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Abstract Analytical modeling of predator–prey systems has shown that specialist
natural enemies can slow, stop and even reverse pest invasions, assuming that the prey
population displays a strong Allee effect in its growth. We aimed to formalize the
conditions in which spatial biological control can be achieved by generalists, through
an analytical approach based on reaction–diffusion equations. Using comparison prin-
ciples, we obtain sufficient conditions for control and for invasion, based on scalar
bistable partial differential equations. The ability of generalist predators to control
prey populations with logistic growth lies in the bistable dynamics of the coupled
system, rather than in the bistability of prey-only dynamics as observed for specialist
predators attacking prey populations displaying Allee effects. As a consequence, prey
control is predicted to be possible when space is considered in additional situations
other than those identified without considering space. The reverse situation is also
possible. None of these considerations apply to spatial predator–prey systems with
specialist natural enemies.
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1 Introduction

1.1 Modeling the biological control of invasive pests

Biological invasions are a major contemporary problem (Pimentel 2011; Garnier et al.
2012; Mistro et al. 2012; Potapov and Rajakaryne 2013; Wang et al. 2013; Savage
and Renton 2013) for which few solutions are available, all of which are very costly.
The use of natural enemies for the biological control of invading insects is one of
the most promising possibilities (Moffat et al. 2013; Li et al. 2014; Ye et al. 2014;
Basnet and Mukhopadhyay 2014). As invasion is essentially a spatial process, the
potential of natural enemies to stop or even reverse an invasion is of particular interest.
The fundamental analytical work of Owen and Lewis (2001) showed that specialist
predators could potentially slow, stop or reverse the spread of invasive pests. The
reversal of pest spread by specialist predation requires a strong Allee effect for the
pest-only dynamics, defined as a negative growth rate for the prey population at low
density. In the presence of aweakAllee effect, the predator can stop, but not reverse the
wave of invasion. These conclusions have been confirmed in several other theoretical
studies (Cai et al. 2014; Boukal et al. 2007; Morozov and Petrovskii 2009).

Generalist predators can also control prey effectively (Erbach et al. 2014;
Chakraborty 2015). Their use could be promoted through conservation biological
control programs without the need for exogenous specialist natural enemies. Unfortu-
nately, the role of generalist predators in the spatial control of their prey has beenmuch
less studied than that of specialist predators, due to the intrinsic difficulties of having
to work with a system of equations rather than with a single scalar equation. However,
two important studies have been carried out in this area: the analytical and compre-
hensive study of Du and Shi (2007), and the preliminary simulation study of Fagan
et al. (2002). Both used the same model structure as we do here, with logistic growth
for both prey and predator populations, and a type II functional response for predators.
The convergence of these models was strengthened further by the in-depth analysis of
Magal et al. (2008) in which space was not considered. It is difficult to use these mod-
els in a spatial context: the work of Du and Shi (2007) cannot deal with invasion and
traveling waves, because it deals with a bounded space. The numerical simulations
of Fagan et al. (2002) are restricted to a few parameter values. They are, however,
valuable, because they suggest conditions in which a generalist predator might be able
to stop, and even reverse the invasion wave of a pest population displaying logistic
growth. Fagan et al. also reported the results of field studies indicating that predators
with diffusion coefficients higher than those of their prey are poor control organisms.
The authors provided an explanation for this finding founded on logical arguments,
but without a firm mathematical foundation. This result has been confirmed by a few
numerical simulations including space, as reported by Magal et al. (2008), revealing
a strong dependence of system dynamics on the relative rates of diffusion of the prey
and the predator. It is thus important to take space into account by adding diffusion
terms for both predator and prey. This conclusion accounts for the interest of scientists
in questions of this type (Lewis et al. 2013; Hastings 2000; De Roos et al. 1991, 1998).

There are therefore hopes that it might be possible to extend the conditions for the
control of invasive prey organisms to (i) generalist predators and (ii) prey populations
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displaying growth patterns not dependent on the restrictive assumption ofAllee effects.
Such control approaches would have a major impact in the field, given the high degree
of generalismobtained. The aimof this studywas, therefore to formalize the conditions
inwhich spatial biological control can be achieved by generalists, through an analytical
approach based on traveling waves solutions of reaction–diffusion equations.
Travelingwave solution describes a constant profileU moving through space at a speed
c. Such waves are often observed in nonlinear reaction–diffusion systems modeling
various phenomena. They are particularly suitable for describing the propagation of
invasive fronts. In systems modeling a single species, described by a scalar equation,
this type of solution is very well understood (Fischer 1937; Kolmogorov et al. 1937;
Volpert et al. 1994 for a complete theory). Two particular classes of equations can
be distinguished: monostable equations (like the Fisher-KPP equations) and bistable
equations (often modeling the Allee effect). In monostable equations, there is a mini-
mal wave speed c∗ such that, for any c ≥ c∗, a wave solution with speed c exists. In
bistable equations traveling waves exist for a unique speed c∗. The sign of this speed
c∗ distinguishes between invasion or extinction of prey, which is a key property for
our purposes.

For interactions of several species (described by a multidimensional system), the
situation is much more complex. However, for some type of interaction, cooperation
for instance, the system possesses a strong structural property, namely monotonicity.
Essentially, this monotony makes it possible to use the comparison principle, which
is always possible for one-dimensional systems, and the theory is then complete (see
Volpert et al. 1994). Unfortunately, our system, and prey–predator systems in gen-
eral, do not have such a monotonous structure. This method is then unsuitable for
monotonous systems and only a few results have been published. One of the key rea-
sons for this is as follows: when we search for traveling wave solutions for a system
with N equations, we obtain a system of N second order ordinary equations that can
be reformulated as a system of 2N first order ordinary equations. In the scalar case
(N = 1), it is therefore possible to study trajectories in a plane, available using clas-
sical tools for two-dimensional dynamical systems. For several species (N > 1), it is
necessary to study trajectories in a 2N -dimensional space, whichmay be very difficult.

Hence, the first rigorous results demonstrating the existence of traveling waves in
prey–predator systems were based on a generalization, to the fourth dimension, of the
classical shooting method in the phase plane (Dunbar 1984a, b). This approach has
since been generalised (Huang et al. 2003; Xu and Weng 2012). However, all these
studies simply investigate themere existence of travelingwaves. They do not determine
the direction of the wave or the global dynamics for general initial conditions. Other
methods have recently been developed in similar models (Huang and Weng 2013;
Ducrot andLanglais 2012), but they are subject to the same limitations. A last approach
is to use the degree theory (see e.g. Giovangigli 1990; Volpert et al. 1994) to obtain the
existence of traveling waves. These homotopy methods may occasionally give some
information on the speed c. Unfortunately, this needs additional estimates which are
very difficult to obtain here. We therefore required another method.

The analysis provided in Magal et al. (2008) gives conditions for preys’ control by
predators, but this analysis was carried out largely without reference to space. Thus,
we have extended the system of Magal et al. (2008) by adding spatial diffusion. We
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find that the conditions for control are very different from those for the system inwhich
space is not considered. The conditions for prey extinction and invasion are discussed
in terms of two essential parameters: the encouter rate E and the handling time h.
Increasing E clearly increases predator pressure. Conversely, increasing h decreases
predator pressure.

The paper is organized as follows. In Sect. 2 we present themathematical model and
the main result of this work: Theorem 2.1 describes invasion conditions for the ODE
system and the Theorems 2.4 and 2.6 the invasion conditions for the PDE system. The
mathematical results are completed by numerical simulations in Sect. 3. The results
are discussed in Sect. 4. The final Sect. 5 is devoted to the mathematical proofs.

2 Model and main results

2.1 Mathematical model

We analyze a system of partial differential equations for a prey populationwith logistic
growth, and a generalist predator population with logistic growth on alternative prey
in the absence of the invading host. The functional response is of Holling type II. The
prey–predator interactions are modeled by the following partial differential equation
system:

⎧
⎪⎪⎨

⎪⎪⎩

∂t u = Du�xu + r1u
(
1 − u

K1

)
− Euv

1+Ehu ,

∂tv = Dv�xv + r2v
(
1 − v

K2

)
+ γ Euv

1+Ehu , x ∈ R, t ∈ R
+

u(x, 0) = u0(x), v(x, 0) = 1

(1)

with:

u(t, x)=prey density at time t and at point x.
v(t, x)= predator density at time t and at point x.
Du = diffusion rate of prey
Dv = diffusion rate of predators
r1 = growth rate of prey
r2 = growth rate of predators
K1 = carrying capacity of prey
K2 =carrying capacity of predators in absence of focal prey
E = encounter rate
h= handling time
γ =conversion efficiency
u0 ≥ 0 the initial concentration of prey, Du, Dv, r1, r2, K1, K2, E, h and γ are
positive constant parameters.

