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Abstract In this paper, we use periodic and stochastic integrodifference models to
study the persistence of a single-species population in a habitatwith temporally varying
sizes. We extend a persistence metric for integral operators on bounded domains to
that of integral operators on unbounded domains. Using this metric in the periodic
model, we present new perspectives of the critical habitat size problem in the case
of dynamically changing habitat sizes. Specifically, we extend the concept of critical
habitat size to that of lower minimal limit size in a period-2 scenario, and prove the
existence of the lower minimal limit size. For the stochastic model, we point out the
importance of consideringmultiple time scales in the temporal variability of the habitat
size. The models are relevant to biological scenarios such as seasonal variability of
wetland habitat sizes under precipitation variability.

Keywords Integrodifference equations · Critical habitat size · Habitat size
fluctuations · Precipitation variability

Mathematics Subject Classification 45C05 · 45R05 · 92B05

1 Introduction

Habitat patches are dynamic entities that can change in size, shape, location, and qual-
ity. For instance, in the Florida Everglades, water levels rise during May to October
because of precipitation, creating larger and more integrated aquatic habitats (Lodge
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2004). Small fish species use these transient windows for connectivity (Zeigler and
Fagan 2014) to redistribute themselves. Then, as water levels recede during the dry
season, fish become restricted to permanent water bodies (Trexler et al. 2005; DeAn-
gelis et al. 2010). The seasonal changes in habitat size observed in the Everglades are
in fact a widespread phenomenon. Temporal variations in the size of aquatic systems
have been documented in both ephemeral rivers such as the Mulligan River in Aus-
tralia (Kerezsy et al. 2013), and perennial rivers such as the Gambia River of the West
African tropical zone (Louca et al. 2009).

Changes in habitat size occur to terrestrial species as well. For example, seasonal
variations in river flow patterns affect the recruitment of riparian tree species, because
the establishment of trees requires both suitable flows to transport seeds and open sub-
strates for deposition (Dixon 2003). Likewise, along barrier islands, the location and
size of favorable microsites change due to shifting sands, setting limits on successful
colonization (Shiflett and Young 2010).

For species living in such spatially dynamic environments, individual survival and
species persistence often depend on the interplay between a species’ dispersal ability
and fluctuations in habitat size (Unmack 2001). On one hand, dispersal during habitat
expansion may benefit the population in various ways. For example, the ephemeral
wetlands created by the rise of water levels in the Florida Everglades provide both
forage resources and refuge from predation for small fish species (Cucherousset et al.
2007; Hohausová et al. 2010; Winemiller and Jepsen 1998; Yurek et al. 2013). On
the other hand, exploiting ephemeral habitats carries risks. For example, as small fish
species in the Everglades retreat to permanent water bodies when water levels fall,
a large number of them are trapped in pools that eventually dry out (Gunderson and
Loftus 1993; Kobza et al. 2004; Sheaves 2005). Such periodic bouts of mortality are
also a regular occurrence for Death Valley Pupfish (Cyprinodon salinus salinus) that
suffer extensive seasonal mortality when individuals disperse too far downstream as
they search for resources, isolating themselves from the perennial upstream springs
(Miller 1943; Moyle 2002).

Mathematical biologists have attended to the connections between dispersal, habitat
size, and species persistence through the critical patch size (also named critical habitat
size, critical domain size) framework (Kierstead and Slobodkin 1953; Skellam 1951).
This approach suggests that patch size requirements (i.e., the minimum spatial extent
of habitat that can support a species, or set of species) hinge on the balance between
reproductive rate and dispersal-induced population loss. It asks the question: how small
can ahabitat patchbe and still permit species persistence? In recent years,mathematical
biologists have extended critical patch size models to consider the role of a number
of other landscape- and species-level characteristics. Models have included spatially
varying growth rates (Cantrell and Cosner 2001; Gurney and Nisbet 1975; Latore et al.
1998), multiple patches (Fagan et al. 2009), non-random dispersal behaviors (Cantrell
and Cosner 2007), advective stream environments (Lutscher et al. 2006, 2007; Speirs
and Gurney 2001), systems with Allee effects (Shi and Shivaji 2006), and interacting
species (Cantrell et al. 2002). All of these extended approaches treat the habitat patch
(or patches) as temporally static entities.

Recently, the critical patch size problem was considered for stream environments
with temporal fluctuations in stream speed (Jacobsen et al. 2015; Jin and Lewis 2011).
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However, the scenario where the habitat size itself is time-dependent remains unex-
plored. In this paper, we consider the critical habitat size problem in a habitat whose
size fluctuates periodically or randomly. What does a critical habitat size mean, when
the size itself is changing? How does temporal fluctuations in the habitat size affect
population persistence?We investigate these questionswith an integrodifference equa-
tion model. The model framework is described below.

1.1 The model

Let us consider the time-dependent integrodifference equation model

nt+1(x) =
∫ ∞

−∞
k(x, y)Qt (y) f [nt (y)]dy. (1)

Model (1) describes the spatiotemporal dynamics of a single-species population. This
population lives in a one-dimensional habitat. The population density at the t th time
step at location x is described by the variable nt (x). The right hand side of Eq. (1)
maps nt (x) to nt+1(x) through two stages: a sedentary stage and a dispersal stage.

The sedentary stage accounts for the gain or loss of population between time steps.
The local population density nt (y) is mapped to the density Qt (y) f [nt (y)], according
to a growth function f , and a habitat suitability function Qt . Function f describes the
density-dependent growth of the population, and is independent of spatial locations.
We assume that function f is monotonic and concave. An example of the function f
is the right hand side of the Beverton-Holt (1957) stock-recruitment curve,

nt+1 = f (nt ) = R0nt
1 + [(R0 − 1)/K ]nt , (2)

where R0 is the net reproductive rate and K is the carrying capacity. The habitat
suitability function Qt (y) quantifies the spatial dependence of population growth. It
captures the effect of habitat quality at any location y on population growth (also see
Latore et al. 1999). The range of Qt (y) is [0, 1], so that locations y where Qt (y) = 0
are completely unsuitable for the species during the t th time step, and those where
Qt (y) = 1 are optimal for population growth during the t th time step. One choice for
the habitat suitability function is the hat function

Qt (y) =
{
1, y ∈ [−Lt/2, Lt/2],
0, otherwise.

(3)

This habitat suitability function corresponds to a scenario where a species can live
only within the suitable habitat [−Lt/2, Lt/2] of size Lt . We assume that there is a
bound L for the habitat sizes, so that ∀ t, Lt ≤ L . In this case, Eq. (1) reduces to an
integral equation defined on finite intervals [−Lt/2, Lt/2],

nt+1(x) =
∫ Lt/2

−Lt/2
k(x, y) f [nt (y)]dy. (4)

Another reasonable choice for Qt (y) is the function
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Qt (y) = exp

(
− y2

σ 2
t

)
. (5)

In this case, the habitat quality smoothly declines as the location moves away from the
center of the habitat, and the parameter σ 2

t can be thought of as the size of the suitable
habitat (Latore et al. 1999).

We consider two types of time-dependence for the habitat suitability function. We
begin with deterministic, periodic Qt in Sect. 2, where the suitable habitat size is
p-periodic. For example, for function (3), Lt+p = Lt . For function (5), σ 2

t+p = σ 2
t .

Then, in Sect. 3, we let the habitat size be randomly chosen at each time step t .
The sedentary stage is followed by the dispersal stage. The dispersal stage accounts

for the spatial redistribution of the population due to dispersal. For a fixed origin y,
the dispersal kernel k(x, y) is the probability density function for the destination x
of individuals from y. In this paper, we assume that habitat quality does not affect
dispersal, and dispersal only depends on the distance between the origin y and the
destination x . That is, we assume that the dispersal kernel is a function of dispersal
distance |x − y|, and can be written as

k(x, y) = k(|x − y|) = k(x − y). (6)

For example, the normal distribution

k(|x − y|) = 1

σ
√
2π

exp

[
−|x − y|2

2σ 2

]
, (7)

where σ 2 is the variance, is a common choice of the probability density function.
Because of its connection with the diffusion equation, we rewrite the kernel in terms
of the diffusion coefficient D = σ 2/2, and obtain the Gaussian kernel

k(x − y) = 1

2
√

πD
exp

[
− (x − y)2

4D

]
. (8)

If the probability density function k(x) has finite moments, we can define the mean
dispersal distance of the population as

Mean dispersal distance =
∫ ∞

0
xk(x) dx . (9)

For example, the mean dispersal distance for the Gaussian kernel (8) is 2
√
D/π .

Finally, the integral on the right hand side of Eq. (1) tallies all the individuals
dispersing to location x to form the population at the next time step.

Let X be the Banach space BC(Ω) of bounded continuous functions on Ω =⋃
t Ωt , where Ωt is the support of function Qt . For example, for habitat suitability

function (3), Ω = [−L/2, L/2]. For habitat suitability function (5), Ω = R. Let X
be equipped with the supremum norm, so
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||u|| = ||u||∞ = sup
x∈Ω

|u(x)|, ∀u ∈ X. (10)

Throughout the paper, we will use ||K || to denote the norm of any linear operator K ,
where

||K || = sup
u �=0,u∈X

||K [u]||∞
||u||∞ . (11)

The set of nonnegative bounded continuous functions BC+(Ω) forms a cone of X .
We may then rewrite model (1) in the form of

nt+1(x) = Ft [nt (x)], (12)

where Ft : BC+(Ω) → BC+(Ω) is the integral operator

Ft [nt (x)] =
∫ ∞

−∞
k(x − y)Qt (y) f [nt (y)]dy. (13)

Let us now make some biologically reasonable assumptions. These assumptions
make sure we are working with operators that are monotonic, completely continu-
ous, and strongly subhomogeneous (Zhao 2003, Definition 2.3.1). We assume the
following:

(K1) k(x) is continuous on (−∞,∞);
(K2) ∀ x ∈ R, k(x) > 0;
(K3) k(x) is uniformly bounded;
(K4)

∫∞
−∞ k(x) dx = 1;

(K5) k(x) is unimodal, and k(x) = k(−x),∀ x ∈ R;
(Q1) For each time step t , Qt : (−∞,∞) → [0, 1] is continuous for x ∈ Ω◦

t ;
(Q2) For each time step t , Ωt is a connected subset of R. In addition, ∩tΩt �= ∅;
(Q3)

∫∞
−∞ Q(y) dy < ∞;

(F1) f (n) is differentiable for n ≥ 0, and supn≥0 f ′(n) < ∞;
(F2) f (0) = 0;
(F3) ∀ n > 0, 0 < f (n) < f ′(0) n ;
(F4) ∃ M > 0, so that ∀ n > 0, f (n) ≤ M ;
(F5) if n1 > n2, then f (n1) > f (n2);
(F6) ∀ 0 < α < 1, n > 0, f (αn) > α f (n);

Clearly, with the assumptions above, operator Ft maps nonzero elements of cone
BC+(Ω) to nonzero elements. When Ω is compact, previous results by Hardin et
al. (1988a, 1990) can be invoked to show there is a dichotomy of the asymptotic
dynamics of the corresponding integrodifference equation (Jacobsen et al. 2015; Kot
and Schaffer 1986; Van Kirk and Lewis 1997). More specifically, in the deterministic
case, the population density nt (x) with a nonzero initial condition either converges
to the trivial fixed point n∗(x) = 0 or a nonnegative nontrivial solution (Hardin et al.
1990). We will show in Sect. 2 that we can extend part of this dichotomy result to the
case when Ω = R and Ft is still compact.
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1.2 Outline of the paper

The paper is organized as follows. In Sect. 2, we consider a periodic environment with
seasonal changes in the habitat size. In Sect. 2.1, we present the extended dichotomy
result and its proof, associating population persistence with the spectral radius of an
integral operator. Examples for which this persistence metric is calculated are pre-
sented in Sect. 2.2. In Sect. 2.3, we consider a two-season environment, extending the
critical patch size problem in static habitats to the lower minimal limit size problem in
time-dependent habitats. We prove the existence of a lower minimal limit size in Sect.
2.3.2. We then consider a stochastic environment in Sect. 3, where we consider both
seasonal and annual fluctuations in habitat size. Finally, Sect. 4 contains discussion of
the results and future directions.

2 Environment with deterministic, periodic seasonal variations

In this section, we consider model (1) where the habitat suitability function Qt (x) is
p-periodic. That is, Qt (x) satisfies

Qt+p(x) = Qt (x), ∀ t ≥ 0, (14)

for an integer p, where p is the smallest period of Qt .

2.1 A metric for population persistence

We will prove here that the persistence of the population is determined by the spectral
radius, λ, of an operator. When λ > 1, the population will persist. When λ < 1,
the population will go extinct. The number λ is therefore a metric for population
persistence.

We will begin our proof by showing, in the next three lemmas, that each Ft is
completely continuous and has a completely continuous Fréchet derivative at 0.

Lemma 1 Assume the dispersal kernel k(x − y) satisfies assumptions (K1)−(K4),
and the habitat suitability function Qt (y) = Q(y) satisfies assumptions (Q1)−(Q3).
Then

k̃(x, y) = k(x − y)Q(y) (15)

satisfies conditions (KQ1) − (KQ3) listed below:

(KQ1) sup
x

∫∞
−∞ |k̃(x, y)| dy < ∞,

(KQ2)
∫∞
−∞ |k̃(x, y)|dy → 0 as x → ∞,

(KQ3) sup
|x ′−x |≤h

∫∞
−∞ |k̃(x, y) − k̃(x ′, y)| dy → 0, as h → 0.

Proof See “Appendix 1”. ��
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Lemma 2 Let the integral operator A be defined as

A[u(x)] =
∫ ∞

−∞
k̃(x, y) f [u(y)] dy. (16)

Suppose the integral kernel k̃(x, y) satisfies the conditions (KQ1) − (KQ3) in Lemma
1. Suppose also that the nonlinear function f satisfies assumptions (F1)−(F3). Then
the operator A on the cone BC+(Ω) is completely continuous.

Proof See “Appendix 1”. ��
Combining Lemmas 1 and 2, we obtain the following corollary.

Corollary 1 Assume the dispersal kernel k(x − y) satisfies assumptions (K1)−(K4),
the habitat suitability function Qt (y) satisfies assumptions (Q1)−(Q3) for each t, and
the growth function f satisfies assumptions (F1)−(F3). Then the integral operator Ft ,
as defined in (13), is completely continuous for each t.

Lemma 3 Assume the dispersal kernel k(x − y) and habitat suitability functions
Qt (y) satisfy assumptions (K1)−(K4) and (Q1)−(Q3), and the growth function f
satisfies assumptions (F1)−(F3). Then operator Ft , as defined in (13), has a Fréchet
derivative F ′

t (0) at 0, and

F ′
t (0)[u](x) = f ′(0)

∫ ∞

−∞
k(x − y)Qt (y)u(y) dy. (17)

The linear integral operator
Kt = F ′

t (0) (18)

is completely continuous on BC+(Ω). Furthermore, for each i , the composition

F (i) = Fi+p−1 ◦ · · · ◦ Fi+1 ◦ Fi (19)

is completely continuous. The Fréchet derivative of F (i) at 0 is

K (i) = F ′
i+p−1(0) ◦ · · · ◦ F ′

i+1(0) ◦ F ′
i (0)

= Ki+p−1 ◦ · · · ◦ Ki+1 ◦ Ki ,
(20)

and it has a positive eigenvalue λi = rσ (K (i)) > 0, where rσ (K (i)) is the spectral
radius of K (i). In addition, λi corresponds to a nonnegative eigenvector.

