n and m be nonzero integers. Consider on Rn the control system

ẋ(t) = f (t, x(t), u(t)), (2.4)
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574 V. Renault et al.

where f : R × R
n × R

m → R
n is C1, and where the controls are bounded and

measurable functions, defined on intervals [0, T (u)] of R+ and taking their values
in a subset U of Rm . Let M0 and M1 be two subsets of Rn . Denote by Uad the set
of admissible controls such that the corresponding trajectories steer the system from
an initial point of M0 to a final point in M1. For such a control u, the cost of the
corresponding trajectory xu(·) is defined by

C(t f , u) :=
∫ t f

0
f 0(t, xu(t), u(t))dt + g(t f , xu(t f )), (2.5)

where f 0 : R × R
n × R

m → R and g : R × R
n → R are C1. We investigate the

optimal control problem of determining a trajectory xu(·) solution of (2.4), associated
with a control u on [0, t f ], such that xu(0) ∈ M0, xu(t f ) ∈ M1, and minimizing the
cost C . The final time t f can be fixed or not. The affine minimal time problem can
then be defined by f (t, x, u) = F0(x) + uF1(x), and f 0 = 1, and g = 0.

Definition 2 The end-point mapping E : Rn × R+ × Uad → R
n of the system is

defined by E(x0, T, u) = x(x0, T, u), where t → x(x0, t, u) is the trajectory solution
of (2.4), corresponding to the control u, such that x(x0, 0, u) = x0.

In terms of the end-point mapping, the optimal control problem under consideration
can be written as the infinite-dimensional minimization problem

min{C(t f , u) | x0 ∈ M0, E(x0, t f , u) ∈ M1, u ∈ L∞(0, t f ; U )}, (2.6)

where L∞(0, t f ; U ) denotes the set of measurable and bounded functions u :
(0, t f ) → U .

We also introduce here a formal definition for singular controls, a notion that we
will deeply investigate in the sequel.

Definition 3 A trajectory x(·), associated with a control u(·) on [0, t f ], is said to be
singular if it is a singular point of the end-point mapping, that is, if the rank of the
linear continuous mapping

∂ E

∂u
(x(0), t f , u) : L∞(0, t f ;Rm) −→ R

n

is less than n.

Assume for one moment that we are in the simplified situation where M0 = {x0},
M1 = {x1}, T is fixed, and U = R. That is, we consider the optimal control problem
of steering system (2.4) from the initial point x0 to the final point x1 in time T and
minimizing the cost (2.5) among controls u ∈ L∞([0, T ],Rm). In that case, the
optimization problem (2.6) reduces to

min
E(x0,T,u)

C(T, u). (2.7)
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Now, according to the Lagrange multipliers rule (and using the C1 regularity of our
data), if u is optimal, then there exists (ψ,ψ0) ∈ R

n × R \ {0} such that

ψ · d Ex0,T (u) = −ψ0dCT (u). (2.8)

Note that, if one defines the Lagrangian LT (u, ψ,ψ0) := ψ · Ex0,T (u) + ψ0CT (u),
then this first-order necessary condition for optimality is written in the usual form as

∂LT

∂u

(
u, ψ,ψ0

)
= 0. (2.9)

The first-order condition (2.9) is in this form not much tractable for practical purposes.
The general version of the Pontryagin maximum principle, which is valid without
the above restrictions (and in particular, which is valid under control constraints),
parametrizes in some sense the condition (2.9) along the trajectory for the general
control problem and reads as follows (see Pontryagin et al. 1974; Trélat 2008).

Theorem 1 If the trajectory x(·), associated to the optimal control u on [0, t f ], is
optimal, then it is the projection of an extremal (x(·), p(·), u(·)) (called extremal lift),
where p0 ≤ 0, and p(·) : [0, t f ] → R is an absolutely continuous mapping, called
adjoint vector, with (p(·), p0) �= (0, 0), such that

ẋ(t) = ∂H
∂p

(t, x(t), p(t), p0, u(t)), ṗ(t) = −∂H
∂x

(t, x(t), p(t), p0, u(t))

almost everywhere on [0, t f ], where

H(t, x, p, p0, u) := 〈p, f (t, x, u)〉 + p0 f 0(t, x, u)

is the Hamiltonian, and there holds

H(t, x(t), p(t), p0, u(t)) = max
v∈U

H(t, x(t), p(t), p0, v) (2.10)

almost everywhere on [0, t f ]. If moreover the final time t f to reach the target M1 is
not fixed, then one has the following condition at the final time t f :

max
v∈U

H(t f , x(t f ), p(t f ), p0, v) = −p0
∂g

∂t
(t f , x(t f )). (2.11)

Additionally, if M0 and M1 (or just one of them) are submanifolds ofRn locally around
x(0) ∈ M0 and x(t f ) ∈ M1, then the adjoint vector can be built in order to satisfy the
transversality conditions at both extremities (or just one of them)

p(0) ⊥ Tx(0)M0, p(t f ) − p0
∂g

∂x
(t f , x(t f )) ⊥ Tx(t f )M1, (2.12)

where Tx Mi denotes the tangent space to Mi at the point x.
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The relation between the Lagrange multipliers and (p(·), p0) is that the adjoint vector
can be constructed so that (ψ,ψ0) = (p(t f ), p0) up to some multiplicative scalar. In
particular, the Lagrange multiplier ψ is unique (up to a multiplicative scalar) if and
only if the trajectory x(·) admits a unique extremal lift (up to a multiplicative scalar).

2.2.3 Application to the minimal time single-input affine problem

We now come back to the affine minimal time problem that we defined in Sect.
2.2.1. For this problem, the Pontryagin Maximum Principle states that if the trajectory
t → x(t), t ∈ [0, t f ] associated with the admissible control u ∈ Uad is optimal
on [0, t f ], then there exists p : [0, t f ] → R

n absolutely continuous and p0 ∈ R−
such that (p, p0) is non zero and such that p satisfy the following equations, almost
everywhere in [0, t f ]:

ẋ(t) = ∂H
∂p

(x(t), p(t), p0, u(t)), ṗ(t) = −∂H
∂x

(x(t), p(t), p0, u(t)).

Moreover, the following maximum condition must be satisfied on [0, t f ]:

H(x(t), p(t), p0, u(t)) = max
v∈U

H(x(t), p(t), p0, v). (2.13)

In view of the initial and final conditions on the state variable, the transversality
condition on p(0) is empty and the one on p(t f ) gives

p1(t f ) = λ1 ∈ R, pi (t f ) = 0, ∀i ∈ {2, . . . , n}.

In our particular setting, the augmented systemdoes not depend on the time variable.
This implies that the right hand side of (2.13) is constant on [0, t f ]. Now since there
is no final cost and because the final time is not fixed, we get from (2.11)

max
v∈U

H(x(t f ), p(t f ), p0, v) = 0.

The two latter remarks imply that for all t ∈ [0, t f ]

H(x(t), p(t), p0, u(t)) = 0 = max
v∈U

H(x(t), p(t), p0, v), (2.14)

which can be written, in view of (2.3):

〈p(t), F0(x(t))〉 + u(t)〈p(t), F1(x(t))〉 + p0 = 0 (2.15)

= 〈p(t), F0(u(t))〉 + max
v∈U

v〈p(t), F1(x(t))〉 + p0. (2.16)
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In the case of single-input affine systems, the maximum condition (2.16) gives the
expression of the optimal control:

u(t) :=

⎧
⎪⎨

⎪⎩

umax , if 〈p(t), F1(x(t))〉 > 0,

0, if 〈p(t), F1(x(t))〉 < 0,

undetermined, if 〈p(t), F1(x(t))〉 = 0.