We carried out the following adimensionalization:

t ′ = r1t ; x ′ = x
√

r1
Du

; u′ (x ′, t ′
) = u(t, x)/K1; v′ (x ′, t ′

) = v(t, x)/K2

d ′ = Dv/Du ; r ′ = r2/r1; E ′ = EK2/r1; h′ = r1hK1/K2 ; γ ′ = γ K1/K2 ;
α = γ ′

r ′ .
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Removing the sign, to simplify the notation, the system reads

⎧
⎨

⎩

∂t u = �xu + u (1 − u) − Euv
1+Ehu , x ∈ R, t ∈ R

+

∂tv = d�xv + r
(
v (1 − v) + α Euv

1+Ehu

) (2)

with the initial conditions1

{
u(0, x) = u0(x) ∈ [0, 1]; lim

x→−∞ u0(x) = 1; lim
x→+∞ u0(x) = 0

v(0, x) = 1.
(3)

2.2 Main results

We distinguish two ways in which a predator can control the prey, one taking space
into account and the other not considering this factor (mathematical definitions are
provided in Definition 2.2.1).

– The spatially uniform extinction results exclusively from local demographic pro-
cesses and is independent of space.

– The extinction wave is due to both demographic and diffusive processes and may
take various forms, from a traveling front to a pulse.

Conversly, invasion is defined as prey survival and we distinguish two ways in
which the prey can invade.

– The spatially uniform invasion, which is independent of space.
– The non-uniform invasion, described by various spatial dynamics, from Turing
phenomena to invasion waves.

Definition 2.2.1 Let (u0(x), v0(x)) be an initial condition verifying (3) and (u(t, x),
v(t, x)) be the corresponding solution of (2).

– Extinction of prey occurs if

∀x ∈ R, lim
t→+∞ u(t, x) = 0.

– Prey extinction is uniform if it is uniform with respect to x ∈ R, that is, if there
exists a map φ(t) verifying

∀x ∈ R, ∀t > t0, 0 ≤ u(t, x) ≤ φ(t) and lim
t→+∞ φ(t) = 0.

– Prey extinction is non uniform if there is extinction but no uniform extinction.

1 All our results remain true for various different initial conditions. The essential condition is that the
solutions of the scalar systems we consider converge to traveling wave solutions. In particular, compact
support may be allowed for u0. See Fife (1979) for a detailed discussion.
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– Invasion of prey occurs if there is no extinction, that is if

∃x ∈ R, lim sup
t→+∞

u(t, x) > 0

2.2.1 Analysis of the associated ODE system

If space is not taken into account, system (2) may be rewritten as follows.

⎧
⎪⎨

⎪⎩

d
dt u = u (1 − u) − Euv

1+Ehu , t ∈ R
+

d
dt v = r

(
v (1 − v) + α Euv

1+Ehu

)
.

0 < u(0) = u0 ≤ 1 ≤ v(0) = v0

(4)

System (4) is well understood (Magal et al. 2008). Indeed, it is clear that there are
always three trivial stationary states: (0, 0) and (1, 0), which are unstable and (0, 1),
which is asymptotically stable if, and only if, E > 1. Moreover, there are no more
than three non-trivial positive steady states. We are interested principally in the case
E > 1. In this case, there are either no or two stationary positive steady states. If the
two steady states exist, denoted (̂u, v̂) and (u∗, v∗) with û < u∗ and v̂ < v∗, then
(̂u, v̂) is always unstable and (u∗, v∗) is most often stable. In this case, there are two
stable nonnegative solutions, (0, 1) and (u∗, v∗) and the system is bistable.

We are interested principally in the conditions for prey extinction. If E < 1, then
(0, 1) is unstable and no extinction occurs. We are therefore interested only in the case
E > 1. Now, if E > 1, there are two possibilities. In the non bistable case, (0, 1) is
globally stable and there is extinction. In the bistable case, provided that u is initially
small enough, say u0 < μ1 for some 0 < μ1 < 1, then u(t) → 0 as t → +∞.
Conversely, if u is initially large enough, say 0 < μ2 < u0, then u(t) → u∗ as
t → +∞. Thus, in this case, the outcome—extinction or invasion—depends on the
initial conditions. The following result provides an explicit statement of the above in
the parameter space (E; h) and is proven in Sect. 5.1.

Theorem 2.1 Let E > 1 and α ≥ 0 be fixed.

(i) Existence of positive solutions. There exists a unique h∗ = h∗(E, α) such that
– If h < h∗, then there is no positive stationary solution and there is extinction
of prey for the ODE system.

– If h > h∗(E, α), then there exist two positive solutions for the ODE system
(̂u, v̂) and (u∗, v∗) with û < u∗.

(ii) Stability of the solutions. Let h > h∗(E, α). The solution (̂u, v̂) is always unsta-
ble.
Moreover, there exists a unique h∗∗(E, α) > h∗(E, α) such that
– If h > h∗∗(E, α) then (u∗, v∗) is stable.
– If h∗(E, α) < h < h∗∗(E, α), the stability of (u∗, v∗) depends on r. It is

unstable if r is small enough and stable otherwise.

Remark 1 Our calculations show that the gap between h∗ and h∗∗ is very small, so
that, roughly speaking, (u∗, v∗) is stable whenever it exists. However, if h belongs to
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is unstable Monostable Zone

Bistable Zone
Conditional Bistable Zone

Fig. 1 Description of the dynamics of the ODE system (4) in the E−h plane. If E < 1, the control solution
(0, 1) is unstable. In this zone there exists at least one positive steady state and the prey never disappears
entirely. If E > 1, then the control solution (0, 1) is always (locally) stable. Moreover, the E > 1 zone is
the union of three subzones. Below the h∗ curve, (0, 1) is the only non-negative steady state and is a global
attractor: this is a monostable zone. Above the h∗ curve, there are two additional positive steady states,
one of which is always unstable while the second, denoted (u∗, v∗), may be stable or unstable. Above the
h∗∗ curve, (u∗, v∗) is always stable. In this subzone, the asymptotic behavior depends only on the initial
conditions: this is a bistable zone. Between the h∗ and the h∗∗ curves, the stability of (u∗, v∗) depends on
other parameters: this is a conditional bistable zone. For illustrative purpose, the size of this last subzone
has been considerably increased

the conditional stability zone, i.e. h ∈ (h∗, h∗∗), and if r is very small, stability is lost
and the system becomes excitable. This explains, in particular, the presence of pulses
for small values of r when dealing with spatial interactions (see Sect. 3).

The map (E, α) �→ h∗(E, α) has the following properties, as proved in Sect. 5.1.

Properties 2.2 Let α ≥ 0 be fixed. The map E �→ h∗(E, α) is increasing and one
has the explicit limits:

lim
E→1

h∗(E, α) =
{
1 + α ifα < 1
2
√

α ifα ≥ 1
; lim

E→+∞ h∗(E, α) = 2 + 2
√
1 + α.

Let E ≥ 1 be fixed. The map α �→ h∗(E, α) is increasing and one has the explicit
limits:

h∗(E, 0) = 1

E

(
2E − 1 + 2

√
E(E − 1)

)
:= h1(E) and lim

α→+∞ h∗(E, α) = +∞.

Figure 1 illustrates the maps h∗ and h∗∗ and the possible outcomes for system (4).

2.2.2 Analysis of the PDE system

We wish to identify the parameter conditions required to obtain prey extinction in the
PDE system (2). A simple stability analysis shows that, if E < 1, then invasion occurs
in the PDE system. If E > 1, then the situation for the PDE system is more com-
plex. In this situation, the spatial structure and diffusion processes result in additional
conditions for extinction. The rationale is explained in detail below.
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Let us assume that there is a positive stable stationary solution of (2) denoted by
(u∗, v∗) and that the initial condition u(x, 0) is close to u∗ at some places x and close
to 0 at other places. Since both u∗ and 0 are stable, the demographic phenomena lead to
an agregation near u∗ and an agregation near 0. However, diffusion allows individuals
to move around in space, so one of 0 or u∗ may be the final global attractor. In other
words, there may be a (stable) traveling wave joining u∗ to 0. The direction of this
wave, given by the sign of the speed of the wave, indicates whether extinction or
invasion occurs. However, there are difficulties associated with this argument.

– There can be no homogeneous stationary solution of (2), only stable heterogeneous
positive stationary solutions. In other words, it is possible that h < h∗(E, α)

without control occurring.
– Even in the case of bistability (h > h∗(E, α)), the bistable system (2) is neither
competitive nor cooperative. Little theoretical knowledge is available concerning
the occurrence of traveling waves in such systems, with even less known about the
stability and direction of the wave.