Proof See “Appendix 1”. ��
The next lemma shows that all the λi ’s are equal because of the periodicity.

Lemma 4 Assume the dispersal kernel k(x − y) and habitat suitability functions
Qt (y) satisfy assumptions (K1)−(K4) and (Q1)−(Q3), and let λi be the eigenvalue
of operator K (i) that is equal to the spectral radius, rσ (K (i)), of K (i). Then λi is
independent of i . That is, ∀i, λi = λ.
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Proof See “Appendix 1”. ��
We will now show that in the case where Ω is bounded, there is a dichotomy of the

asymptotic dynamics of the periodic system (12).

Theorem 1 Let Kt be the linear operator defined in (18). Assume the dispersal ker-
nel k(x − y), the habitat suitability functions Qt , and the growth function f satisfy
assumptions (K1)−(K4), (Q1)−(Q3), and (F1)−(F6). In addition, assume that Ω is
compact.

Let λ be the spectral radius of the linear operator

K = Kp ◦ · · · ◦ K2 ◦ K1 , (21)

then λ is the largest positive eigenvalue of K , and the following are true.

(1) If λ > 1, The solution nt (x) of the p-periodic nonlinear dynamical system (12)
with a nonzero initial condition n0(x) ∈ BC+(∩p

t=1Ωt ) will converge to a unique
positive periodic orbit n∗

t (x) of system (12). That is, the population is able to
persist. The periodic orbit n∗

t (x) is of period at most p.
(2) If λ ≤ 1, the solution nt (x) of the nonlinear dynamical system (12)with any initial

condition n0(x) ∈ BC+(Ω) will converge to the trivial fixed point n∗
t (x) ≡ 0 of

system (12). That is, the population cannot persist and will become extinct.

Proof See “Appendix 1”. ��
When Ω = R, the operators K (i) may not be strongly positive, and therefore the

proof of Theorem 1 fails. However, we can still prove that population persistence is
determinedbyλ.Wewill prove this by approximating eachoperator Kt with a sequence
{Ktn , n ∈ N} of integral operators with bounded integral domains. We then apply the
results of Theorem 1 to the approximate operators Ktn , and let Ktn approximate Kt as
closely as possible. The next lemma shows us how the approximate operators converge
as their integral limits converge. For simplicity, Lemma 5 considers the approximation
without the temporal variability, so that the habitat suitability function does not have
the subscript t . To apply Lemma 5 to the operators Ft for each t , the habitat suitability
function Q(y) will need to be replaced with Qt (y), the operator F ′(0) will need to
be replaced with F ′

t (0) = Kt , and the operator F ′
n(0) will need to be replaced with

F ′
tn (0) = Ktn .

Lemma 5 Let {an}n∈N be a decreasing sequence in R, and {bn}n∈N an increasing
sequence in R, so that a0 < b0, and

lim
n→+∞ an = −∞, lim

n→+∞ bn = +∞. (22)

Let the operators Fn be defined as

Fn[u](x) =
∫ bn

an
k(x − y)Q(y) f [u(y)] dy, (23)
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where the dispersal kernel k, the habitat suitability function Q, and the growth function
f satisfy assumptions (K1)−(K4), (Q1)−(Q3), and (F1)−(F6). Their corresponding
Fréchet derivatives at 0 are

F ′
n(0)[u](x) = f ′(0)

∫ bn

an
k(x − y)Q(y)u(y) dy. (24)

Let the operator F be defined as

F[u](x) =
∫ ∞

−∞
k(x − y)Q(y) f [u(y)] dy. (25)

The Fréchet derivative of F is therefore

F ′(0)[u](x) = f ′(0)
∫ ∞

−∞
k(x − y)Q(y)u(y) dy, (26)

and F ′
n(0) are approximations of the operator F

′(0).
Under these assumptions, we have the following results:

(i) ||F ′
n(0) − F ′(0)|| → 0 as n → ∞;

(ii) limn→+∞ λn = λ, where λn is the spectral radius of F ′
n(0) and λ is the spectral

radius of F ′(0).

Proof See “Appendix 1”. ��

Theorem 2 Assume the dispersal kernel k(x − y), the habitat suitability functions
Qt , and the growth function f satisfy assumptions (K1)−(K4), (Q1)−(Q3), and
(F1)−(F6). In addition, assume that Ω = R. Let λ be the spectral radius of the
linear operator

K = Kp ◦ · · · ◦ K2 ◦ K1 , (27)

where Kt is defined by (18). Then λ is the largest positive eigenvalue of K , and the
following are true.

(1) If λ > 1, the population will persist in the sense that for any nonzero initial
population density n0(x) ∈ BC+(R), ∃ T large enough and a constant C > 0,
so that∀t > T , the solution nt (x) of the nonlinear dynamical system (12) satisfies
||nt (x)|| > C.

(2) If λ < 1, for any initial population density n0(x) ∈ BC+(R), the solution nt (x)
of the nonlinear dynamical system (12) will converge to the trivial fixed point
n∗
t (x) ≡ 0 of system (12). That is, the population cannot persist and will become

extinct.

Proof See “Appendix 1”. ��
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2.2 Examples

In the previous section, we showed in Theorem 2 that the asymptotic dynamics of
system (12) can be determined by solving the eigenvalue problem

λu(x) = [ f ′(0)]p
∫
R

k(x − yp)Qp(yp) . . .

∫
R

k(yp − yp−1)Qp−1(yp−1) . . .

∫
R

k(y2 − y1)Q1(y1)u(y1)dy1 . . . dyp−1dyp. (28)

Depending on the habitat suitability function and the dispersal kernel, Eq. (28) may
be solved analytically or numerically. In this section, we will present four examples
of the habitat suitability function Qt , and present either analytic formulas for λ or a
numerical method for solving the eigenvalue problem (28).

In the first two examples, the “Flooding Pond” scenario and the “Flooding Pond-
Surface” scenario, eigenvalue problem (28) can be solved analytically for certain
dispersal kernels. In the other two examples, the “Connected Ponds” scenario and the
“Flooding Pond-Margin” scenario, we employ a numerical method to solve eigenvalue
problem (28) for p = 2.

2.2.1 Analytic Examples

Example 1 (The “FloodingPond” scenario) In this example,we envision a pondwhose
volume changes over time because of seasonal variations in its water level. Assum-
ing that habitat suitability scales with water depth, the center of the pond retains the
highest suitability for the species at all times, but additional habitat becomes available
at the margins when water levels are high. We thus use function (5) to model habitat
suitability. The origin is the center of the pond, and variation in pond size is imple-
mented by letting the parameter σ 2

t depend periodically on time t . If we consider the
Gaussian dispersal kernel (8), we can solve eigenvalue problem (28) analytically (see
“Appendix 4”), and find that the spectral radius is

λ = [ f ′(0)]p
p∏

j=1

[√
v j − 4D√

v j

]
, (29)

where v j is the solution of equation

v j = g j+p ◦ · · · ◦ g j+2 ◦ g j+1(v j ), (30)

and each g j is defined to be the function

g j (v) = 4D + σ 2
j · v

σ 2
j + v

. (31)
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Example 2 (The “Flooding Pond-Surface” scenario) In this example, we envision the
same kind of pond and flooding dynamics as in Example 1, but now consider changes
in habitat size for surface-dwelling species, such as water striders and other aquatic
insects that seek out food on top of the pond. Therefore, the species activity does
not depend on water depth but only on the existence of a water surface. We thus
use the hat function (3) as the habitat suitability function, and let the habitat size Lt

depend periodically on time t . Eigenvalue problem (28) can be solved analytically for
the Flooding Pond-Surface scenario for a specific dispersal kernel. Let the dispersal
kernel be

k(x − y) =

⎧⎪⎨
⎪⎩

ω

2
cos (ω|x − y|), |x − y| ≤ π

2ω

0, |x − y| >
π

2ω

, (32)

where ω > 0. Assume the dispersal radius π/(2ω) satisfies

π

2ω
> max{L p, L1/2 + L2/2, L2/2 + L3/2, . . . , L p−1/2 + L p/2}. (33)

Condition (33) ensures that ∀ t and |x − y| ∈ [−Lt/2, Lt/2], |x − y| < π/(2ω) and
k(x − y) > 0. With these assumptions, we find in “Appendix 4” that the spectral
radius is

λ = max{λ1, λ2}, (34)

where

λ1 = [ f ′(0)]p
∫ L p/2

−L p/2

ω

2
cos(ωyp)

∫ L p−1/2

−L p−1/2

ω

2
cos[ω(yp − yp−1)] . . .

∫ L1/2

−L1/2

ω

2
cos[ω(y2 − y1)] cos(ωy1) dy1dy2 . . . dyp, (35)

and

λ2 = [ f ′(0)]p
∫ L p/2

−L p/2

ω

2
sin(ωyp)

∫ L p−1/2

−L p−1/2

ω

2
cos[ω(yp − yp−1)] . . .

∫ L1/2

−L1/2

ω

2
cos[ω(y2 − y1)] sin(ωy1) dy1dy2 . . . dyp. (36)

2.2.2 Examples with numerical computation

In general, eigenvalue problem (28) is not analytically solvable, and requires numerical
schemes. We therefore use the Nyströmmethod on multivariable integrals to calculate
the largest positive eigenvalue in eigenvalue problem (28) when period p = 2. The
method essentially approximates the integral on the right hand side of Eq. (28) with a
numerical quadrature on a two-dimensional grid. The two-dimensional grid is chosen
by a triangulation of the computational domain, so that the triangles are pair-wise
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symmetric with respect to the origin. Atkinson (1997, chapter 5) detailed the deriva-
tion of composite quadrature rules and their accuracy for multivariable integrals, and
demonstrated how to use these quadrature rules in the Nyström method. Here, we use
the three-point quadrature rule provided by Atkinson (1997, eqn. 5.1.44) on a trian-
gulation of the computational domain [−G/2,G/2] × [−G/2,G/2]. Although the
computational domain is compact, the numerically computed eigenvalue converges,
according to Lemma 5, to the actual eigenvalue λ when G is large enough.

The numerical method is tested on the analytic formula (41) for the “Flooding Pond
Scenario”, and the numerical result agrees well with the analytic result (Fig. 9). Details
of the numerical method setup can be found in “Appendix 5”.

With the help of the Nyström method, we investigated two examples.

Example 3 (The “Connected Ponds” scenario) In this scenario, we consider two ponds
that are well-connected into a single large pond during high water periods but have less
connection during periods of low water. This configuration may arise in a situation
where two pieces of habitat, centered at μ and −μ, are expanding and contracting
their sizes concurrently. This is a simplified example of the kind of seasonal flooding
dynamics that DeAngelis et al. (2010) modeled for fish inhabiting so-called “alligator
holes” in the Florida Everglades.

For this scenario, we use the average of two Gaussian modes,

Qt (y) = 1

2

{
exp

[
− (y − μ)2

σ 2
t

]
+ exp

[
− (y + μ)2

σ 2
t

]}
, (37)

to be the habitat suitability function. Each Gaussian mode represents a pond. The
centers of the two ponds are at y = −μ and y = μ. The two ponds have the same
sizes, which scale with the parameter σ 2

t . For this habitat suitability function, we use
2σ 2

t as a measure for the habitat size.
The parameter σ 2

t ,

σ 2
t =

{
σ 2 − ε for t odd,
σ 2 + ε for t even,

(38)

is periodic because of seasonal flooding. Here, ε is the seasonal variation.

Example 4 (The “Flooding Pond-Margin” scenario) In this scenario, we again con-
sider a pond which floods and dries over time. However, in this case we envision
the case of a nearshore, shallow water species that prefers to live at pond margins.
Examples include aquatic plants such as some water lilies that root in pond bottoms
but cannot live in deep water because of a lack of sunlight. Temperature-sensitive
freshwater snails that forage in the warmer waters of pond margins would also match
this scenario.

For this scenario, we use the habitat suitability function

Qt (y) = 1

2

{
exp

[
− (y − μt )

2

σ 2

]
+ exp

[
− (y + μt )

2

σ 2

]}
. (39)

The two peaks of the curve, representing the margin of the pond, are located at either
side of the center of the pond, with equal distance μt from the center. We therefore
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use 2μt as a measure for the habitat size. As the pond floods, the distance μt from the
center to the margin increases, and as the pond dries, μt decreases.

We thus assume

μt =
{

μ0 − ε for t odd,
μ0 + ε for t even.

(40)

Results of the numerical computations in Examples 3 and 4 are presented in the
figures of the following section.

2.3 Population persistence in a two-season scenario

Many rivers and wetland systems experience two distinct seasons annually. For exam-
ple, the Everglades receives most of its precipitation during the rainy season from
May to October, and the other months constitute the dry season (Lodge 2004). Water
levels between the rainy seasons and dry seasons may be drastically different (EDEN
2015). Likewise, the Gambia River experiences a rainy season from June to October,
followed by a dry season for the rest of the year (Louca et al. 2009). While the amount
of precipitation and the water levels may also vary on the annual and inter-annual time
scale (EDEN 2015), we focus on the seasonal variation in this section. That is, we
consider here an environment where the habitat size alternates between two sizes, a
rainy season size and a dry season size, each year. Variations on the annual time scale
will be discussed later in Sect. 3.

2.3.1 Effect of seasonal variations on population persistence

In this section, we are interested in knowing: how does seasonal variation in the
habitat size affect population persistence? To answer this question, we examine the
case where the average habitat size between two seasons is constant, and look at the
effect of seasonal variation on the spectral radius λ in all four examples in Sect. 2.2.

