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Abstract In any reaction–diffusion system of predator–prey models, the population
densities of species are determined by the interactions between them, together with
the influences from the spatial environments surrounding them. Generally, the prey
species would die out when their birth rate is too low, the habitat size is too small, the
predator grows too fast, or the predation pressure is too high. To save the endangered
prey species, some human interference is useful, such as creating a protection zone
where the prey could cross the boundary freely but the predator is prohibited from
entering. This paper studies the existence of positive steady states to a predator–prey
modelwith reaction–diffusion terms,Beddington–DeAngelis type functional response
and non-flux boundary conditions. It is shown that there is a threshold value θ0 which
characterizes the refuge ability of prey such that the positivity of prey population can be
ensured if either the prey’s birth rate satisfies θ ≥ θ0 (nomatter how large the predator’s
growth rate is) or the predator’s growth rate satisfies μ ≤ 0, while a protection zone
�0 is necessary for such positive solutions if θ < θ0 with μ > 0 properly large. The
more interesting finding is that there is another threshold value θ∗ = θ∗(μ,�0) < θ0,
such that the positive solutions do exist for all θ ∈ (θ∗, θ0). Letting μ → ∞, we get
the third threshold value θ1 = θ1(�0) such that if θ > θ1(�0), prey species could
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survive no matter how large the predator’s growth rate is. In addition, we get the fourth
threshold value θ∗ for negative μ such that the system admits positive steady states if
and only if θ > θ∗. All these results match well with the mechanistic derivation for
the B-D type functional response recently given by Geritz and Gyllenberg (J Theoret
Biol 314:106–108, 2012). Finally, we obtain the uniqueness of positive steady states
for μ properly large, as well as the asymptotic behavior of the unique positive steady
state as μ → ∞.

Keywords Reaction–diffusion · Predator–prey · Beddington–DeAngelis type
functional response · Protection zone · Bifurcation

Mathematics Subject Classification 92D40 · 35J47 · 35K57

1 Introduction

Biological resources are renewable, but many have been exploited unreasonably.
Nowadays, some species cannot survive in their habitat without human intervention.
Such interventions have included establishing banned fishing areas and fishing periods
to cope with over-fishing in fishery production, setting up nature reserves to protect
the endangered species, etc. These phenomena are usually described via diffusive
predator–prey models, where the population evolution of the species relies on the
interactions between predator and prey, as well as the influences from the spatial envi-
ronments surrounding them. Naturally, prey species would die out when the prey’s
birth rate is too low, the habitat size is too small, the predator’s growth rate is too
fast, or the predation rate is too high. To save the endangered prey species, various
human interferences are proposed such as creating a protection zone where the prey
could cross the boundary freely but the predator is prohibited from entering. Refer
to the works on protection zones by Du et al for the Lotka–Voltera type competi-
tion system (Du and Liang 2008), Holling II type predator–prey system (Du and Shi
2006), Leslie type predator–prey system (Du et al. 2009), as well as predator–prey
systems with protection coefficients (Du and Shi 2007). Oeda studied the effects of
a cross-diffusive Lotka–Voltera type predator–prey system with a protection zone
(Oeda 2011). A cross-diffusive Lotka–Voltera type competition system with a protec-
tion zone was investigated by Wang and Li (2013). Zou and Wang studied an ODE
model of protection zones, where the sizes of protection zones are reflected by restrict-
ing the functionals’ coefficient for the predator (Zou and Wang 2011). Recently, Cui
et al. (2014) observed the strong Allee effect in a diffusive predator–prey system with
protection zones.

In this paper, we study the steady states to the following diffusive predator–prey
system with Beddington–DeAngelis type functional response
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ut − d1�u = u

(

θ − u − a(x)v

1 + mu + kv

)

, x ∈ �, t > 0,

vt − d2�v = v

(

μ − v + cu

1 + mu + kv

)

, x ∈ �1, t > 0,

∂u

∂n
= 0, x ∈ ∂�, t > 0,

∂v

∂n
= 0, x ∈ ∂�1, t > 0,

u(x, 0) = u0(x) ≥ ( �≡)0, x ∈ �,

v(x, 0) = v0(x) ≥ ( �≡)0, x ∈ �1,

(1.1)

where � is a bounded domain in R
N (N ≤ 3) with smooth boundary ∂�, �0 � �

with ∂�0 smooth, �1 = �\�0, constants d1, d2, θ, c,m, k > 0, μ ∈ R, ∂
∂n is the

outward normal derivative on the boundary, and

a(x) =
{
0, x ∈ �0,

a, x ∈ �1.
(1.2)

The fact of a(x) = 0 in �0 implies that no predation could take place there.
Equation (1.1) is a reaction–diffusion system of species u and v, and the dynamical

behavior of species would be determined not only by the mechanism of the func-
tional response between u and v, but also by the interaction between their reaction
and diffusion. Here prey u and predator v disperse at rates d1 and d2, and grow
at rates θ and μ, respectively. The prey is consumed with the functional response
of Beddington–DeAngelis type a(x)uv

1+mu+kv in �, and contributes to the predator with
growth rate cuv

1+mu+kv in �1. Non-flux boundary conditions mean that the habitat of
the two species is closed. The B-D type functional response was introduced by Bed-
dington (1975) and DeAngelis et al. (1975). Refer to Beddington (1975), DeAngelis
et al. (1975) and Dimitrov and Kojouharov (2005) for the background of the orig-
inal predator–prey model with B-D type functional response. Guo and Wu studied
the existence, multiplicity, uniqueness and stability of the positive solutions under
homogeneous Dirichlet boundary conditions in Guo and Wu (2010), as well as the
effect of large k in Guo and Wu (2012). Chen and Wang established the existence
of nonconstant positive steady-states under Neumann boundary conditions (Chen and
Wang 2005; Pang and Wang 2003).

In particular, a mechanistic derivation for the B-D type functional response has
been given by Geritz and Gyllenberg (2012) recently, where predators v were divided
into searchers vS with attack rate a and handlers vH with handling time h, while preys
u were structured into two classes: active preys uP and those prey individuals uR who
have found a refuge with total refuge number b and sojourn time τ . In these terms, the
parameters in B-D type functional response of (1.1) can be understood as thatm = ah
reflects the handling time of vH , and k = bτ describes the refuge ability of the prey.