Using super and subsolutions,we showhere how to obtain the conditions sufficient (but
not necessary) for extinction and for invasion, based on well known scalar bistable
PDEs. Roughly speaking, let (u(t, x), v(t, x)) be the solution of (2). If we find a
positive constant v such that, for any2 (t, x) ∈ R

+ × R, v(t, x) ≥ v then it comes

∂t u(t, x) − �xu(t, x) ≤ u(t, x)(1 − u(t, x)) − Eu(t, x)

1 + Ehu(t, x)
v, t > 0, x ∈ R.

Let u be the solution of

{
∂t u(t, x) − �xu(t, x) = u(t, x)(1 − u(t, x)) − Eu(t,x)

1+Ehu(t,x) v,

u(0, x) ≥ u(0, x).
(5)

The comparison principle implies that u(t, x) ≥ u(t, x). Now, if u(x, t) → 0 when
t → +∞ then u(t, x) → 0when t → +∞ and extinction of prey occurs (see Fig. 2a).
Moreover, if u(x, t) = φ(t) does not depend on x , then there is aspatial control (see
Fig. 2b).
Conversely, if we can identify a positive constant v such that v(x, t) ≤ v, then it
comes

∂t u(t, x) − �xu(t, x) ≥ u(t, x)(1 − u(t, x)) − Eu(t, x)

1 + Ehu(t, x)
v, t > 0, x ∈ R.

Now, define u(t, x) as the solution of

{
∂t u(t, x) − �xu(t, x) = u(t, x)(1 − u(t, x)) − Eu(t,x)

1+Ehu(t,x) v,

u(0, x) ≤ u(0, x).
(6)

2 It suffices that this condition occurs for t > t0 for some t0 > 0.
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Fig. 2 a Sufficient condition for extinction. The solution u(t, x) is majored by a supersolution u(t, x).
If limt→+∞ u(t, x) = 0, then limt→+∞ u(t, x) = 0 and there is extinction. b Sufficient condition for
uniform extinction. The solution u(t, x) is majored by a supersolution φ(t) which does not depend on x . If
limt→+∞ φ(t) = 0, then limt→+∞ u(t, x) = 0 uniformly in x and there is uniform extinction

Fig. 3 Sufficient condition for
invasion. The solution u(t, x) is
minored by a subsolution
u(t, x). If
lim supt→+∞ u(t, x) > 0, then
lim supt→+∞ u(t, x) > 0 and
there is invasion u(x, t)

u(x, t)

space (x)

pr
ey

de
ns
it
y
(u
)

Invasion

The comparison principle implies that u(t, x) ≤ u(t, x). It follows that if for some
x ∈ R, lim supt→+∞ u(x, t) > 0, then lim supt→+∞ u(t, x) > 0 and there is (non
uniform) invasion (see Fig. 3).

These arguments give rise to the following theorems yielding sufficient conditions,
in terms of the parameters E , α and h, for extinction or invasion to occur. All theorems
are proven in Sect. 5. We begin with a sufficient condition for uniform extinction.

Theorem 2.3 Let E > 1 and define

h1(E) = 1

E

(
2E − 1 + 2

√
E(E − 1)

)
.

If h < h1(E) then there is uniform extinction. In other words, for any initial condition
verifying (3), there exists φ(t) ≥ 0 such that any solution (u(t, x), v(t, x)) of (2)
verifies

∀ x ∈ R, 0 ≤ u(t, x) ≤ φ(t) and lim
t→+∞ φ(t) = 0.
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If h > h1(E), then there can be invasion or extinction. The following theorem gives
a sufficient condition for extinction to occur.

Theorem 2.4 Let E > 1 be fixed and let (u, v) be the solution of (2) and (3). Define
v = 1 and let u be a solution of (6) together with u(0, x) = u(0, x). There exists a
unique h− = h−(E) > h1(E), such that

– If h < h−(E), then ∀x ∈ R, limt→+∞ u(t, x) = 0
– If h > h−(E), then ∀x ∈ R, limt→+∞ u(t, x) = μ where μ = μ(E, h) is a
positive scalar.

As a consequence, if h < h−(E) there is extinction of prey.

The map E �→ h−(E) verifies the following properties proved in Sect. 5.3.

Properties 2.5 The map E �→ h−(E) is increasing and admits the following explicit
limits:

lim
E→1

h−(E) = 1; lim
E→+∞ h−(E) = 16

3
.

Our last result gives a sufficient condition for invasion to occur.

Theorem 2.6 Let E > 1 and α ≥ 0 be fixed and let (u, v) be the solution of (2) and
(3). Define v = 1 + α E

1+Eh and let u be a solution of (6) together with u(0, x) =
u(0, x). There exists a unique h+ = h+(E, α) > h∗(E, α) such that

– If h < h+(E, α), then ∀x ∈ R, limt→+∞ u(t, x) = 0
– If h > h+(E, α), then ∀x ∈ R, limt→+∞ u(t, x) = μ where μ = μ(E, h) is a
positive scalar.

As a consequence, if h > h+(E, α) there is invasion of prey.

Finally, the following result specifies the behavior of the map h+.
Properties 2.7 The maps E �→ h+(E, α) and α �→ h+(E, α) are increasing. For
any E > 1, h+(E, 0) = h−(E) and limα→+∞ h+(E, α) = +∞. Finally, α ≥ 0
being fixed, one has the explicit limit

lim
E→+∞ h+(E, α) = 8

3

(

1 +
√

1 + 3

4
α

)

.

The results above are summarized inFig. 4. In the domain {(E, h), E > 1, h−(E) <

h < h+(E, α)}, which we will refer to as the ‘transition zone’, it is not possible to
draw any conclusions concerningwhether prey invasion or extinction is likely to occur.
Indeed, this zone can be separated into two subzones, according to the parameters
values:

Zone I = {
(E, h), E > 1, max

(
h∗(E, α), h−(E)

)
< h < h+(E, α)

}
,

Zone II = {
(E, h), E > 1, h−(E) < h < h∗(E, α)

}
.

In Zone I, our numerical simulations show non-monotonous traveling waves. In
zone II, simulations show various types of behavior, including pulse and even hetero-
geneous positive stationary solutions. This phenomena are discussed in the Sect. 3.
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Fig. 4 Description of the dynamic of the PDE system (2) in the E − H plan. If E < 1 there is always
invasion. If E > 1 there is a uniform extinction for h < h1(E), extinction for h1(E) < h < h−(E) and
invasion for h+(E, α) < h. The zone between h− and h+ is called the transition zone. This transition
zone is splitted into two subzones: Zone I and Zone II, separated by the h∗ curve. In these two zones, both
extinction or invasion of prey may occur due to various spatial phenomena

3 Numerical study of the transition zone

3.1 Influence of α

The mathematical results above demonstrate the influence of the parameters E and h,
and, indirectly, that of the conversion rate α, on the long-term behavior of the system.
More precisely, when E > 1, prey extinction or invasion may occur, depending on
the value of h. Indeed, we can define two values h− = h−(E) < h+ = h+(E, α)

(see Theorems 2.4, 2.6). Extinction occurs if h < h− and invasion occurs if h > h+.
When h ∈ (h−, h+) we observe richer dynamics, which may depend on other factors.
We refer to this zone as the transition zone. Note that, as h− is not dependent on α

and h+ is an increasing function of α (Proposition 2.7), the size of this transition zone
increases with increasing α.

A first clue to the possible dynamics in the transition zone is provided by an under-
standing of the dynamics of the ODE system (4) described in the Theorem 2.1. The
dynamic of (4) is essentially dependent3 on the position of h relative to h∗ = h∗(E, α).
When h < h∗, there is no positive stationary solution, whereas for h > h∗ there are
two positive stationary solutions, one of which, the larger of the two, is (nearly always)
stable.

The position of h∗ relative to h− and h+ provides a first description of the transition
zone. By virtue of Proposition 2.2, one gets the following. We always have h∗ < h+
but the position of h∗ relative to h− is dependent on α. On the one hand, from the
facts that h∗(1, α) > h−(1) for α > 0 and h∗(E, 0) = h1(E) < h−(E) for E > 1,
we deduce that h− > h∗ for large enough values of E and small enough values of α.
On the other hand, h∗ is an increasing function of α tending to +∞. We obtain that
h∗(E, α) > h−(E) for large values of α and any E > 1.

3 The dynamics generally also depends on a quantity h∗∗, defined in the theorem 2.1, slightly greater than
h∗ that is not taken into account here for the sake of simplicity.
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Fig. 5 Computation of h∗(E, α), h−(E) and h+(E, α) for four values of α. The so-called transition zone
lies between the red curve h+ and the blue curve h−. The transition zone increases with increasing α. This
transition zone can be split into two subzones separated by h∗ (black line) (color figure online)

Remark 2 When h− > h∗, which may occur for sufficiently small values of α, we
see that taking space into account automatically increases the potential of extinction
of preys.