The function ϕ(t) := 〈p(t), F1(x(t))〉, whose sign gives the expression of the optimal
control is called the switching function. If it does not vanish on any subinterval I
of [0, t f ], the optimal control is a succession of constant controls called bang–bang
control. The switching times between the two constant modes are given by the change
of sign of the switching function ϕ. This conclusion fails if there exists a subinterval
I of [0, t f ] along which the switching function vanishes and this situation has to be
further investigated. It can easily be proved (Hamiltonian characterisation of singu-
lar trajectories, see, e.g., Trélat 2008, 2012) that, for the minimal time problem for
control-affine systems, an arc along which the switching function vanishes identically
is singular, in the sense of Definition 3.

Finally, the non-triviality of (p, p0) reduces in fact to the one of p because if
p(t) = 0 for a given t ∈ [0, t f ] then p0 = 0 because of (2.15).

The investigation of the existence of singular trajectories will be done later for
our different models but for now let us state that if there exists a subinterval I on
which the switching function vanishes, with u the corresponding control, then from
the Pontryagin Maximum Principle, (x, p, u) is the solution, on I , of the following
equations:

ẋ(t) = ∂H
∂p

(x(t), p(t), p0, u(t)),

ṗ(t) = −∂H
∂x

(x(t), p(t), p0, u(t)), 〈p(t), F1(x(t))〉 = 0.

3 Control of conductance-based models via optogenetics

In this section we consider a general conductance-based model in R
n , with n ∈ N

∗,
of the form

ẋ(t) = f0(x(t)), t ∈ R+, x(0) = x0 ∈ D ⊂ R
n, (3.1)

with f0 a smooth vector field in Rn and D physiological domain.
Optogenetics is a recent and innovative technique which allows one to induce or

prevent electric shocks in living tissue, by means of light stimulation. Successfully
demonstrated in mammalian neurons in 2005 (Boyden et al. 2005), the technique
relies on the genetic modification of cells in order for them to express particular ionic
channels, called rhodopsins, whose opening and closing are directly triggered by
light stimulation. One of these rhodopsins comes from an unicellular flagellate algae,
Chlamydomonas reinhardtii, and has been christened Channelrodhopsins-2 (ChR2).
It is a cation channel that opens when illuminated with blue light.
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Fig. 3 ChR2 three states model
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Fig. 4 ChR2 four states model
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Since the field is very young, themathematicalmodeling of the phenomenon is quite
scarce. Some models have been proposed, based on the study of the photocycles that
the channel go through when it absorbs a photon (see Nikolic et al. (2006) and Nikolic
et al. (2009) for a 3-states model and Hegemann et al. (2005) for a 4-states model).
In Nikolic et al. (2009), the authors study two models for the ChR2 that are able to
reproduce the photocurrents generated by the light stimulation of the channel. Those
models are constituted by several states that can be either conductive (the channel is
open) or non-conductive (the channel is closed). Transitions between those states are
spontaneous, depend on the membrane potential or are triggered by the absorption of a
photon. This kind of model has already been used to simulate photocurrents in cardiac
cells. In Wong et al. (2012), the authors include ChR2 photocurrents into an infinite
dimensional model and use finite differences and elements to simulate the system.
The optimal control of such a system is not investigated in this paper. Here we are
interested in both 3-states and 4-states models of Nikolic et al. (2009). The 3-states
model has one open state o and two closed states c and d while the 4-states model
has two open states o1 and o2, and two closed states c1 and c2. Their transitions are
represented on Figs. 3 and 4.

In the 3-states model, the transition from the dark adapted close state c and the
open state o is controlled by a function u(t), proportional to the intensity of the
light applied to the neuron. In our model, the intensity is then the control variable.
The transition from the open state to the light adapted close state d is spontaneous
and has a time constant very small in front of the one of the transition from d to c
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(i.e. 1/Kd << 1/Kr ). This last transition represents the fact that the protein has to
regenerate before being able to go through a new cycle. The 4-states model can be
similarly interpreted. The transitions from closed states to open states are triggered by
light stimulation and all the other transitions are independent of the intensity of the
light applied to the neuron. Hence, ε1, ε2, e12, e21, Kd1, Kd2 and Kr are all positive
constants. This constitutes our general assumption on the models we study. Indeed,
we assume that the transitions from closed states to open states depend linearly on
the light and that all the others are independent of the light. This assumption is not
too strong since it leads to models that still reproduce the shape of the photocurrents
produced by the channel, and experimentally measured. Furthermore, it makes our
control system affine. The dynamical system based on Figs. 3 and 4 is given by

{
ȯ(t) = u(t)(1 − o(t) − d(t)) − Kdo(t),

ḋ(t) = Kdo(t) − Kr d(t),
(3.2)

and

⎧
⎪⎨

⎪⎩

ȯ1(t) = ε1u(t)(1 − o1(t) − o2(t) − c2(t)) − (Kd1 + e12)o1(t) + e21o2(t),

ȯ2(t) = ε2u(t)c2(t) + e12o1(t) − (Kd2 + e21)o2(t),

ċ2(t) = Kd2o2(t) − (ε2u(t) + Kr )c2(t).
(3.3)

In the 3-states model, the conductance of the ChR2 channel is assumed to be propor-
tional to the probability o(t) that the channel opens, so that the ion current associated
to ChR2 channels is given by

ICh R2(t) = gCh R2o(t)(VCh R2 − v(t)),

with v the membrane potential of the channel, gCh R2 the maximal conductance of the
channel and VCh R2 the equilibrium potential of the channel. See “Appendix 3” for the
numerical computation of these constants. In the 4-states model, the open states are
assumed to be of different conductivity so that

ICh R2(t) = gCh R2(o1(t) + ρo2(t))(VCh R2 − v(t)),

withρ ∈ (0, 1).We can now include these twomodels ofChR2 in a conductance-based
model defined in the previous section.

Definition 4 (i) We call ChR2-3-states controlled conductance-basedmodel, the sys-
tem given by

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ẋ(t) = f0(x(t)) + 1

C
gCh R2o(t)(VCh R2 − x1(t))e1,

ȯ(t) = u(t)(1 − o(t) − d(t)) − Kdo(t),

ḋ(t) = Kdo(t) − Kr d(t),

(3.4)
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with e1 = (1, 0, . . . , 0) ∈ R
n . We rewrite this system in Rn+2 in the affine form

ẏ(t) = f̃0(y(t)) + u(t) f1(y(t)), t ∈ R+, (3.5)

with y(·) = (x(·), o(·), d(·)), f̃0(y) = ( f0(x) + 1
C gCh R2o(t)(VCh R2 −

x1(t))e1,−Kdo, Kdo−Kr d), and f1(y) = (1−o−d)∂o, where ∂o is the derivative
with respect to the variable o.

(ii) We call ChR2-4-states controlled conductance-based model, the system given by

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ẋ(t) = f0(x(t)) + 1

C
gCh R2(o1(t) + ρo2(t))(VCh R2 − x1(t))e1,

ȯ1(t) = ε1u(t)(1 − o1(t) − o2(t) − c2(t)) − (Kd1 + e12)o1(t) + e21o2(t),

ȯ2(t) = ε2u(t)c2(t) + e12o1(t) − (Kd2 + e21)o2(t),

ċ2(t) = Kd2o2(t) − (ε2u(t) + Kr )c2(t).
(3.6)

We also rewrite the system in Rn+3,

ż(t) = f̂0(z(t)) + u(t) f2(z(t)), t ∈ R+, (3.7)

with z(·) = (x(·), o1(·), o2(·), c2(·)),

f̂0(z) = ( f0(x) + 1

C
gCh R2(o1(t) + ρo2(t))(VCh R2 − x1(t))e1

− (Kd1 + e12)o1 + e21o2, e12o1 − (Kd2 + e21)o2, Kd2o2),

and

f2(z) = ε1(1 − o1 − o2 − c2)∂o1 + ε2c2∂o2 − ε2c2∂c2 .