In the “Flooding Pond” scenario (Example 1), the measure for habitat size, σ 2
t ,

alternates between a large size, σ 2
1 , for the rainy season, and a small size, σ 2

2 , for the
dry season. According to formula (29), the spectral radius λ can be expressed in terms
of σ 2

1 and σ 2
2 as

λ(σ 2
1 , σ 2

2 ) = [ f ′(0)]2
√√√√√√
1 − 2

1 +
√

(σ 2
1 + 2D)(σ 2

2 + 2D)

2D(σ 2
1 + σ 2

2 + 2D)

. (41)

How will λ behave when σ 2
1 increases, σ 2

2 decreases, but the “average” between
these two sizes holds constant? To answer this question, we first notice that there are
different ways to take averages. For example, we may consider

m1 = σ 2
1 + σ 2

2

2
(42)
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Fig. 1 Three compensation relations σ 2
2 = Γ (σ 2

1 ) are plotted in this figure. The dashed straight line is
the compensation relation Γ1 in (43), the dot dashed curve is the compensation relation Γ2 in (48), and the
solid curve is the compensation relation Γ ∗ in (49). All three curves of compensation relations intersect
the diagonal line of the first quadrant at the point (σ∗2

0 , σ∗2
0 ), where σ∗2

0 is the critical habitat size when
there is no seasonal variation (see Eq. (59)). In this figure, f ′(0) = 2.5 and D = 2

as the average habitat size. If m1 is a constant, then σ 2
1 and σ 2

2 follow a trade-off
relation

σ 2
2 = Γ1(σ

2
1 ) = 2m1 − σ 2

1 , (43)

which says the sum σ 2
1 + σ 2

2 is a constant. Therefore the curve Γ1(σ
2
1 ) is a straight

line (see dashed line in Fig. 1). In this case, let the seasonal variation be

ε = (σ 2
1 − σ 2

2 )/2, (44)

then λ can be expressed in terms of m1 and ε as

λ(m1, ε) = [ f ′(0)]2
√√√√√√
1 − 2√

(m1 + 2D)2 − ε2

4D(m1 + D)
+ 1

. (45)

It is clear that λ is monotonically decreasing with respect to ε (also see solid curve
in Fig. 2a). That is, as the seasonal variation of habitat sizes increases, the asymptotic
rate of growth for the population slows down. Once ε exceeds a critical level

ε∗ =
√√√√m2

1 + 4D

[
1 −

(
f ′(0)4 + 1

f ′(0)4 − 1

)2
]
m1 + 4D2

[
1 −

(
f ′(0)4 + 1

f ′(0)4 − 1

)2
]
, (46)

the spectral radius λwill drop below 1, and the population will fail to persist (Fig. 2a).
We may also consider the average habitat size to be

m2 = σ1 + σ2

2
, (47)
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Fig. 2 The spectral radius λ decreases with respect to the seasonal variation ε for all four scenarios
(Examples 1−4). In all four figures, f ′(0)2 = 6.25, and dispersal parameters are chosen so that the mean
dispersal distance is 2. a Results in Example 1, the “Flooding Pond” scenario, where λ is calculated with
formula (41) and ε is defined in Eq. (44). On the solid curve, σ 2

1 and σ 2
2 follows compensation relation (43)

with m1 = 4, while on the dot dashed curve, σ 2
1 and σ 2

2 follows compensation relation (48) with m1 = 2.
b Results in Example 2, the “Flooding Pond-Surface” scenario, where λ is calculated with formula (50),
and ε is defined in Eq. (51). In the solid curve in (b), L1 and L2 follow compensation relation (50) with
m1 = 4. c Results in Example 3, the “Connected Ponds” scenario, where λ is calculated with the Nystöm
method, and ε is defined in Eq. (38). Along the solid curve in (c), the habitat sizes σ 2

1 and σ 2
2 for each pond

always sum up to 8. d Results in Example 4, the “Flooding Pond-Margin” scenario, where λ is calculated
with the Nystöm method, and ε is defined in Eq. (40). For the solid curve in (d), μ0 = 3 and σ 2 = 4

in which case σ 2
1 and σ 2

2 follow a trade-off relation

σ 2
2 = Γ2(σ

2
1 ) =

(
2m2 −

√
σ 2
1

)2

. (48)

The curve of Γ2 is the dot-dashed line in Fig. 1. The dot-dashed curve in Fig. 2a shows
that λ also decreases monotonically as the seasonal variation ε increases when m2
holds constant.

In general, if the trade-off relation Γ satisfies certain conditions, the dominant
eigenvalue λ will monotonically decrease as σ 2

2 and σ 2
1 deviate from the diagonal line

along the curve of σ 2
2 = Γ (σ 2

1 ).

Proposition 1 Assume that σ 2
2 = Γ (σ 2

1 ), where Γ is a monotonically decreasing
function. Assume σ 2

0 = Γ (σ 2
0 ) is a fixed-point for Γ . If Γ satisfies the following

conditions:

1. ∃ σ 2
g < ∞, so that Γ (σ 2

g ) = 0;
2. Γ ∈ C2(σ 2

0 , σ 2
g );
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3. Γ ′′(σ 2
1 ) does not change its sign for σ 2

1 ∈ (σ 2
0 , σ 2

g );

4. Γ (σ 2
1 ) < Γ ∗(σ 2

1 ) for σ 2
1 ∈ (σ 2

0 , σ 2
g ), where

Γ ∗(σ 2
1 ) = σ 4

0

[
σ 2
1 + 2D

2(σ 2
0 + D)σ 2

1 − σ 4
0

]
; (49)

5. Γ ′(σ 2
1 ) < (Γ ∗)′(σ 2

1 ) for σ 2
1 ∈ (σ 2

0 , σ 2
g );

then λ(σ 2
1 , σ 2

2 ) monotonically decreases as the point (σ 2
1 , σ 2

2 ) ∈ R
2 deviates away

from the point (σ 2
0 , σ 2

0 ) ∈ R
2 along the curve of σ 2

2 = Γ (σ 2
1 ) with the increase of σ 2

1 .

Proof See “Appendix 2”. ��
The monotonic decrease of λ with respect to seasonal variation is observed in

examples 2, 3, and 4 as well. In Example 2 (The “Flooding Pond-Surface” scenario),
when p = 2, the spectral radius λ is

λ(L1, L2) = max

{
f ′(0)2

16
[ωL1 + sin(ωL1)][ωL2 + sin(ωL2)],

f ′(0)2

16
[ωL1 − sin(ωL1)][ωL2 − sin(ωL2)]

} (50)

according to formulae (34), (35) and (36). Let the seasonal variation be

ε = |L1 − L2|
2

, (51)

then the spectral radius λ also monotonically decreases with respect to ε, if the average
of L1 and L2, (L1 + L2)/2, is a constant (see Fig. 2b). For Examples 3 and 4, the
numerically computed curves of λ with respect to seasonal variation are plotted in
Fig. 2c, d, and we again observe a monotonic decrease.

2.3.2 “Lower minimal limit size”, a generalization of the “critical habitat size”

The “critical habitat size” is a classic concept in spatial ecology (Kierstead and Slobod-
kin 1953; Skellam 1951) about how large a suitable habitat must be for a population
to persist. This concept is often used to guide conservation efforts, such as the design
of marine reserves (Lockwood et al. 2002). Previous studies on the critical habitat size
have focused on the case where there is no temporal variation in habitat sizes. In this
case, Qt (x) = Q(x) for all t , and model (1) reduces to an autonomous system

nt+1(x) = Ft [nt ](x) =
∫ ∞

−∞
k(x, y)Q(y) f [nt (y)] dy. (52)

For this autonomous system, population persistence is determined by the spectral
radius λ of operator Ft . In order to make sure that the critical habitat size problem is
well-defined, we restrict our discussions in this section to habitat suitability functions
satisfying the following additional assumptions:

123



A discrete-time model for population persistence in habitats... 665

(Q4) Q(x) can be written as Q(x;α), where α > 0 is a measure of habitat size, and
(a) ∀ α1 > α2, ||Q(x;α1) − Q(x;α2)|| �= 0, but ∀ x , Q(x;α1) ≥ Q(x;α2);
(b) Q(x;α) → Q(x;β) pointwise as α → β for β < ∞. In addition, Q(x;α) →

Q(x;∞) pointwise as α → ∞.

When Q(x) satisfies assumption (Q4), the critical habitat size for the autonomous
model (52) is the unique habitat size that corresponds to λ = 1.

In a two-season environment, the population cannot persist if the habitat size in
both seasons is below the critical habitat size. The population can, however, persist if
the habitat size is larger than the critical habitat size in one season, but smaller than
that in the other season. In this section, we will discuss the habitat size requirements
for a population to persist in a two-season environment. Let us first look at an example.

The “Flooding Pond” scenario In the “Flooding Pond” scenario (Example 1), the
habitat sizes for the rainy and dry seasons, σ 2

1 and σ 2
2 , jointly determine the spectral

radius λ. According to Theorem 2, λ = 1 is a threshold separating persistence and
extinction. Letting λ = 1 in Eq. (41) and solving for σ 2

2 , we obtain a critical value

σ 2∗
2 = σ 2∞

[
σ 2
1 + 2D

σ 2
1 − σ 2∞

]
, (53)

where

σ 2∞ = 2D

[
f ′(0)4 + 1

f ′(0)4 − 1

]2
− 2D, (54)

so that λ(σ 2∗
2 ) = 1. Since λ is monotonically increasing with respect to either σ 2

1 or
σ 2
2 (see Fig. 4a), when σ 2

1 is fixed, λ < 1 for any σ 2
2 < σ 2∗

2 . Therefore σ 2∗
2 is the

smallest value of σ 2
2 required for the population to persist.

This critical value σ 2∗
2 depends on σ 2

1 . In Fig. 3, σ 2∗
2 is plotted with respect to σ 2

1 .
We can see that the curve is a hyperbola, as described in expression (53). The grey
area above the hyperbola is the region where the population can persist, and the white
area below the hyperbola is where the population cannot.

We can see in Fig. 3 that σ 2∗
2 decreasesmonotonically with respect to σ 2

1 . Therefore,
when the habitat size in one season is increased, the habitat size for the other season
is allowed to take smaller values while still keeping the population persist. However,
because

lim
σ 2
1 →∞

σ 2∗
2 = σ 2∞ > 0, (55)

the critical value σ 2∗
2 approaches a nonzero limit as σ 2

1 approaches infinity. That is,
no matter how large the habitat size is for one season, the population cannot persist if
the habitat size for the other season is smaller than a critical value σ 2∞. We will refer
to σ 2∞ as the lower minimal limit size.

We can compare this lower minimal limit size σ 2∞ with the critical habitat size.
When there is no temporal variation in the habitat size, σ 2

1 = σ 2
2 , the critical habitat
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Fig. 3 The critical value σ∗2
2 is plotted with respect to σ 2

1 in a solid curve, which is a hyperbola, for the
two-season environment in the “Flooding Pond” scenario with Gaussian dispersal kernel. The hyperbola
intersects the diagonal line at (σ∗2

0 , σ∗2
0 ), where σ∗2

0 is the critical habitat size when there is no seasonal

variation (see Eq. (59)). This intersection is indicated by an asterisk. The population persists if (σ 2
1 , σ 2

2 ) is

in the grey area above the hyperbola, and fails to persist if (σ 2
1 , σ 2

2 ) is in thewhite area below the hyperbola.

As σ 2
1 → ∞, the critical value σ∗2

2 approaches a limit. This limit, as indicated by the horizontal dashed

line, is the lower minimal limit size σ 2∞ in (54). In this figure, f ′(0) = 2.5 and D = 2

size is the smallest habitat size (σ ∗
0 )2 so that

λ(σ 2
1 , σ 2

2 ) = λ((σ ∗
0 )2, (σ ∗

0 )2) = 1, (56)

where λ(σ 2
1 , σ 2

2 ) is defined by Eq. (41). Solving Eq. (56) for (σ ∗
0 )2, we find that

(σ ∗
0 )2 + 2D

2
√
D((σ ∗

0 )2 + 2D)

= f ′(0)4 + 1

f ′(0)4 − 1
, (57)

(σ ∗
0 )4 + 4D

[
1 −

(
f ′(0)4 + 1

f ′(0)4 − 1

)2
]

(σ ∗
0 )2 + 4D2

[
1 −

(
f ′(0)4 + 1

f ′(0)4 − 1

)2
]

= 0,

(58)

and

(σ ∗
0 )2 = 2D

(
f ′(0)4 + 1

f ′(0)4 − 1

)2

− 2D + 2D

(
f ′(0)4 + 1

f ′(0)4 − 1

)√(
f ′(0)4 + 1

f ′(0)4 − 1

)2

− 1.

(59)
This critical habitat size can be visualized in Fig. 3 by intersecting the hyperbola
(53) with the diagonal line of the first quadrant, and obtaining the intersection point
(σ ∗2

0 ,σ ∗2
0 ), marked with an asterisk in Fig. 3. In this example, the ratio between the
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Fig. 4 The spectral radius λ in Examples 1−3 (a–c, respectively) are plotted with respect to the habitat
size in even time steps, σ 2

2 (in a, c) or L2 (in b), for different values of σ 2
1 (in a, c) or L1 (in b). The

dashed horizontal line corresponds to λ = 1, and its intersections with the λ-σ 2
2 or λ-L2 curves mark the

smallest σ 2
2 or L2 for the population to persist when σ 2

1 or L1 is given. In all three panels, f ′(0) = 2.5,
and the dispersal parameters are chosen so that the mean dispersal distance is 2. For all three scenarios, the
curves approach a limit curve as σ 2

1 or L1 increase. As a result, the intersections of these curves with the

horizontal dashed line approach the “lower minimal limit size”. In the solid curves in (a) and (c), σ 2
1 takes

the values σ 2
1 = 1, 20, 40, 60, as labeled. The dashed curves in (a) and (c) correspond to σ 2

1 = 80. In (a),
λ is calculated with formula (41). In (c), λ is calculated with the Nystöm method, the habitat suitability
function is (37) with μ = 3, and the dispersal kernel is the Gaussian kernel (8). In (b), L1 takes the values
L1 = 1, 5, 10 in the solid curves, as labeled, and L1 = 20 in the dashed curve. The habitat suitability
function is the hat function (3), the dispersal kernel is the Gaussian kernel (8), and λ is calculated with the
Nystöm method

critical habitat size and the lower minimal limit size,

σ ∗2
0

σ 2∞
= 1 +

√√√√√√√√

(
f ′(0)4 + 1

f ′(0)4 − 1

)2

(
f ′(0)4 + 1

f ′(0)4 − 1

)2

− 1

, (60)
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depends only on the net reproductive rate f ′(0), and does not depend on the dispersal
parameter D. Also, we know that the ratio σ ∗2

0 /σ 2∞ > 2 for any given f ′(0), so the
lower minimal limit size σ 2∞ is always smaller than 1/2 of the critical habitat size σ ∗2

0
for this specific example. The lower minimal limit size generalizes the critical habitat
size concept for a two-season environment. It is the smallest dry-season habitat size
required for the population to persist, when the wet-season habitat size is ∞. We now
show that this lower minimal limit size exists for other two-season examples where
the habitat suitability function and dispersal kernel satisfy the model assumptions
(K1)−(K5) and (Q1)−(Q4).

We will prove the existence of the lower minimal limit size by considering the limit
case of the eigenvalue problem

λu(x) = [ f ′(0)]2
∫ ∞

−∞
k(x− y)Q(y;α1)

[∫ ∞

−∞
k(y − z)Q(z;α2)u(z) dz

]
dy (61)

when α1 → ∞. Here, Q(x;αi ) is the habitat suitability function for the i th season,
and αi is the parameter representing the habitat size.

We begin by noticing that we can change the order of integration in Eq. (61), and
rewrite Eq. (61) as

λu(x) = Kα1 [u](x) = [ f ′(0)]2
∫ ∞

−∞
Q(z;α2)k̃(x, z;α1)u(z) dz, (62)

where

k̃(x, z;α1) =
∫ ∞

−∞
k(x − y)Q(y;α1)k(y − z) dy. (63)

As α1 → ∞, the following series of lemmas will show that the spectral radius λ of
Kα1 converges to that of K∞, where

K∞[u](x) = [ f ′(0)]2
∫ ∞

−∞
Q(z;α2)k̃(x, z;∞)u(z) dz. (64)

Lemma 6 Assume the dispersal kernel k(x) satisfies assumptions (K1)−(K5). Then
the improper integral ∫ ∞

−∞
k(x − y)k(y − z) dy (65)

is uniformly convergent for (x, z) ∈ I1 × I2, where I1 = [−L1/2, L1/2] and I2 =
[−L2/2, L2/2] are bounded intervals in R for some arbitrary L1, L2 > 0.