The transition zone can thus be separated into two subzones: one in which h < h∗
(Zone II) and one in which h > h∗ (Zone I). Figure 5 sums up this discussion. As we
will see below, both extinction and invasion are possible in each of these zones, but
the phenomena at work differ considerably, according to whether h < h∗ or h > h∗.
These phenomena are studied in more detail below, using a numerical approach.

3.2 Extinction or invasion: influence of r and d

Our numerical analysis shows that both invasion and extinction are possible in the
transition zone. When space is taken into account we see that h∗ does not separate the
zone of invasion from that of extinction. These two zones are, indeed, separated by a
new critical value of the handling time denoted hcrit ∈ (h−, h+), which is dependent
on E and α, of course, but also on the relative rates of growth (r ) and diffusion (d) of
the predator population:

hcrit = hcrit (E, α, r, d).

As expected, when h > hcrit , prey invasion is observed, whereas extinction is
observed when h < hcrit . Thus, higher values of hcrit are associated with more
effective predation and thus with less effective invasion by the prey.
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Fig. 6 Numerical computation of hcri t in the E − h space for the fixed values of α = 4, d = 1 and r = 1.
The transition zone h ∈ (h−, h+) is split into two subzones separated by hcri t . Extinction occurs below
hcrit and invasion occurs above

Fig. 7 Numerical computation of hcri t with respect to d for four values of r with E = 2 and α = 4. For a
given value of the parameters, there is invasion of prey if h > hcri t and extinction if h < hcri t . Therefore,
the larger hcri t is, the greater is the potential for extinction of prey. We see that hcri t is increasing in r and
(essentially) decreasing in d. Thus, an increase of d or a decrease of r decrease the impact of the predation
on invasive prey

Figure 6 completes the theoretical scheme represented in Fig. 4, by presenting an
example of the curve (E, hcrit ) for a particular selection of values for the parameters
α, r and d in the E − h plan.

Like h∗ and h+, hcrit increases with both E and α. This naturally translates into
the fact that, higher values of E increases the chance of meeting between predators
and prey and that at higher α values, the predator is able to make greater use of the
prey and can therefore eliminate it.

Given the multiple dependence of hcrit on different parameters, Fig. 6 can only
represent a particular case, chosen for its simplicity. Figure 7 shows the relationships
between hcrit and d for fixed values of E and α and for various values of r . We
see that hcrit increases with r . This translates into the fact that for small values of
r , the predators growth rate is small and their effectiveness reduced. Conversly, hcrit
(essentially) decreases with increasing d. This is due to the fact that for large d,
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predators spread into a zone in which prey are not present, resulting in a weakening
predation.

Remark 3 For small values of r and intermediate values of d, predators may increase
their effectiveness by increasing d. In that case, the predator growth rate being small,
predators density remains high for a long time even if prey are absent. Now, if d is large
enough but not large, predators may spread into a zone in which prey are not present
and remain there at a high density and long enough to stop the prey to invade. This
phenomenon may enable predators to form a barrier to prey’s movement, preventing
thereby prey propagation. For too large values of d, the loss in predators effectiveness
due to movement is too strong and the above phenomenon does not hold any more.
This explains why, for small values of r , hcrit first increases and then decreases with
increasing d.

3.3 Dynamics of the system in the transition zone

We will now describe the different dynamics occurring in the transition zone, sum-
marized in Table 1. See Sect. 2.2 for a precise definition of the various quantities
described here.

Table 1 Summary of the four different situations involving space in the transition zone. Here, E = 2 and
α = 4 which yields h∗ ≈ 5.4

h < hcrit : Extinction h > hcrit : Invasion

h < h∗ : Zone II PULSE (r � 1) TURING (d � 1)
h = 5.35 ; d = 1 ; r = 0.01 h = 5.35 ; d = 100 ; r = 1

h > h∗ : Zone I ETW ITW
h = 5.6 ; d = 1 ; r = 1 h = 6 ; d = 1 ; r = 0.01

The X axis represents space and the Y axis the concentration of species. The blue curve (top of each
graph) represents the concentration of predators in space while the black curve is the concentration of prey.
Extinction and invasion traveling waves are abbreviated ETW and ITW respectively (color figure online)
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A] Invasion (h > hcrit )
Turing instabilities: h < h∗ and d � 1 As d increases, predators spread
out, moving into areas from which the prey is absent, leading to a decrease in
the size of the predator population. This phenomenon leads to a decrease in
predator density throughout the space occupied by the predator, allowing the
prey to survive in certain zones. We thus obtain a periodic distribution in space
and a constant distribution over time of the densities of the prey and predator.
Mathematically, this phenomenon is described by a Turing bifurcation. Away
from this bifurcation, other interesting regimes occur. For instance, we observe
non-periodic stationary pattern.
Invasion traveling waves (ITW): h > h∗ The invasion is described simply
by an invasion traveling wave: a wave of propagation linking the two stable
solutions (u∗, v∗) and (0, 1) in the direction of the positive solution (u∗, v∗).
When r is large this traveling wave is monotone. By contrast, when r � 1
it displays a rich dynamics. When r � 1 and d is not too large, we observe
that hcrit is approximately equal to h∗ (see Fig. 7). This indicates that there
is an invasion traveling wave if a positive solution exists. In this case, ahead
of the front, v = 1 and, since r � 1, the predator population increases very
slowly. Besides, as h > h−, the prey invades the space when the predator is at
concentration 1. This leads to front advancing. Behind the front, the predator
has had sufficient time to increase the size of its population and, therefore, to
decrease the size of the prey population. As h > h∗, the population of the prey
decreases towards the positive solution u∗ and we observe a non-monotonous
invasive traveling wave.

B] Extinction (h < hcrit )
Pulse: h ∈ [h−, h∗] and r � 1 Since r � 1, the front of the wave is similar
to the ITW described above. However, as h < h∗, here is no homogeneous
positive solution u∗. The prey population therefore decreases to zero behind
the front, whereas it continues to advance in ahead of the front. We thus obtain
a pulse.
Extinction traveling wave (ETW): h > h∗ This corresponds to the simplest
case described above. We observe a propagation wave linking the two stable
solutions (u∗, v∗) and (0, 1) in the direction of the control solution (0, 1).

Finally, Fig. 8 presents the map in the E − h plane for fixed values of α, d and r .
It furthermore specifies the possible dynamics in each zone.

4 Conclusion and discussion

4.1 Summary of the results

We have shown that invasion occurs if E < 1. If predators do not encounter their prey
they cannot control them. If E > 1, then extinction or invasion can occur, depending
on the parameters h, E , α and r . Uniform extinction occurs for h < h1(E) and
extinction occurs for h1(E) < h < h−(E). Invasion occurs for h+(E, α) < h. Thus,
if h increases, we move from a zone of extinction without a consideration of space to
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Fig. 8 Different spatial dynamics in the transition zone.To ensure that all possible situations are represented,
we choose α = 0.5, r = 0.01 and d = 10. Note that traveling waves of extinction (ETW) and traveling
waves of invasion (ITW) may be obtained outside the transition zone

a zone of extinction requiring a consideration of spatial aspects and then to a zone of
invasion. For intermediate values of E , the zones of extinction increasewith increasing
E resulting in a higher potential of extinction, as h1, h∗, h− are increasing functions
of E . When E is large, the zones of control do not depend on E any more because
h1, h−, h+ have finite limits when E → +∞. Thus, E can only play a role in prey
control if it takes intermediate values and if h is not too large. In summary, for low
values of E (E < 1) or high values of E or h, the outcome of the interaction (extinction
or invasion) is independent of E .

There is furthermore a transition zone splitted in two subzones, with various spatio-
temporal phenomena and wherein both extinction and invasion can occur. The size of
this transition zone greatly increases when the conversion rate α increases. Depending
on the relative positions of these two zones with regard to the zones of extinction and
of invasion, four spatial dynamics were identified: extinction and invasion traveling
waves, extinction pulse waves and heterogeneous stationary positive solutions of the
Turing type.

4.2 Biological interpretation of the main results

We have shown that an increase in E increases the potential of extinction while an
increase in h increases the potential of invasion. This translates the fact that a highly
effective predator does have a high encounter rate and a small handling time. Further-
more, since h+ is an increasing function of α, an increase in α decreases the potential
of invasion and increases the size of the transition zone, which in turn increases the
potential for the system to have complex dynamics. Finally, an increase of the diffu-
sion rate d and a decrease of the amplitude of the predators growth rate r both increase
the potential of invasion of prey. Thus, a generalist predator loses its effectiveness to
exterminate invasive prey if it diffuses too fast or if it has a too slow dynamics.