Notation Let k ∈ N
∗. We use two ways to write a vector field F : Rk → R

k . For
x ∈ R

k , we write either

• F(x) = (F1(x), . . . , Fk(x)), or
• F(x) = F1(x)∂1 + · · · + Fk(x)∂k ,

where Fi : Rk → R is the i th coordinate of F and ∂i is the partial derivative along
the i th direction, for i ∈ {1, . . . , k}.
We already used this mixed notation in Definition 4 above. The second notation will
be useful for the computation of Lie brackets later in this paper.

Note that for a bounded measurable functions u : R+ → R and a starting point
((o0, d0), (o1, o2, c2)) ∈ R

2×R
3, the systems (3.2) and (3.3) admit a unique solution,

absolutely continuous onR+. Thus, for all bounded measurable function u : R+ → R

and all initial conditions y0 ∈ D × R
2 and z0 ∈ D × R

3, the systems (3.4) and (3.6)
have a unique solution, defined onR+ and such that x(·) is of class C1 and (o(·), d(·))
and (o1(·), o2(·), c2(·)) are absolutely continuous on R+.
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3.1 The minimal time spiking problem

The control problemwe are interested in here can be formulated for bothChR2models.
Consider a conductance-based neuron model in its resting state. If no light is applied
to the neuron (i.e. u ≡ 0) then the system stays in this resting state. We want to
find the optimal control that triggers a spike in minimum time when starting from the
resting state. To do so, let Vs > 0 be the membrane potential that we decide to be
corresponding to a spike. Since the control is proportional to the intensity of the light
applied to the neuron, the control spaceU will be a segment [0, umax ], with umax > 0.
Let xeq ∈ R

n a resting state of the conductance-based model. In the next two sections,
we formulate the mathematical problem for both ChR2 models.

3.1.1 The ChR2 3-states model

Let y0 = (xeq , 0, 0) ∈ R
n+2 be our starting point. The state (0, 0) for the system (3.2)

corresponds to a neuron being in the dark for quite a long period of time (i.e. all the
ChR2 channels are in the dark adapted closed state c). From y0, we then want to reach
in minimal time (denoted t f ) the manifold

Ms := {y ∈ R
n+2|y1 = Vs}.

As in Sect. 2.2 we define H : Rn+2 × R
n+2 × R− × U → R the Hamiltonian of the

system for (y, p, p0, u) ∈ R
n+2 × R

n+2 × R− × U by

H(y, p, p0, u) := 〈p, f̃0(y)〉 + u〈p, f1(y)〉 + p0. (3.8)

This control problem falls into the framework of Sect. 2.2. If there is no singular
extremal, the optimal control is bang–bang and is given by the sign of the switching
function. Let p : R+ → R

n+2 be the adjoint vector of the Pontryagin Maximum
Principle. The switching function reads, for t ∈ [0, t f ],

ϕ(t) := (1 − o(t) − d(t))po(t) or also (1 − yn+1(t) − yn+2(t))pn+1(t).

In the absence of singular extremals, if we write u∗ : [0, t f ] → U the optimal control,
then

u∗(t) = umax 1ϕ(t)>0, ∀t ∈ [0, t f ].

3.1.2 The ChR2 4-states model

We define here the same quantities for the 4-states model. Let z0 = (xeq , 0, 0, 0) ∈
R

n+3 be our starting point. From z0, we then want to reach in minimal time (denoted
t f ) the manifold

Ms := {z ∈ R
n+3|y1 = Vs}.
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The Hamiltonian H : Rn+3 × R
n+3 × R− × U → R is defined for (z, q, q0, u) ∈

R
n+3 × R

n+3 × R− × U by

H(y, q, q0, u) := 〈q, f̂0(z)〉 + u〈q, f2(z)〉 + q0. (3.9)

Let q : R+ → R
n+2 be the adjoint vector of the Pontryagin Maximum Principle. The

switching function writes, for t ∈ [0, t f ],

ψ(t) := ε1(1 − o1(t) − o2(t) − c2(t))qo1(t) + ε2c2(t)qo2(t) − ε2c2(t)qc2(t).

Singular extremals correspond to vanishing switching functions. We will treat the two
ChR2 models in a different way. Indeed, the 3-states model is theoretically tractable
and is the object of the following section. The 4-states will be investigated numerically.

3.2 The Goh transformation for the ChR2 3-states model

We state and prove here our main reduction result regarding the existence of optimal
singular controls for the ChR2-3-states control problem.

Theorem 2 The existence of optimal singular extremals in the spiking problem in
minimal time for the control system (3.4) is equivalent to the existence of optimal
singular extremals in the same problem but for the reduced system on R

n

ẋ = f0(x) + o f̃1(x),

where o is the control variable and f̃1(x) = 1
C gCh R2(VCh R2 − x1)e1.

Every nonlinear control system of the form ẋ = f (x, u) can be interpreted as an
affine one by making the transformation u̇ = v and considering the variable v as the
new control and the variable (x, u) as the new state variable. The inverse transforma-
tion, called the Goh transformation, is a great tool for the investigation of singular
extremals and will reveal itself fundamental here to show the absence of optimal
singular trajectories in the models we will consider later.

Notations To every couple of points y := (x, o, d) ∈ R
n+2 and p := (px , po, pd) ∈

R
n+2 we associate a couple of points of Rn+1 defined by ỹ := (x, d) and p̃ :=

(px , pd). Moreover, we write the corresponding reduced Hamiltonian H̃ defined for
(ỹ, p̃, p0) ∈ R

n+1 × R
n+1 × R− and o ∈ R by H̃(ỹ, p̃, p0, o) := 〈 p̃, f̃0(ỹ)〉 +

o〈 p̃, f̃1(ỹ)〉 + p0, where the vector field f̃0 remains unchanged (it did not depend
on the variable o) and the vector field f̃1 is defined, for all ỹ ∈ R

n+1, by f̃1(ỹ) :=
gCh R2(VCh R2 − ỹ1)∂1.

The following lemma is the first step to reduce the dimension of the system that
has to be considered to investigate the existence of singular extremals.
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Lemma 1 (y, p) is the projection, on the space of continuous functions from R+ to
R

n+2 × R
n+2, of a solution (y, p, u) of

ẏ(t) = ∂H
∂p

(y(t), p(t), p0, u(t)),

ṗ(t) = −∂H
∂y

(y(t), p(t), p0, u(t)), 〈p(t), f1(y(t))〉 = 0. (3.10)

if and only if po ≡ 0, ȯ = (1 − o − d)u − Kdo, and (ỹ, p̃) is a solution of

˙̃y(t) = ∂H̃
∂ p̃

(ỹ(t), p̃(t), p0, o(t)),

˙̃p(t) = −∂H̃
∂ ỹ

(ỹ(t), p̃(t), p0, o(t)), 〈 p̃(t), f̃1(ỹ(t))〉 = 0. (3.11)

This lemma shows that singular extremals of (3.4) are directly related to singular
extremals of the following, and still affine control system:

{
ẋ(t) = f0(x(t)) + gCh R2o(t)(VCh R2 − x1(t))e1,

ḋ(t) = Kdo(t) − Kr d(t),
(3.12)

where the control is now the variable o.
In the models that we are going to study in the sequel, we will see that this trans-

formation allows to conclude to the absence of optimal singular extremals.

