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Abstract The reconstruction of phylogenetic trees from molecular sequence data
relies on modelling site substitutions by a Markov process, or a mixture of such
processes. In general, allowing mixed processes can result in different tree topologies
becoming indistinguishable from the data, even for infinitely long sequences.However,
when the underlying Markov process supports linear phylogenetic invariants, then
provided these are sufficiently informative, the identifiability of the tree topology
can be restored. In this paper, we investigate a class of processes that support linear
invariants once the stationary distribution is fixed, the ‘equal input model’. This model
generalizes the ‘Felsenstein 1981’ model (and thereby the Jukes–Cantor model) from
four states to an arbitrary number of states (finite or infinite), and it can also bedescribed
by a ‘random cluster’ process. We describe the structure and dimension of the vector
spaces of phylogenetic mixtures and of linear invariants for any fixed phylogenetic
tree (and for all trees—the so called ‘model invariants’), on any number n of leaves.
We also provide a precise description of the space of mixtures and linear invariants
for the special case of n = 4 leaves. By combining techniques from discrete random
processes and (multi-) linear algebra, our results build on a classic result that was first
established by James Lake (Mol Biol Evol 4:167–191, 1987).
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1 Introduction

Tree-based Markov processes on a discrete state space play a central role in molecular
systematics. These processes allow biologists to model the evolution of characters
and thereby to develop techniques for inferring a phylogenetic tree for a group of
species from a sequence of characters (such as the sites at aligned DNA or amino
acid sequences; Felsenstein 2004). Under the assumption that each character evolves
independently on the same underlying tree, according to a fixed Markov process, the
tree topology can be inferred in a statistically consistent way (i.e. with an accuracy
approaching 1 as the number of characters grows) by methods such as maximum
likelihood estimation (MLE) (Chang 1996) and techniques based on phylogenetic
invariants (Fernández-Sánchez and Casanellas 2016). This holds even though one
may not know the values of the other (continuous) parameters associated with the
model, which typically relate to the length of the edges, and relative rates of different
substitution types.

The assumption that all characters evolve under the same Markov process is a very
strong one, and biologists generally allow the underlying process to vary in some
way between the characters. For example, a common strategy is to allow characters
to evolve at different rates (i.e. the edge lengths are all scaled up or down in equal
proportion at each site by a factor sampled randomly from some simple parameterized
distribution). In that case, provided the rate distribution is sufficiently constrained, the
tree topology can still be inferred in a statistically consistent manner (Allman et al.
2012; Matsen et al. 2008), and by using MLE, or related methods.

However, when this distribution is not tightly constrained, or when edge lengths are
free to vary in amore general fashion fromcharacter to character thendifferent trees can
lead to identical probability distributions on characters (Allman et al. 2012; Steel et al.
1994). In that case, it canbe impossible to decidewhichof two (ormore) trees generated
the given data, evenwhen the number of characters tends to infinity. In statistical termi-
nology, identifiabilityof the tree topologyparameter is lost. For certain types ofMarkov
models, however, identifiability of the tree topology is possible, even in these general
settings. These aremodels forwhich (i) linear relationships (called ‘linear phylogenetic
invariants’) exist between the probabilities of different characters, and which hold for
all values of the other continuous parameters associated with the model (such as edge
lengths) and (ii) these invariants can be used to determine the tree topology (at least
for n = 4 leaves) (Steel 2011; Štefakovič and Vigoda 2007). The first such invariants,
whichwe call linear topology invariants, were discovered by JamesLake in a landmark
paper in 1987 (Lake 1987) for theKimura 2STmodel, and the Jukes–Cantor submodel.

Linear topology invariants were known to exist for Kimura 2ST and Jukes–Cantor
models, and the dimension of the corresponding (quotient) linear space had been
computed for the Jukes–Cantor model in Fu (1995) and Steel and Fu (1995). It is also
known that more general models such as Kimura 3ST or the general Markov model do
not admit linear topology invariants (see for example Sturmfels and Sullivant 2005;
Casanellas and Fernández-Sánchez 2011). Nevertheless, linear topology invariants
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had not been studied for evolutionary models with more than 4 states or for models
slightly more general than Jukes–Cantor.

In this paper we extend Lake-type invariants to a more general setting and for
another type of process, the ‘equal input’ model (defined shortly, but it can be regarded
as the simplest Markov process that allows different states to have different stationary
probabilities). By building also on the approach of Matsen et al. (2008) (which dealt
just with the 2-state setting) we investigate the vector space of linear invariants, and
describe the space of phylogenetic mixtures on a tree (or trees) under the equal input
model once the stationary distribution is fixed. Note that the space of phylogenetic
mixtures is dual to the space of phylogenetic invariants, and hence studying one of
these spaces translates into results for the other space. This leads to our main results
(Theorems 1 and 2) which characterize the space of phylogenetic mixtures across all
trees, and on a fixed tree (respectively), alongwith an algorithm for constructing a basis
for the topology invariants. It is worth pointing out that while linear topology invariants
are relevant for distinguishing distributions arising from mixtures of distributions on
particular tree topologies, linear phlylogenetic invariants satisfied by distributions
arising from mixtures of distributions on trees evolving under a particular model
(model invariants) can be used in model selection as in Kedzierska et al. (2012). In
brief summary, our main results describe the vector space (and its dimension) of the
space of phylogenetic mixtures of the equal input models for any numbers n of leaves
and κ of states:

– across all trees (Theorem 1) by providing a spanning set of independent points;
– for a fixed tree (Theorem 2); and
– for an infinite state version of the equal input model, known as Kimura’s infinite
allele model (Proposition 5).

Using the duality between phylogenetic mixtures and linear invariants, in Corollary
1 we compute the dimension of the quotient space of linear topology invariants and
describe an algorithm for computing a basis of this space. Note that the dimension of
the space of mixtures had already been computed in Casanellas et al. (2012) and in
Fu (1995) for the Jukes–Cantor model. Theorem 3 and Corollary 3 provide a more
detailed description for trees with n = 4 leaves. The case n = 4 is of particular
interest, since the existence of a set of linear phylogenetic invariants for this case
and which, collectively, suffice to identify the tree topology means that there also exist
informative linear phylogenetic invariants that can identify any fully-resolved (binary)
tree topology on any number of leaves. This follows from the well-known fact that
any binary tree topology is fully determined by its induced quartet trees (for details
and references, see Semple and Steel 2003).