The above results are stated in term of adimensionalized parameters (see Sect. 2.1).
By choosing the appropriate spatio-temporal variables, we may define Du = r1 = 1.
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Thus, the biological interpretations of d and r are accurate. Conversely, the definitions
of the searching efficiency, E = EK2, the handling time h = h K1

K2
and the conversion

rate α = γ
r complicate the biological interpretation of these three parameters. Thus,

in addition to the above discussion about the influence of E and h, we now discuss our
results in terms of the other biological variables: K1, K2, γ and r . The parameter h
being increasing in the carrying capacity K1 of prey, prey with high carrying capacity
show a high risk of being invasive. Conversly, h and E are respectively decreasing
and increasing in the carrying capacity of predators K2. Thus, predators with high
carrying capacity have a high potential to control prey invasion. Otherwise γ < 1
means that predator growth is mostly due to alternative prey while γ > 1 implies that
predator growth is due to consumption of the focal invasive prey. Finally, an increase
in γ and a decrease in the amplitude of the predator growth rate r yield an increase
of α. Therefore, predators with a preference for the invasive prey or predators with a
slow dynamics might display a complex dynamics. In particular, the likelihood of the
system to exhibit a pulse wave is then important.

4.3 The consideration of space often, but not always, increases the potential for
control of pest invasion

The model analyzed here was studied without taking space into account, except for
a numerical exploration in the discussion, in an article by Magal et al. (2008). As
explained in the introduction, models of identical structure have been proposed inde-
pendently by Fagan et al. (2002) and Chakraborty (2015). We will now discuss our
results in the context of these previous studies.Adding a spatial component to predator–
prey systemsmakes any prediction about the controllability of the system difficult, as it
then depends on the values of several parameters. The comparison between situations
with and without the consideration of space is epitomized by the distinction between
h∗, separating parameter regions of mono- and bi-stability in the ODE system, and
hcrit , separating parameter regions of invasion and extinction in the PDE system. We
will now focus on the case of E > 1, as values of E < 1 do not promote control,
predators encountering prey too infrequently.

If space is not taken into account, control occurs if h < h∗, as 0 is a global attractor.
This is still true in situations in which space is taken into account, if h < h1 where h1
is smaller than h∗. When h is between h1 and h∗, 0 is only a local attractor, so it is not
possible to state that control is always attained. In this respect, adding consideration
of space decreases the potential for control. Furthermore, when space is not taken into
account, there is either extinction or invasion when h > h∗(E, α), depending on initial
conditions. Incorporating consideration of space changes the region where invasion
occurs, for any values of the other parameters and for appropriate initial conditions,
into h > h+(E, α), with h+ > h∗. Thus, the consideration of space reduces the size
of the zone wherein the invasion is certain and is detrimental to the invading prey.
Finally, the relative levels of predator and prey diffusion also determine the potential
for control. Our model shows that control is increased by predators being less mobile
than prey. If predator mobility levels are too high, the predators become to thinly
spread on the ground. For similar reasons, too high a level of prey mobility leaves the
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prey vulnerable to predators. This is entirely consistent with the experimental findings
of Fagan et al. (2002). In conclusion, taking space into account can lead to an increase
or a decrease in the controllability of invading prey by predators; the addition of space
to the model has no generic implication for considerations of predator–prey dynamics
(see also Lam and Ni 2012; Braverman et al. 2015).

4.4 How can generalist predators reverse invasion by pest?

The originality of this study lies in its consideration of a generalist predator in a spatial
context. When studying generalist predators, it is common practice to assume that the
functional response is of type III, due to switching between prey species (Erbach
et al. 2014; van Leuven et al. 2007, 2013; Morozov and Petrovskii 2013). However,
this approach is not mandatory, and other works (Basnet and Mukhopadhyay 2014;
Krivan and Eisner 2006; Hoyle and Bowers 2007) have considered a type II functional
response. Altering our model to include a type III functional response would be very
costly in terms of understanding, because such responses lead to a loss of bistability.
Its derivative would be null without prey, so some of our demonstration would fail
and the analytical complexity would be greatly increased. However, traveling waves
for specialist predator with type III functional response are known to exist (Li andWu
2008) which indicates that our result may be extended to this case.

The complexity of analytical studies of spatial predator–prey interactions lies in
the reaction terms being of alternative signs in the equations, making the study of
the systems of equations essential (Dunbar 1984b; Huang et al. 2003; Huang and
Weng 2013). Other interactions, such as competition of two species (all negative)
and symbiosis (all positive), are simpler, as their studies are similar to the study
of a single equation (Volpert et al. 1994; Alzahrani et al. 2012). This accounts for
the slow scientific progress in this otherwise highly relevant topic. However, several
major results have been obtained in recent decades, including those of the fundamental
work of Owen and Lewis (2001). The finding of Owen and Lewis that predators can
slow, stop, and even reverse invasion by their prey was based on the bistability of
the prey-only dynamics of systems consisting of specialist predators attacking prey
populations displaying Allee effects. By contrast, our work shows that the ability
of generalist predators to control prey populations with logistic growth lies in the
bistable dynamics of the coupled system. We also observe pseudo-Allee effects in our
system, but their physics is quite different. An analysis of the ODE system identified
parameter regions of monostable (extinction) and bistable (extinction or invasion)
dynamics, but analysis of the associated PDE was able to distinguish different and
additional regions of invasion and extinction. As a consequence, prey control was
predicted to be possible when space was considered in additional situations other than
those identified without considering space. The reverse situation was also possible.
None of these considerations apply to spatial predator–prey systems with specialist
natural enemies.
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5 Proofs

5.1 Proof of Theorem (2.1)

Let E > 1 and α ≥ 0 be fixed. For any h ≥ 0, the system (4) can be rewriten as

{
d
dt u = �h(u)( fh(u) − v)

d
dt v = rv(gh(u) − v)

(7)

where �h(u) = Eu
1+Ehu , fh(u) = 1

E (1 − u)(1 + Ehu) and gh(u) = 1 + α Eu
1+Ehu .

(i) Proof of the existenceDefine H(h, u) = fh(u)−gh(u). For a given h ≥ 0, a couple
(u, v) is a positive stationary solution of (7) if and only if v = fh(u) and

u ∈]0, 1[ is a solution of H(h, u) = 0. (8)

Now, fix u ∈]0, 1[. Since ∂h H(h, u) = u(1 − u) + α
(

Eu
1+Ehu

)2
> 0, one sees

that the map h �→ H(h, u) is increasing. From E > 1, we get H(0, u) < 0 and
from u ∈]0, 1[ we get limh→+∞ H(h, u) = +∞. The map h → H(h, u) being
continuous, this implies that for any u ∈]0, 1[, there exists a unique h(u) > 0 such

that

⎧
⎨

⎩

H(h, u) < 0 if h < h(u),

H(h, u) = 0 if h = h(u),

H(h, u) > 0 if h > h(u).

The smooth function u �→ h(u) may be computed explicitly by noting that for any
h ≥ 0, the Eq. (8) is equivalent to the algebraic equation

u ∈]0, 1[ is a solution of Ph(u) = 0 (9)

wherein we have set

Ph(u) = (1 − u)(1 + Ehu)2 − E(1 + Ehu + Eαu).

This yields the explicit formula

h(u) = 1

Eu(1 − u)

[
E

2

(
1 + √

1 + 4αu(1 − u)
)

+ u − 1

]

. (10)

In particular
lim

u→0+ h(u) = lim
u→1− h(u) = +∞. (11)

This implies that the minimum of h(u) is obtained for some ucrit ∈]0, 1[. We define

h∗ = inf
u∈(0,1)

h(u) = min
u∈(0,1)

h(u) = h(ucrit ). (12)

The definition of h∗ shows that if h < h∗, then (9) has zero solution. This also
implies, together with the limits (11) and the continuity of u �→ h(u), that for any
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Fig. 9 The four figures are computed for E = α = 2, which gives h∗ ≈ 4.36. The figure on the
left represents the curve u �→ h(u) (in bold). Above the curve fh(u) > gh(u) while below the curve
fh(u) < gh(u). For a given h, the ordinate u of a point of this curve verifies fh(u) = gh(u) and corresponds
to the positive stationary solution (u, fh(u)) of (7). The figures on the right represent the isoclines v = fh(u)

and v = gh(u) for the three fixed values h = 3, h = 4.36 and h = 5. A positive stationary solution of
the system (7) corresponds to an intersection of these two isoclines. The system (7) admits two positive
solutions for h > h∗, one (double) solution for the critical case h = h∗ and zero positive solution for
h < h∗

fixed h > h∗ the Eq. (9) admits at least two solutions4 (see the Fig. 9). In addition to
this, for any fixed h > 0, one has deg(Ph) = 3 and Ph always admits a negative roots
for P(0) = 1 − E < 0 and limx→−∞ Ph(x) = +∞. This implies that (9) admits at
most two solutions.5 In conclusion, (9) has exactly two positive solutions if h > h∗
and zero positive solution if h < h∗. This ends the proof of (i).

4 Remark that h∗ > 1
E , because h ≤ 1

E , implies that f ′
h < 0 on (0, 1) and (8) has no solution.