Proof of Lemma 1 The proof comes from the general result of Section 1.9.4 of Bon-
nard and Kupka (1993) and the structure of our particular model. If we keep on writing
y = (x, o, d), system (3.10) gives on an interval I of [0, t f ]:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ = f0(x) + gCh R2o(VCh R2 − x1)e1,

ḋ = Kdo − Kr d,

ȯ = (1 − o − d)u − Kdo,

ṗx = −J t
f0 px + gCh R2 poe1,

ṗd = upo + Kr pd ,

ṗo = −gCh R2(VCh R2 − x1)px1 − Kd pd + (u + Kd)po,

0 = (1 − o − d)po,

(3.13)

where J t
f0
is the transpose of the Jacobian matrix of f̃0. For continuity reasons, we get

that either po ≡ 0 or (1−o−d) ≡ 0 on I . If (1−o−d) ≡ 0 then−Kr d = ȯ+ ḋ ≡ 0
so that d ≡ 0 and o ≡ 1. But d ≡ 0 ⇒ ḋ ≡ 0 so that ȯ ≡ 0 which is incompatible
with o ≡ 1, since ȯ = −Kdo. We conclude that, necessarily, po ≡ 0 on I . This
equality implies that ṗo ≡ 0 and from the penultimate equation of (3.13) we get
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−gCh R2(VCh R2 − x1)px1 − Kd pd ≡ 0 which also writes 〈 p̃, f̃1(ỹ)〉 ≡ 0. Now the
first two equations of (3.13) correspond to

˙̃y(t) = ∂H̃
∂ p̃

(ỹ(t), p̃(t), p0, o(t)),

and the 4th and 5th equations correspond to

˙̃p(t) = −∂H̃
∂ ỹ

(ỹ(t), p̃(t), p0, o(t)).

We just showed that (3.10) ⇒ (po ≡ 0 and (3.11)).
Suppose now that po ≡ 0 on I and that (3.11) is satisfied and let us show that (3.13)

is satisfied. The first two equations of (3.11) give the 1st, 2nd, 4th and 5th equations of
(3.13). Moreover, po ≡ 0 implies that the last equation of (3.13) is satisfied and that
ṗo ≡ 0. Taking into account that 0 ≡ 〈 p̃, f̃1(ỹ)〉 = −gCh R2(VCh R2−x1)px1 − Kd pd ,
we obtain the 6th equation of (3.13). Finally, the 3rd equation of (3.13) is satisfied as
a hypothesis, which ends the proof. ��
Proof of Theorem 2 The result of Lemma 1 is the first step of the proof. To finish up
with it, consider the spiking problem in minimum time for the reduced system (3.12)
: {

ẋ(t) = f0(x(t)) + gCh R2o(t)(VCh R2 − x1(t))e1,

ḋ(t) = Kdo(t) − Kr d(t),

We remark that the dynamics of the variables x and d are completely decoupled.
Furthermore, the targeted manifold is only defined by the location of variable x1.
These two remarks imply that an optimal control for system (3.12) has to be optimal
for the even more reduced control system :

ẋ(t) = f0(x(t)) + gCh R2o(t)(VCh R2 − x1(t))e1.

��

3.3 Lie bracket configurations for the ChR2 4-states model

In the case of the ChR2 4-states model, we will observe numerically that the optimal
control is bang–bang for various values of the maximum intensity umax . Here we
give the expression of the first Lie brackets, that we first define. Lie brackets are the
appropriate tool to investigate singular extremals. We give two equivalent definitions,
depending on the notation used for the vector fields.

Let k ∈ N
∗ and g, h : Rk → R

k two vector fields of class C1. Let (g1, . . . , gk) and
(h1, . . . , hk) their coordinate mappings. The Lie bracket [g, h] : Rk → R

k of g and
h is the vector field defined for x ∈ R

k by

[g, h](x) = Jh(x)g(x) − Jg(x)h(x),
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or equivalently by

[g, h](x) =
k∑

i=1

k∑

j=1

(
g j (x)∂ j hi (x) − h j (x)∂ j gi (x)

)
∂i ,

where Jh and Jg are the Jacobian matrices of h and g. The expression Jh(x)g(x) has
to be understood as the product of the k × k-matrix by the k-vector. Further in this
paper we will use the convenient notation

adh g := [h, g]

that allows to reduce expressions of multiple Lie brackets. Finally, one important
relation for the computation of singular controls is the following. Let (xu, p) be an
extremal pair of the Pontryagin maximum principle associated to a control u. Then
for any smooth vector field h : Rk → R

k and all t ∈ [0, t f ],
d

dt
〈p(t), h(xu(t))〉 = 〈p(t), [F0, h](xu(t))〉 + u(t)〈p(t), [F1, h](xu(t))〉. (3.14)

In most cases, a singular optimal control ū would have the expression

ū(t) =
〈q(t), ad2

f̂0
f2(z(t))〉

〈q(t), ad2f2 f̂0(z(t))〉
.

Indeed, if I is an interval of [0, t f ] on which the switching function ψ vanishes, then
for t ∈ I ,

ψ(t) = 0,

ψ̇(t) = 〈q(t), [ f̂0, f2](z(t))〉 = 0,

ψ̈(t) = 〈q(t), ad2
f̂0

f2(z(t))〉 − ū(t)〈q(t), ad2f2 f̂0(z(t))〉 = 0.

The expressions of [ f̂0, f2] and ad2f2 f̂0 are not complicated since these brackets have
non zero components only on the directions z1, zn+1, zn+2 and zn+3 (independently
of n ∈ N

∗), which we also write v, o1, o2 and c2. We will not give the expression
of ad2

f̂0
f2 because it is too long and of little interest since we will treat the problem

numerically. Let us just mention that it has non zero components on all the directions
of the state space Rn+3.

[ f̂0, f2](z) = −
(
ε1(1 − o1 − o2 − c2) + ε2ρc2

) 1

C
gCh R2(VCh R2 − v)∂v

+
(
ε1(1 − o1 − o2 − c2)(e12 + Kd1) + ε1Kd1o1

+ (ε1Kr − ε2e21)c2
)
∂o1
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+
(

− ε1(1 − o1 − o2 − c2)e12 + ε2Kd2o2

+ ε2(e21 + Kd2 − Kr )c2
)
∂o2

− ε2Kd2(o2 + c2)∂c2 ,

and

ad2f2 f̂0(z) = −
(
(ε1)

2(1 − o1 − o2 − c2) + (ε2)
2ρc2

) 1

C
gCh R2(VCh R2 − v)∂v

− ε1

(
ε1(1 − o1 − o2 − c2)(e12 + Kd1)

+ ε1Kd1o1 − (ε1Kr − ε2e21)c2
)
∂o1

−
(
(ε1)

2(1 − o1 − o2 − c2)e12 + (ε2)
2Kd2o2

+ (ε2)
2(−e21 + Kd2 − Kr )c2

)
∂o2

+ (ε2)
2Kd2(o2 + c2)∂c2 .

4 Application to some neuron models with numerical results

In this section, we apply the reduction results of Sect. 3.2 to some widely used models
and support our theoretical results with numerical results. These theoretical results
regard the ChR2-3-states model and we also investigate numerically the associated
ChR2-4-states models. The numerical results are obtained by direct methods based
on the ipopt routine Wächter and Biegler (2006) to solve nonlinear optimization
problems, and implemented with the ampl language Fourer et al. (2002). For a survey
on numerical methods in optimal control, see Trélat (2012). The numerical values used
for the ChR2-3-states and 4-states models are those in Appendix “The 3-state model”
and “The 4-states model” sections. For each neuron model that we study, namely the
FitzHugh–Nagumo model, the Morris–Lecar model and the reduced and complete
Hodgkin–Huxley models, we implement the direct method for the ChR2-3-states and
4-states models and compare them. We repeat the computation for several values of
the maximum control value in order to try to detect possible singular optimal controls.
Indeed, it would be possible that a singular optimal control only appears above some
threshold of the maximal control value. Nevertheless, no model numerically displays
such controls. We then compare the neuron models in terms of their behavior with
respect to optogenetic control. Physiologically, Channelrhdopsin has a depolarizing
effect on a neuronmembrane so that it is physiologically intuitive to expect thatweneed
to switch on the light to obtain a spike, and themore lightwe put in the system, the faster
the spike will occur. We propose to distinguish between two classes of models. The
first class comprises neuron models that display the intuitive physiological response
to optogenetic stimulation and the second class comprises neuron models that display
an unexpected response.
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4.1 The FitzHugh–Nagumo model

The FitzHugh–Nagumo model is not exactly a conductance-based model but a two-
dimensional simplification of the Hodgkin–Huxley model. This model takes its name
from the initial work of FitzHugh (1961) who suggested the system and Nagumo et al.
(1962) who gave the equivalent circuit. The idea was to find a simpler model that still
featured the mathematical properties of excitation and propagation.