We also establish various other results along the way, including a ‘separability
condition’ from which a more general description of Lake-type invariants follows
(Proposition 3). We begin with some standard definitions, first for Markov processes
on trees, and then for the equal input model, which we show is formally equivalent
to a random cluster process on a tree (Proposition 2). We then develop a series of
preliminary results and lemmas that will lead to the main results described above.
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1110 M. Casanellas, M. Steel

2 Markov processes on trees

Given a tree T = (V, E) with leaf set X , a Markov process on T with state space
S is a collection of random variables (Yv : v ∈ V ) taking values in S, and which
satisfies the following property. For each interior vertex v in T , if V1, . . . , Vm are the
sets of vertices in the connected components of T − v then the m random variables
Wi = (Yv : v ∈ Vi ) are conditionally independent given Yv .

Equivalently, if we were to direct all the edges away from some (root) vertex, v0,
then this condition says that conditional on Yv (for an interior vertex v of T ) the
states in the subtrees descended from v are independent of each other, and are also
independent of the states in the rest of the tree.

A Markov process on T is determined entirely by the probability distribution π at
a root vertex v0, and the assignment e �→ P(e), that associates a transition matrix with
each edge e = (u, v) of T (the edge is directed away from v0). Matrix P(e) has row α

and column β entry equal to P(e)
αβ := P(Y (v) = β|Y (u) = α), and so each row sums

to 1. If stochastic vector π has the property that π = π P(e) for every edge e of T ,
then π is said to be a stationary distribution for the process. A phylogenetic model is
a Markov process on a tree where the transition matrices are required to belong to a
particular class M.

In this paper we will be concerned with trees in which the set X of leaves are
labelled, and all non-leaf (interior) vertices are unlabelled and have degree at least
three; these are called phylogenetic X-trees (Semple and Steel 2003). A tree with a
single interior vertex is called a star, while a tree for which every interior vertex has
degree three is said to be binary. We will write ab|cd for the binary tree on four leaves
(a quartet tree) that has an edge separating leaves a, b from c, d. A functionχ : X → S
is called a character and any Markov process on a tree with state space S induces a
(marginal) probability distribution on these characters. An important algebraic feature
of this distribution is that the probability of a character P(χ) under a Markov process
on T is a polynomial function of the entries in the transition matrices.

2.1 The equal input model

The equal input model (E I ) for a set S of κ states is a particular type of Markov
process on a tree, defined as follows. Given a root vertex v0 let π be a distribution of
states at v0 and for each (directed) edge e = (u, v) (directed away from v0). In the
E I model, each transition matrix P(e) has the property that for some value θe ∈ [0, 1]
and all states α, β ∈ S with α �= β we have:

P(e)
αβ = πβ · θe. (1)

We shall assume that the distribution π is strictly positive throughout the paper.
This model generalizes the familiar fully symmetric model of κ states (such as the

‘Jukes–Cantor model’, when κ = 4) to allow each state to have its own stationary
probability. In the case κ = 4 with S equal to the four nucleotide bases, the model is
known as the Felsenstein 1981 model. The defining property of the model is that the
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Phylogenetic mixtures and linear invariants for equal input models 1111

probability of a transition from α to β (two distinct states) is the same, regardless of
the initial state α( �= β).

Lemma 1 The following properties hold for the equal input model.

(i) P(e)
αα = 1 − θe + παθe.

(ii) π is a stationary distribution for each vertex v of the T (i.e. P(Y (v) = α) = πα).
(iii) The process is time-reversible (i.e. for each edge e, παP

(e)
αβ = πβ P

(e)
βα ).

(iv) If p is the probability that the ends of e receive different states under the E I
model, then p = (1 − ∑

α π2
α)θe.

(v) The process is multiplicatively closed. In other words, (P(e)P(e′))αβ = πβθ ,
where θ = 1 − (1 − θe)(1 − θe′).

Proof For (i), P(e)
αα = 1− ∑

β �=α P(e)
αβ = 1− θe

∑
β �=α πβ = 1− θe(1− πα). For (ii),

it suffices to show that if (u, v) is a directed edge and u has stationary distribution π

then v does too. But

P(Y (v) = β) =
∑

γ

πγ P
(e)
γβ = πβ P

(e)
ββ +

∑

γ �=β

πγ P
(e)
γβ = πβ.

For (iii), the result clearly holds if α = β so suppose α �= β. Then

παP
(e)
αβ = πα(πβθe) = πβ(παθe) = πβ P

(e)
βα .

For (iv),

p =
∑

α

πα

∑

β �=α

P(e)
αβ =

∑

α

πα

∑

β �=α

πβθe,

which simplifies for the expression in (iv). Property (v) is left as an exercise.

For an equal input model, the transition matrix P(e) has eigenvalue 1 − θe with
multiplicity k−1 (and eigenvalue 1 with multiplicity 1). Also, for fixed π the matrices
P(e) commute, as they can be simultaneously diagonalized by a fixed matrix (which
depends on π ). Equal input models with also have a continuous realisation with rate
matrix Q defined by its off-diagonal entries as follows:

Qαβ = πβ, for all α, β ∈ S, α �= β

(the diagonal entries are determined by the requirement that each row of Q sums to
0). Then P(e) = exp(Qt) for t = − ln(1 − θe), and so θe = 1 − e−t . In the case
where π is uniform, the E I model reduces to the fully symmetric model in which all
substitution events have equal probability.