5 These arguments also show thatu �→ h(u) is decreasing on (0, u∗) and increasing on (u∗, 1); for otherwise
it is possible to choose h > 0 such that there is at least four different u ∈ (0, 1) such that h = h(u), which
is equivalent to Ph having at least four roots. See the Fig. 9.
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(ii) Proof of the stability Let h > h∗ be fixed. Let (u, v) be a positive stationary
solution of (7). Since (u, v) verifies fh(u) = gh(u) = v, the Jacobian matrix at (u, v)

reads

J (u, v) =
[

�h(u) f ′
h(u) −�h(u)

rvg′
h(u) −rv

]

hence

det (J (u, v)) = r�h(u)v
(
g′
h(u) − f ′

h(u)
)
.

From the proof of (i), we know that the system (7) admits exactly two positive
solutions denoted respectively as (̂u, v̂) and (u∗, v∗) with û < ucrit < u∗ and such
that

h = h(̂u) = h
(
u∗) , (13)

where u �→ h(u) is given by (10). In particular, û and u∗ are the solution of

H(h(u), u) = 0. (14)

Differentiating the Eq. (14) with respect to u gives

∂u H(h(u), u) = −h′(u)∂h H(h(u), u).

Thus, using the known fact that ∂h H(h(u), u) > 0, the identity (13) and the footnote
5, one gets ∂u H(h, û) < 0 and ∂u H(h, u∗) > 0. Since ∂u H(h, u) = −(g′

h(u) −
f ′
h(u)), this shows that det(J (̂u, v̂)) < 0 and the instability of (̂u, v̂) follows.

By contrast, one has det
(
J (u∗, v∗)

)
> 0 and it appears that the stability of (u∗, v∗)

is given by the sign of

tr
(
J
(
u∗, v∗)) = �h

(
u∗) f ′

h

(
u∗) − rv∗. (15)

In order to highlight the dependence on h, for any h > h∗, we note u∗ = u∗(h)

and we also define μ(h) = Eh−1
2Eh . From f ′

h(u) = 1
2E2h

(μ(h) − u) and (15), we infer
the following:

– If μ(h) ≤ u∗(h) then (u∗, v∗) is asymptotically stable.
– Ifμ(h) > u∗(h) then the stability of (u∗, v∗) depends on r . More precisely, define

rcri t = �h(u∗) f ′
h(u

∗)
v∗ > 0. (It is easy to show that rcri t ≤ 1).

– If r > rcri t , then (u∗, v∗) is asymptotically stable.
– If r < rcri t , then (u∗, v∗) is unstable.

The sign of μ(h) − u∗(h) with respect to the parameter h remains to be found.
On a first hand, the explicit expression of f ′

h shows that f ′
h∗ is decreasing and

that f ′
h∗(μ(h∗)) = 0. Moreover, the definition (12) of h∗ yields u∗(h∗) = ucrit

and f ′
h∗(ucrit ) = g′

h∗(ucrit ) > 0. Hence, μ(h∗) < u∗(h). It is also clear that
1
2 = limh→+∞ μ(h) < limh→+∞ u∗(h) = 1. By continuity, we infer that the equation
μ(h) = u∗(h) has at least one solution in (h∗,+∞).
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On another hand, if μ(h) = u∗(h) then H(h, μ(h)) = 0, which may be rewritten as

(Eh + 1)3 = 4E
(
(Eh)2 + Eh(Eα + 1) − Eα

)
.

A simple analysis shows that this equation has exactly one negative solution, one
solution in

(
0, 1

E

)
and one solution in

( 1
E ,+∞)

. Since h∗ > 1
E (see Footnote 4), this

implies that μ(h) = u∗(h) has exactly one solution in (h∗,+∞). We note this unique
solution h∗∗ = h∗∗(E, α).
Finally, it is clear from the above arguments that μ(h) < u∗(h) if h ∈ (h∗, h∗∗) and
that μ(h) > u∗(h) if h > h∗∗. This ends the proof of the theorem. ��
Proofs of Properties 2.2 Similarly to the proof of the theorem 2.1, and to highlight
the role of the parameters E and α, let us define

H(E, α, h, u) = 1

E
(1 − u)(1 + Ehu) −

(

1 + α
Eu

1 + Ehu

)

.

From the proof of the theorem 2.1, we know that the quantity h∗ = h∗(E, α) and
the corresponding ucrit = ucrit (E, α) are characterized by the two equations

H
(
E, α, h∗, ucrit

) = 0 (16a)

∂u H
(
E, α, h∗, ucrit

) = 0. (16b)

The implicit function theorem immediatly shows that the maps (E, α) �→
(h∗, ucrit ) belongs to C1

(
(1,+∞) × [0,+∞);R2+

)
.

– Proofs of the growth of E �→ h∗(E, α) and of α �→ h∗(E, α)

Let α ≥ 0 be fixed. Differentiate (16a) with respect to E and use (16b) yields

∂E H
(
E, α, h∗, ucrit

) + ∂Eh
∗(E, α) · ∂h H

(
E, α, h∗, ucrit

) = 0.

We already know that ∂h H < 0 and an explicit computation gives

∂E H
(
E, α, h∗, ucrit

) = 1

E (1 + Eh∗ucrit )
> 0.

It follows that ∂Eh∗(E, α) > 0. Similar arguments show that ∂αh∗(E, α) > 0.
– Computation of limE→1 h∗(E, α)

Let α ≥ 0 be fixed. Since h∗(·, α) is increasing and positive on (1,+∞), there
exists a nonnegative scalar h∗(α) such that h∗(E, α) → h∗(α) as E → 1. To
compute this limit, denote P(E, α, h, u) = (1 + Ehu)H(E, α, h, u). From (16)
and the definition of h∗, one see that h∗ is the minimal value of h such that

∃u ∈ [0, 1], P(E, α, h, u) = ∂u P(E, α, h, u) = 0. (17)

In other words, h∗ is the minimal value of h such that P(E, α, h, ·) admits a
multiple root in [0, 1].
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By passing to the limit E → 1 in (17), we see that that h∗(α) is the minimal value
of h such that

∃u ∈ [0, 1], P(1, h, α, u) = ∂u P(1, h, α, u) = 0. (18)

Explicit computations give

P(1, α, h, u) = u
(
h2u2 + h(2 − h)u + α + 1 − h

)
.

The multiplicity of the roots of P(1, α, h, ·) need now to be discussed.
• If h < 2

√
α then 0 is the only root of P(1, α, h, ·) and the multiplicity is one.

• If h ≥ 2
√

α then P(1, α, h, ·) has two other real roots and may be explicitly
written as

P(1, α, h, u) = h2u(u − u−)(u − u+)

where

u± = 1

2h

(
h − 2 ±

√
(2 − h)2 − 4(α + 1 − h)

)
.

– If h = 2
√

α then u− = u+ = 1 − 1√
α
and this multiple root belongs to [0, 1)

if and only if α ≥ 1.
– If 2

√
α < h < α + 1 then the three roots 0, u− and u+ are distinct and there

is no multiple root.
– If h = α + 1 then either 0 = u− or 0 = u+, depending on the sign of α − 1.
In both cases 0 is a multiple root.

– Finally, if h > α + 1 then u− < 0 < u+ and all the roots of P(1, α, h, ·) have
multiplicity one.

The above discussion shows, using the characterization of h∗(α), that

h∗(α) =
{
1 + α ifα ≤ 1
2
√

α ifα > 1.
(19)

Note that α �→ h∗(α) belongs to C1([0,+∞),R+). ��
– Computation of limE→+∞ h∗(E, α)

Since h∗(·, α) is positive and increasing, one has

lim
E→+∞ h∗(E, α) = 1

�α

for some nonnegative number �α (wherein we have set 1
0 = +∞).
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However, since ucrit (E, α) is bounded, up to a subsequence again denoted by E ,
one has ucrit (E, α) → μ for some positive number μ (eventually depending on
α). By passing to the limit in (16a), we deduce μ > 0; for otherwise one obtains
0 = H(E, α, h∗, ucrit ) → +∞. It follows that taking E → +∞ in (16b), one
obtains μ = 1/2. Thus, by passing to the limit in (16a), one gets

1

�2α
= 2

�α

+ 2α

and finally (�α being nonnegative)

1

�α

= 2 + 2
√
1 + α;

��
– Computation of h∗(E, 0) If α = 0 one gets

P(E, h, 0, u) = 1

E
(1 + Ehu)

(
−Ehu2 + u(Eh − 1) + 1 − E

)
. (20)

Standard computations show that P(E, h, 0, ·) admits two nonnegative roots if
and only if h > 1

E (2E − 1 + √
E(E − 1) := h1(E) and one double nonnegative

root if h = h1(E). This shows that h∗(E, 0) = h1(E). ��
– Computation of limα→+∞ h∗(E, α) Since E �→ h∗(E, α) is increasing one gets
for any E ≥ 1, h∗(E, α) ≥ h∗(α). The explicit expression (19) of h∗(α) implies
limα→+∞ h∗(E, α) = +∞. ��

5.2 Proof of the Theorem 2.3

Let E > 1 be fixed and (u(t, x), v(t, x)) be a solution of (2) with initial condition
(u0(x), v0(x)) verifying (3).