The prey’s refuge may come from its aggregation, reduction of its activity, or places
where its predation risk is somehow reduced (Sih 1987). Dynamic consequences of
prey refuges were observed by González-Olivares and Ramos-jiliberto (2003) with
more prey, fewer predators and enhanced stability. On the other hand, refuges usually
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cost the prey in terms of reduced feeding ormating opportunities (Sih 1987), and hence
their population could not be very large. In contrast, the protection zones, as refuges
from humans, always benefit the endangered species. Refer to Haque et al. (2014), Ko
and Ryu (2006), Mukherjee (2016), Sarwardi et al. (2012), Wang and Wang (2012),
Wei and Fu (2016) and Yang and Zhang (2016) for more backgrounds on prey refuges
and their affections. In this paper, we will show the effect of the prey’s refuge and
the size of the protection zone have on the coexistence and stability of the predator–
prey system with B-D type functional response. The results obtained here observe
the general law that refuges and protection zones benefit the coexistence of species
(González-Olivares and Ramos-jiliberto 2003; Sih 1987; Zou and Wang 2011).

Since the model (1.1) contains different coefficients a(x) and c in the B-D type
functional response terms for u and v respectively, without loss of generality, suppose
d1 = d2 = 1 for simplicity. The steady-state problem corresponding to (1.1) takes the
form

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

−�u = u

(

θ − u − a(x)v

1 + mu + kv

)

in �,

−�v = v

(

μ − v + cu

1 + mu + kv

)

in �1,

∂u

∂n

∣
∣
∣
∂�

= 0,
∂v

∂n

∣
∣
∣
∂�1

= 0.

(1.3)

Denote by λ1(q) the first eigenvalue of −� + q over � under homogeneous Neu-
mann boundary conditions with q = q(x) ∈ L∞(�). The following properties of
λ1(q) are well known:

(i) λ1(0) = 0;
(ii) λ1(q1) > λ1(q2) if q1 ≥ q2 and q1 �≡ q2;
(iii) λ1(q) is continuous with respect to q ∈ L∞(�).

Define

θ∗(μ,�0) = λ1(q(x)), θ0 = a

k
, θ1(�0) = λ1(q0(x)), (1.4)

with

q(x) = a(x)μ

1 + kμ
, q0(x) =

{
0, x ∈ �0,

θ0, x ∈ �1.
(1.5)

Denote by Uθ,q0 the solution of the scalar problem

−�u = u(θ − u − q0(x)) in �,
∂u

∂n
= 0 on ∂�. (1.6)

Due to θ1 = inf
φ∈H1(�),

∫

� φ2dx>0

∫

� |∇φ|2dx+ a
k

∫

�1
φ2dx

∫

� φ2dx
, the properties (i)–(iii) ofλ1(q)

imply the following lemma:
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Lemma 1.1 θ∗(μ,�0) is strictly increasingwith respect toμanddecreasingwhen�0
enlarging, θ∗(0,�0) = 0, θ∗(μ,�0) < θ0, limμ→∞ θ∗(μ,�0) = θ1(�0) ≤ a|�1|

k|�| ,
lim|�1|→0 θ∗(μ,�0) = 0, lim|�0|→0 θ∗(μ,�0) = aμ

1+kμ . �
Biologically, we are interested in the positivity of the prey u in the diffusive

predator–prey model (1.3). We state the main results of the paper one by one as
follows.

Obviously, either large θ or small μ benefits the prey u. In the first theorem, we
give two sufficient conditions for keeping the prey positive without protection zones.

Theorem 1 If θ ≥ θ0 orμ ≤ 0, then the positivity of u would be ensured automatically
without any protections zones.

The next theorem implies that a suitable protection zone guarantees the existence
of positive solutions to (1.3) under θ < θ0 with μ > 0.

Theorem 2 Suppose μ > 0. If θ∗(μ,�0) < θ < θ0, then Eq. (1.3) has at least one

positive solution. Furthermore, if θ ≤ θ∗(μ,�0) with m ≤ (kμ+1)2

aμ
, then Eq. (1.3)

has no positive solutions.

In the third theorem,we give a necessary and sufficient condition for the coexistence
of u and v under μ ∈ (− c

m , 0].
Theorem 3 Suppose − c

m < μ ≤ 0. Then Eq. (1.3) has at least one positive solution

if and only if θ > θ∗ = − μ
c+mμ

= |μ|
c−m|μ| ≥ 0.

Remark 1 Since lim|�1|→0 θ∗(μ,�0) = 0 by Lemma 1.1, for any θ > 0 and μ ≥ 0
fixed, the key condition θ > θ∗(μ,�0) in Theorem 2 can be realized by enlarging the
size of the protection zone�0 = �\�1. So does the condition θ > θ1 in the following
Theorem 4.

Remark 2 Theorem 1 shows that no protection zones are necessary for the positivity
of u if μ ≤ 0. It is known by Theorem 3 that in addition to the positivity of u, the
positivity of v can be ensured also if the death rate of the predator v is not too high
with μ ∈ (− c

m , 0] ⊂ (−∞, 0] and the birth rate of the prey u is properly large such
that θ > θ∗.

Finally, the last theorem says the positive solutions of (1.3) are in fact unique if θ

is even larger than θ1 under large μ, and determines the asymptotic behavior of the
unique positive solution as μ → ∞. In fact, from Lemma 1.1 and Theorem 2 that if
θ > θ1, prey species could be alive no matter how large the predator’s growth rate is.

Theorem 4 If θ > θ1(�0), then there exists μ∗ > 0 such that the positive solution
of (1.3) is unique and linearly stable when μ ≥ μ∗. Furthermore, the unique positive
solution satisfies (u, v − μ) → (Uθ,q0 , 0) uniformly on � and �1, respectively, as
μ → ∞.