One feature of the E I model, that fails for most other Markov processes on trees,
is the following. Let σ be any partition of the state space S, and for a state s ∈ S let
[s] denote the corresponding block of σ containing s. Then for an E I process Y on
the set V of vertices of a phylogenetic tree T , let Ỹ be the induced stochastic process
on V , defined by Ỹ (v) = [Y (v)] for all vertices v of T .
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1112 M. Casanellas, M. Steel

Proposition 1 For any E I model with parameters π and {θe}, and any partition σ of
S, Ỹ is also an E I Markov process on T , with parameters π̃ and {θe}, where for each
block B of σ , π̃B := ∑

β∈B πβ .

Proof By Theorem 6.3.2 of Kemeny and Snell (1976), the condition for Ỹ to be a
Markov process is that it satisfies a ‘lumpability’ criterion that for any two choices
α, α′ ∈ A ∈ σ , and block B ∈ σ ,

P(Y (v) ∈ B|Y (u) = α) = P(Y (v) ∈ B|Y (u) = α′).

For each B �= A, this last equality is clear from (1), and since P(Y (v) ∈ A|Y (v) =
α) = 1 − ∑

B∈σ,B �=A P(Y (v) ∈ B|Y (u) = α) the criterion also holds for the case

B = A. Finally, for B �= A, P(Ỹ (v) = B|Ỹ (u) = A) = ∑
β∈B(πβθe) = π̃Bθe.

2.2 A useful lemma

For results to come the following lemma, and its corollary will be helpful.

Lemma 2 For variables x1, x2, . . . , xr , consider polynomials f0(x), . . . , fM (x) ∈
R[x1, . . . , xr ] of the form

fi (x) =
∑

A⊆[r ]
c(i)
A

∏

j∈A

x j , c(i)
A ∈ R.

(i) Then f0 ≡ 0 (i.e. c(0)
A = 0 for all A ⊆ [r ]) if and only if for any t �= 0, f0(x) = 0

for all x ∈ {0, t}r .
(ii) Let f = ( f1, . . . , fM ) : Rr → R

M and let L : RM → R be a linear map. Define
an equivalence relation among the elements of {0, 1}r by x ∼ x′ if f (x) = f (x′),
and let x1, . . . ,xs be representatives of these equivalence classes. We call qi =
f (xi ), i = 1, . . . , s. Then L( f (x)) = 0 for all x ∈ R

r if and only if L(q j ) = 0
for j = 1, . . . , s.

Proof (i) The ‘only if’ part holds automatically; for the ‘if’ direction, given any subset
B of [r ], let h(B) = h(xB) where x Bi = t if i ∈ B and x Bi = 0 otherwise. Then
h(B) = 0 by hypothesis, and h(B) = ∑

A⊆B cAt |A|, by definition. Applying the
(generalized) principle of inclusion and exclusion it follows that, for each A ⊆ [n],
cAt |A| = ∑

B⊆A(−1)|A−B|h(B) = 0, so cA = 0.
(ii) The map h = L ◦ f satisfies the hypotheses of (i), hence L( f (x)) = 0 for all x if
and only if L( f (x)) = 0 for all x ∈ {0, 1}r . Then the statement follows immediately
due to the definition of the equivalence relation.

Inwhat followswewill use this lemma to check linear relations among the character
probabilities.

In the E I model, once we fix π , the probability PT (χ |
) of observing a character
at the leaves of T satisfies the hypotheses of the corollary with r equal to the number
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Fig. 1 Cutting the three edges marked * in the tree on the left leads to the partition of X shown at right.
Under the random cluster model these four blocks are independently assigned states from the distribution
π

of edges and variables in 
 = {θe}e∈E(T ). Indeed, by Lemma 1 (i), any entry of the
transition matrix P(e) is a linear function of θe and hence the expression

PT (χ |
) =
∑

(sv)v∈SInt(T )

πsv0

∏

(u,w)∈E(T )

P(e)
su ,sw (2)

(where the sum is over the states at the set Int(T ) of interior vertices of T and sub-
ject to the convention that sw = χ(l) if w is the leaf l) satisfies the hypotheses of
Lemma 2.

Remark 1 Lemma 2 can be slightly modified to accommodate substitution matrices
with more parameters as it was done in Fu (1995).

2.3 The equal input model as a random cluster model

Our alternative description of the E I model is as an instance of the (finite) random
cluster model (briefly RC) on trees (this phrase is also used to study processes on
graphs, such as the ‘Ising model’ in physics). For an unrooted phylogenetic tree with
leaf set [n], each edge e of T is cut independently with probability pe. The leaves in
each connected component of the resulting disconnected graph are then all assigned the
same state swith probabilityπs , independently of assignments to the other components
(see Fig. 1).More precisely, for any binary function g : E(T ) → {0, 1}, defineC(g) to
be the set of connected components in T \ {e ∈ E(T )|g(e) = 1}. Then the probability
PT (χ |{pe}e) of observing a character χ at the leaves of T under the RC model is

∑

g:E(T )→{0,1}
P(χ |g)pg(e)e (1 − pe)

1−g(e) (3)

whereP(χ |g) is 0 ifχ(i) �= χ( j) for some leaves i, j in the sameconnected component
in C(g) and is equal to

∏
c∈C(g) πχc otherwise (where χc denotes the value of χ at the

leaves of T that are in c). In particular, the RC model also satisfies the hypotheses of
Lemma 2.
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Proposition 2 The E I model with parameters π and {θe} produces an identical prob-
ability distribution on characters as the random cluster model in which pe = θe for
each edge e of T .

Proof For the two models the probability of a given character (given by Eqs. (2)
and (3)) satisfies the conditions required by Lemma 2 (ii), and so we can use it with
M = 2 and L the difference between the probability of a given character by the two
models. Therefore, it suffices to show that the twomodels produce the same probability
distribution on characters whenever θe = 1 for all e ∈ F and θe = 0 of all edges e
of T not in F (for all possible choices of subset F ∈ E(T )). Given F , notice that if
θe = 1 for a directed edge e = (u, v) of T in the E I model, then P(e)

αβ = πβ for all
β ∈ S, including β = α. In other words, when θe = 1 for e = (u, v), the state at v

is completely independent of the state at u. This is equivalent to cutting the edge and
assigning a random state according to the distribution π to v, and thereby to all the
other vertices of T for which there is a path to v that does not cross another edge in F
(since P(e) is the identity matrix on those edges); this is just the process described by
the random cluster model.