Step 1 It is clear that u(t, x) ≥ 0 for any t > 0 which implies

∂tv(t, x) − d�xv(t, x) ≥ rv(t, x)(1 − v(t, x)), t > 0, x ∈ R.

Thus, using the comparison principle and the hypothesis that v(0, x) ≥ 1, we
deduce v(t, x) ≥ 1 for any t ≥ 0 and x ∈ R. It follows that

∂t u(t, x) − �xu(t, x) ≤ u(t, x)(1 − u(t, x)) − Eu(t, x)

1 + Ehu(t, x)
, t > 0, x ∈ R.

By the comparison principle, we infer that any solution u of

∂t u(t, x) − �xu(t, x) = u(t, x) (1 − u(t, x)) − Eu(t, x)

1 + Ehu(t, x)
, t > 0, x ∈ R

(21)
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such that u(0, x) ≥ u0(x) for any x ∈ R satisfies

∀t > 0, ∀x ∈ R, u(t, x) ≤ u(t, x).

In particular, let φ(t) be the solution of the ordinary differential equation

d

dt
φ(t) = φ(t)(1 − φ(t)) − Eφ(t)

1 + Ehφ(t)
, t > 0 (22)

together with the initial condition φ(0) = 1.
φ is a homogeneous solution of (21) and from u(0, x) ≤ 1 = φ(0) we deduce

∀t > 0, ∀x ∈ R, 0 ≤ u(t, x) ≤ φ(t).

Step 2 Behavior of φ(t) as t → +∞.
It is clear that 0 is always a steady state of (22) and is asymptotically stable for E > 1.
Now, let φ0 > 0 be a positive steady state of (22). φ0 is a root of the polynomial
P(E, h, 0, ·) which is studied in the proof of the property 2.2 [see (20)]. Hence, if
h ≥ h1(E) then (22) has two positive steady states that we denote as u−(E, h) ≤
u+(E, h) ≤ 1 explicitly given by

u±(E, h) = 1

2

⎛

⎝1 − 1

Eh
±

√
(

1 − 1

Eh

)2

− 4
E − 1

Eh

⎞

⎠ . (23)

A linear analysis shows that for h > h1(E), u−(E, h) is unstable and u+(E, h) is
(asymptotically) stable.
Finally, classical arguments show that φ(t) → u+(E, h) if h > h1(E) and φ(t) → 0
if h < h1(E). This ends the proof of the theorem. ��

5.3 Proof of the Theorem 2.4

Let E > 1 be fixed and (u(t, x), v(t, x)) be a solution to (2) with initial condition
(u0(x), v0(x)) verifying (3).
By the argument of the step 1 of the proof of 5.2, one already knows that:

u(t, x) ≤ u(t, x) (24)

where u(t, x) is a solution of (21) with u(0, x) = u0(x). Moreover, from the step 2 of
the proof of 5.2, one knows that if h > h1(E) then the Eq. (21) is bistable since (21)
admits two stable nonnegative steady states: u = 0 and μ = u+(E, h) < 1. We prove
here that, in that case, there exists a traveling wave connecting μ to 0 at a negative
speed if and only if h < h−(E) for some (implicit) number h−(E) > h1(E). This
implies that for any x ∈ R, u(t, x) → 0 if h < h−(E) and u(t, x) → μ if h > h−(E),
which proves the theorem.
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u0 u− u+

−W (u+) > 0 and then c < 0

u0 u−
u+

−W (u+) < 0 and then c > 0

Fig. 10 Graph of u �→ −W (E, h, u). The steady states 0, u− and u+ correspond to critical points of
the potential −W . A stable steady state is a local minimum of W and an unstable steady state is a local
maximum. One sees that 0 and u+ are two stable steady states. The sign of c characterizes which of them
is the final global attractor: if c < 0, then 0 is the global attractor. If c > 0, then u+ is the global attractor

Let h > h1(E) be fixed. It can be proven (see Fife 1979; Volpert et al. 1994 and the
reference therein) that there exists a unique speed c = c(E, h) such that (21) admits
a traveling solution of speed c which connects μ to 0. More precisely, there exists
a profile U (ξ) verifying U (−∞) = μ, U (+∞) = 0 and U ′(±∞) = 0, such that
U (x − ct) = u(x, t) is a solution of (21). Moreover (see Fife 1979) this traveling
wave describes the asymptotic behavior of all solutions provided the initial condition
(3) are verified. The theorem is proven by showing that there exists h−(E) such that
c(E, h) < 0 if h < h−(E) and c(E, h) > 0 if h > h−(E). This result is a direct
consequence of the two following lemma. The first lemma gives a characterization of
the sign of c by an explicit function (see Fig. 10).

Lemma 5.1 Define

W (E, h, u)) =
∫ u

0

(

s(1 − s) − Es

1 + Ehs

)

ds.

Then sign(c(E, h)) = sign(W (E, h, μ)) where μ := u+(E, h).

Proof Denote c = c(E, h) and let ξ = x −ct andU (ξ) = u(x, t)withU (−∞) = μ,
U (+∞) = 0 and U ′(±∞) = 0. We have

−cU ′ = U ′′ +U (1 −U ) − EU

1 + EhU
= U ′′ + ∂W

∂U
(E, h,U ).

Multiplying by U ′ and integrating over R one gets

−c
∫ +∞

−∞
(
U ′)2 dZ =

∫ +∞

−∞

(

U (1 −U ) − EU

1 + EhU

)

U ′dZ

=
∫ 0

μ

∂W

∂U
(E, h,U )dU = −W

(
E, h, u+)

and sign(c) = sign(W (E, h, u+(E, h)) follows. ��
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The second lemma gives the sign of W with respect to h.

Lemma 5.2 For any E > 1, there exists (a unique) h−(E) > h1(E) such that

sign
(
W

(
E, h, u+(E, h)

)) = sign
(
h − h−(E)

)
.

Lemmas 5.1 and 5.2 show that

– There is invasion of prey for (21) (c(E, h) > 0) if h ∈ (h−(E),+∞). In that case,
for any x ∈ R, u(t, x) → u+(E, h) as t → +∞.

– There is extinction of prey for (21) (c(E, h) < 0) if h ∈ [h1(E), h−(E)). In that
case, for any x ∈ R, u(t, x) → 0 as t → +∞.

In particular, we infer from the inequality (24), that if h ∈ [h1(E), h−(E)), then for
any x ∈ R, u(t, x) → 0 as t → +∞. This ends the proof of the theorem. ��
It remains to prove the Lemma 5.2.

Proof of Lemma 5.2 Define W(E, h) = W (E, h, u+(E, h)). From the Lemma 5.1,
we know that sign(c) = sign(W(E, h)). We show here that there exists h−(E) >

h1(E) such that sign(W(E, h)) = sign(h − h−(E)).

Step 1 DifferentiateW with respect to h gives

∂hW(E, h) = ∂hW
(
E, h, u+(E, h)

) + ∂uW
(
E, h, u+(E, h)

)
∂hu

+(E, h).

By the very definition of W and u+, one has ∂uW (E, h, u+(E, h)) = 0, which
yields

∂hW(E, h) = ∂hW
(
E, h, u+(E, h)

)
.

Explicit calculations show that

W (E, h, u) = u2

2
− u3

3
− u

h
+ 1

Eh2
ln(1 + Ehu). (25)

Differentiate this expression with respect to h and denoting z = Ehu+(E, h)

provides

∂hW
(
E, h, u+(E, h)

) = 1

Eh3

(

z − 2 ln(1 + z) + z

1 + z

)

.

A standard analysis shows that the map z �→ z − 2 ln(1 + z) + z
1+z takes positive

values for z > 0. It follows that the map h �→ W(E, h) is increasing.

Step 2 Recalling that u+ is the largest roots of (20), one verifies that u+(E, h) → 1
as h → +∞ and W(E,+∞) = 1/2 − 1/3 = 1/6 > 0.
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Step 3 This step consists in proving that for any E > 1, W(E, h1(E)) =
W (E, h1(E), u+(E, h1(E))) := g(E) is negative.
From the explicit expression (23) of u+(E, h) and the definition of h1(E), we get

u+(E, h1(E)) = 1

2

(

1 − 1

Eh1(E)

)

= 1 − E + √
E(E − 1).

On a first hand, we have

g′(E) = ∂EW
(
E, h1(E), u+(E, h1(E))

) + ∂hW
(
E, h1(E), u+(E, h1(E))

) · h′
1(E).