This paper is arranged as follows. In the next two sections, we prove Theorems
1–3 and Theorem 4, respectively. The last section is devoted to a discussion of the
obtained results, by analyzing them with the mechanistic derivation for the B-D type
functional response in Geritz and Gyllenberg (2012).
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2 Existence of positive solutions

At first we deal with the proof of Theorem 1.

Proof of Theorem 1 Assumeμ ≤ − c
m . Integrate the second equation of (1.3) over�1

to get

0 =
∫

�1

v

(

μ − v + cu

1 + mu + kv

)

dx,

and hence

0 ≤
∫

�1

v2dx =
∫

�1

v

(

μ + cu

1 + mu + kv

)

dx ≤
(
μ + c

m

) ∫

�1

vdx ≤ 0.

This concludes v ≡ 0, and so u satisfies

−�u = u(θ − u) in �,
∂u

∂n
= 0 on ∂�. (2.1)

Obviously, (2.1) admits the solution u = θ > 0.
The desired result for − c

m < μ ≤ 0 is substantially concluded from Theorem 3.
Indeed, the subcase of θ > θ∗ is covered by Theorem 3, while for θ ≤ θ∗, it can be
found in the proof of Theorem 3 that v ≡ 0, and so u = θ > 0.

Next consider the first equation of (1.3) with θ ≥ θ0. It is easy to know that
a(x)v

1+mu+kv <
a(x)
k ≤ a

k = θ0 for v ≥ 0. Thus, for any v(x) ≥ 0, there is θ̃0 ∈ (0, θ0)
such that

−�u = u(θ − u − a(x)v

1 + mu + kv
) > u(θ − θ̃0 − u) in �,

∂u

∂n
= 0 on ∂�.

This ensures that u ≥ θ − θ̃0 > 0. �
We need some preliminaries represented as lemmas and propositions for the proof

of Theorem 2, and begin with two known results on the maximum principle and the
Harnack inequality.

Lemma 2.1 (Maximum Principle Lou and Ni 1996) Let g ∈ C(� × R), w ∈
C2(�)

⋂
C1(�), where � is a bounded domain in RN with smooth boundary.

(a) If �w + g(x, w) ≤ 0 in �, ∂w
∂n ≥ 0 on ∂� and min� w = w(x0), then

g(x0, w(x0)) ≤ 0.
(b) If �w + g(x, w) ≥ 0 in �, ∂w

∂n ≤ 0 on ∂� and max� w = w(x0), then
g(x0, w(x0)) ≥ 0. �

Lemma 2.2 (Harnack Inequality Lou and Ni 1999; Lin et al. 1988) Let f ∈ L p(�)

with p > max{ N2 , 1}, and w be a non-negative solution of �w + f (x)w = 0 in
a bounded domain � ⊂ R

N with smooth boundary under homogeneous Neumann
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boundary condition. Then there exists a positive constant C = C(p, N ,�, ‖ f ‖L p(�))

such that

max
�

w ≤ C min
�

w.

�
The following a priori estimates are easy to get.

Lemma 2.3 Let (u, v) be a nontrivial non-negative solution of (1.3). Then

0 < u ≤ θ, μ+ < v ≤ μ+ + cθ

1 + mθ + kμ+
, ‖u‖C1,α(�) + ‖v‖C1,α(�1)

≤ C,

with μ+ = max{μ, 0}, α ∈ (0, 1), C = C(θ, μ,�0) > 0.

Proof Suppose u(x0) = max� u(x) > 0. By Lemma 2.1(b), we have

u(x0)

(

θ − u(x0) − a(x0)v(x0)

1 + mu(x0) + kv(x0)

)

≥ 0,

and then

u(x0) ≤ θ − a(x0)v(x0)

1 + mu(x0) + kv(x0)
≤ θ.

Due to Lemma 2.2, we arrive at 0 < u ≤ θ on �. Similarly, we can show μ+ < v ≤
μ+ + cθ

1+mθ+kμ+ on �1.

The C1,α boundedness of solutions comes from the elliptic regularity theory
together with the Sobolev embedding theorem. �

We will use the local bifurcation theorem of Crandall and Rabinowitz (1971) and
the global bifurcation theorem of Rabinowitz (1971) to prove Theorem 2.

Denote the semitrivial solution curves by


u = {(θ, u, v) = (θ, 0, μ); θ > 0}, 
v = {(θ, u, v) = (θ, θ, 0); θ > 0}.

Define

X = W 2,p
n (�) × W 2,p

n (�1), Y = L p(�) × L p(�1) with p > N ,

Z = C1
n(�) × C1

n(�1),

where

W 2,p
n (�) =

{

w ∈ W 2,p(�); ∂w

∂n
= 0 on ∂�

}

,

C1
n(�) =

{

w ∈ C1(�); ∂w

∂n
= 0 on ∂�

}

.
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The Sobolev embedding theorem implies X ⊆ Z .
Let (φ∗, ψ∗) solve

�φ∗ + (θ∗ − a(x)μ

1 + kμ
)φ∗ = 0 in �,

∂φ∗

∂n
= 0 on ∂�,

�ψ∗ − μψ∗ + cμ

1 + kμ
φ∗ = 0 in �1,

∂ψ∗

∂n
= 0 on ∂�1.

Then ψ∗ = (−� + μI )−1
�1

cμ
1+kμφ∗.

Proposition 2.1 Letμ > 0. Then there are positive solutions of (1.3) bifurcating from

u if and only if θ > θ∗(μ,�0), possessing the form


1 = {(θ, u, v) = (θ(s), sφ∗ + o(|s|), μ + sψ∗ + o(|s|)); s ∈ (0, σ )} (2.2)

with (θ(0), u(0), v(0)) = (θ∗, 0, μ) for some σ > 0 in a neighborhood of (θ∗, 0, μ) ∈
R × X.

Proof Denote by V = v − μ,

F(θ, u, V ) =
(

�u + f1(θ, u, V + μ)

�V + f2(μ, u, V + μ)

)T

and

F1(θ, u, v) =
(

�u + f1(θ, u, v)

�v + f2(μ, u, v)

)T

(2.3)

with

f1(θ, u, v) = u(θ − u − a(x)v

1 + mu + kv
), f2(μ, u, v) = v(μ − v + cu

1 + mu + kv
).