3 Linear phylogenetic invariants in phylogenetics

Definition 1 Consider a phylogenetic model M with state space S on a phylogenetic
tree T with n leaves. A phylogenetic invariant of a tree T under the model M is a
polynomial f in Sn indeterminates that vanishes on any distribution PT,
 that arises
under the phylogenetic model M (that is, f (p) = 0 if p = PT,
, for any set 
 of
transition matrices and distribution at the root vertex).

We say that a polynomial in Sn coordinates is amodel invariant if it is a phylogenetic
invariant for any tree on n leaves under the phylogenetic model M. A phylogenetic
invariant of a tree T that is not a model invariant is called a topology invariant.

A phylogenetic invariant is a linear phylogenetic invariant (resp. linear model
invariant, linear topology invariant) if each monomial involves exactly one indeter-
minate and has degree 1. Note that this implies that the polynomial is homogeneous
(the independent term is 0). There are phylogenetic invariants of degree 1 that are
not homogeneous, for example the trivial phylogenetic invariant that arises from the
observation that in a distribution all coordinates must sum to one. However, taking
this trivial invariant into account, any other phylogenetic invariant of degree 1 can be
rewritten as a homogeneous phylogenetic invariant of degree 1 (indeed,

∑
i aixi + a

is a phylogenetic invariant if and only if
∑

i (ai + a)xi is a phylogenetic invariant).
This is why we only call linear phylogenetic invariants those that are homogeneous
of degree 1. The sets of linear model invariants and linear phylogenetic invariants of
a tree T are vector spaces.

Linear phylogenetic invariants are of particular interest since they hold even if
the process changes from character to character (provide it stays within the model for
which the invariant is valid). An important early example of linear phylogenetic invari-
ants were discovered by Lake (1987). In this paper, we first provide a new and more
general version of Lake’s invariants. It is the first time that linear topology invariants
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are given for non-uniform stationary distributions and for models on any number of
states, provided that they satisfy what we call the Partial Separability condition (see
below). It is worth noting that in our Lake-type invariants the stationary distribution
is assumed to be known.

For any phylogenetic X -tree, T (not necessarily binary), and an interior vertex v

of T consider the disconnected graph T − v. Let t and t ′ be two of the trees incident
with v.

Suppose that a Markov process Y on T takes values in state space S. For any state
s of S write Y (t) = s if all the leaves of T that are in t are in state s (similarly for t ′).
Consider the following property.

(PS) Partial separability. For some interior vertex v, and for some subset {a1, a2,
b1, b2} of four distinct elements of S one has

P(Y (t) = ai |Y (v) = s) = π(ai )c, when s ∈ S − {a1, a2}, i = 1, 2;

and

P(Y (t ′) = b j |Y (v) = s) = π(b j )d, when s ∈ S − {b1, b2}, j = 1, 2.

Here c and d are arbitrary functions dependent on the tree and associated parameters
(but not the states) and π is an arbitrary function of the states such that π(ai ) �= 0,
π(bi ) �= 0, i = 1, 2 (for various models with π given by the stationary distribution).

Partial separability is satisfied by various models. For example, when |S| = 4,
it holds for the Kimura 2-ST model (and hence the Jukes–Cantor model) by taking
{a1, a2} = {A,G} (purines) and {b1, b2} = {C, T } (pyrimidines), in which case
π(ai ) = π(bi ) = 1

4 for i = 1, 2. The property also holds for the fully symmetric
model on any number of states. Moreover, the property holds for the E I/RC model
on any number of states if t and t ′ are single leaves. The partial separability condition
should be viewed as an algebraic constraint rather than as a natural condition that one
might expect to hold for most evolutionary models. For instance it, is not a natural
property satisfied by evolutionary models and, for instance, it is not satisfied for the
E I/RC model if t or t ′ are not single leaves.

Let E be any event that involves the states at the leaves of T not in t or t ′. For
example, if y and y′ are leaves of T not in t or t ′ then E might be the event that
Y (y) = s and Y (y′) = s′ for some particular s, s′ ∈ S.

Let us write pEi j for the probability of the three-way conjunction E ∧ {Y (t) =
ai } ∧ {Y (t ′) = b j }. Notice that pEi j is a sum of probabilities of various characters
(i.e. a marginal distribution). Let

p̃Ei j = 1

π(ai )π(b j )
· pEi j and let � := p̃E11 + p̃E22 − p̃E12 − p̃E21.

Proposition 3 (Lake-type invariants) If a Markov process on T satisfies the partial
separability condition (PS), then � = 0.

123



1116 M. Casanellas, M. Steel

Proof By the Markov property,

pEi j =
∑

s

P(Y (v) = s) · P(E |Y (v) = s) · P(Y (t) = ai |Y (v) = s)

·P(Y (t ′) = b j |Y (v) = s).

Let ri j = π(ai ) · π(b j ), and let

�s = r22 p1 p
′
1 + r11 p2 p

′
2 − r12 p2 p

′
1 − r21 p1 p

′
2,

where pi = P(Y (t) = ai |Y (v) = s), and p′
j = P(Y (t ′) = b j |Y (v) = s). Then we

can write

� = 1

π(a1)π(a2)π(b1)π(b2)

∑

s

P(Y (v) = s) · P(E |Y (v) = s) · �s .

Thus it suffices to show that �s = 0 for all s.
We consider three cases: (i): s ∈ {a1, a2}, (ii) s ∈ {b1, b2} and (iii) s ∈ S −

{a1, a2, b1, b2}.
In Case (i), suppose s = ai . Then p′

1 = π(b1)d and p′
2 = π(b2)d, and so

�s = d[p1r22π(b1) + p2r11π(b2) − p2r12π(b1) − p1r21π(b2))].
= dp1[r22π(b1) − r21π(b2))] + dp2[r11π(b2) − r12π(b1)] = 0 + 0 = 0.