Proof See “Appendix 2”. ��
Lemma 7 Assume that the habitat suitability function Q(x;α) satisfies assumptions
(Q1)−(Q4), and the dispersal kernel k(x − y) satisfies assumptions (K1)−(K5). Let

p(x, z) =
∫ ∞

−∞
k(x − y)k(y − z) dy, (66)
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then for any α < ∞, the integral
∫ L
−L Q(z;α)p(x, z) dz converges to the improper

integral
∫∞
−∞ Q(z;α)p(x, z) dz uniformly as L → ∞.

Proof See “Appendix 2”. ��
Lemma 8 Assume that the habitat suitability function Q(x) satisfies (Q1)−(Q4), and
the dispersal kernel k(x − y) satisfies assumptions (K1)−(K5). Let λ̄α1 be the spectral
radius of Kα1 , and λ̄∞ be the spectral radius of K∞, then λ̄α1 → λ̄∞ as α1 → ∞.

Proof See “Appendix 2”. ��
Meanwhile, it is also obvious that eigenvalue λ is monotonically increasing with

respect to both α1 and α2, as stated in the following lemma.

Lemma 9 Assume that the habitat suitability function Q(x) satisfies (Q1)−(Q4), and
the dispersal kernel k(x − y) satisfies assumptions (K1)−(K5).

Let λ(α1, α2) be the largest positive eigenvalue in eigenvalue problem (28) when
p = 2. Then λ(α1, α2) is continuous and monotonically increasing with respect to
both α1 and α2.

Proof For a given α2, we can prove that λ̄α1 → λ̄β as α1 → β by replacing ∞ with
β in the proof of Lemma 8. Therefore λ(α1, α2) is continuous with respect to α1. We
can use the same method to show that λ(α1, α2) is continuous with respect to α2, too.
The monotonicity follows from assumption (Q4(a)). ��

From Lemma 9, it follows that any α∗
2 satisfying λ(α1, α

∗
2) = 1 for a given α1 is

unique, and is the smallest habitat size in the even time steps required for the population
to persist.

Theorem 3 Assume that the habitat suitability function Q(x) satisfies (Q1)−(Q4),
the dispersal kernel k(x) satisfies assumptions (K1)−(K5), and for some given α′

1,
there exists α∗

2 > 0 that satisfies λ̄α′
1
(α∗

2) = 1. Thus, for each given α1 > α′
1, there

exists a unique α∗
2 satisfying λ̄α1(α

∗
2) = 1. Then as α1 → ∞, there exists α∞ > 0, so

that α∗
2 → α∞.

Proof See “Appendix 2”. ��
It is not clear whether the “Flooding Pond-Margin” scenario meets the assumptions

of Theorem 3, because we are not able to find an α that meets assumption (Q4(a)) or
prove that such an α does not exist. In the mean time, the “Flooding Pond” scenario,
the “Flooding Pond-Surface” scenario, and the “Connected Ponds” scenario meet the
assumptions for Theorem 3. We therefore illustrate the convergence of λ̄α1 to λ̄∞ and
the existence of the lower minimal limit size for these three examples in Fig. 4. In Fig.
4b, each curve represents a function λ̄(L2) of L2 for the “Flooding Pond-Surface”
scenario, for a given value of L1. The values of L1 are between L1 = 1 and L1 = 20.
As L1 approaches its largest value, the curves of λ̄(L2) approach a limit. Intersecting
these curves with λ = 1, we can see that the critical values of L2 for a given L1
decrease to a limit. This limit is the lower minimal limit size. In Fig. 4c, we plotted
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the spectral radius for the “Connected Ponds” scenario with respect to σ 2
2 for different

values of σ 2
1 . Each curve in Fig. 4c represents a function λ̄(σ 2

2 ) of σ 2
2 for a given value

of σ 2
1 . The values of σ 2

1 are between σ 2
1 = 1 and σ 2

1 = 80. When σ 2
1 approaches

its largest value, the curves of λ̄(σ 2
2 ) approach a limit. Intersecting these curves with

λ = 1, we can see that the critical values of σ 2
2 for a given σ 2

1 decrease to a limit,
which is the lower minimal limit size.

2.3.3 Effect of dispersal on population persistence

The effect of dispersal on population persistence has been well-studied for environ-
ments with no temporal variation. For example, Hardin et al. (1988b) considered an
integrodifference equation model and found that the persistence metric is optimized
when there is no dispersal.

In the case when there is temporal variation in the habitat size, the effect of dispersal
is more complex. When the habitat expands, dispersal may allow the population to
take advantage of the extra habitat gained during expansion. However, it may also
cause population loss when the habitat contracts. In this section, we will investigate
the effect of dispersal in four examples: the “Flooding Pond” scenario, the “Flooding
Pond-Surface” scenario, the “Connected Ponds” scenario, and the “Flooding Pond-
Margin” scenario (see Sect. 2.2).

We find that in the first three examples, dispersal has a negative effect on population
persistence. In Fig. 5, the spectral radiusλ is plotted against themean dispersal distance
for each example. We can see that the spectral radius λ monotonically decreases with
respect to mean dispersal distance.

We can look at this negative effect in more detail in the “Flooding Pond” sce-
nario with dispersal kernel (8). For example, the critical variation ε∗ decreases as the
dispersal parameter D increases, because

1 −
(

f ′(0)4 + 1

f ′(0)4 − 1

)2

< 0 (67)

in Eq. (46). Thus the population has a smaller allowance of seasonal habitat size
variations when its mean dispersal distance is larger. We can also take a look at the
dependence of the critical habitat size and the lower minimal limit size on dispersal.
Both the critical habitat size σ ∗2

0 (see Eq. 59) and the lower minimal limit size σ 2∞ (see
Eq. 54) increase linearly with respect to the dispersal parameter D. If the species has a
larger mean distance of dispersal, it requires larger habitats to persist. In this example,
dispersing farther in each time step provides no advantage for population persistence
in this model, because the location of optimal habitat suitability does not move during
seasonal changes, the habitat suitability for the area gained during range expansion is
lower than the suitability of the habitat already occupied. Instead, dispersing imposes
a great disadvantage during range contraction.

The “Flooding Pond-Margin” scenario is different from the other three examples
in that the location of optimal habitat suitability moves during seasonal changes. As a
result, the effect of dispersal on the spectral radius λ depends on the parameter region
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Fig. 5 The spectral radius λ is plotted with respect to mean dispersal distance for Examples 1−3 (a–c
respectively). For all three scenarios, λ decreases as mean dispersal distance increases. The horizontal
dashed line corresponds to λ = 1, and its intersection with the curves mark the maximal mean dispersal
distance for the population to persist. In all three panels, f ′(0)2 = 6.25, and seasonal variation ε = 2. In
(a), λ is calculated with formula (41), the habitat suitability function is (5) with σ 2

1 = 6 and σ 2
2 = 2, and the

dispersal kernel is the Gaussian kernel (8). In (b), λ is calculated with formula (50), the habitat suitability
function is the hat function (3) with L1 = 6 and L2 = 2, and the dispersal kernel is the cosine kernel (32).
In (c), λ is calculated with the Nystöm method, the habitat suitability function is (37) with μ = 3, σ 2

1 = 6,

and σ 2
2 = 2. The dispersal kernel is the Gaussian kernel (8)

we consider. Specifically, when the seasonal variation ε is small, λ decreases with
respect to the mean dispersal distance (Fig. 6a). But when the seasonal variation ε

is large, the dependence of λ on the mean dispersal distance is no longer monotonic
(Fig. 6b). This can be explained when we look at the double-sided effect of dispersal
in population persistence. When the suitable range expands, a higher dispersal ability
helps the population take advantage of the more suitable parts of habitat that becomes
available. But when the suitable range contracts, additional dispersal is disadvantage.
This disadvantage is especially obvious when the seasonal variation is large, and the
disadvantage of dispersal during range contraction overcompensates its advantage
during range expansion.

3 Environment with random seasonal and annual fluctuations

In this section, we consider a stochastic setting of the model

nt+1(x) = Ft [nt ](y) =
∫

Ω

k(x, y)Qt (y) f [nt (y)]dy, (68)
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Fig. 6 The spectral radius λ is plotted with respect to the mean dispersal distance for Example 4. In
(a), seasonal variation ε is small (ε = 0.5), and λ decreases as mean dispersal distance increases. In (b),
seasonal variation ε is increased to ε = 2, and λ is no longer monotonic with respect to the mean dispersal
distance. In both panels, λ is calculated with the Nystöm method. The habitat suitability function is (39)
with f ′(0)2 = 12, σ 2 = 4, and μ0 = 4. The dispersal kernel is the Gaussian kernel (8)

where the habitat suitability function Qt (y) is randomly chosen at each time step
t , and Ω is a compact subset of R. We use this model to describe the population
dynamics of a species residing in a habitat whose size fluctuates randomly. We first
apply Hardin et al.’s results (1990) about a persistence metric, and then consider a
two-season environment with both seasonal and annual fluctuations.

3.1 Persistence metric

Let us first rewrite Eq. (68) as

nt+1(x) = Fαt [nt ](y) =
∫

Ω

k(x, y)Q(y;αt ) f [nt (y)]dy

=
∫

Ω

k(x, y)Qαt (y) f [nt (y)]dy, (69)

where {αt }, t = 0, 1, . . . , is a sequence of independent identically distributed random
numbers prescribing the environmental condition. Specifically, αt is a parameter in
the habitat suitability function Qαt (y) that is a measure of the habitat size. Since Ω
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is compact, Hardin et al.’s results (1990) for integral operators apply. We sum up the
relevant results in the following theorem.

Theorem 4 (Theorems 4.1, 4.2, Hardin et al. 1990)Assume that for each t, the habitat
suitability function Qαt , the dispersal kernel k, and the growth function f satisfy
conditions (Q1)−(Q4), (K1)−(K4), and (F1)−(F6). Then the limit

r = lim
t→∞ ||Kαt ◦ · · · ◦ Kα1 ||1/t (70)

exists, where Kαt is the Fréchet derivative F
′
αt

(0) of Fαt at 0. In addition, assume Qαt

satisfies

(Q5) ∃ a, b > 0, so that ∀ y ∈ Ω , a ≤ Qαt (y) ≤ b almost surely.

Let n0(x) be a nonzero function with probability one, and let the population density
nt (x) describe the tth iteration of the dynamical system

nt+1(x) = Fαt [nt ](x). (71)

Then nt (x) converges in distribution to a unique stationary distribution μ∗. Further-
more, the following are true.

(1) If r > 1, then μ∗({0}) = 0, and limε→0 supt P{maxx∈Ω nt (x) < ε} = 0. That is,
the population persists almost surely.

(2) If r < 1, then μ∗({0}) = 1 and limt→∞(maxx∈Ω nt (x)) = 0 almost surely. That
is, the population goes extinct almost surely.

Proof See “Appendix 3”. ��
Jacobsen et al. (2015) have found an alternative metric,

λ = lim
t→∞

(∫
Ω

nt (x) dx

)1/t

, (72)

that is equal to r . This alternative metric is easier to compute than r in numerical
computations. We therefore use the alternative metric (72) to approximate r in the
numerical computation.

3.2 Two-season environment with seasonal fluctuations

We now reconsider the two-season environment in Sect. 2. We assume that the annual
total habitat size is the same, and the rainy season has a larger habitat size than the dry
season. Thus the habitat sizes for the t th year are

αt,rainy = β/2 + εt and αt,dry = β/2 − εt , (73)

where β is the annual total habitat size, and εt is the seasonal fluctuation. In contrast to
a fixed seasonal variation in Sect. 2, εt is now a random variable following a uniform
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Fig. 7 The persistence metric λ is plotted vs. the mean seasonal fluctuation ε for a two-season environment
with seasonal fluctuations. The habitat sizes are prescribed by Eq. (73), where the seasonal fluctuation is
chosen from a uniform distribution with mean ε and variance ξ . In this figure, the variances of the seasonal
fluctuation are ξ = 0, 0.75, and 3. The habitat suitability function is (5) and the dispersal kernel is the
Gaussian kernel (8). The other parameters are f ′(0) = 2.5, mean dispersal distance = 2, annual total habitat
size β = 8. When computing λ, the integral domain Ω = [−40, 40] is discretized with 216 grid points

distribution. We assume the mean of εt is E[εt ] = ε, and the variance is Var [εt ] = ξ .
We assume that Ω is a bounded interval [−R, R]. Then assumption (Q5) is met if
the habitat suitability function is (5). In Fig. 7, we illustrate the relation between the
persistence metric λ and the mean fluctuation ε for different values of the variance ξ ,
when the habitat suitability function is (5), and the dispersal kernel is the Gaussian
kernel (8). When ξ = 0, the model coincides with the deterministic case, and we see
that λ decreases as the mean seasonal fluctuation increases. When ξ > 0, we see that λ
also tends to decrease as the mean seasonal fluctuation increases. Furthermore, when
the variance ξ is larger, λ tends to be smaller. Thus the seasonal fluctuations in habitat
size seem to have a negative impact on population persistence. This is consistent with
what we found in the deterministic case (Sect. 2).

3.3 Two-season environment with seasonal and annual fluctuations

Besides seasonal fluctuations, habitat sizes may also fluctuate on an annual time scale.
In this section, we consider random fluctuations in the annual total habitat size in
addition to the seasonal fluctuations in the previous section. Thus the habitat sizes for
the t th year are now

αt,rainy = βt/2 + εt and αt,dry = βt/2 − εt , (74)

where εt is the random seasonal fluctuation considered in the previous section, and the
annual total habitat size βt is also a random variable following a uniform distribution
withmean E[βt ] = β. The annual fluctuation is ηt = βt−β.We assume themaximum
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Fig. 8 The persistence metric λ is plotted vs. the maximum annual fluctuations η for a two-season environ-
ment with seasonal and annual fluctuations. The habitat sizes are prescribed by Eq. (74), where the seasonal
fluctuation is chosen from a uniform distribution with mean ε and variance ξ , and the annual fluctuation is
chosen from a uniform distributionwithmean β and variance η. In this figure, themean seasonal fluctuations
are ε = 3.75, 4, and 4.25. The habitat suitability function is (5) and the dispersal kernel is the Gaussian
kernel (8). The other parameters are f ′(0) = 2.5, mean dispersal distance = 2, annual total habitat size
β = 8. When computing λ, the integral domain Ω = [−40, 40] is discretized with 216 grid points

annual fluctuation is η, so ηt is a random variable uniformly distributed in [−η, η]. In
addition, we assume Ω is a bounded interval [−R, R].