Obviously, F(θ, u, V ) = 0 is equivalent to F1(θ, u, v) = 0, and F1(θ, 0, μ) =
F(θ, 0, 0) = 0 for θ ∈ R. A direct calculation yields

F(u,V )(θ, 0, 0)[φ,ψ] =
( �φ + (θ − a(x)μ

1+kμ )φ

�ψ − μψ + cμ
1+kμφ

)T
. (2.4)

By the Krein–Rutman theorem, F(u,V )(θ, 0, 0)[φ,ψ] = (0, 0) has a solution φ > 0
if and only if θ = θ∗. So (θ∗, 0, μ) is the only possible bifurcation point from which
positive solutions of (1.3) bifurcate from 
u . Besides, we have

KerF(u,V )(θ
∗, 0, 0) = Span {(φ∗, ψ∗)}, dim Ker F(u,V )(θ

∗, 0, 0) = 1.

For (φ̄, ψ̄) ∈ Y ∩ Range F(u,V )(θ
∗, 0, 0), choose (φ,ψ) ∈ X such that

⎧
⎪⎨

⎪⎩

�φ + (θ − a(x)μ

1 + kμ
)φ = φ̄,

�ψ − μψ + cμ

1 + kμ
φ = ψ̄.

(2.5)
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Multiplying by φ∗ on both sides of the first equation of (2.5) and integrating by parts
over �, we get

∫

�
φ̄φ∗dx = 0. Then

Range F(u,V )(θ
∗, 0, 0) =

{
(φ̄, ψ̄) ∈ Y ;

∫

�

φ̄φ∗dx = 0
}
, (2.6)

and thus

codim Range F(u,V )(θ
∗, 0, 0) = 1.

By a simple calculation,

Fθ (θ
∗, 0, 0) = Fθθ (θ

∗, 0, 0) = (0, 0),

Fθ(u,V )(θ
∗, 0, 0)[φ∗, ψ∗] = (φ∗, 0) /∈ Range F(u,V )(θ

∗, 0, 0).

In conclusion, the proposition is proved by the local bifurcation theorem (Crandall
and Rabinowitz 1971). �
Proposition 2.2 Let − c

m < μ < 0. Then there are positive solutions of (1.3) bifur-
cating from 
v if and only if θ > θ∗ = − μ

c+mμ
, having the form


2 = {(θ, u, v) = (θ̃(s), θ + sφ∗(x) + o(|s|), s + o(|s|)); s ∈ (0, σ̃ )} (2.7)

with θ̃ (0) = − μ
c+mμ

, φ∗ = (�− θ I )−1 a(x)θ
1+mθ

for some σ̃ > 0 near (θ, θ, 0) ∈ R× X.

Proof Let w = u − θ ,

G(θ, w, v) =
(

�w + (w + θ)(−w − a(x)v
1+m(w+θ)+kv )

�v + v(μ − v + c(w+θ)
1+m(w+θ)+kv )

)T

, (2.8)

Then F1(θ, u, v) = 0 is equivalent to G(θ, w, v) = 0. We have

G(w,v)(θ, w, v)[φ, ψ]

=
⎛

⎝
�φ − (2w + θ)φ − a(x)v

1+m(w+θ)+kv φ + a(x)mv(w+θ)

(1+m(w+θ)+kv)2
φ − a(x)(w+θ)(1+m(w+θ))

(1+m(w+θ)+kv)2
ψ

�ψ + (μ − 2v)ψ + c(w+θ)
1+m(w+θ)+kv ψ − ckv(w+θ)

(1+m(w+θ)+kv)2
ψ + cv(1+kv)

(1+m(w+θ)+kv)2
φ

⎞

⎠

T

,

Gθ (θ, w, v) =
( −w − a(x)v

1+m(w+θ)+kv + a(x)mv(w+θ)

(1+m(w+θ)+kv)2
cv(1+kv)

(1+m(w+θ)+kv)2

)T
.

The equation G(w,v)(θ, 0, 0)[φ,ψ] = (0, 0) is equivalent to

⎧
⎪⎪⎨

⎪⎪⎩

�φ − θφ − a(x)θ
1+mθ

ψ = 0 in �,

�ψ + μψ + cθ
1+mθ

ψ = 0 in �1,

∂φ
∂n = 0 on ∂�,

∂ψ
∂n = 0 on ∂�1.

(2.9)
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The second equation of (2.9) has a solution ψ > 0 if and only if μ = − cθ
1+mθ

, i.e.
θ = − μ

c+mμ
= θ∗. Thus (θ∗, θ, 0) is the only possible bifurcation point along 
v , and

φ∗ solves the first equation of (2.9) with θ = θ∗ and ψ ≡ 1. It is easy to verify that

KerG(w,v)(θ∗, 0, 0) = Span {(φ∗, 1)}, dim Ker G(w,v)(θ, 0, 0) = 1.

A direct calculation shows

Gθ (θ∗, 0, 0) = Gθθ (θ∗, 0, 0) = (0, 0),

Range G(w,v)(θ∗, 0, 0) =
{

( f, g) ∈ Y ;
∫

�

gdx = 0

}

,

codim Range G(w,v)(θ∗, 0, 0) = 1,

Gθ(w,v)(θ∗, 0, 0)[φ∗, 1] =
(

−φ∗ − a(x)

(1 + mθ)2
,

c

(1 + mθ)2

)

/∈ Range G(w,v)(θ∗, 0, 0).

By the local bifurcation theorem (Crandall and Rabinowitz 1971), we get the desired
results of the Proposition 2.2. �

In order to use the global bifurcation theorem for μ > 0, define F2 : R × Z → Z
by

F2(θ, u, v) =
(

u
v − μ

)T

−
(

(−� + I )−1
� (u + f1(θ, u, v))

(−� + I )−1
�1

(v − μ + f2(μ, u, v))

)T

. (2.10)

Then (1.3) is equivalent to F2(θ, u, v) = 0. Let 
̃1 ⊂ R×Z be themaximal connected
set satisfying


1 ⊂ 
̃1 ⊂ {(θ, u, v) ∈ R × Z\{(θ∗, 0, μ)}; F2(θ, u, v) = (0, 0)}.