Case (ii) is similar. In Case (iii), pi p′
j = ri j cd and so

�s = cd[r22r11 + r11r22 − r12r21 − r21r12] = 0.

Example 1 When we take t and t ′ single leaves, the E I/RC model satisfies the (PS)
property and Lemma 3 can be applied. If the stationary distribution π is fixed, then �

gives rise to two types of linear phylogenetic invariants for the quartet tree 12|34,

H1 : xxyxy

π(x)π(y)
+ xxyzw

π(z)π(w)
− xxyzy

π(z)π(y)
− xxyxw

π(x)π(w)

H2 : xxyyx

π(x)π(y)
+ xxywz

π(z)π(w)
− xxyyz

π(z)π(y)
− xxywx

π(x)π(y)

(herexχ1χ2χ3χ4 is the coordinate that corresponds toPT (χ1χ2χ3χ4)). To see how these
follow from Proposition 3, for H1 take x = a1, y = b1, z = a2, w = b2 and let E be
the event that Y (1) = a1 and Y (2) = b1; for H2 take x = b1, y = a1, z = b2, w = a2
and let E be the event that Y (1) = b1 and Y (2) = a1. Note that these are topology
invariants because the first is not a phylogenetic invariant for the quartet 13|24 while
the second is not a phylogenetic invariant for 14|23.
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4 Generating linear invariants for the RC/EI model on κ states

4.1 Combinatorial concepts and terminology

Let T be a phylogenetic X -tree, X = [n], and consider a Random Cluster model
(or Equal Input model) on T , with stationary distribution π on a set S of κ states.
Henceforth we assume that π is fixed and it is positive, that is, πs �= 0 ∀s ∈ S. We
denote by ei the pendant edge incident with leaf i . A character χ : [n] → S shall
be denoted as χ = χ1 . . . χn if χi = χ(i) for i = 1, . . . , n. We let Ch(n, κ) to be
the set of characters on [n] for a fixed state space (S) of size κ and denote by N its
cardinality (N = κn). We think of a distribution PT,
 on the set of characters under
the RC model on T as a vector of Ch(n, κ) coordinates and therefore lying in the real
vector space with coordinates xχ , χ ∈ Ch(n, κ) (the point PT,θ has coordinate xχ

equal to PT (χ |
)).
Let F be a subforest of T , that is, a subgraph comprised of a collection of vertex

disjoint trees {T1, . . . , Tr } such that the only nodes of degree ≤ 1 in Ti are leaves of
T (we allow Ti to be formed by only one leaf and we allow F = {T } also). We say
that a subforest F = {T1, . . . , Tr } is a full subforest if ∪iL(Ti ) = X ; we let FT be the
set of full subforests of T . For a full subforest F , we define 
F to be the following
collection of edge parameters under the RC model: θe = 0 if e ∈ E(Ti ) for some
Ti ∈ F and θe = 1 for all other edges e. We denote by σ(F) the partition that F
describes on [n], that is, two leaves are in the same block of σ(F) if they lie in the
same subtree of F . The full subforest formed by singletons will be called the trivial
subforest.

Given a character χ , we define σ(χ) to be the partition {S1, . . . , Sl} of the set of
leaves defined according to “two leaves i, j are in the same block of the partition if
χi = χ j”. Note that given a full subforest F = {T1, . . . , Tr } of T and a character χ ,
PT (χ |
F ) is zero if σ(F) does not refine σ(χ) and is equal to

∏r
i=1 πsi otherwise

(here si stands for the value of χ at the leaves of Ti ).
For any partition σ of [n], and any phylogenetic tree T on [n], we say that σ is

convex on T (or compatible with T ) if the collection of induced subtrees {T [B] :
B ∈ σ } are vertex disjoint (here T [B] is the minimal connected subgraph (subtree)
of T containing the leaves in B). Let co(T ) be the set of partitions of [n] that are
convex on T . There is a natural correspondence between full subforests of T and
convex partitions on T that associates to each partition σ ∈ co(T ) the full subforest
FT (σ ) = {T [B] : B ∈ σ }. Therefore, the number of full subforests of a tree T is equal
to | co(T )|, |FT | = | co(T )|. When T is a binary tree, |co(T )| = F2n−1 where Fk is
the k-th Fibonacci number, starting with F1 = F2 = 1 (see Steel and Fu 1995). By
contrast, for a star tree on [n]we have |co(T )| = 2n−n. A partition σ = {B1, . . . , Bk}
of [n] is incompatible with T if it is not convex on T , that is, there exist two blocks
Bi and Bj from σ for which T [Bi ] and T [Bj ] share at least one vertex. A singleton
block B of σ is a block of size 1. The number of partitions of [n] is known as the Bell
number Bn .

Finally, let Inc(T ) be the set of partitions of [n] that are not convex on T (i.e. they
are ‘incompatible’ with T ). Thus |Inc(T )| = Bn − |co(T )|.
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4.2 Results

Lemma 3 (a) Let 
 be a collection of parameters (θe)e∈E(T ) such that θe is either
0 or 1 for all e ∈ E(T ). Then there exists a unique full subforest F ∈ FT such
that PT,
 = PT,
F .

(b) A degree 1 polynomial
∑

χ λχxχ is a linear phylogenetic invariant for a tree T
if and only if

∑

χ

λχPT (χ |
F ) = 0

for any full subforest F ∈ FT .

Proof (a) We first prove that two full subforests F and G satisfy P(χ |
G) �=
P(χ |
F ) for some χ if F �= G. As F,G are full subforests, they are differ-
ent if and only if they induce different partitions σ(F), σ(G) on the set of leaves.
Then there exists an edge e0 such that e0 is compatiblewithσ(F) (i.e,σ(F) refines
the bipartition induced by e0) but is not compatible with σ(G) (or the other way
around). If χ is the character that assigns state x at the leaves of one connected
component of T − e0 and state y �= x at the leaves of the other component, then
P(χ |
G) = 0 while P(χ |
F ) is not zero.

Given 
, let A be the set of edges e in T such that θe = 1. Let σ(T \ A) be the
partition induced on X when removing all edges in A (if an edge in A is a pendant
edge, then removing it means that we separate the corresponding leaf). If F is the
subforest FT (σ (T \ A)), then we have PT,
 = PT,
F .