The ChR2-3-states model The Ch R2-3-states controlled FitzHugh–Nagumo model
is

(F H N )

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

v̇(t) = v(t) − 1

3
v3(t) − w(t) + 1

C
gCh R2o(t)(VCh R2 − v(t)),

ẇ(t) = c(v(t) + a − bw(t)),

ȯ(t) = u(t)(1 − o(t) − d(t)) − Kdo(t),

ḋ(t) = Kdo(t) − Kr d(t),

where v is the membrane potential and w is a conductance-like variable that provides
a negative feedback, and a, b and c are constants. In the original model, the numerical
values of these constants were a = 0.7, b = 0.8 and c = 0.08. The adjoint equations
read

(F H Nad j )

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

ṗv(t) = −pv(t)(1 − v2(t) − 1

C
gCh R2o(t)) − cpw(t),

ṗw(t) = pv(t) + bcpw(t),

ṗo(t) = − 1

C
gCh R2(VCh R2 − v(t))pv(t) + (u(t) + Kd)po(t) − Kd pd (t),

ṗd (t) = u(t)po(t) + Kr pd(t),

and the switching function isϕ(t) = (1−o(t)−d(t))po(t). The following lemmagives
the optimal control for the minimal time control of the ChR2-controlled FitzHugh–
Nagumo model.

Proposition 1 The optimal control u∗ : R+ → U for the minimal time control of the
FitzHugh–Nagumo model is bang–bang and given by

u∗(t) = umax 1po(t)>0, ∀t ∈ [0, t f ].

Furthermore, the optimal control begins with a bang arc of maximal value, i.e.

∃t1 ∈ [0, t f ], u∗(t) = umax , ∀t ∈ [0, t1].

Proof Let us show that there is no optimal singular extremals. The results for
conductance-based models given in Sect. 3.2 are straightforwardly applicable to the
FitzHugh–Nagumo model, and the reduced control system is the following
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(F H N ′)

⎧
⎨

⎩

v̇(t) = v(t) − 1

3
v3(t) − w(t) + 1

C
gCh R2u(t)(VCh R2 − v(t)),

ẇ(t) = c(v(t) + a − bw(t)).

The adjoint equations for this system are

(F H N ′
ad j )

⎧
⎨

⎩

ṗv(t) = −pv(t)(1 − v2(t) − 1

C
gCh R2u(t)) − cpw(t),

ṗw(t) = pv(t) + bcpw(t).

The vector fields defining the affine system (F H N ′) are

f0(v,w) = (v − 1

3
v3 − w)∂v + c(v + a − bw)∂w,

f1(v,w) = 1

C
gCh R2(VCh R2 − v)∂v.

For the reduced system, the switching function is given by

φ(t) = 〈p(t), f1(v(t), w(t))〉 = 1

C
gCh R2(VCh R2 − v(t))pv(t).

Investigation of singular trajectories Assume that there exists an open interval I along
which the switching function vanishes. Then for all t ∈ I ,

〈p(t), f1(v(t), w(t))〉 = 0.

By continuity, thismeans that either v is constant and equals VCh R2 on I or pv vanishes
on I . The constant case is not possible since it implies from the dynamical system
(F H N ) that w would also be constant on I , but (VCh R2, w) is not an equilibrium
point of the uncontrolled system, for any w ∈ R. Then, necessarily, pv vanishes on
I . This implies that ṗv also vanishes and from (F H Nad j ), pw vanishes on I . This is
incompatible from the Pontryagin maximum principle.

We showed that the reduced system does not present any singular extremals and
from Theorem 2, the original system (F H N ) does not either. The optimal control
is then bang–bang and is given by the sign of the switching function of the original
system. Taking into account that for all t ∈ [0, t f ], 1 − o(t) − d(t) > 0 we get

u∗(t) = umax 1po(t)>0, ∀t ∈ [0, t f ].

Finally, to show that the first arc correspond to amaximal control, suppose that u∗(0) =
0. Then system (F H N ) stays in its resting state, contradicting time optimality. ��
We implement the direct method for this problem with a targeted action potential
Vs := 1.5 mV and a control evolving in [0, 0.1]. The numerical values of the con-
stants (a, b, c) are set to the usual values (0.7, 0.8, 0.08). Since this model is not
physiological, we chose the values for the constants C , gCh R2, VCh R2 and umax quite
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Fig. 5 In the absence of stimulation, the neuron stays in its resting state
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Fig. 6 Optimal trajectory and control for the FHN-ChR2-3-states model with umax = 0.5m s−1

arbitrarily, with the constraint that the behavior of the controlled system should not
stray away from the uncontrolled system. When the control is off, the system stays at
rest, as seen on Fig. 5.

We represent on Fig. 6 the evolution of the optimal trajectory of the membrane
potential and the optimal control. As predicted, the optimal control is bang–bang and
starts with a maximal arc. It has a unique switching time which means that there is no
need to keep the light on all the way to the spike, an interesting fact for the controller.
This optimal control can be qualified as physiological, the light must stay on until a
point where the system is “launched” toward the spike and no further illumination is
required.

123



590 V. Renault et al.

0 1 2 3 4 5 6 7 8
Time in ms

-1.5

-1

-0.5

0

0.5

1

1.5
Membrane potential

FHN+ChR2 3 States
FHN+ChR2 4 States

0 1 2 3 4 5 6 7 8
Time in ms

0

0.1

0.2

0.3

0.4

0.5

Control

FHN+ChR2 3 States
FHN+ChR2 4 States

Fig. 7 Optimal trajectory and bang–bang optimal control for the FHN-ChR2-3-states and FHN-ChR2-4-
states models with umax = 0.5m s−1

Table 1 Comparison of the FHN-ChR2-3-states and FHN-ChR2-4-states models for different values of
the maximum value of the control

Time to spike Time to the switch of light
(in m s) (in % of the time to spike)

umax (in m s−1) ChR2-3-states ChR2-4-states ChR2-3-states ChR2-4-states

0.5 7.625 7.164 84 83

1 5.870 5.585 80 78

10 3.980 3.721 71 69

100 3.780 3.491 70 67

The ChR2-4-states model The ChR2-4-states model gives the same shape of optimal
trajectory and control. We can compare the two ChR2 models and observe the results
for different values ofumax onFig. 7 andTable 1. Figure 7 shows the optimalmembrane
potential and the optimal control trajectories for umax = 0.5ms−1 and Table 1 gathers
the time to the first spike and the time to the switch of the optimal control, as a
percentage of the time to the spike. The ChR2-4-states model fires faster than the
ChR2-3-states. Furthermore, ChR2-4-states model requires less time in the light to fire
than the ChR2-3-states. This phenomenon seems to be independent of the maximal
value of the control. The gain is of around 6% in the four cases.

4.2 The Morris–Lecar model

The Morris–Lecar model is a reduced conductance-based model taking into account a
Ca2+ current for excitation and a K + current for recovery (Lecar andMorris 1981). It
comes from the experimental study of the oscillatory behavior of themembrane poten-
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tial in the barnacle muscle. The original model is of dimension 3, but it is conveniently
and commonly reduced to a two-dimensional model by invoking the fast dynamics of
the Ca2+ conductance with respect to the other variables. This conductance is then
replaced by its steady-state.