From the global bifurcation theory of Rabinowitz (1971), one of the following
non-excluding results must be true (see Theorem 6.4.3 in López-Gómez 2001):

(a) 
̃1 is unbounded in R × Z .
(b) There exists a constant θ̄ �= θ∗ such that (θ̄ , 0, μ) ∈ 
̃1.
(c) There exists (θ̃ , φ̃, ψ̃) ∈ R×(Y1\{(0, μ)})with Y1 = {(φ̄, ψ̄) ∈ Z; ∫

�
φ̄φ∗dx =

0} such that (θ̃ , φ̃, ψ̃) ∈ 
̃1.

Now we give the proofs of Theorems 2 and 3.

Proof of Theorem 2 Atfirstwe know that u, v > 0 for any (θ, u, v) ∈ 
̃1 whichmeans
that the case (c) above cannot occur by φ∗ > 0. Otherwise there is a (θ̄ , ū, v̄) ∈ 
̃1
such that (1) ū > 0 with v̄(x0) = 0 for some x0 ∈ �1, or (2) u(x1) = v(x2) = 0
for some x1 ∈ � and x2 ∈ �1, or (3) v̄ > 0 with ū(x3) = 0 for some x3 ∈ �.
Denote by B� = {φ ∈ C1

n(�); φ > 0 on �}. Choose a sequence {(θi , ui , vi )}∞i=1 ⊂

̃1 ∩ (R × B� × B�1) such that lim

i→∞(θi , ui , vi ) = (θ̄ , ū, v̄) in R × Z , where θ̄ can
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be ∞. Obviously, (ū, v̄) is a non-negative solution of (1.3) with θ = θ̄ . By Lemma
2.2, one of the following must hold:

(1) ū > 0, v̄ ≡ 0; (2) ū ≡ 0, v̄ ≡ 0; (3) ū ≡ 0, v̄ > 0.

For (3), we have −�v̄ = v̄(μ − v̄) in �1, ∂v̄
∂n = 0 on ∂�1, and thus v̄ ≡ μ. By

Proposition 2.1, this implies θ̄ = θ∗, a contradiction to the definition of 
̃1.
Suppose (1) or (2) is true. Integrate the second equation of (1.3) on�1 with (u, v) =

(ui , vi ) to obtain

∫

�1

vi

(

μ − vi + cui
1 + mui + kvi

)

dx = 0, i ∈ N.

On the other hand,μ > 0 and v̄ ≡ 0 ensureμ−vi > 0, and thusμ−vi+ cui
1+mui+kvi

> 0
for i large enough, also a contradiction.

The case (b) is excluded by Proposition 2.1. So, the only true case is (a).
FromLemma 2.3, (u, v) are uniformly bounded in Z as (θ, u, v) ∈ 
̃1 which shows

that θ is unbounded. Combining this with Proposition 2.1, we know that (1.3) has at
least one positive solution for θ > θ∗(μ,�0) with μ > 0.

Now, let (u, v) be a positive solution of (1.3) withm ≤ (1+kμ)2

aμ
. A direct calculation

yields that u+ a(x)v
1+mu+kv >

a(x)μ
1+kμ . By the monotonicity of the eigenvalue, we conclude

that

0 = λ1

(

−θ + u + a(x)v

1 + mu + kv

)

> λ1

(

−θ + a(x)μ

1 + kμ

)

.

Then

θ > λ1

(
a(x)μ

1 + kμ

)

= θ∗(μ,�0).

This shows that (1.3) has no positive solution whenever θ ≤ θ∗(μ,�0) and m ≤
(1+kμ)2

aμ
. �

Proof of Theorem 3 When μ = 0, fix θ > 0. By Lemma 1.1 and Theorem 2, we
can take a sequence {(μi , ui , vi )}∞i=1 such that (ui , vi ) is a positive solution of (1.3)
with μ = μi > 0, limi→∞ μi = 0. By Lemma 2.3 and embedding theorem, we can
choose a subsequence (still denoted by {(μi , ui , vi )}∞i=1) such that (ui , vi ) converges
to (ũ, ṽ) ∈ Z , a non-negative solution of (1.3). By Lemma 2.2, ũ > 0 or ũ ≡ 0 in �;
ṽ > 0 or ṽ ≡ 0 in �1.

If ũ ≡ 0 and ṽ > 0, then μi − vi + cui
1+mui+kvi

< 0 in �1 for i large enough. This
contradicts

∫

�1
vi (μi − vi + cui

1+mui+kvi
)dx = 0.

If ũ > 0 and ṽ ≡ 0, then μi − vi + cui
1+mui+kvi

> 0 in �1 for i large enough, also a
contradiction with

∫

�1
vi (μi − vi + cui

1+mui+kvi
)dx = 0.
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If ũ ≡ 0 and ṽ ≡ 0, then θ − ui + a(x)vi
1+mui+kvi

> 0 in � for i large enough, a

contradiction to
∫

�
ui (θ − ui + a(x)vi

1+mui+kvi
)dx = 0.

In summary, we must have ũ, ṽ > 0 in � and �1, respectively. This means that
(1.3) possesses positive solutions for all θ > 0 if μ = 0.

Now, suppose − c
m < μ < 0. For θ > − μ

c+mμ
> 0, the existence of positive

solutions can be obtained from Proposition 2.2 by a similar global bifurcation analysis
of 
u as that for the branch 
v with μ > 0. We omit the details.