(b) This follows from part (a) and Lemma 2 (ii).

Let
 be a collection of edge parameters on a tree T evolving under the RC model.
For a site character χ , we define

p̃Tχ (
) = PT (χ |
)

πχ1πχ2 . . . πχn

.

We call x̃χ the corresponding coordinates: x̃χ = xχ

πχ1πχ2 ...πχn
.

Lemma 4 We say that two characters χ and χ ′ are equivalent, χ ≡ χ ′, if σ(χ) =
σ(χ ′) and χi = χ ′

i for any leaf i that belongs to a block of the partition of cardinality
greater than or equal to 2. Let χ , χ ′ be two characters on the set X = [n].
(a) If χ ≡ χ ′ then x̃χ − x̃χ ′ is a linear model invariant.
(b) If π is not invariant by any permutation of the set of states, then for any tree T

the equality p̃Tχ (
) = p̃T
χ ′(
) for every 
 implies that χ ≡ χ ′ (i.e. in this case

every linear phylogenetic invariant of type x̃χ − x̃χ ′ satisfies χ ≡ χ ′).

Proof (a) Let χ and χ ′ be two equivalent characters, let σ be σ(χ) = σ(χ ′), and let T
be any X -tree. According to Lemma 3 (b) we need to check that p̃χ (
F ) = p̃χ ′(
F )

for any F = {T1, . . . , Tr } ∈ FT .
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If σ(F) does not refine σ , then PT (χ |
F ) and PT (χ ′|
F ) are zero and we are
done.

If σ(F) does refine σ , then PT (χ |
F ) = πs1 . . . πsr where si is the value of χ at
the leaves of Ti (note that we may have si = s j ). Therefore p̃Tχ (
F ) = 1

π
n1−1
s1 ...π

nr−1
sr

where ni = |L(Ti )|. As σ(F) refines σ(χ) = σ(χ ′) and the states ofχ andχ ′ coincide
for any block of σ of size ≥ 2, the states of χ and χ ′ also coincide at the leaves of Ti
if ni ≥ 2. Therefore, p̃Tχ (
F ) = p̃T

χ ′(
F ).
As for (b), assume that π is not invariant by any permutation of the set of states (i.e.

πs = πt if and only if s = t). Assume that for a tree T we have p̃Tχ (
T ) = p̃T
χ ′(
T )

for any collection of edge parameters 
T . Then, for each block Bi of σ(χ) of size
bi greater or equal than 2 consider the forest Fi = {TBi ,∪l /∈Bi {l}}, where TBi is the
smallest subtree of T joining the leaves in Bi . Then p̃Tχ (
Fi ) = 1

π
bi−1
si

if si is the state

of χ at the leaves of Bi . By hypothesis this is equal to p̃T
χ ′(
Fi ). But p̃

T
χ ′(
Fi ) is zero

if σ(χ ′) does not contain the block Bi . Performing the same argument for any block
Bi of size bi ≥ 2 we obtain σ(χ) = σ(χ ′). Now for each such block Bi we have
p̃Tχ (
Fi ) = p̃T

χ ′(
Fi ) and hence 1

π
bi−1
si

= 1

π
bi−1

s′i
if s′

i is the state of χ ′ at the leaves of

Bi . As bi ≥ 2, the assumption on π implies si = s′
i . Thus, χ and χ ′ are equivalent

characters.

Remark 2 If π is the uniform distribution (i.e we consider the κ-state fully symmetric
model), then we have PT (χ |
) = PT (χ ′|
) if and only if σ(χ) = σ(χ ′). Indeed,
in this case if we consider any permutation g of the set of states S, the polynomials
xχ − xg·χ are linear phylogenetic invariants for any tree (see Casanellas et al. 2012),
where g · χ stands for the corresponding permutation of states at the leaves. But these
polynomials can also be rewritten as xχ − xχ ′ for σ(χ) = σ(χ ′).

Examples: n = 3 and n = 4

– For n = 3, Lemma 4 gives the following. If κ ≥ 3 and we consider three different
states x, y, z and another set of three different states x ′, y′, z′, the linear invariants
obtained in Lemma 4 are:

x̃xyz − x̃x ′y′z′ , x̃xxy − x̃xxz, x̃xyx − x̃xzx , x̃yxx − x̃zxx .

– For n = 4, Lemma 4 gives the following. If κ ≥ 4 and we consider four different
states x, y, z, w and another set of four different states x ′, y′, z′, w′, the linear
phylogenetic invariants of Lemma 4 are:

x̃xyzw − x̃x ′y′z′w′ , x̃xxyz − x̃xxy′z′ , x̃xxxy − x̃xxxy′ ,

and the analogous invariants obtained for the other partitions of [4] involving
singletons. ��
There are several ways to construct linear invariants from smaller trees and a sys-

tematic way to find model invariants for certain models with stationary distribution
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has been described in Fu and Li (1991). The most immediate one, used already in
the quoted paper, uses the following marginalization lemma. If i is a leaf of T , we
call Ti the tree obtained by removing leaf i and its incident edge, and suppressing the
resulting degree-2 vertex if the interior node had degree 3.

Lemma 5 Let i be a leaf of a phylogenetic [n]-tree T and let Ti be the corresponding
tree. Let l be a linear homogeneous map l : Rκn−1 → R and let Mi : Rκn → R

κn−1
be

the marginalization map at leaf i . If l(pi ) = 0 for any distribution pi from a Markov
process on the tree Ti , then (l ◦ Mi )(p) = 0 for any distribution p that comes from a
Markov process on the tree T .

Proof To prove this lemma one just needs to observe that for any distribution p coming
form aMarkov process on T ,Mi (p) is a distribution on Ti that comes from theMarkov
process that at each edge e has the same transition matrices as e had on the tree T .

Another construction, which is new, and particular to the RC /E I model is described
in the following lemma. This lemma shall be used in Sect. 6 where we provide specific
linear invariants for quartet trees.