The ChR2-3-states model The ChR2-3-states controlledMorris–Lecar model is given
by

(M L)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ν̇(t) = 1

C

(
gK ω(t)(VK − ν(t)) + gCam∞(ν(t))(VCa − ν(t))

+ gCh R2o(t)(VCh R2 − ν(t)) + gL(VL − ν(t))
)
,

ω̇(t) = α(ν(t))(1 − ω(t)) − β(ν(t))ω(t),

ȯ(t) = u(t)(1 − o(t) − d(t)) − Kdo(t),

ḋ(t) = Kdo(t) − Kr d(t),

with

m∞(ν) = 1

2

(

1 + tanh

(
ν − V1

V2

))

,

α(ν) = 1

2
φ cosh

(
ν − V3

2V4

) (

1 + tanh

(
ν − V3

V4

))

,

β(ν) = 1

2
φ cosh

(
ν − V3

2V4

) (

1 − tanh

(
ν − V3

V4

))

,

where ν is the membrane potential, ω is the probability of opening of a K + channel
andm∞(ν) represents the steady state of the probability of opening of aCa2+ channel.
The numerical constants of themodel are given in “Appendix 1”. The adjoint equations
read

(M Lad j )

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ṗν(t) = 1

C
pν(t)

(
gK ω(t) + gCam∞(ν(t)) + gCh R2o(t) + gL − gCam′∞(ν(t))

)

− pω(t)
(
α′(ν(t))(1 − ω(t)) − β ′(ν(t))ω(t)

)
,

ṗω(t) = − 1

C
gK (VK − ν(t))pν(t) +

(
α(ν(t)) + β(ν(t))

)
pω(t),

ṗo(t) = − 1

C
gCh R2(VCh R2 − ν(t))pν(t) + (u(t) + Kd)po(t) − Kd pd (t),

ṗd (t) = u(t)po(t) + Kr pd (t),

and the switching function is again ϕ(t) = (1−o(t)−d(t))po(t). Proposition 2 gives
the same conclusion as Proposition 1 for the ChR2-controlled Morris–Lecar model.

Proposition 2 The optimal control u∗ : R+ → U for the minimal time control of the
Morris–Lecar model is bang–bang and given by

u∗(t) = umax 1po(t)>0, ∀t ∈ [0, t f ].

123



592 V. Renault et al.

Furthermore, the optimal control begins with a bang arc of maximal value

∃t1 ∈ [0, t f ], u∗(t) = umax , ∀t ∈ [0, t1].

Proof We apply the result of Theorem 2 and study the existence of singular extremals
for the following reduced system

(M L ′)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ν̇(t) = 1

C

(
gK ω(t)(VK − ν(t)) + gCam∞(ν(t))(VCa − ν(t))

+ gCh R2u(t)(VCh R2 − ν(t)) + gL(VL − ν(t))
)
,

ω̇(t) = α(ν(t))(1 − ω(t)) − β(ν(t))ω(t).

The adjoint equations for this system are

(M L ′
ad j )

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ṗν(t) = 1

C
pν(t)

(
gK ω(t) + gCam∞(ν(t)) + gCh R2u(t) + gL − gCam′∞(ν(t))

)

− pω(t)
(
α′(ν(t))(1 − ω(t)) − β ′(ν(t))ω(t)

)
,

ṗω(t) = − 1

C
gK (VK − ν(t))pν(t) + (α(ν(t)) + β(ν(t)))pω(t).

The vector fields defining the affine system (M L ′) are

f0(ν, ω) = 1

C

(
gK ω(VK − ν) + gCam∞(ν)(VCa − ν) + gL(VL − ν)

)
∂ν,

+
(
α(ν)(1 − ω) − β(ν)ω

)
∂ω

f1(ν, ω) = 1

C
gCh R2(VCh R2 − v)∂ν.

For the reduced system, the switching function is given by

φ(t) = 〈p(t), f1(ν(t), ω(t))〉 = 1

C
gCh R2(VCh R2 − ν(t))pν(t).

Investigation of singular trajectories Assume that there exists an open interval I along
which the switching function vanishes. Then for all t ∈ I ,

〈p(t), f1(v(t), w(t))〉 = 0.

As for the FitzHugh–Nagumo model, there is no ω ∈ [0, 1] such that (VCh R2, ω) is
an equilibrium point of the uncontrolled Morris–Lecar model, so that necessarily pω

vanishes on I . From (M L ′) we deduce that for all t ∈ I ,

pω(t)
(
α′(ν(t))(1 − ω(t)) − β ′(ν(t))ω(t)

)
= 0,
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Fig. 8 Representation of the manifold in which a singular trajectory must evolve

and since p cannot vanish on I then

α′(ν(t))(1 − ω(t)) − β ′(ν(t))ω(t) = 0.

This means that the singular extremal is localized in the domain A of R2 given by

A := {(ν, ω) ∈ R
2|α′(ν)(1 − ω) − β ′(ν)ω = 0}.

We can rewrite it in a more convenient way

A =
{

(ν, ω) ∈ R
2|ω = α′(ν)

α′(ν) + β ′(ν)
and ν �= V3

}

.

Domain A is represented on Fig. 8 below and it is easy to see that any trajectory of the
dynamical system (M L ′) has an empty intersection with A because for all (ν, ω) ∈ A,
ω ∈]−∞, 0[∪]1,+∞[, whereas the second component of the trajectory always stays
in [0, 1].

The end of the proof is similar to the proof of Proposition 1.

Remark 1 Let us briefly show how the investigation of singular trajectories for the
complete system before reduction is much more difficult. To do so, consider the con-
trolled Morris–Lecar model (M L) with its system of adjoint equations (M Lad j ) and
the vector fields defined for x = (ν, ω, o, d) ∈ R

4 by

F0(x) := 1

C

(
gK ω(VK − ν) + gCam∞(ν)(VCa − ν)
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+ ogCh R2(VCh R2 − ν) + gL(VL − ν)
)
∂ν

(
α(ν)(1 − ω) − β(ν)ω

)
∂ω − Kdo∂o + (Kdo − Kr d)∂d ,

and
F1(x) = (1 − o − d)∂o.

Proposition 3 Let (x, p, u) be a singular extremal of (M L) − (M Lad j ) on an open
interval I of [0, t f ]. Then, without any further assumption,

〈p(t), adk
F0

F1(x(t))〉 ≡ 0,

〈p(t), adk
F1

F0(x(t))〉 ≡ 0,

〈p(t), [F1, ad
2
F0

F1](x(t))〉 ≡ 0,

on I for all k ∈ {1, 2, 3}.
Keeping in mind that we already proved that there is no optimal singular control, if we
consider the system before reduction, Proposition 3 means that we need to consider
the following system of equations to rule out optimal singular extremals

〈p, [F0, ad
3
F1

F0]〉 + u〈p, ad4F1
F0〉 ≡ 0,

〈p, [F0, [F1, ad
2
F0

F1]]〉 + u〈p, ad2F1
(ad2F0

F1)〉 ≡ 0,

〈p, ad4F0
F1〉 + u〈p, [F1, ad

3
F0

F1]〉 ≡ 0,

on I .

Proof Let t ∈ I . From the equalities 〈p(t), F1(x(t))〉 = 0 and 〈p(t), [F0, F1](x(t))〉 =
0 we infer that

⎧
⎨

⎩

po(t) = 0,

1

C
gCh R2(VCh R2 − ν(t))pv(t) + Kd pd(t) = 0.

(4.1)

It can also be proved that ad3F1
F0 = −[F0, F1]. The rest of the equalities are all given

by (4.1). ��
For this model, we implemented the direct method with the numerical values of
“Appendx 1” and “The 3-states model” section. The targeted action potential has
been fixed to 30 mV.