Conversely, let (u, v) be a positive solution of (1.3) with μ ∈ (− c
m , 0]. Then

0 < u ≤ θ by Lemma 2.3, and hence

μ = λ1

(

v − cu

1 + mu + kv

)

> λ1

(

− cu

1 + mu

)

≥ λ1

(

− cθ

1 + mθ

)

= − cθ

1 + mθ
,

namely, θ > − μ
c+mμ

. �

3 Uniqueness of positive solutions

In this section, we use topological degree to prove Theorem 4 for θ > θ1 and large μ.
At first, introduce an auxiliary problem

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

−�u = u

(

θ − u − a(x)v

1 + mu + kv

)

in �,

−�v = v

(

μ − v + t
cu

1 + mu + kv

)

in �1,

∂u

∂n

∣
∣
∣
∂�

= 0,
∂v

∂n

∣
∣
∣
∂�1

= 0

(3.1)

with the parameter t ∈ [0, 1]. Eq. (3.1) reverts back to (1.3) if t = 1. When t = 0, we
have from the second equation of (3.1) that v ≡ μ, and then obtain the scalar problem

⎧
⎪⎨

⎪⎩

−�u = u

(

θ − u − a(x)μ

1 + mu + kμ

)

in �,

∂u

∂n
= 0 on ∂�,

(3.2)

which yields Eq. (1.6) as μ → ∞.

Lemma 3.1 Problem (1.6) has a unique positive solution if and only if θ > θ1.

Proof Suppose θ > θ1. Let φ > 0 be the normalized eigenfunction with respect to
θ1. Set u = εφ. Then

−�u = −ε�φ = ε(θ1 − q0(x))φ = εφ(θ − q0(x) − εφ) + εφ(θ1 − θ + εφ).

Choose ε small enough such that θ1 − θ + εφ < 0 to get

−�u ≤ u(θ − q0(x) − u) in �,
∂u

∂n
= 0 on ∂�.
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Obviously, u = εφ and u = θ are a pair of positive sub- and supersolutions of (1.6)
withu ≤ u.Wecanget a positive solution ofEq. (1.6) by the sub-supersolutionmethod.
Let ũ and û be theminimal andmaximal positive solutions to (1.6), respectively. Since

∫

�

∇ũ · ∇ûdx =
∫

�

ũû(θ − ũ − q0(x))dx =
∫

�

ũû(θ − û − q0(x))dx,

we conclude

∫

�

ũû(ũ − û)dx = 0.

Therefore ũ ≡ û.
On the other hand, it is obviously true for any positive solution u1 of (1.6) that

θ = λ1(u1 + q0(x)) > λ1(q0(x)) = θ1. �

Next, we show the uniqueness of positive solutions to (3.2).

Proposition 3.1 Suppose θ > θ1. There is a μ̃ = μ̃(θ) > 0 such that for any μ > μ̃,
problem (3.2) has an unique positive solution.

Proof Since−q0(x) < − a(x)μ
1+mUθ,q0+kμ , thenUθ,q0 is a subsolution of (3.2). Obviously,

θ is a supersolution of (3.2) andUθ,q0 ≤ θ . Then there exist positive solutions to (3.2).
To prove the uniqueness of the positive solutions to (3.2), we at first show that the

positive solutions of (3.2) are linearly stable for large μ. Let U be a positive solution
of (3.2). Consider the eigenvalue problem

− �φ = θφ − 2Uφ − a(x)μ(1 + kμ)

(1 + mU + kμ)2
φ + ηφ in �,

∂φ

∂n
= 0 on ∂� (3.3)

with the principal eigenvalues denoted by

η = η(μ) = inf
φ∈H1(�), ‖φ‖2=1

∫

�

[|∇φ|2 − θφ2 + 2Uφ2 + a(x)μ(1 + kμ)

(1 + mU + kμ)2
φ2]dx .

(3.4)

We have

0 = λ1

(

−θ + 2U + a(x)μ(1 + kμ)

(1 + mU + kμ)2
− η

)

> λ1(−θ − η) = −θ − η,

i.e., η > −θ . Denote by η∗ the principal eigenvalue of the problem

− �φ = θφ − 2Uθ,q0(x)φ − q0(x)φ + η∗φ in �,
∂φ

∂n
= 0 on ∂� (3.5)
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with the normalized eigenfunction φ∗ > 0. Then η∗ =
∫

� U2
θ,q0

φ∗dx
∫

� Uθ,q0φ∗dx > 0. Due to
a(x)μ

1+mu+kμ → q0(x) uniformly on � as μ → ∞, we know U → Uθ,q0(x) uniformly

on �. It follows from (3.4) that

η ≤
∫

�

[

|∇φ∗|2 − θφ∗2 + 2Uφ∗2 + a(x)μ(1 + kμ)

(1 + mU + kμ)2
φ∗2

]

dx

= η∗ +
∫

�

[

2(U −Uθ,q0) + a(x)μ(1 + kμ)

(1 + mu + kμ)2
− q0(x)

]

φ∗2dx . (3.6)

Thus −θ < η < M with M > 0 independent of μ. We claim that lim infμ→∞ η =
r > 0. In fact, choose a sequence μn → ∞ such that ηn → r , and

− �φn = θφn − 2unφn − a(x)μn(1 + kμn)

(1 + mun + kμn)2
φn + ηnφn in �,

∂φn

∂n
= 0 on ∂�

(3.7)

with normalized φn > 0, i.e. ‖φn‖2 = 1. As
∫

�
|∇φn|2dx are uniformly bounded

with respect to n, there exists a subsequence φnk ⇀ φ0 weakly in H1(�). Obviously,
φ0 ≥ 0 and ‖φ0‖2 = 1. Multiply (3.7) by ϕ ∈ C∞

0 (�) and integrate by parts to have

∫

�

∇φn · ∇ϕdx =
∫

�

[θφnϕ − 2unφnϕ − a(x)μn(1 + kμn)

(1 + mun + kμn)2
φnϕ + ηnφnϕ]dx .

Since un → Uθ,q0 uniformly on � as n → ∞, we have

∫

�

∇φ0 · ∇ϕdx =
∫

�

[θφ0ϕ − 2Uθ,q0φ0ϕ − q0(x)φ0ϕ + rφ0ϕ]dx .

Comparing with (3.5), we prove the claim that r = η∗ > 0. So, there exists μ̃ > 0
such that η = η(μ) > 0 whenμ > μ̃, which implies the linear stability of the positive
solutions to (3.2).