In Fig. 8, we illustrate the relation between the persistencemetric λ and themaximal
annual fluctuation η for different values of the mean seasonal fluctuation ε, when the
habitat suitability function is (5) and the dispersal kernel is the Gaussian kernel (8).
We see that λ tends to decrease as the maximal annual fluctuation η increases. That is,
when the mean seasonal fluctuation is fixed, annual fluctuation in habitat size seems
to have a negative impact on population persistence. Furthermore, when the mean
seasonal fluctuation ε is larger, but the maximal annual fluctuation is the same, λ tends
to be smaller. Therefore, when fluctuations in either or both time scales increase,
population persistence is negatively affected.

We also notice in Fig. 8 that when the maximum annual fluctuation increases, but
the mean seasonal fluctuation decreases, the persistence metric can become either
smaller or larger. For example, when the maximum annual fluctuation η = 3.25 and
the mean seasonal fluctuation ε = 4.25, the persistence metric λ < 1; but when the
maximumannual fluctuation η = 3.75 and themean seasonal fluctuation ε = 3.75, the
persistence metric λ > 1 (Fig. 8). Therefore, in a case where the fluctuations of habitat
size are projected to increase in one time scale but decrease in another, conclusions
about their effects on population persistence need to be drawn carefully.

4 Discussion

Fluctuations in habitat size are a regular occurrence in environments such as wetland
systems. Changes inwater availability often drive oscillations betweenwet-season and
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dry-season conditions. For example, impermanent water bodies, including ephemeral
ponds and ’Delaware Bays,’ routinely vary in depth and surface area as a result of
seasonal flooding and drought (Ripley and Simovich 2009; Deil 2005). On multi-year
timescales, river flow reworks the size, composition, and spatial position of riverine
sandbars, gravel beds, and deltaic features (Parker et al. 2011; Nelson et al. 2013).
On still longer timescales, even more persistent geographic features such as offshore
barrier islands are highly dynamic in location and size (Nebel et al. 2011).

Such spatial dynamics of the environment may be a driving force for the population
dynamics of individual species, as they disperse to take advantage of the expanded
habitat, taking serious risks associated with dispersal (Clobert et al. 2012). On multi-
species level, these spatial dynamicsmayalso be a support of biodiversity. For example,
in the Florida Everglades, the expansion and contraction of water bodies cause small
fish to become trapped in drying pools as the water level recedes during the dry
season. As deadly as the trapping is for these fish species, such trapping provide
a crucial mechanism to support the population of wading birds in the Everglades,
who feast on the otherwise hard-to-detect small fishes (Bakun 2006). Understanding
how the persistence of a single population, such as a fish population, depend on the
interplay between its dispersal and habitat size fluctuations, therefore, is an important
step towards understanding more complex dynamics across trophic levels.

Here we have explored the persistence criteria for a species inhabiting a habitat
whose size changes periodically in time. As a result, we extended the critical habitat
size concept to a new threshold size concept, lower minimal limit size, for the scenario
of varying habitat sizes. The critical habitat size is a threshold size for a habitat with
constant size to support a persistent population. When the habitat size is temporally
varying, the critical habitat size concept does not directly apply. For example, requiring
an average of the temporally varying habitat sizes to meet a threshold size may not
work, because the same average size may result in different population dynamics
(Fig. 2a). What we found instead is that, while there still exists a threshold habitat size
to support a persistent population, this threshold size in the periodic system can be
smaller than the critical habitat size (Fig. 3). This lower threshold is possible because
dispersal allows the resident population to exploit the increased habitat that occurs
when the habitat is large, compensating for losses accrued when the habitat shrinks.
However, there are limits to this beneficial effect, and the threshold size approaches a
constant in the two-season scenario (rather than declining to zero; Fig. 3) as the habitat
size during the enlarged phase of its cycle becomes huge. We refer to this constant
as the lower minimal limit size. In the context of wetland systems, the existence of
a lower minimal limit size suggests that there are threshold drought levels. If water
levels repeatedly drop below a certain threshold, floods following the droughts cannot
provide enough relief to sustain the population.

We have also demonstrated that time scale matters when we consider fluctuations
in habitat size. With the stochastic system in Sect. 3, we considered habitats with
both seasonal and annual size fluctuations. While larger seasonal fluctuations or larger
annual fluctuations alone affect population persistence negatively, the combined effects
of larger fluctuations in one time scale and smaller fluctuations in anothermay be either
positive or negative on the population (Fig. 8).
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An emerging theme from this work is that increased dispersal can be quite dis-
advantageous when it traps individuals beyond the boundary of the habitat when the
habitat is small. This kind of shrinkage-induced mortality is a recurring feature of
desert streams (Moyle 2002; Kerezsy et al. 2013) but contrasts starkly with the fate
of pond-dwelling fish and amphibians in more temperate habitats. In those cases,
even though ponds may shrink and grow depending on the season, the patch edge is an
impermeable boundary whose contraction serves to concentrate individuals within the
patch. In those cases, mortality may occur because of increased crowding within the
patch, but losses of residents across the patch edge do not occur unless there is a special
circumstance (e.g., metamorphosis of amphibian larvae) that allows for emigration.

There are open questions in this project. First of all, we only examined the effects
of habitat size fluctuations on population persistence. Whether the effects are sim-
ilar on total population size is an open question and requires development of more
mathematical tools. Also, our model is for an single-species, unstructured population,
and extending the model to multi-species populations or a stage-structured population
will allow us to studying interesting questions. The combination of structured popula-
tions, multiple species, and the total population size perspectivemay reveal fascinating
effects of habitat size fluctuations (Henson and Cushing 1997; Costantino et al. 1998).
In the mean time, preliminary research extending the model to a two-dimensional
habitat suggests that fluctuations in habitat size may provide center-dwelling species
with an advantage over edge-dwelling species. Therefore, increased fluctuations in
habitat size may cause changes in community composition in a wetland system.
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Appendix 1: Proof of complete continuity and the dichotomy result

Proof of Lemma 1

Proof From the assumptions (K2), (K3), and (Q3), we have

sup
x

∫ ∞

−∞
|k(x − y)Q(y)| dy ≤ sup

x,y
k(x − y) ·

∫ ∞

−∞
Q(y) dy < ∞. (75)

Therefore property (KQ1) is satisfied by k̃(x, y).
Next we will show that the convolution

h(x) =
∫ ∞

−∞
|k(x − y)Q(y)| dy (76)
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is integrable over (−∞,∞). To see this, notice that

∫ ∞

−∞
h(x) dx =

∫ ∞

−∞
dx

∫ ∞

−∞
|k(x − y)Q(y)| dy

=
∫ ∞

−∞
dx

∫ ∞

−∞
k(x − y)Q(y) dy

=
∫ ∞

−∞
dy

∫ ∞

−∞
k(x − y)Q(y) dx

=
∫ ∞

−∞
Q(y)dy

∫ ∞

−∞
k(x − y) dx

=
∫ ∞

−∞
Q(y) dy · 1

< ∞. (77)

Therefore
h(x) → 0 as x → ∞, (78)

and property (KQ2) is satisfied by k̃(x, y).
Next, notice that sup

x
Q(x) ≤ 1 by the definition of the habitat suitability function.

Thus

sup
|x ′−x |≤h

∫ ∞

−∞
∣∣k(x ′ − y)Q(y) − k(x − y)Q(y)

∣∣ dy

≤ sup
y

Q(y) · sup
|x ′−x |≤h

∫ ∞

−∞
∣∣k(x ′ − y) − k(x − y)

∣∣ dy

≤ sup
|δ|≤h

∫ ∞

−∞
|k(s + δ) − k(s)| ds

→ 0, as h → 0, (79)

where the last step was proved by Bochner and Chandrasekharan (1949, page 22, The-
orem 10). Therefore, the integral kernel k̃(x, y) also satisfies assumption (KQ3). ��

Proof of Lemma 2

Proof We will first deduce compactness of A by extending the arguments for linear
operators by Atkinson (1969) (also see Sloan 1981; Anselone and Sloan 1985) to
include certain nonlinear operators. Atkinson (1969) provided a set of conditions
to ensure that a linear integral operator K which maps M+, the space of bounded
measurable functions on [0,∞), to C0+, the space of continuous functions on [0,∞)

which vanish at ∞, is compact. These conditions make sure the image of the unit ball
||u|| ≤ 1 under K is uniformly bounded, equicontinuous, and equiconvergent at ∞.
This image of the unit ball is therefore compact because of an isometric isomorphism
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between a subset of C[0, 1] and C+[0,∞), and the Arzelà–Ascoli theorem. Although
this argument was originally derived for integral operators of the form

K [u](x) =
∫ ∞

0
k(x, y)u(y) dy (80)

on M+, an analogous argument applies to operators on BC[0,∞) (Anselone and
Sloan 1985) and BC(−∞,∞) as well (Chandler-Wilde et al. 2000; Sloan 1981). We
now show that the same set of conditions also imply compactness of certain nonlinear
operators.

Suppose a nonlinear operator A is defined by (16). Because of assumptions (F3)
and (KQ1), for any u in the unit ball ||u|| ≤ 1,

sup
x

|A[u]| ≤ f ′(0) sup
x

∫ ∞

−∞
|k̃(x, y)| dy < ∞. (81)

Thus the image of the unit ball ||u|| ≤ 1 is uniformly bounded. Next, for any x, x ′ ∈ R,

∣∣∣A[u](x ′
) − A[u](x)

∣∣∣ =
∣∣∣∣
∫ ∞

−∞
[k̃(x ′

, y) − k̃(x, y)] f [u(y)] dy
∣∣∣∣

≤ f ′(0)
∣∣∣∣
∫ ∞

−∞
[k̃(x ′

, y) − k̃(x, y)] u(y) dy

∣∣∣∣
≤ f ′(0)||u|| · sup

x ′,x

∫ ∞

−∞
|k̃(x ′

, y) − k̃(x, y)| dy.
(82)

Therefore, assumption (KQ3) implies that the image of ||u|| ≤ 1 is equicontinuous at
every point. Finally, because

|A[u](x)| ≤ f ′(0)||u||
∫ ∞

−∞

∣∣∣k̃(x, y)
∣∣∣ dy, (83)

assumption (KQ2) implies that the image of ||u|| ≤ 1 is equiconvergent. Therefore,
as discussed in the previous paragraph, A is compact.

We then show that A is continuous. For all n1(x), n2(x) ∈ BC+(Ω),

||A[n1] − A[n2]|| ≤ sup
x

∫ ∞

−∞
|k̃(x, y)| · | f [n1(y)] − f [n2(y)]| dy (84)

≤ sup
n

| f ′(n)| · sup
x

∫ ∞

−∞
|k̃(x, y)| · |n1(y) − n2(y)| dy (85)

≤ sup
n

| f ′(n)| · ||n1 − n2|| · sup
x

∫ ∞

−∞
|k̃(x, y)| dy. (86)

Therefore, assumptions (F1) and (KQ1) imply that A is continuous. Because A is also
compact, it is completely continuous. ��
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Proof of Lemma 3

Proof Because each Ft and Kt are bounded, and

sup
x

∫ ∞

−∞
k(x − y)Qt (y)dy < ∞ (87)

for each t , which was argued in the proof of Lemma 1, it is straightforward to deduce
that F ′

t (0) defined in (17) is the Fréchet derivative of Ft at 0, and that K (i) is the
Fréchet derivative of F (i) at 0. We therefore omit the details here. Because Ft is
completely continuous, its Fréchet derivative is also completely continuous, and so is
the composition K (i). Meanwhile, because each Qt (y) is defined to be nonnegative,
by assumptions (K2) and (Q2), each F ′

t (0) is a positive operator. Therefore K (i) is
also a positive operator.

We will now show that the spectral radius of K (i) is a positive eigenvalue of K (i).
If Ω is bounded, it is straightforward to show that each F ′

t (0) is strongly positive,
and therefore K (i) is strongly positive. The compactness and strong positivity of K (i)

ensure that K (i) has a simple positive dominant eigenvalue (Krein and Rutman 1948,
Theorem 6.3). This dominant eigenvalue of K (i) is equal to the spectral radius of K (i),
because the spectrum of a compact linear operator contains only eigenvalues and the
number 0 (Hutson and Pym 1980). Now suppose Ω is unbounded. Let [a, b] be a
bounded subset of Ω , and let It be the operator defined as

It [u](x) = f ′(0)
∫ b

a
k(x − y)Qt (y)u(y) dy. (88)

Then It is an integral operator on BC+[a, b] with a nonnegative kernel, and there-
fore rσ (It ) > 0 is a simple eigenvalue of It . Moreover, if we consider It as an integral
operator on BC+(Ω), it is still true that rσ (It ) > 0 is a simple eigenvalue of It . Notice
that for each t , Kt ≥ It . Let I (i) = Ii+p−1 ◦ · · · ◦ Ii+1 ◦ Ii , then K (i) ≥ I (i). There-
fore, by the comparison theorem of positive operators (Marek 1970, Theorem 4.2),
rσ (K (i)) ≥ rσ (I (i)) > 0. Since K (i) is completely continuous, λi = rσ (K (i)) is a
positive eigenvalue of K (i) with a nonnegative eigenvector (Krein and Rutman 1948,
Theorem 6.1). ��

Proof of Lemma 4

Proof By Lemma 3, the spectral radius rσ (K (i)) = λi of each K (i) is a positive
eigenvalue of K (i), and has a nonnegative eigenvector ui (x) ∈ BC+(Ω) so that

K (i)[ui ](x) = λi ui (x), (89)

and λi is not smaller than the modulus of any other eigenvalues of K (i).
We now show that λi is also an eigenvalue of K (i+1). Since each Kt maps the cone

BC+(Ω) to itself, Ki [ui ](x) ∈ BC+(Ω). Applying operator Ki on both sides of Eq.
(89), we have
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K (i+1) {Ki [ui ](x)} = λi Ki [ui ](x). (90)

Therefore λi is also an eigenvalue of K (i+1). By Lemma 3, the spectral radius
rσ (K (i+1)) is a positive eigenvalue of K (i+1), and is no less than the modulus of
any other eigenvalue of K (i+1). Therefore

rσ (K (i)) = λi ≤ rσ (K (i+1)). (91)

Applying the same argument to K (i+1) and K (i+2), we have

rσ (K (i+1)) ≤ rσ (K (i+2)). (92)

By induction,
rσ (K (i+p−1)) ≤ rσ (K (i+p)). (93)

Since K (i+p) = K (i),

rσ (K (i)) ≤ rσ (K (i+1)) ≤ · · · ≤ rσ (K (i+p)) = rσ (K (i)). (94)

Therefore λi = λ,∀i . ��

Proof of Theorem 1

Proof For each integer i , i = 1, 2, . . . , p, the composition F (i) in Eq. (19) defines a
time-independent dynamical system,

ni+p(x) = F (i)[ni ](x), (95)

that maps ni (x) ∈ BC+(Ωi ) to ni+p(x) ∈ BC+(Ωi ). The results of Theorem 1
can be verified by applying Theorem 2.3.4 of Zhao (2003) to each operator F (i) and
their Fréchet derivatives at 0, K (i). In order to do this, we need to show that each
operator F (i), which maps the positive cone BC+(Ωi ) to itself, satisfies the following
assumptions of Theorem 2.3.4 (Zhao 2003):

(1) F (i) is monotone (Zhao 2003, Definition 2.1.1);
(2) F (i) is strongly subhomogeneous (Zhao 2003, Definition 2.3.1);
(3) F (i) is asymptotically smooth (Zhao 2003, Definition 1.1.2);
(4) every positive orbit of F (i) is bounded;
(5) let z0(x) ≡ 0 be the zero function in BC+(Ωi ), then F (i)[z0](x) = z0(x);
(6) the Fréchet derivative of F (i) at 0, K (i), is completely continuous;
(7) the Fréchet derivative of F (i) at 0, K (i), is strongly positive. That is, for any

nonzero element n(x) ∈ BC+(Ωi )\{0}, K (i)[n] ∈ int(BC+(Ωi )).