The optimal control for the ChR2-3-states model is bang–bang and begins with
a maximal arc. For the numerical values of “Appendix 1” and “The 3-states model”
section, it displays three switching times.We represent on Fig. 9 the optimal trajectory
of the membrane potential and the optimal control, for the physiological value of the
maximal value control, computed in Appendix “The 3-states model” section, and
also the trajectory obtained under constant maximal stimulation, just to observe that
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Fig. 9 Optimal trajectory and bang–bang optimal control for the ML-ChR2-3-states model

Fig. 10 Optimal trajectory and bang–bang optimal control for theML-ChR2-3-statesmodelwith numerical
values of (Saint-Hilaire and Longtin 2004, Table 1). The constant stimulation fails to trigger a spike

the optimal control obtained is indeed better than the constant maximal stimulation.
Although the difference is very small, of the order of a millisecond, the calculated
stimulation still outperforms the constant maximal stimulation. In order to show that
the difference between the calculated optimal stimulation and the constant maximal
stimulation can be huge, we implement the direct method on a system with different
numerical values for the constants of the Morris–Lecar model (the Type I neuron
of (Saint-Hilaire and Longtin 2004, Table 1), see Table 6, in Appendix “The 3-states
model” section), and values for the ChR2-3-statesmodel remaining unchanged, except
for VCh R2 = 0.1mV. The result is striking, the constant stimulation even fails to trigger
a spike while the stimulation with three switching times makes the neuron fire (see
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Fig. 11 Optimal trajectory and bang–bang optimal control for theML-ChR2-3-statesmodelwith numerical
values of “Appendix 1” and V Ch R2 = 20 mV. The optimal control has only two switches
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Fig. 12 Optimal trajectory and bang–bang optimal control for the ML-ChR2-3-states and ML-ChR2-4-
states models with umax = 0.028m s−1 (physiological value)

Fig. 10). It is important to note that the presence of three switching times is not an
intrinsic characteristic of the Morris–Lecar model itself. Indeed, we can find optimal
controls with only two switches if we change the value for the equilibrium potential
of the ChR2, keeping all the other constants of the model unchanged (Fig. 11).

The ChR2-4-states model The shape of the optimal trajectory and control of theChR2-
4-states model correspond to the one of the ChR2-3-states model. Nevertheless, for
small values of umax , including the physiological value computed in Appendix “The
3-states model” section, the ChR2-3-states model fires faster than the ChR2-4-states
model whereas for larger values of umax , the opposite happens (see Fig. 12; Table
2). The threshold where this phenomenon happens is around the value umax = 0.1.
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Table 2 Comparison of the
ML-ChR2-3-states and
ML-ChR2-4-states models for
different values of the maximum
value of the control

Time to spike
(in m s)

umax (in m s−1) ChR2-3-states ChR2-4-states

0.028 61.42 62.20

0.1 59.47 60.02

1 54.77 53.40

10 53.67 51.46

Furthermore, the difference grows larger when umax increases. This is an unusual
behavior that suggests that theMorris–Lecar is less robust than the FitzHugh–Nagumo
model, or the Hodgkin–Huxely models, as we are going to see.

4.3 The reduced Hodgkin–Huxley model

Similarly to the reduction of the initial Morris–Lecar model, there exists a popular
reductionof theHodgkin–Huxleymodel to a 2-dimensional conductance-basedmodel.
This reduction is based on the observation that, on the one hand, the variablem is much
faster than the other twogating variables n and h, and on the other hand, the variable h is
almost a linear function of the variable n (h � a +bn, with a = 0.89, b = −1.1 being
a good fit, see Figs. 14 and 15). These observations lead to a new system of equations
derived from (H H) by setting the variable m in its stationary state m(t) = m∞(t) and
taking the variable h as above.

(H H2D)

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

C
dV

dt
= gK n4(t)(VK − V (t)) + gNam3∞(V )(a + bn(t))(VNa − V (t))

+ gL(VL − V (t)),

dn

dt
= αn(V (t))(1 − n(t)) − βn(V (t))n(t),

with m∞(v) = αm (v)
αm (v)+βm(v)

. It is important to note that, although the time constants
of the ion channels have been mathematically investigated (see for example Rubin
and Wechselberger 2008), the approximation of the variable h is purely based on
observation, and not on a rigorous mathematical reduction. Nevertheless, if the linear
approximation seems questionable when the membrane potential is held fixed (Fig.
13), it becomes quite remarkable when the whole system (HH) is considered as in Fig.
14 for a periodic behavior and Fig. 15 for a transitory behavior, with different initial
membrane potentials V0. The different behaviors are obtained by tuning the external
current Iext that is applied.

The ChR2-3-states model In terms of singular controls, this model behaves similarly
to the Morris–Lecar model. There is no singular extremal for the same reasons, and
the optimal control is bang–bang with the same expression (the proof is exactly the
same). The direct method is implemented with the numerical values of “Appendix

123



598 V. Renault et al.

Fig. 13 Linear approximation of the variable h when the membrane potential is held fixed at −30, 0, 30
and 60mV

2” and “The 3-states model” section, the targeted action potential has been fixed to
90mV. The optimal control is physiological here and has in fact no switching time,
the light has to be on all the way to the spike (see Fig. 16).

The ChR2-4-states model The ChR2-4-states model is interesting because it shows
that the Hodgkin–Huxley behaves in the opposite way of the Morris–Lecar model.
Indeed, the ChR2-4-states model fires slightly faster than the ChR2-3-states model,
and requires less light, for small values of umax , including the physiological value of
umax = 0.028. Furthermore, when umax increases, the 3-states and 4-states models
exactly match, both in terms of optimal trajectory and optimal control (see Fig. 17;
Table 3). This means that the ChR2-3-states model is a good approximation of the
ChR2-4-states model, in terms of optimal control, for the reduced Hodgkin–Huxley.
This is a nice property since the ChR2-3-states is theoretically tractable in terms of
singular controls.
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Fig. 14 Linear approximationof the variableh for a periodic behavior of system (H H ) and initialmembrane
potential of −30, 0, 30 and 60mV
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Fig. 15 Linear approximation of the variable h for a transitory behavior of system (H H ) and initial
membrane potential of −30, 0, 30 and 60mV
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Fig. 16 Optimal trajectory and bang–bang optimal control for the HH2D-ChR2-3-states model
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Fig. 17 Optimal trajectory and bang–bang optimal control for the HH2D-ChR2-3-states andHH2D-ChR2-
4-states models with umax = 0.028m s−1 (physiological value)

Table 3 Comparison of the HH2D-ChR2-3-states and HH2D-ChR2-4-states models for different values
of the maximum value of the control

Time to spike Time to the switch of light
(in m s) (in % of the time to spike)

umax (in m s−1) ChR2-3-states ChR2-4-states ChR2-3-states ChR2-4-states

0.5 4.797 4.673 100 100

1 3.312 3.268 100 100

10 1.148 1.142 98 98

100 0.5183 0.5153 95 95

4.4 The complete Hodgkin–Huxley model

The ChR2-3-states model The complete Hodgkin–Huxley model is more difficult to
analyze mathematically, and optimal singular controls cannot be excluded a priori as
for the previousmodels. Nevertheless, singular controls do not appear in our numerical
simulations. Figure 18 shows the optimal trajectory and control for numerical values
taken in “Appendix 2” and “The 3-states model” section.

The ChR2-4-states model We observe the same phenomenon as for the reduced
Hodgkin–Huxley model, that is, for small values of umax , the ChR2-4-states model
fires slightly faster than the ChR2-3-states model and when umax increases, both mod-
elsmatch (see Fig. 19; Table 4). This constitutes a new argument in favor of the reduced
Hodgkin–Huxley model since it captures the features of the complete model in terms
of optimal control. Finally, the fact that both Hodgkin–Huxley models have almost
the same behavior for the two ChR2 models means that they can be qualified as robust
with regards to the mathematical modeling of ChR2.
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Fig. 18 Optimal trajectory and bang–bang optimal control for the HH-ChR2-3-states model
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Fig. 19 Optimal trajectory and bang–bang optimal control for the HH-ChR2-3-states and HH-ChR2-4-
states models with umax0.028m s−1 (physiological value)

Table 4 Comparison of the HH-ChR2-3-states and HH-ChR2-4-states models for different values of the
maximum value of the control

Time to spike Time to the switch of light
(in m s) (in % of the time to spike)

umax (in m s−1) ChR2-3-states ChR2-4-states ChR2-3-states ChR2-4-states

0.5 6.807 6.579 96 96

1 4.796 4.720 95 95

10 2.004 1.990 90 90

100 1.180 1.168 83 83
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4.5 Conclusions on the numerical results

We begin with comments on the two versions of the ChR2 models for each neu-
ron model. For every neuron model that we numerically treat, the ChR2-3-states and
the ChR2-4-states versions behave qualitatively the same. We observe no optimal
singular controls and the shapes of optimal controls and optimal trajectories are sim-
ilar. Nevertheless, we can note some distinctions between the neuron models. For
the FitzHugh–Nagumo model, the ChR2-4-states version fires always faster than the
ChR2-3-states version. This is also the case for the two Hodgkin–Huxley models with
the important difference that, when the control maximal value increases, the optimal
trajectory and optimal control quantitatively match. The Hodgkin–Huxley models are
thus very robust with respect to the ChR2modeling. TheMorris–Lecar model displays
an unusual behavior when we compare the ChR2-3-states and the ChR2-4-states ver-
sions. Indeed, for low values of the control maximal value, including the physiological
value computed in Appendix “The 3-states model” section, the ChR2-3-states version
fires faster than the ChR2-4-states version and the opposite happens when the control
maximal value increases.