Let

H(t, u) = [MI − �]−1
(

M + θ − u − t
a(x)μ

1 + mu + kμ

)

u,

A = {u ∈ C(�); ε0 < u < θ + 1} (3.8)

with 0 < ε0 < minx∈� Uθ,q0(x), 0 ≤ t ≤ 1, M large. Define

S(t, u) = u − H(t, u).

It is easy to see that S(t, u) �= 0 for all u ∈ ∂A, 0 ≤ t ≤ 1. For large M , by the
compactness of H , there are only finitely many isolated fixed points in A, denoted
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by u1, . . . , um . Together with the linear stability of the positive solutions and the
homotopy invariance of fixed point index, we have

1 = index(S(0, u), A, 0) = index(S(1, u), A, 0) =
m∑

i=1

index(H, ui ) = m.

Therefore, there is an unique positive fixed point to (3.8) with t = 1 whenever μ > μ̃,
i.e. problem (3.2) has an unique positive solution. �

Now, we can deal with the uniqueness Theorem 4.

Proof of Theorem 4 Let (u, v) be a positive solution of (1.3) with large μ. Linearize
the eigenvalue problem of (1.3) at (u, v) to have

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

−�φ = θφ − 2uφ − a(x)v(1 + kv)

(1 + mu + kv)2
φ − a(x)u(1 + mu)

(1 + mu + kv)2
ψ + ηφ in �,

−�ψ = μψ − 2vψ + cu(1 + mu)

(1 + mu + kv)2
ψ + cv(1 + kv)

(1 + mu + kv)2
φ + ηψ in �1,

∂φ

∂n
= 0 on ∂�,

∂ψ

∂n
= 0 on ∂�1.

(3.9)

Here φ, ψ and η may be complex-valued.
From Kato’s inequality, we have

− �|φ| ≤ −Re

(
φ̄

|φ|�φ

)

= Re

(

θ |φ| − 2u|φ| − a(x)v(1 + kv)

(1 + mu + kv)2
|φ| + a(x)u(1 + mu)

(1 + mu + kv)2
ψ · φ̄

|φ| + η|φ|
)

≤ θ |φ| − 2u|φ| − a(x)v(1 + kv)

(1 + mu + kv)2
|φ| + a(x)u(1 + mu)

(1 + mu + kv)2
|ψ | + Re(η)|φ|.

(3.10)

To obtain the linear stability, it suffices to prove that for any δ > 0, there existsμδ > 0
such that the eigenvalues η of (3.9) satisfy Re(η) ≥ η∗ − δ when μ ≥ μδ . Otherwise,
there exist a δ0 > 0 and a sequences {(μn, ηn, un, vn, φn, ψn)}∞n=1 satisfying (3.9)
with ‖φn‖2 + ‖ψn‖2 = 1, and μn → ∞ as n → ∞ such that Re(ηn) < η∗ − δ0.
Replace (μ, η, u, v, φ,ψ) in (3.10) with (μn, ηn, un, vn, φn, ψn), multiply by |φn|,
and then integrate by parts over � to have

∫

�

|∇|φn||2dx ≤
∫

�

(
θ |φn|2 − 2un|φn|2 − a(x)vn(1 + kvn)

(1 + mun + kvn)
|φn|2

+ a(x)un(1 + mun)

(1 + mun + kvn)2
|ψn||φn|

)
dx + (η∗ − δ0)

∫

�

|φn|2dx .
(3.11)
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Let rn be the principal eigenvalue of the eigenvalue problem

−�ϕ = θϕ − 2unϕ − a(x)vn(1 + kvn)

(1 + mun + kvn)2
ϕ + rnϕ in �,

∂ϕ

∂n
= 0 on ∂�.

We know that

rn − η∗ = inf
ϕ∈H1(�)

∫

�

[
|∇ϕ|2 − θϕ2 + 2unϕ2 + a(x)vn(1+kvn)

(1+mun+kvn)2
ϕ2 − η∗ϕ2

]
dx

∫

�
ϕ2dx

,

and rn → η∗ by the proof of Proposition 3.1. So, there exists a N > 0 such that
rn − η∗ > − δ0

2 for n > N . Thus by (3.11),

−δ0

2

∫

�

|φn|2dx < (rn − η∗)
∫

�

|φn|2dx

≤
∫

�

[|∇φn|2 − θ |φn|2 + 2un|φn|2

+ a(x)vn(1 + kvn)

(1 + mun + kvn)2
|φn|2 − η∗|φn|2]dx

≤ −δ0

∫

�

|φn|2dx +
∫

�1

aun(1 + mun)

(1 + mun + kvn)2
|ψn||φn|dx .

Since aun(1+mun)
(1+mun+kvn)2

→ 0 in C(�1) as n → ∞, then
∫

�
|φn|2dx → 0.

Using Kato’s inequality again, we have

−�|ψn| ≤ μn|ψn| − 2vn|ψn| + cun(1 + mun)

(1 + mun + kvn)2
|ψn|

+ cvn(1 + kvn)

(1 + mun + kvn)2
|φn| + (η∗ − δ0)|ψn|.

Multiply by |ψn| and integrate by parts over �1 to get

∫

�1

|∇|ψn||2dx ≤
∫

�1

[

μn|ψn|2 − 2vn|ψn|2 + cun(1 + mun)

(1 + mun + kvn)2
|ψn|2

+ cvn(1 + kvn)

(1 + mun + kvn)2
|φn||ψn| + (η∗ − δ0)|ψn|2

]

dx

≤
∫

�1

[

−μn + cun(1 + mun)

(1 + mun + kvn)2
+ η∗ − δ0

]

|ψn|2dx

+
∫

�1

cvn(1 + kvn)

(1 + mun + kvn)2
|φn||ψn|dx .
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Consequently,

∫

�1

|ψn|2dx ≤ 1

μn

∫

�1

[
cun(1 + mun)

(1 + mun + kvn)2
+ η∗ − δ0

]

|ψn|2dx

+ 1

μn

∫

�1

cvn(1 + kvn)

(1 + mun + kvn)2
|φn||ψn|dx

≤ 1

μn

∫

�1

(
cθ

1 + mθ
+ η∗ − δ0

)

|ψn|2dx + 1

μn

∫

�1

c

k
|φn||ψn|dx .