We now verify assumptions (1)−(7).

(1) For each t , the operator Ft : BC+(Ω) → BC+(Ω) is monotone. To see this,
let n1(x), n2(x) ∈ BC+(Ω) be any two elements of the cone BC+(Ω), and let
n1(x) ≥ n2(x). We can see that

123



682 Y. Zhou, W. F. Fagan

Ft [n1](x) =
∫ ∞

−∞
k(x − y)Qt (y) f [n1(y)] dy

≥
∫ ∞

−∞
k(x − y)Qt (y) f [n2(y)] dy

= Ft [n2](x)

(96)

because k(x − y)Qt (y) ≥ 0 and f satisfies (F5).
Therefore, by induction, the composition F (i) is a monotone operator on the cone
BC+(Ω). Since Ωi ⊂ Ω , F (i) is a monotone operator on the cone BC+(Ωi ).

(2) For each t, the operator Ft is also strongly subhomogeneous. To see this, let n(x)
be any element in the interior of the cone BC+(Ω). That is, ∀ x ∈ Ω, n(x) > 0.
Because of assumption (K2) and the definition of the suitability function Qt ,
k(x − y)Qt (y) > 0 for y ∈ Ωt . Therefore, ∀ 0 < α < 1, ∀ x ∈ Ω ,

Ft [αn] − αFt [n] =
∫ ∞

−∞
k(x − y)Qt (y){ f [αn(y)] − α f [n(y)]} dy

=
∫

Ωt

k(x − y)Qt (y){ f [αn(y)] − α f [n(y)]} dy > 0
(97)

by assumptions (F6), (Q1), and (Q2). Thus Ft [αn] −αFt [n] is an element in the
interior of BC+(Ω). Therefore Ft is strongly subhomogeneous. By induction, it
is clear that the composition F (i) is a strongly subhomogeneous operator on the
cone BC+(Ω). Therefore F (i) is a strongly subhomogeneous operator on the
cone BC+(Ωi ).

(3) By Corollary 1, F (i) is completely continuous. Therefore F (i) is asymptotically
smooth (Zhao 2003, page 3).

(4) For each t , the operator Ft is uniformly bounded. In fact, since f (n) ≤ M for
any n by assumption (F4),

||Ft [u]|| = sup
x∈R

∣∣∣∣
∫ ∞

−∞
k(x − y)Qt (y) f [u(y)] dy

∣∣∣∣
≤ M · sup

x∈R

∫ ∞

−∞
k(x − y)Qt (y) dy.

(98)

Let

M ′ = sup
x∈R

∫ ∞

−∞
k(x − y)Qt (y) dy, (99)

then M ′ < ∞ because of Lemma 1 and (KQ1). Therefore Ft is uniformly
bounded. Clearly, the composition F (i) is also uniformly bounded. Therefore,
any positive orbit of F (i) is bounded.

(5) Because of assumption (F2), Ft [z0(x)] ≡ 0 for all t . Therefore the composition
F (i) maps the zero function to the zero function.

(6) By Corollary 1, K (i) is completely continuous.
(7) We will first show that for each i , Ki maps nonzero elements of BC+(Ωi ) to

positive elements of BC+(R). To see this, let n(x) be any nonzero element of
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BC+(Ωi ). As argued in the verification of assumption (2), k(x − y)Qi (y) > 0
for y ∈ Ωi . Therefore, by assumptions (Q1) and (Q2), ∀x ∈ R,

Ki [n](x) =
∫ ∞

−∞
k(x − y)Qi (y) f

′(0) n(y) dy

=
∫

Ωi

k(x − y)Qi (y) f
′(0) n(y) dy > 0.

(100)

Therefore Ki [n] ∈ BC+(R), and ∀x ,

Ki+1 ◦ Ki [n](x) > 0. (101)

By induction, K (i)[n](x) > 0 for any x . Since Ω is compact, Ωi is bounded,
and the interior of the cone BC+(Ωi ) contains positive elements of the cone.
Therefore the composition K (i) is strongly positive.

By Theorem 2.3.4 of Zhao (2003), dynamical system (95) has the following threshold
dynamics:

(a) If λi = rσ (K (i)) > 1, then there exists a unique fixed point n∗(x) of (95) in the
interior of the cone BC+(Ωi ), such that every positive orbit

γ +(n) = {[F (i)]t (n) : t ≥ 0} (102)

in BC+(Ωi )\{0} converges to n∗(x).
(b) If λi = rσ (K (i)) ≤ 1, then every positive orbit in BC+(Ωi ) converges to 0.

This threshold dynamics exists for every F (i) and K (i). In themean time, fromLemma
4,λi = λ for each i , and it is clear fromLemma3 thatλ is the largest positive eigenvalue
of K . Combining the threshold dynamics for all i , i = 1, 2, . . . , p allows us to deduce
that

(a) when λ > 1, the p-periodic dynamical system (12) has a unique positive periodic
trajectory n∗

t (x) ∈ BC+(Ω) of maximum period p. For any initial population
density n0(x) ∈ BC+(∩p

i=1Ωi ), the solution nt (x) of the p-periodic dynamical
system (12) converges to this periodic trajectory;

(b) when λ ≤ 1, for any initial population density n0(x) ∈ BC+(Ω), the solution
nt (x) of the p-periodic dynamical system (12) converges to the trivial fixed point.

��

Proof of Lemma 5

Proof Let
M1 = sup

x,y∈R
k(x − y), (103)

then M1 < ∞ because of assumption (K3).
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Because Q(y) is integrable, ∀ ε > 0, ∃ N > 0, so that ∀ n > N ,

∫
R\[an ,bn ]

Q(y) dy <
ε

f ′(0)M1
. (104)

Therefore, ∀ n > N , ∀ u(x) ∈ BC+(R),

||F ′(0)[u] − F ′
n(0)[u]|| = supx

∣∣F ′(0)[u](x) − F ′
n(0)[u](x)∣∣

= f ′(0)
∫
R\[an ,bn ]

k(x − y)Q(y)u(y) dy

≤ f ′(0)M1 · ||u|| ·
∫
R\[an ,bn ]

Q(y) dy

< ε||u||.

(105)

Thus ||F ′
n(0) − F ′(0)|| < ε for ∀ n > N , and F ′

n(0) → F ′(0) in norm. Therefore
λn → λ as n → ∞ (Chatelin and Lemordant 1978, page 259). ��

Proof of Theorem 2

Proof From Lemma 3, it is clear that λ is the largest positive eigenvalue of K . We
now prove statements (1) and (2).

(1) Each linear operator Kt in expression (27) can be approximated by a sequence
of operators Ktn ,

Ktn [u](x) = f ′(0)
∫ bn

an
k(x − y)Qt (y)u(y) dy, (106)

with the sequences {an} and {bn} described in Lemma 5. In the mean time, the corre-
sponding nonlinear operators Ftn ,

Ftn [u](x) =
∫ bn

an
k(x − y)Qt (y) f [u(y)] dy, (107)

are approximations of Ft , t = 1 . . . p.
By Lemma 5, for each t , ||Ktn − Kt || → 0 as n → +∞. Let Fn = Fpn ◦ · · · ◦

F2n ◦ F1n , and Kn = Kpn ◦ · · · ◦ K2n ◦ K1n . Then it is straightforward to show that
for each n, Kn is the Fréchet derivative of Fn at 0. Since Kn is the composition of a
finite number of operators Ktn , and each Ktn converges uniformly to Kt as n → ∞,
it can also be easily shown that ||Kn − K || → 0 as n → +∞. Let the spectral radius
of Kn be λn , then by Lemma 5, λn → λ as n → +∞.

Since λ > 1, ∃ N1 large enough and δ small enough, such that ∀ n ≥ N1, λn >

λ−δ > 1. Let n0(x) be any nonzero element of BC+(R), then we can choose N2 large
enough, so that n0(x) · 1[aN2 ,bN2 ] is a nonzero element of BC+([aN2 , bN2 ]). Let N =
max{N1, N2}, then ñ0(x) = n0(x) ·1[aN ,bN ] is a nonzero element of BC+([aN , bN ]),
and λN > 1.
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By Theorem 1, there is a unique nonzero solution ñ∗(x) ∈ BC+(Ω) to the equation

ñ∗(x) = FN [ñ∗](x)
= FpN ◦ · · · ◦ F2N ◦ F1N [ñ∗](x), (108)

where Ω = [aN , bN ]. Since Ω ⊂ R, ñ∗(x) is also a nonzero element of BC+(R).
In addition, because ñ0(x) ∈ BC+(Ω) is nonzero, the series {ñ pt (x), t = 0, 1, . . .}
defined by

ñ pt (x) = FN [ñ p(t−1)](x) (109)

converges to ñ∗(x) in BC+(Ω). Since Ω is compact, this convergence is uniform.
Define the series {n pt (x), t = 0, 1, . . .} by

n pt (x) = F[n p(t−1)](x), (110)

where operator F is the composition F = Fp ◦ · · · ◦ F2 ◦ F1. Operators FN and F are
bothmonotone operators because of themonotonicity of f assumed in (F5). Therefore

ñ p(x) = FN [ñ0](x) ≤ FN [n0](x) < F[n0](x) = n p(x), (111)

where the first inequality comes from the monotonicity of FN , and the second inequal-
ity comes from the fact that FN < F . We can continue to deduce that

ñ pt (x) = FN [ñ p(t−1)](x) < F[ñ p(t−1)](x) < F[n p(t−1)](x) = n pt (x), (112)

where the last inequality comes from the monotonicity of F . Therefore for each t ,

n pt (x) > ñ pt (x). (113)

That is, the series {n pt (x)} is bounded below by the series {ñ pt (x)}. Because ñ pt (x)
converges uniformly to the nonzero function ñ∗(x) in BC+(Ω), ∃ T1 so that ∀ t > T1,

sup
x∈Ω

|ñ pt (x)| = sup
x∈Ω

ñ pt (x) > ||ñ∗(x)||/2. (114)

The inequality (113) therefore implies that ∀ t > T1,

||n pt (x)|| = sup
x∈R

|n pt (x)| ≥ sup
x∈Ω

|ñ pt (x)| > C1, (115)

where C1 = ||ñ∗(x)||/2.
Notice that each Ft maps nonzero elements of BC+(R) to nonzero elements of

BC+(R). Therefore

ni (x) = Fi−1 ◦ · · · ◦ F1[n0](x), i = 2, 3, . . . , p (116)

are all nonzero elements of BC+(R). Applying the arguments in the above paragraphs
to each K (i) and F (i), i = 2, 3, . . . , p, with the initial population density ni (x), we
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know that for each i , ∃ Ti and Ci > 0, so that ∀ t > Ti , ||n pt+i−1(x)|| > Ci , where
n pt+i−1(x) is the pt + i th generation’s population density defined by the dynamical
system (12). Let

T = max
i=1,2,...,p

(pTi + i), (117)

and
C = min

i=1,2,...,p
Ci , (118)

then C > 0, and ∀ t > T , the solution nt (x) of the nonlinear dynamical system (12)
with nonzero initial condition n0(x) satisfies

||nt || > C. (119)

Therefore, when λ > 1, the population will persist in the sense that it will not go
extinct.

(2) When λ < 1,
lim
n→∞ ||Kn||1/n < 1. (120)

Thus ∃ N3, so that for all n > N3, ||Kn|| < 1. Therefore, for all nonzero u(x), for all
n > N3,

||Fn[u]|| < ||Kn[u]|| ≤ ||Kn|| · ||u|| < ||u||. (121)

Therefore F cannot have a nonzero fixed point n∗(x). Otherwise, ∀n ∈ N,

||Fn[n∗]|| = ||n∗||, (122)

contradicting inequality (121). Thus the operator F has only one fixed point, which is
the trivial fixed point n∗(x) ≡ 0.

We can now apply Theorem 2.2.1 of Zhao (2003) to show that nt (x) converges to
the trivial fixed point. As shown in the proof of Theorem 1, Ft is uniformly bounded
for each t . Therefore the composition F is uniformly bounded. Therefore there exists
R > 0, so that ||Fn[u]|| ≤ R for any u(x) and n ∈ N. Therefore the ball ||u|| ≤ R of
radius R attracts each point in BC+(R). Since ||u|| ≤ R is a bounded set in BC+(R),
the operator F is point dissipative (Zhao 2003, Definition 1.1.2). The operator F is
also α-condensing (Zhao 2003, Definition 1.1.2) because it is compact (Zhao 2003,
page 3). Since F is α-condensing, point dissipative, uniformly bounded, monotone,
and has exactly one fixed point in the cone BC+(R), Theorem 2.2.1 by Zhao (2003)
applies, and we know the trivial fixed point n∗(x) ≡ 0 of the dynamical system

n pt (x) = F[n p(t−1)](x) (123)

is globally attractive in the sense that ∀ n0(x), n pt (x) → n∗(x). Applying the above
argument for each F (i) and K (i), we know that the solution nt (x) of the dynamical
system (12) converges to the trivial fixed point as t → ∞. ��
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Appendix 2: Proof of results for two-season environment

Proof of Proposition 1

Proof First, notice that given any σ 2
0 , there is a unique contour curve δσ0 in the σ 2

1 –σ
2
2

plane, starting at (σ 2
0 , σ 2

0 ) ∈ R
2, along which λ is constant. To see this, let λ0 =

λ(σ 2
0 , σ 2

0 ), where

λ0 = λ(σ 2
0 , σ 2

0 ) = [ f ′(0)]2
√√√√√√√
1 − 2

1 + σ 2
0 + 2D

2
√
D(σ 2

0 + D)

(124)

according to Eq. (41). Then the equation

λ(σ 2
1 , σ 2

2 ) = λ0 (125)

implicitly defines such a contour curve. Solving Eq. (125) for σ 2
2 in terms of σ 2

1 , we
find

σ 2
2 = δσ0(σ

2
1 ) = v∗

(
σ 2
1 + 2D

σ 2
1 − v∗

)
, (126)

where

v∗ = 2D

[
f ′(0)4 + λ20

f ′(0)4 − λ20

]2

− 2D. (127)

It can be easily shown that δσ0(σ
2
1 ) is exactly the same curve as Γ ∗(σ 2

1 ).
Substituting the variables v1 = σ 2

1 and v2 = σ 2
2 to simplify the notations, it can

also be shown that v∗
2 = Γ ∗(v1) satisfies the ordinary differential equation

dv∗
2

dv1
= −v∗

2(v
∗
2 + 2D)

v1(v1 + 2D)
. (128)

To see this, notice first that letting σ 2
2 = v∗

2 , σ
2
1 = v1 in Eq. (126) yields

v∗
2 = v∗

(
v1 + 2D

v1 − v∗

)
. (129)

We then take the derivative of v∗
2 with respect to v1 in Eq. (129), and obtain

dv∗
2

dv1
= −

(
v∗

v1 − v∗

)(
v∗ + 2D

v1 − v∗

)
. (130)
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Solving for v∗ from Eq. (129), we find

v∗ = v1v
∗
2

v1 + v∗
2 + 2D

. (131)

Therefore
v∗

v1 − v∗ = v∗
2

v1 + 2D
(132)

and
v∗ + 2D

v1 − v∗ = v∗
2 + 2D

v1
. (133)

Substituting fractions (132) and (133) into derivative (130) yields differential Eq.
(128).