As announced at the beginning of Sect. 4, the numerical results invite one to dis-
tinguish between two main behaviors of neuron models with respect to optogenetic
control. Most of the models, that is all the models except the Morris–Lecar, behave as
physiologically expected. The optimal control is bang–bang, begins with a maximal
arc, and has at most one switch. The Morris–Lecar model has more than one switch.
This means that it is more efficient to switch on and off the light several times than
just keep the light on almost all the way up to the spike. That is why we qualify
this model as nonphysiological. Moreover, by only changing the value of the ChR2
equilibrium potential (VCh R2) we can observe a change of the number of switches.
Finally, the behavior of theMorris–Lecar model emphasizes the critical importance of
optimal control since it allows to find a control that triggers a spike when the expected
physiological stimulation (with at most one switch) fails to trigger a spike.

Appendix 1: Numerical constants for the Morris–Lecar model

The numerical values of the several constants and their physiological meaning are
taken from Ditlevsen and Greenwood (2013) and gathered in Table 5.

Table 6 gathers the numerical values for Fig. 10.
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Table 5 Meaning and numerical values of the constants appearing in the Morris–Lecar model

V1 = −1.2 mV Fitting parameter

V2 = 18 mV Fitting parameter

V3 = 2 mV Fitting parameter

V4 = 30 mV Fitting parameter

gCa = 4.4 µS cm−2 Maximal conductance of Ca2+ channels

gK = 8 µS cm−2 Maximal conductance of K + channels

gL = 2 µS cm−2 Conductance associated with the leakage current

VCa = 120 mV Equilibrium potential of Ca2+ ions

VK = −84 mV Equilibrium potential of K + ions

VL = −60 mV Equilibrium potential for the leak current

C = 20 µF cm−2 Membrane capacitance

φ = 0.04 m s−1 Fitting parameter

Table 6 Meaning and numerical values of the constants, taken from Saint-Hilaire and Longtin (2004),
appearing in the Morris–Lecar model

V1 = −0.01 mV Fitting parameter

V2 = 0.15 mV Fitting parameter

V3 = 0.1 mV Fitting parameter

V4 = 0.145 mV Fitting parameter

gCa = 1.0 µS cm−2 Maximal conductance of Ca2+ channels

gK = 2.0 µS cm−2 Maximal conductance of K + channels

gL = 0.5 µS cm−2 Conductance associated with the leakage current

VCa = 1.0 mV Equilibrium potential of Ca2+ ions

VK = −0.7 mV Equilibrium potential of K + ions

VL = −0.5 mV Equilibrium potential for the leak current

C = 1.0 µF cm−2 Membrane capacitance

φ = 0.333 m s−1 Fitting parameter

Appendix 2: Numerical constants for the Hodgkin–Huxley model

αn(V ) = 0.1 − 0.01V

e1−0.1V − 1
, βn(V ) = 0.125e− V

80 ,

αm(V ) = 2.5 − 0.1V

e2.5−0.1V − 1
, βm(V ) = 4e− V

18 ,

αh(V ) = 0.07e− V
20 , βh(V ) = 1

e3−0.1V + 1
.

The following Table 7 gathers the numerical values of the Hodgkin–Huxley model, as
given in the original paper Hodgkin and Huxley (1952).
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Table 7 Meaning and numerical values of the constants appearing in the Hodgkin–Huxley model

ḡK = 36 µS cm−2 Maximal conductance of K + channels

ḡNa = 120 µS cm−2 Maximal conductance of Na2+ channels

gL = 0.3 µS cm−2 Conductance associated with the leakage current

ENa = 115 mV Equilibrium potential of Na2+ ions

EK = −12 mV Equilibrium potential of K + ions

EL = −10.6 mV Equilibrium potential for the leak current

C = 0.9 µF cm−2 Membrane capacitance

The equilibrium potential EL of the leakage current is usually set so that the equi-
librium value of the (HH) system is such that V = 0.

Appendix 3: Numerical constants for the ChR2 models

The 3-states model

The constants of the model are the rates Kd and Kr of the transitions between the open
state and the light adapted closed state and between the two closed states, the maximal
conductance gCh R2 and the equilibrium potential VCh R2. As specified in Sect. 3, we
assume that these rates are constants during the evolution in order to obtain an affine
control system. For the numerical computations, we took the values given in Table 1
of Nikolic et al. (2009):

Kd = 0.2 ms−1, Kr = 0.021 ms−1.

The maximal conductance is given by the formula gCh R2 = ρCh R2g∗
Ch R2, with ρCh R2

the density of channels and g∗
Ch R2 the conductance of a single channel. These values

are taken from Foutz et al. (2012) to obtain

gCh R2 = 0.65 mS cm−2.

As mentioned at the end of “Appendix 2”, the physiological equilibrium membrane
potential is mathematically shifted to equal 0. The equilibrium potential of the Ch R2
that is usually measured around 0 (Foutz et al. 2012) and very often taken as 0 (Foutz
et al. 2012; Nikolic et al. 2009). The exact value 0 would raise a mathematical problem
because since we shifted the value of EL so that V = 0 corresponds to the equilibrium
point of the uncontrolled system we start from. Indeed, V = 0 would also correspond
to an equilibrium point of the controlled system, regardless of the value of the control.
For this reason, we shifted the value of VCh R2 and took it equal to 60mV. This value
corresponds to the shift of the membrane resting potential for the Morris–Lecar and
Hodgkin–Huxley models.

Finally we can give an estimation of the physiological maximal value umax of the
control. Indeed, upon illumination, the transition rate between the dark adapted closed
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state and the open state in Nikolic et al. (2009) is εF where ε = 0.5 is the quantum
efficiency and F is given by the formula

F = σretφ

wloss
,

whereσret � 10−8µm2 is the retinal cross section (cross section of the photon receptor
on the Ch R2), φ = 6.2 × 109 ph · µm−2 s−1 is the original flux of photons and
wloss = 1.1 is a loss factor. As for the numerical value of Kd and Kr we took the one
of Table 1 in Nikolic et al. (2009) for the value of φ. With these values we get

umax = 0.028 ms−1.

The 4-states model

The numerical values for the ChR2-4-states model are taken from Foutz et al. (2012)
and gathered in Table 8.

Table 8 Numerical values of the constants appearing in the ChR2-4-States model

Kd1 = 0.13 m s−1 Decay rate

Kd2 = 0.025 m s−1 Decay rate

e12 = 0.053 m s−1 Transition rate

e21 = 0.023 m s−1 Transition rate

Kr = 0.004 m s−1 Recovery rate

ε1 = 0.5 Quantum efficiency for o1
ε2 = 0.1 Quantum efficiency for o2
g1 = 50 fS o1 state conductance

ρ = 0.05 Relative conductance of the open states

ρ∗
Ch R2 = 130 µm−2 ChR2 density

gCh R2 = 0.65 mS cm−2 Ch R2 maximal conductance
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