This concludes
∫

�1
|ψn|2dx → 0 as n → ∞, since μn → ∞ and |φn|, |ψn| are

bounded in L2(�1).
In summary, we have obtained

∫

�
|φn|2dx ,

∫

�1
|ψn|2dx → 0, as n → ∞ which

contradict with ‖φn‖2 + ‖ψn‖2 = 1.
By using a similar argument to that in the proof of Proposition 3.1, we get from the

linear stability of the positive solutions to (1.3) and Proposition 3.1 that the solution
of (1.3) must be unique when μ > max{μ̃, μ0} with μ0 = inf{μδ; δ ∈ (0, η∗)}.

Finally, we consider the asymptotic behavior of the unique positive solution (u, v)

as μ → ∞. Since cu
1+mu+kv ≤ cθ

1+mθ+kμ → 0 as μ → ∞, for any ε > 0, there is a
με > 0 such that cu

1+mu+kv < ε for μ > με . Then

μv − v2 ≤ −�v ≤ (μ + ε)v − v2 in �1,

which yields μ ≤ v ≤ μ + ε for μ > με . And thus v − μ → 0 as μ → ∞. We know
that a(x)v

1+mu+kv → q0(x), and then u → Uθ,q0(x) uniformly on � as μ → ∞. �

4 Discussion

In a reaction–diffusion system of predator–prey PDE model, in addition to the inter-
action mechanism between the species, the behavior of the species is also affected by
the diffusion of the species, as well as the size and geometry of the habitat. Obviously,
the prey species would die out under excessive predation from nature or humans. The
results obtained in this paper show the way in which the created protection zone saves
the endangered prey species in the diffusive predator–prey model with Beddington–
DeAngelis type functional response and non-flux boundary conditions.

Compared with previous results on protection zone problems with various func-
tional responses such as the Lotka–Voltera type competition system (Du and Liang
2008), Holling II type predator–prey system (Cui et al. 2014; Du and Shi 2006), and
Leslie type predator–prey system (Du et al. 2009), richer dynamic properties have
been observed for the model (1.1) with B-D type functional response in this paper. It
can be found that a total of four threshold values are obtained here for the prey birth
rate θ , i.e., θ0, θ∗, θ1 (for the predator growth rate μ > 0) and θ∗ (for μ ≤ 0).

The first threshold value θ0 gives the necessary condition for establishing a protec-
tion zone to save the prey u. By Theorem 1, the survival of u could be automatically
ensured without protection zones whenever θ > θ0 = a

k , which can be realized when
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the refuge ability of the prey is properly large that k > a
θ
, or the predation rate is

small that a < θk. In other words, the protection zones have to be made only if the
prey’s refuge ability is too weak with respect to its birth rate θ and the predation rate
a. This matches with the mechanistic derivation for the B-D type functional response
proposed in Geritz and Gyllenberg (2012). In addition, Theorem 1 says also that the
protection zones are unnecessary if the predator’s growth rateμ ≤ 0, where the preda-
tor species v can not live without the prey u, and thus the extinction of v cannot take
place after of u.

The second threshold value is θ∗ = θ∗(μ,�0) = λ1(q(x)) with q(x) = a(x)μ
1+kμ and

μ > 0. By Theorem 2, the positive steady states can be attained for θ ∈ (θ∗, θ0). Due
to the monotonicity of the principal eigenvalue λ1 = λ1(q(x)) with respect to q(x),
we know that the threshold value θ∗ would be enlarged (and hence harmful for the
prey u) when the predation rate a(x) or the predator’s growth rate μ increase, or when
the prey refuge k or the size of the protection zone �0 decrease. Conversely, Theorem
2 says also that the prey u must become extinct when θ ≤ θ∗ with the handling time

m of vH being shorter than (kμ+1)2

aμ
. All of these match those in Geritz and Gyllenberg

(2012). In addition, since θ∗(μ,�0) ≤ θ0 is strictly increasing with respect to μ

and decreasing when enlarging �0, letting μ → ∞, we get the third threshold value
θ1 = θ1(�0) such that if θ > θ1(�0), prey species could survive no matter how large
the predator’s growth rate is. The critical θ = θ1(�0) implies a critical size of the
protection zone as well, namely, if the real protection zone �̃0 � �0, the survival
of the prey with such birth rate θ is independent of the predator’s growth rate. Also,
the uniqueness and linear stability obtained in Theorem 4 for μ large enough are
reasonable because cu

1+mu+kv → 0, and hence v − μ → 0 as μ → ∞.
Since the condition μ ≤ 0 yields the survival of u without protection zones by

Theorem 1, the fourth threshold value θ∗ obtained in Theorem 3 with μ ∈ (− c
m , 0] is

only made for v alive. In fact, the conversion of prey is limited by c
m , as shown in the

proof of Theorem 1, the predator v must be die out if its growth rate μ ≤ − c
m . With

such non-positive growth rate μ ∈ (− c
m , 0], there should be properly large number of

prey to survive the predator, just as described via the criterion θ > θ∗ = |μ|
c−m|μ| ≥ 0

in Theorem 3. It is worth noting that the threshold value θ∗ for alive predator v would
be enlarged as m (the handling time of vH ) is increasing. This well matches the
mechanism in Geritz and Gyllenberg (2012).

We have shown the effect of refuge ability of the prey and protection zone have on
the coexistence and stability of predator–prey species in this paper. In fact, protection
zones can be regarded as another refuge offered by human intervention, which is
necessary if the prey’s refuge ability is tooweak in the predator–prey system to prevent
the extinction of the prey populations. The critical sizes of protection zones, obtained
in this paper and represented by the principal eigenvalues θ∗ = λ1(q(x)) and θ1 =
λ1(q0(x)), show the basic requirement (depending on the predator’s growth rate) and
the sufficient one (working under any predator’s growth rate), respectively. The results
of the present paper would be helpful to the designing of nature reserves and no-fishing
zones, etc.
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