Suppose v2 = Γ (v1), where

Γ (v1) < Γ ∗(v1) (134)

and
Γ ′(v1) < (Γ ∗)′(v1) (135)

for every v1. Let

y(v1, v2) = (v1 + 2D)(v2 + 2D)

v1 + v2 + 2D
, (136)

then

(v1 + v2 + 2D)2
dy

dv1
=
[
(v2 + 2D) + (v1 + 2D)

∂v2

∂v1

]
(v1 + v2 + 2D)

−(v1 + 2D)(v2 + 2D)

(
1 + ∂v2

∂v1

)

= v1(v1 + 2D)
∂v2

∂v1
+ v2(v2 + 2D)

< v1(v1 + 2D) · ∂v∗
2

∂v1
+ v∗

2(v
∗
2 + 2D)

(137)

because
v2 < v∗

2 (138)

by condition (134), and
∂v2

∂v1
<

∂v∗
2

∂v1
(139)

by condition (135). Since

v1(v1 + 2D) · ∂v∗
2

∂v1
+ v∗

2(v
∗
2 + 2D)

= v1(v1 + 2D)

[
−v∗

2(v
∗
2 + 2D)

v1(v1 + 2D)

]
+ v∗

2(v
∗
2 + 2D)

= 0, (140)
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we have
dy

dv1
< 0. (141)

Therefore,

y(σ 2
1 , σ 2

2 ) = (σ 2
1 + 2D)(σ 2

2 + 2D)

σ 2
1 + σ 2

2 + 2D
(142)

is monotonically decreasing as σ 2
1 increases, and so is λ(σ 2

1 , σ 2
2 ). ��

Proof of Lemma 6

Proof First of all, since the dispersal kernel k(x) is uniformly bounded, and∫∞
−∞ k(x) dx = 1 < ∞, for any finite constant c,

∫ ∞

−∞
k2(x − c) dx =

∫ ∞

−∞
k2(x) dx

≤ sup
x

|k(x)| ·
∫ ∞

−∞
k(x) dx

< ∞

(143)

Therefore, ∀ ε, ∃ A0 > L2/2, such that for any A, A′ > A0,

∫ A′

A
k2(y − L2/2) dy < ε. (144)

We now define a function

g(y) = sup
x∈I1,z∈I2

|k(x − y)k(y − z)|. (145)

Since k(x) is a positive even function,

g(y) = sup
x∈I1,z∈I2

k(y − x)k(y − z). (146)

Without loss of generality, assume that L1 ≤ L2. Then∀x ∈ I1,∀z ∈ I2,∀y ∈ [A, A′],

k(y − x) ≤ k(y − L1/2) ≤ k(y − L2/2) (147)

and
k(y − z) ≤ k(y − L2/2) (148)

because of the monotonicity of k(x) on the half line [0,∞). Thus function g(y) is
bounded by another function,

g(y) ≤ k2(y − L2/2), (149)
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for y ∈ [A, A′]. Therefore
∫ A′

A
g(y) dy ≤

∫ A′

A
k2(y − L2/2) dy < ε. (150)

By Cauchy’s Theorem, ∫ ∞

0
g(y) dy < ∞. (151)

We can show
∫ 0
−∞ g(y) dy < ∞ in the same way. Therefore

∫ ∞

−∞
g(y) dy < ∞. (152)

Since
|k(x − y)k(y − z)| ≤ g(y), (153)

for (x, z) ∈ I1 × I2, the improper integral

∫ ∞

−∞
k(x − y)k(y − z) dy (154)

is uniformly convergent for (x, z) ∈ I1 × I2 by the Weierstrass comparison rule. ��

Proof of Lemma 7

While proving Lemma 1, we showed that when k and Q(z;α) satisfy assumptions
(K2)− (K4) and (Q3), the convolution

h(y) =
∫ ∞

−∞
k(y − z)Q(z;α) dz (155)

is integrable over (−∞,∞). Therefore we can apply Lemma 1 again to see that

w(x) =
∫ ∞

−∞
Q(z;α)p(x, z) dz

=
∫ ∞

−∞
Q(z;α)

∫ ∞

−∞
k(x − y)k(y − z) dy dz

=
∫ ∞

−∞
k(x − y)

∫ ∞

−∞
Q(z;α)k(y − z) dz dy

=
∫ ∞

−∞
k(x − y)h(y) dy

(156)
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is integrable over (−∞,∞). Therefore the functionw(x) is well-defined, andw(x) →
0 as x → ∞. Since ∫ L

−L
Q(z;α)p(x, z) dz → 0 (157)

as x → ∞ as well, the convergence of

∫ L

−L
Q(z;α)p(x, z) dz (158)

to ∫ ∞

−∞
Q(z;α)p(x, z) dz (159)

as L → ∞ is uniform.

Proof of Lemma 8

Proof There are two approaches to prove λ̄α1 → λ̄∞. One approach is to show that λ̄∞
exists and is finite. This can be done by showing that the operator K∞ is completely
continuous. The second approach is to show that Kα1 → K∞ uniformly. Here, we use
the second approach.

Let α2 be fixed. For any u(z) ∈ BC+(R) with ||u(z)|| = 1, ∀x , ∀α1,

(Kα1 − K∞)[u](x) = [ f ′(0)]2
∫ ∞

−∞
Q(z;α2)

[
k̃(x, z;α1) − k̃(x, z;∞)

]
u(z) dz

≤ [ f ′(0)]2
∫ ∞

−∞
Q(z;α2)

[
k̃(x, z;α1) − k̃(x, z;∞)

]
dz

= [ f ′(0)]2
∫ ∞

−∞
Q(z;α2)

∫ ∞

−∞
k(x − y)k(y − z) [Q(y;α1)

−Q(y;∞)] dy dz

≤ sup
y

[Q(y;α1) − Q(y;∞)] [ f ′(0)]2
∫ ∞

−∞
Q(z;α2)

∫ ∞

−∞
k(x − y)k(y − z) dy dz

≤ 2[ f ′(0)]2
∫ ∞

−∞
Q(z;α2)p(x, z) dz.

(160)
According to Lemma 7, the above integral is uniformly convergent as an improper
integral. Therefore ∀ ε, ∃ G independent of α1, s.t.

[ f ′(0)]2
∫
R\[−G,G]

Q(z;α2)
[
k̃(x, z;α1) − k̃(x, z;∞)

]
dz < ε/2. (161)
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In the proof of Lemma 7, we have shown that

∫ ∞

−∞
Q(z;α2)p(x, z) dz → 0 (162)

as x → ∞. By inequality (160), we see that

[ f ′(0)]2
∫ ∞

−∞
Q(z;α2)

[
k̃(x, z;α1) − k̃(x, z;∞)

]
dz → 0 (163)

as x → ∞, and the convergence is uniform with respect to α1. Therefore ∃ L inde-
pendent of α1, s.t.

sup
x

{
[ f ′(0)]2

∫ ∞

−∞
Q(z;α2)

[
k̃(x, z;α1) − k̃(x, z;∞)

]
dz

}

= sup
x∈[−L ,L]

{
[ f ′(0)]2

∫ ∞

−∞
Q(z;α2)

[
k̃(x, z;α1) − k̃(x, z;∞)

]
dz

}

= sup
x∈[−L ,L]

{
[ f ′(0)]2

∫ G

−G
Q(z;α2)

[
k̃(x, z;α1) − k̃(x, z;∞)

]
dz

+[ f ′(0)]2
∫
R\[−G,G]

Q(z;α2)
[
k̃(x, z;α1) − k̃(x, z;∞)

]
dz

}

≤ sup
x∈[−L ,L]

{
[ f ′(0)]2 · 2G · sup

z∈[−G,G]

[
k̃(x, z;α1) − k̃(x, z;∞)

]
+ ε/2

}
.

(164)

Meanwhile, because the integral
∫∞
−∞ k(x − y)k(y − z) dy is uniformly convergent

when x and z are bounded, ∃ M , s.t.

sup
x∈[−L ,L]
z∈[−G,G]

∫
R\[−M,M]

k(x − y)k(y − z) dy <
ε

16G[ f ′(0)]2 . (165)

Finally, by assumption (Q4(b)),

Q(y;α) → Q(y;∞) (166)

as α → ∞. Therefore ∃ ᾱ1, s.t. ∀ α1 > ᾱ1,

sup
y∈[−M,M]

|Q(y;α1) − Q(y;∞)| <
ε

8G[ f ′(0)]2 ∫ M
−M g(y) dy

, (167)
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where g(y) is the function (146) that bounds k(x − y)k(y − z). Therefore

sup
x∈[−L ,L]
z∈[−G,G]

k̃(x, z;α1) − k̃(x, z;∞)

= sup
x∈[−L ,L]
z∈[−G,G]

∫ ∞

−∞
k(x − y)k(y − z) [Q(y;α1) − Q(y;∞)] dy

= sup
x∈[−L ,L]
z∈[−G,G]

{∫ M

−M
k(x − y)k(y − z) [Q(y;α1) − Q(y;∞)] dy

+
∫
R\[−M,M]

k(x − y)k(y − z) [Q(y;α1) − Q(y;∞)] dy

}

≤ sup
x∈[−L ,L]
z∈[−G,G]

{
ε

8G[ f ′(0)]2 ∫ M
−M g(y) dy

∫ M

−M
k(x − y)k(y − z) dy

+ 2
∫
R\[−M,M]

k(x − y)k(y − z) dy

}

≤ ε

8G[ f ′(0)]2 ∫ M
−M g(y) dy

∫ M

−M
g(y) dy + 2 · ε

16G[ f ′(0)]2

= ε

4G[ f ′(0)]2 ,

(168)

and (164) continues as

sup
x

{
[ f ′(0)]2

∫ ∞

−∞
Q(z;α2)

[
k̃(x, z;α1) − k̃(x, z;∞)

]
dz

}

≤ [ f ′(0)]2 · 2G · ε

4G[ f ′(0)]2 + ε

2

= ε

(169)

By the first inequality in (160), ||(Kα1 − K∞)[u]|| < ε, ∀α1 > ᾱ1. Therefore Kα1 →
K∞ uniformly as α1 → ∞, and λ̄α1 → λ̄∞. ��

Proof of Theorem 3

Proof Suppose α∞ satisfies λ̄∞(α∞) = 1. Then α∞ > 0 because λ(α1, α2) is mono-
tonic with respect to α1 and α2, and λ(0, 0) = 0 < 1. Because λ̄α′

1
(α∗

2) = 1, and
λ(α1, α2) is monotonic with respect to α1 and α2, we can choose α > α′

1 so that for
all given α1 > α′

1, the α∗
2 satisfying λ̄α1(α

∗
2) = 1 is in the interval [0, α]. For each

α1, λ̄α1(α2) is continuous and monotonic with respect to α2. Therefore there exists a
continuous inverse function α2 = λ̄−1

α1
(c) for c ∈ [1/2, 3/2] and α2 ∈ [0, α]. On the

bounded interval [1/2, 3/2], each inverse function λ̄−1
α1

(c) is uniformly continuous for
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any given α1. Therefore, ∀ ε, ∃ δ, so that when |λ̄1 − 1| < δ, where λ̄1 = λ̄α1(α∞),

|λ̄−1
α1

(λ̄1) − λ̄−1
α1

(1)| < ε. (170)

Therefore
|α∞ − α∗

2 | < ε, (171)

where α∗
2 satisfies λ̄α1(α

∗
2) = 1.

Because λ̄α1(α2) converges to λ̄∞(α2) for anyα2 whenα1 → +∞, the convergence
at the point α2 = α∞ tells us ∃ N = N (δ), so that for ∀ α1 > N ,

|λ̄α1(α∞) − λ̄∞(α∞)| < δ, (172)

which means
|λ̄1 − 1| < δ. (173)

Therefore α∗
2 → α∞ as α1 → ∞. ��

Appendix 3: Proof of Theorem 4

Proof The results follow directly from Theorem 4.1 and Theorem 4.2 of Hardin et al.
(1990). We will verify that the assumptions of these two theorems are met in our
framework. Hardin et al. (1990) considered, in section 4, the randomdynamical system

Nt+1(x) = Φ̃t [Nt ](x), (174)

where

Φ̃t [N ](x) =
∫

Ω

k(x, y) ft [y,GN (y)] dy + v(1 − G)

∫
Ω

l(x, y) dy

=
∫

Ω

k(x, y)λt (y)GN (y)g[GN (y)] dy + v(1 − G)

∫
Ω

l(x, y) dy.

(175)
In Eq. (175), v ∈ [0, 1) and G ∈ [0, 1] are constants, and Ω is compact. Hardin et al.
assumed that (Hardin et al. 1990) for all t > 0:

(C1) λt is an independent and identically distributed sequence of random functions
which are continuous and nonnegative. Furthermore, there are constantsλl , λu >

0 such that λl ≤ λt (x) ≤ λu for x ∈ Ω and t = 0, 1, 2, . . . almost surely;
(C2) ft (x, N ) = λt (x)Ng(N ) satisfy the following assumptions with probability

one:
(G1) ft (x, N ) and λt (x)g(N ) are continuous and nonnegative on Ω × [0,∞);
(G2) ft (x, N ) is bounded on Ω × [0,∞);
(G3) If x ∈ Ω and N > 0 then

λt (x)g(N ) < λt (x)g(0); (176)
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(G4) For x ∈ Ω, N > N ′ ≥ 0,
(a) λt (x)g(N ) < λt (x)g(N ′),
(b) ft (x, N ) ≥ ft (x, N ′).

(C3) k is a continuous, strictly positive function on Ω × Ω;
(C4) l is a continuous, nonnegative function on Ω × Ω such that ∀ x ∈ Ω ,

∫
Ω

l(x, y) dy ≤ 1. (177)

Condition (C1) is met because αt is assumed to be an independent identically dis-
tributed sequence of random numbers, and (Q5) is assumed. To show that condition
(C2) is met, we now show that conditions (G1) − (G4) are met.

(G1) In our model, ft (x, N ) = Qt (x) f (N ). We can therefore write ft (x, N ) as
ft (x, N ) = λt (x)Ng(N ), where λt (x) = Qt (x), and

g(N ) =
{
f (N )/N , N �= 0,

f ′(0)N , N = 0.
(178)

By assumption (Q1), Qt (x) is continuous on its support Ω◦
t . By assumption

(Q5), Ω◦
t ⊃ Ω . By assumption (F1), f (N ) is continuous. Therefore ft (x, N )

is continuous. Since f ′(0) exists by assumption (F1),

lim
N→0+ λt (x)g(N ) = Qt (x) f

′(0)N , (179)

and λt (x)g(N ) is also continuous. By assumptions (F2) and (F3), f (N ) is non-
negative on [0,∞). Since Qt (x) is also nonnegative by assumptions (Q1) and
(Q2), ft (x, N ) and λt (x)g(N ) are nonnegative on Ω × [0,∞).