Lemma 6 (Extension lemma) Let� = ∑
χ aχxχ be a linear invariant for an [n]-tree

T evolving under the RC model.

(a) Let T ′ be the tree obtained by subdividing an edge of T and attaching a new
pendant edge at the newly introduced node. Let s be a new state not involved in
� (that is, aχ = 0 if χ contains s). Then,

∑

χ

aχxχs (4)

is a linear invariant for T ′ (where the new leaf is labelled as leaf n + 1).
(b) Let T ′ be the tree obtained by subdividing an edge of T and attaching a tree T̃ of

m + 1 leaves to the newly introduced node (so that T ′ has n + m leaves and the
newly introduced leaves are labelled from n + 1 to n + m). Let μ be a character
on m leaves for which aχ = 0 if χ contains some state in μ (that is, � does
not involve the states of μ at any leaf). Then

∑
χ aχxχμ is a linear phylogenetic

invariant for T ′ (where χμ stands for states χ at the first n leaves and states μ

at the other m leaves).
(c) Suppose T is the star tree, and let μ be a character on m leaves for which aχ = 0

if χ contains some state inμ. Then, for the star tree T ′ with n+m leaves evolving
under the RC model,

∑
χ aχxχμ is a linear phylogenetic invariant.

Proof (a) By Lemma 3, we only need to check that (4) vanishes for the distributions
generated with 
 = 
F where F is a full subforest of T ′. We denote by 
F |T the
corresponding probabilities at the edges of T and we denote by �(
F |T ) the value of
� evaluated at PT,
F |T .

If F contains a tree with the new edge e′ on it, then, for all χ involved in �, we
have PT ′(χs|
F ) = 0 (because s is a state not involved in �) and then (4) trivially
vanishes. If F does not contain the edge e′, then the new leaf is a singleton in F . In
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this case we have PT ′(χs|
F ) = πsPT (χ |
F |T ). Therefore (4) evaluated at PT ′,
F

is �(θF |T ) multiplied by πs , so it vanishes as well.
(b) If T̃ is binary, then the addition of T̃ can be obtained by successively adding

cherries to T . So, assume that we have added one cherry as in (a), so that we have
assigned state s to the new leaf ln+1, and now we add a new cherry to the edge leading
to ln+1. Now the new state s′ that we consider for the new leaf now can be allowed to
be equal to the state s as long as s′ differs from the states that appear in �. Indeed, if
s′ = s, theremight be forests containing the new cherry, but all of themgive probability
zero for the states appearing in the polynomial except if the forest is formed by the new
cherry and other trees. For such a forest F we have P(χss|
F ) = πsP(χ |
F |T ) and
hence the polynomial evaluated at the parameters of this forest is �(
F |T ) multiplied
by πs which vanishes again.

If T̃ is not a binary tree, then it can be also constructed from a binary tree by
contracting edges. As for binary tree the polynomial is a phylogenetic invariant, so it
is when we contract edges (note that if a polynomial is a phylogenetic invariant for
a tree, then it is also a phylogenetic invariant for the tree T0 obtained by contracting
one edge e0 because any collection of edge parameters at T0 gives a collection of edge
parameters for T by assigning θe0 = 0).

(c) This follows from (b) by contracting edges.

5 Phylogenetic mixtures

So far, we have found some linear polynomials that turn out to be either model invari-
ants or topology invariants. But we were not able to say whether these invariants
actually generate the space of linear phylogenetic invariants for a tree T . On the other
hand, it would be interesting to know whether a distribution where all these linear
invariants vanish is actually a linear combination from distributions on a tree or a
mixture of trees. To this end, one defines the space of mixtures on a tree (Štefakovič
and Vigoda 2007).

Definition 2 Fix a distribution π on the set of states. Given a particular tree T , we
denote by PT,
 the distribution of a RC model with parameters π,
 on T . We define
the space of mixtures on T as

Dπ
T =

{

p =
∑

i

λiPT,
i

∣
∣
∣
∑

i

λi = 1

}

.

If T is the set of phylogenetic trees on [n], we define the space of phylogenetic mixtures
on [n] as

Dπ =
{

p =
∑

i

λiPTi ,
i

∣
∣
∣
∑

i

λi = 1 , Ti ∈ T
}

When {pi }i∈I is a set of points in an affine linear space, we denote by 〈pi | i ∈ I 〉a
the linear span of these points, that is, the set of points q = ∑

i λi pi with
∑

i λi = 1
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(we put the subindex a in order to distinguish this affine linear span from the usual
linear span of vectors). Note that the spaces of phylogenetic mixtures are affine linear
varieties,

Dπ
T =

〈
p

∣
∣
∣ p = PT,


〉

a
, Dπ =

〈
p

∣
∣
∣ p = PT,
, T ∈ T

〉

a
,

and both lie inside the hyperplane

H =
⎧
⎨

⎩
x = (xχ )χ ∈ R

N
∑

χ∈Ch(n,κ)

xχ = 1

⎫
⎬

⎭
.

Strictly speaking, for applications in phylogenetics it is only relevant to consider
points in Dπ (or Dπ

T ) that are actually distributions. In other words, one should be
mainly interested in convex combinations of the points PT,
:

{

p =
∑

i

λiPT,
i

∣
∣
∣ λi ≥ 0,

∑

i

λi = 1

}

and

{

p =
∑

i

λiPTi ,
i

∣
∣
∣ λi ≥ 0,

∑

i

λi = 1 , Ti ∈ T
}

.

However, as the dimension of a polyhedron is the dimension of its affine hull, we focus
on computing the dimension of Dπ and Dπ

T .
For any distribution π , we denote by Lπ the vector space of linear model invariants

and by Lπ
T the space of all linear phylogenetic invariants for a tree T . The orthogonal

subspace of Lπ (respectively Lπ
T ) shall be denoted by Eπ (respectively Eπ

T ), that is,
Eπ is the set of vectors in RN where all the linear model invariants vanish and Eπ

T the
set of vectors where all the linear phylogenetic invariants for T vanish (by identifying
dual and orthogonal spaces). In other words, Eπ

T and Eπ are spanned by the following
vectors of distributions:

Eπ
T =

〈
p

∣
∣
∣p = PT,


〉
, Eπ

T =
〈
p

∣
∣
∣p = PT,
, T ∈ T

〉
.