Straightforward calculations give

g′(E) =
(

1

Eh1(E)

)2 [

2 − ln(1 + z)

(

1 + 2

z

)]

.

wherein we have set

z = Eh1(E)u+(E, h1(E)) = √
E − 1

(√
E + √

E − 1
)

= 1

2
(Eh1(E) − 1) .

A standard analysis shows that 2 z
z+2 < ln(1 + z) for any z > 0. Thus g′(E) < 0

for any E > 1.
On another hand, we have h1(1) = 1 and u+(1, 1) = 0, so that g(1) = 0. It follows

that g(E) < 0 for any E > 1.

Conclusion For any E > 1, the map h �→ W(E, h) is increasing and verifies
W(E, h1(E)) < 0 and limh→+∞ W(E, h) = 1/6. By continuity, for any E > 1,
there exists a unique h− = h−(E) ∈ (h1(E),+∞) such that sign(W (E, h, u+)) =
sign(h − h−(E)). This ends the proof of lemma 5.2. ��
Proofs of Properties 2.5 Let E > 1 be fixed.

– Growth of h−(·)
Recall that h−(E) is characterized by

W
(
E, h−(E), u+(E, h−(E))

) = 0 (26)

where the expressions of W and u+ are respectively given in (25) and (23). By
definition of W , one has

∂uW
(
E, h−(E), u+ (

E, h−(E)
)) = 0.

Hence

∂EW
(
E, h−(E), u+(E, h−(E))

) + dh−

dE
(E) · ∂hW

(
E, h−(E), u+(E, h−(E))

) = 0.
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The explicit computation of ∂EW and ∂hW are done in proof 5.3 and one gets

∂EW
(
E, h−(E), u+(E, h−(E))

)
< 0 and ∂hW

(
E, h−(E), u+(E, h−(E))

)
> 0

so that

dh−

dE
(E) = −∂EW

(
E, h−(E), u+ (

E, h−(E)
))

∂hW
(
E, h−(E), u+ (

E, h−(E)
)) > 0

as needed. ��
– Limit of h−(E) as E → 1
Let E > 1. One knows that h−(·) is increasing on (1,+∞) and minored by
h1(E) > 0. Hence h−(E) admits a limit �− as E → 1, and from h1(1) = 1, one
obtains

�− ≥ 1.

The explicit expressions (23) of u± yield

u− (
1, �−) = 0 and u+ (

1, �−) = 1 − �−

�− .

Assume by contradiction that u+(1, �−) > 0. Then, for any h ≥ 1 and 0 < u <

u+(h, 1), we have

∂uW (1, h, u) = u(1 − u) − 1

1 + hu
> 0 and W (1, h, 0) = 0.

This implies W (1, �−, u+(1, �−)) < 0, which contradicts (26).
It follows that u+(1, �−) = 0. Thus �− = 1, which reads lim

E→1
h−(E) = 1. ��

– Limit of h−(E) as E → +∞
One knowns that h−(E) is increasing so that there is some � ≥ 0 such that
limE→+∞ h−(E) = 1

�
(wherein we have set 1

∞ = 0). By taking the limit E →
+∞ in (23), we obtain

lim
E→+∞ u+ (

E, h−(E)
) = u� := 1

2

(
1 + √

1 − 4�
)

> 0.

and then, by taking the limit in (26),

u2�
2

− u3�
3

− u�

�
= 0.

Thus, � = 3
16 which reads, limE→+∞ h−(E) = 16

3 .
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5.4 Invasion conditions, proof of Theorem 2.6

As in the proof 5.3, we start here by showing that 0 ≤ u(t, x) ≤ u(t, x) for some
function u verifying a scalar reaction–diffusion equation (27) depending on E , h and
α. Next, we show that there exists h+(E, α) such that limt→+∞ u(t, x) = μ > 0
when h > h+(E, α). This step is done using the proof of Theorem 2.4 together with
an appropriate change of variables.

Step 1 Let E > 1 be fixed. In general, using 0 ≤ u ≤ 1, one has 1 ≤ v ≤ v with

v := v(E, h, α) = 1 + α
E

1 + Eh
.

From the estimate v ≤ v, we get u(t, x) ≤ u(t, x) where u verifies

∂t u = �xu + u(1 − u) − Evu

1 + Ehu
, t > 0, x ∈ R. (27)

Denoting Ẽ = Ev and h̃ = h
v
, this equation reads simply

∂t u = �xu + u(1 − u) − Ẽu

1 + Ẽ h̃u
, t > 0, x ∈ R. (28)

Note that, removing thẽ , this equation is nothing but (21). As a consequence, the
proof of the Theorem 2.4 implies the following result on (28).

Lemma 5.3 Let ũ(t, x) be a solution of (28) verifying the initial condition (3). There
exists h−(Ẽ) > h1(Ẽ) such that

– if h̃ < h−(Ẽ) then for any x ∈ R, limt→+∞ ũ(t, x) = 0 (extinction),
– if h̃ > h−(Ẽ) then for any x ∈ R, limt→+∞ ũ(t, x) = μ(Ẽ, h̃) > 0 (invasion).

Step 2 Recalling that Ẽ = Ev(E, h, α) and h̃ = h
v(E,h,α)

do depend on h, we set μ =
μ(E, h) = μ(Ẽ, h̃) and the previous lemma gives the following implicit condition on
h for invasion to occur.
For any x ∈ R, lim

t→+∞ u(t, x) = μ, provided:

h > v(E, h, α)h− (Ev(E, h, α)) . (29)

The following lemma gives an equivalent condition for this implicit condition to
occur. This ends the proof of theorem 2.4.

Lemma 5.4 For any E > 1 and α ≥ 0, there exists (a unique) h+(E, α) ≥ h−(E)

such that:

(29) holds true if and only if h > h+(E, α).
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Proof of Lemma 5.4 Let E > 1 and α ≥ 0 be fixed and define the function

FE,α(h) = h − v(E, h, α)h− (Ev(E, h, α)) . (30)

By the construction of h− via the implicit function theorem, one knows thatFE,α(·)
is a C1 function. Moreover, since h− and v are bounded, we have FE,α(+∞) = +∞
and

FE,α(0) = −v(E, 0, α)h− (Ev(E, 0, α)) = −(1 + αE)h−(E(1 + αE)) < 0.

Therefore, it suffices to show that FE,α is increasing.
One has

F ′
E,α(h) = 1 − ∂hv(E, h, α)

(

h− (Ev) + v
dh−

dE
(Ev)

)

.

From the expression of v, we infer ∂hv < 0 and from the proof of the properties
2.5, we know that dh−

dE > 0. It follows that F ′
E,α(h) > 0. This ends the proof of the

lemma. ��
Proofs of Properties 2.7 – Proof of the growth of h+(E, ·) and h+(·, α)

h+(E, α) is characterized by an equality in (29), that is,

FE,α

(
h+(E, α)

) = 0 (31)

where FE,α is defined in (30). Differentiating (31) with respect to E gives

∂Eh
+(E, α) · F ′

E,α

(
h+(E, α)

) + ∂EFE,α

(
h+(E, α)

) = 0

and then

∂Eh
+(E, α) · F ′

E,α

(
h+(E, α)

) =
[(
Ev + h−) ∂Ev + v2

]
· dh

−

dE
(Ev) .

wherein we have set

h− = h− (Ev) , v = v
(
E, h+(E, α), α

)
and ∂Ev = ∂Ev

(
E, h+(E, α), α

)
.

One already knows that F ′
E,α(h+(E, α)) > 0 and that dh−

dE > 0. A direct compu-
tation shows that ∂Ev > 0, which leads to ∂Eh+(E, α) > 0 as needed.
Similarly, differentiating (31) with respect to α gives, with obvious notations,

∂αh
+(E, α) · F ′

E,α(h+(E, α)) = ∂αv ·
(

h− + E
dh−

dE

)

,

and since ∂αv > 0, one obtains ∂αh+(E, α) > 0.
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– Limits of h+(E, α) as α → 0 and α → +∞
From v(E, h, 0) = 1 we deduce h+(E, 0) = h−(E). Now, it is clear from the
construction of h+, that h+(E, α) ≥ h∗(E, α). From the properties 2.2, we obtain
h+(E, α) → +∞ as α → +∞. ��

– Limit of h+(E, α) as E → +∞.
First, recall that h+(E, α) is characterized by (31), which reads

h+(E, α) =
(

1 + α
E

1 + Eh+(E, α)

)

· h−
(

E + α
E2

1 + Eh+(E, α)

)

. (32)

Since h+(·, α) is increasing, there exists �α ≥ 0 such that limE→+∞ h+(E, α) =
1
�α

. Taking the limit E → +∞ in (32) and using h−(E) → 16
3 , one obtains

1
�α

= 16
3 · (1 + α�α). The resolution of this equation ends the proof. ��
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