(G2) Because Qt (x) is bounded on Ω by assumption (Q1), and f (N ) is bounded on
[0,∞) by assumption (F4), ft (x, N ) is bounded on Ω × [0,∞).

(G3) By assumption (F3), for all N > 0,

f (N )

N
< f ′(0). (180)

Therefore Qt (x) f (N )/N < Qt (x) f ′(0) for all x ∈ Ω and N > 0, and
λt (x)g(N ) < λt (x)g(0) for all x ∈ Ω and N > 0.

(G4) (a) For any N > N ′ > 0, let α = N ′/N . Then 0 < α < 1. By assumption (F6),

f (N )

N
<

f (αN )

αN
= f (N ′)

N ′ . (181)

Therefore

λt (x)g(N ) = Qt (x) · f (N )

N
< Qt (x) · f (N ′)

N ′ = λt (x)g(N
′). (182)
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When N ′ = 0, for any N > N ′, we have gt (x, N ) < gt (x, N ′) by (G3).
(b) We know that f (N ) > f (N ′) from assumption (F5). Therefore

ft (x, N ) = Qt (x) f (N ) > Qt (x) f (N
′) = ft (x, N

′). (183)

Condition (C3) is met because of assumptions (K1) and (K2). Finally, let l(x, y) ≡
0, then model (174) coincides with model (71). Therefore condition (C4) is met.
Therefore Theorem 4.1 and Theorem 4.2 of Hardin et al. (1990) apply, and statements
(1) and (2) follow directly from these theorems. ��

Appendix 4: Analytic calculations of the largest positive eigenvalue

Example 1 (The “Flooding Pond” scenario)

In this section, we will calculate the largest positive eigenvalue λ of the operator K ,
where the habitat suitability function is (5) and the dispersal kernel is the Gaussian
dispersal kernel (8). The linear eigenvalue problem we are trying to solve is

λu(x) = K [u](x)
= Kp ◦ Kp−1 ◦ · · · ◦ K1[u](x)

= [ f ′(0)]p
∫

R

1

2
√

πD
exp

[
− (x − yp)2

4D

]
exp

(
− y2p

σ 2
p

)
· · · ·∫

R

1

2
√

πD
exp

[
− (y2 − y1)2

4D

]
exp

(
− y21

σ 2
1

)
u(y1)dy1 · · · dyp−1dyp.

(184)
One can easily verify that the positive function (also see Latore et al. 1998 for a
dynamical system perspective)

u(x) = exp
(
−x2/v

)
(185)

is an eigenfunction of the linear operator K , if v is the solution of

v = gp ◦ · · · ◦ g2 ◦ g1(v), (186)

where each g j is defined by

g j (v) = 4D + σ 2
j · v

σ 2
j + v

, j = 1, . . . , p. (187)
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To see this, let us substitute u(y1), defined by (185), into the integral in the eigenvalue
problem (184). We find that

K1[u](x) = f ′(0)

∫
R

1

2
√

πD
exp

[
− (y2 − y1)2

4D

]
exp

(
− y21

σ 2
1

)
u(y1)dy1

= f ′(0)

∫
R

1

2
√

πD
exp

[
− (y2 − y1)2

4D

]
exp

(
− y21

σ 2
1

)
exp

(
− y21

v

)
dy1

= f ′(0) · C1 · exp
[
− y22
g1(v)

]
,

(188)
where

C1 =
√

σ 2
1 · v

4D(σ 2
1 + v) + σ 2

1 · v
, (189)

and g1(v) is defined by Eq. (187). Therefore, by deduction,

K2 ◦ K1[u](x) = f ′(0)

∫
R

1

2
√

πD
exp

[
− (y3 − y2)2

4D

]
exp

(
− y22

σ 2
2

)
K1[u(x)] dy2

= f ′(0)2 · C1 · C2 · exp
[
− y23
g2 ◦ g1(v)

]
,

(190)
where

C2 =
√

σ 2
2 · g1(v)

4D[σ 2
2 + g1(v)] + σ 2

2 · g1(v)
, (191)

and

K [u](x) = [ f ′(0)]p · C1 · C2 · · · · · Cp · exp
[
− x2

gp ◦ · · · ◦ g2 ◦ g1(v)

]
, (192)

where

C j =
√√√√ σ 2

j · g j−1 ◦ · · · ◦ g1(v)

4D[σ 2
j + g j−1 ◦ · · · ◦ g1(v)] + σ 2

j · g j−1 ◦ · · · ◦ g1(v)
, j = 3, . . . , p.

(193)
Therefore, if v is the solution of Eq. (186), u(x) defined by (185) is an eigenfunction.

From Eq. (192), we can see that

λ = [ f ′(0)]p · C1 · C2 . . .Cp (194)

is an eigenvalue. Comparedwith numerical computations, this eigenvalue is the largest
positive eigenvalue for the eigenvalue problem (184). Let v0 = v, v1 = g1(v), and
define vi to be
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vi = gi ◦ · · · ◦ g1(v), i = 2, . . . , p. (195)

Then the expression for λ simplifies to

λ = [ f ′(0)]p ∏p−1
j=0

√√√√ σ 2
j+1v j

4D(σ 2
j+1 + v j ) + σ 2

j+1v j

= [ f ′(0)]p ∏p−1
j=0

⎡
⎢⎢⎢⎢⎢⎢⎣

√√√√ σ 2
j+1v j

σ 2
j+1 + v j√√√√4D + σ 2

j+1v j

σ 2
j+1 + v j

⎤
⎥⎥⎥⎥⎥⎥⎦

.

(196)

We can further simplify expression (196) once we notice that definition (195) indicates

v j+1 = g j+1(v j )

= 4D + σ 2
j+1 · v j

σ 2
j+1 + v j

.
(197)

Equation (197) implies that

σ 2
j+1v j

σ 2
j+1 + v j

= g j+1(v j ) − 4D

= v j+1 − 4D.

(198)

Therefore, expression (196) further simplifies to

λ = [ f ′(0)]p
p−1∏
j=0

[√
v j+1 − 4D√

v j+1

]
= [ f ′(0)]p

p∏
j=1

[√
v j − 4D√

v j

]
. (199)

It is also straightforward to show that, instead of using definition (195), each v j can
be found alternatively by solving the equation

v j = g j+p ◦ · · · ◦ g j+1(v j ). (200)

Example 2 (The “Flooding Pond-Surface” scenario)

With habitat suitability function (3), dispersal kernel (32), and condition (33), eigen-
value problem (28) can be written as
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λu(x) = [ f ′(0)]p
∫ L p/2

−L p/2

ω

2
cos[ω(x − yp)]

∫ L p−1/2

−L p−1/2

ω

2
cos[ω(yp − yp−1)] · · ·

∫ L1/2

−L1/2

ω

2
cos[ω(y2 − y1)]u(y1)dy1dy2 · · · dyp.

(201)
This is an eigenvalue problem with separable kernels. A kernel k(x, y) is separable
when it can be written as a linear combination of functions about x alone, where the
coefficients may depend on y (Pipkin 1991, Section 1.4). For example, the kernel

k(x, y) = ω

2
cos[ω(x − yp)]

= ω

2
cos(ωyp) cos(ωx) + ω

2
sin(ωyp) sin(ωx)

(202)

is separable. With separable kernels, we can write down the eigenfunctions as linear
combinations of known functions. For example, from

∫ L1/2

−L1/2

ω

2
cos[ω(y2 − y1)]u(y1) dy1

=
[

ω

2

∫ L1/2

−L1/2
cos(ωy1)u(y1) dy1

]
cos(ωy2) +

[
ω

2

∫ L1/2

−L1/2
sin(ωy1)u(y1) dy1

]
sin(ωy2),

(203)
we can deduce with induction that the right hand side expression of Eq. (201) is a
linear combination of cos(ωx) and sin(ωx). Since the left hand side is λu(x), it is
clear that we can write the eigenfunction u(x) as

u(x) = c1 cos(ωx) + c2 sin(ωx), (204)

where c1 and c2 are undetermined constants. Substituting eigenfunction (204) into
eigenvalue problem (201) in the case of p = 2 and equating the coefficients of cos(ωx)
and sin(ωx) on both sides, we obtain a 2 × 2 linear system about the coefficients c1
and c2,

λc1 = a11c1 + a12c2,
λc2 = a21c1 + a22c2,

(205)

where

a11 = [ f ′(0)]p
∫ L p/2

−L p/2

ω

2
cos(ωyp)

∫ L p−1/2

−L p−1/2

ω

2
cos[ω(yp − yp−1)] . . .

∫ L1/2

−L1/2

ω

2
cos[ω(y2 − y1)] cos(ωy1) dy1dy2 . . . dyp,

(206)
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a12 = [ f ′(0)]p
∫ L p/2

−L p/2

ω

2
cos(ωyp)

∫ L p−1/2

−L p−1/2

ω

2
cos[ω(yp − yp−1)] . . .

∫ L1/2

−L1/2

ω

2
cos[ω(y2 − y1)] sin(ωy1) dy1dy2 . . . dyp

= 0,

(207)

a21 = [ f ′(0)]p
∫ L p/2

−L p/2

ω

2
sin(ωyp)

∫ L p−1/2

−L p−1/2

ω

2
cos[ω(yp − yp−1)] . . .

∫ L1/2

−L1/2

ω

2
cos[ω(y2 − y1)] cos(ωy1) dy1dy2 . . . dyp

= 0,

(208)

and

a22 = [ f ′(0)]p
∫ L p/2

−L p/2

ω

2
sin(ωyp)

∫ L p−1/2

−L p−1/2

ω

2
cos[ω(yp − yp−1)] . . .

∫ L1/2

−L1/2

ω

2
cos[ω(y2 − y1)] sin(ωy1) dy1dy2 . . . dyp.

(209)

For the eigenfunction (204) to be nontrivial, the coefficients c1 and c2 cannot be both
zero. Therefore λ may take two possible values,

λ1 = [ f ′(0)]p
∫ L p/2

−L p/2

ω

2
cos(ωyp)

∫ L p−1/2

−L p−1/2

ω

2
cos[ω(yp − yp−1)] . . .

∫ L1/2

−L1/2

ω

2
cos[ω(y2 − y1)] cos(ωy1) dy1dy2 . . . dyp,

(210)

and

λ2 = [ f ′(0)]p
∫ L p/2

−L p/2

ω

2
sin(ωyp)

∫ L p−1/2

−L p−1/2

ω

2
cos[ω(yp − yp−1)] . . .

∫ L1/2

−L1/2

ω

2
cos[ω(y2 − y1)] sin(ωy1) dy1dy2 . . . dyp.

(211)

The largest positive eigenvalue is therefore the larger one of these two possibilities,

λ = max {λ1, λ2}. (212)

Appendix 5: Details of Nyström’s method

The Nyström’s method computes the eigenvalues of an integral operator by approx-
imating the integral with a numerical quadrature and transforming the eigenvalue
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problem to the eigenvalue problem of a matrix. In this paper, we begin by discretizing
a computational domain [−G,G] × [−G,G] with a triangularization to construct a
two-dimensional grid, so that the triangles are pair-wise symmetric with respect to the
origin. These triangles are right triangles. Let �η = �ζ be the length of their catheti,
and

N = 2G

�η
+ 1. (213)

Then there are Np mid points of these triangles, where

Np = N 2 −
(
N + 1

2

)2

. (214)

Denoting the mid points of the triangles with Np grid points (ζ j , η j ), j = 1, . . . , Np,
and applying Nyström’s method, we obtain the linear system

λρ(ζi ) = 2Area(�) ·
Np∑
j=1

ω j k(ζi − η j )Q1(η j )k(η j − ζ j )Q2(ζ j )ρ(ζ j ),

i = 1, . . . , N , (215)

where Area(�) is the area of the triangles,

Area(�) = 1

2
�η · �ζ = 1

2
· 2

(
G

N − 1

)
· 2

(
G

N − 1

)
= 2

(
G

N − 1

)2

, (216)

and ω j are determined by the quadrature rule. For the specific quadrature rule we use,
Eq. (215) can be rewritten as

λρ(ζi ) = 1

3
Area(�) ·

N−2∑
k=3
k odd

⎡
⎣

N−1
2∑

p=1
2k(ζi − η2p)Q1(η2p)k(η2p − ζk)Q2(ζk)

⎤
⎦ ρ(ζk)

+1

3
Area(�)

∑
k=1,N

⎡
⎣

N−1
2∑

p=1
k(ζi − η2p)Q1(η2p)k(η2p − ζk)Q2(ζk)

⎤
⎦ ρ(ζk)

+1

3
Area(�)

N−1∑
k=2
k even

[
N−1∑
p=2

2k(ζi − ηp)Q1(ηp)k(ηp − ζk)Q2(ζk)

+ ∑
p=1,N

k(ζi − ηp)Q1(ηp)k(ηp − ζk)Q2(ζk)

]
ρ(ζk).

(217)
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The approximated eigenvalue λ is then calculated as the dominant eigenvalue ofmatrix
A = (ai j )N×N , where

ai j =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

3
Area(�)

⎡
⎣

N−1
2∑

p=1
k(ζi − η2p)Q1(η2p)k(η2p − ζk)Q2(ζk)

⎤
⎦ ,

if j = 1or j = N ,

1

3
Area(�)

⎡
⎣

N−1
2∑

p=1
2k(ζi − η2p)Q1(η2p)k(η2p − ζk)Q2(ζk)

⎤
⎦ ,

if j �= 1 or j = N , jodd,

1

3
Area(�)

[
N−1∑
p=2

2k(ζi − ηp)Q1(ηp)k(ηp − ζk)Q2(ζk)

+ ∑
p=1,N

k(ζi − ηp)Q1(ηp)k(ηp − ζk)Q2(ζk)

]
, if j even.

Analytic example revisited

We tested the numerical scheme by comparing the numerical results with the analytic
formula (41) for the “Flooding Pond Scenario”. Figure 9 illustrates the dependence of
the dominant eigenvalue λ on the seasonal variation ε, where solid lines are numerical
results and circles are analytical results calculated from formula (41).Numerical results
match with analytic results well for most ε values, though they start to overestimate
λ when ε is near σ 2. This is probably because σ 2 is a singular point of the habitat
quality function Q(y), and numerical evaluation of the function is challenging at
singular points because it involves dividing by 0.

Fig. 9 Comparison of the
numerical results with the
analytic formula (41) for the
“Flooding Pond” scenario. Solid
lines are numerical results and
circles are analytical results.
Numerical results start to
overestimate λ when ε is near
σ 2, because σ 2 is a singular
point of the habitat suitability
function. Here, D = 3, σ = 2,
f ′(0) = 2.5

0 1 2 3 4

λ

0

0.5

1

1.5
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