Note that when we use p ∈ R
N as a vector, we use the notation p to distinguish it

from its use as an affine point in R
N . Then the following equalities are clear

Dπ
T = Eπ

T ∩ H , Dπ = Eπ ∩ H.

Therefore, studying phylogenetic mixtures (on [n] or on a tree) is equivalent to study-
ing linear phylogenetic invariants (only model invariants or together with topology
invariants). Note that due to Lemma 3, it is clear that

Eπ
T = 〈p = PT,
F |F ∈ FT 〉 , Eπ = 〈p = PT,
F |T ∈ T , F ∈ FT 〉
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(see also Matsen et al. 2008, Prop. 10).
In this section we compute the dimension of the spaces of phylogenetic mixtures.

5.1 Model invariants and phylogenetic mixtures

We fix n ≥ 4 throughout this section. We call κ the set of partitions of [n] of size at
most κ (note that if κ ≥ n, this is the whole set of partitions of [n]). If σ is a partition
of [n] compatible with trees T and T ′, and we consider F = FT (σ ) and F ′ = FT ′(σ ),
then one has PT,
F = PT ′,
F ′ . This point will be briefly denoted as qσ (because it
does not depend on the chosen tree compatible with σ ). We give the coordinates of
the points qσ for n = 4 shortly, see Example 2. Note that Dπ = 〈qσ | σ ∈ n〉a , but
this spanning set of points are not affine linearly independent if κ ≥ n:

Theorem 1 If π is a distribution on κ states with positive entries, then {qσ | σ ∈ κ }
are affine linearly independent points. Moreover, if π is the uniform distribution or a
generic distribution, or if κ ≥ n, then Dπ coincides with 〈qσ | σ ∈ κ 〉a and has
dimension |κ | − 1 (which equals Bn − 1 if κ ≥ n).

The inclusion 〈qσ | σ ∈ κ 〉a ⊆ Dπ clearly holds (and if κ ≥ n, the other
inclusion is trivial). The idea for the proof of the other inclusion is to useDπ = Eπ ∩H ,
bound the dimension of Eπ from above by a quantity d and prove that the set of points
qσ span an affine linear variety of dimension d−1.We first need the following lemma.

Lemma 7 (a) For any κ , the set {qσ | σ ∈ κ} is formed by affine linearly indepen-
dent points for any distribution π (with positive entries).

(b) If πU is the uniform distribution, then the set of linear model invariants is spanned
by the set of polynomials xχ − xχ ′ for σ(χ) = σ(χ ′). In particular, the set of
vectors EπU where the model invariants vanish has dimension equal to |κ |.

Proof (a) We need to prove that if we have a linear combination

∑

σ∈κ

λσqσ = 0 (5)

with
∑

σ λσ = 0, then we need to prove that the coefficients λσ are zero. We proceed
by induction on m = min{n, κ}. Note that as all partitions of [n] are of size at most n,
κ equals the set m of partitions of size at most m.

If m = 1, then κ contains a single element and there is nothing to prove. Assume
that m ≥ 2 and consider a linear combination as in Eq. (5).

Note that the coordinate x̃χ of qσ is zero if σ does not refine σ(χ). Let x̃χ be a
coordinate such that σ(χ) has the maximum size m. Then x̃χ is different from zero
only for qσ(χ) (because the other points qσ correspond to partitions that do not refine
σ(χ)). Thus, λσ(χ) = 0 and hence in (5) we have λσ = 0 for all σ of size m. Thus,
we are left with a linear combination such as

∑

σ∈m−1

λσqσ = 0 ,
∑

σ∈m−1

λσ = 0.
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The result follows by the induction hypothesis.
(b) For the uniform distribution, each polynomialxχ −xχ ′ for σ(χ) = σ(χ ′) is clearly
amodel invariant (seeRemark 2). Thus the set of vectors EπU where these polynomials
vanish has dimension less than or equal to |κ |. The set of points considered in (a) for
πU is contained in EπU ∩H , and hence (as H is an equation linearly independent with
the previous polynomials), the dimension of EπU is |κ |. It follows that the inclusion
EπU ⊆ {x ∈ R

N |xχ = xχ ′ if σ(χ) = σ(χ ′)} is actually an equality and the set of
model invariants is spanned by the polynomials xχ − xχ ′ for σ(χ) = σ(χ ′).

Now we are ready to prove the theorem.

Proof of Theorem 1 We claim that the dimension of Eπ can be bounded from above
by the dimension of EπU :

Claim: For a generic distribution π , the dimension of Eπ is less than or equal to
the dimension Eπ0 for a particular distribution π0.

Proof of Claim: We think first of the coordinates of π as parameters, so that we
consider model invariants as linear polynomials in the variables xχ with coefficients
in the field of rational functions R(π) (i.e. the field of fractions of the ring of poly-
nomials R[π1, . . . , πκ ]). The set of all model invariants is a R(π1, . . . , πκ)-vector
space. Consider a basis l1, . . . , lt of this space and let E be its orthogonal subspace,
E = {x ∈ R

N |li (x) = 0, i = 1, . . . , t} so that dim E = N − t . When we sub-
stitute π by a particular value π0, l1, . . . , lt may not be linearly independent any
more, and the corresponding space Eπ0 may have dimension ≥ dim E . But for a
generic π , the dimension of the corresponding space coincides with dimension of
E (because π moves in an irreducible space). Therefore, for a generic π we have
dim Eπ = dim E ≤ dim Eπ0 and the claim is proved. By the Claim, for a generic π ,
the dimension of Eπ is less than or equal to dim EπU for the uniform distribution πU

and the dimension of this vector space is |κ | (by Lemma 7(b)). Thus, dim Eπ ≤ |κ |.
On the other hand, the dimension of 〈qσ | σ ∈ κ is |κ | − 1 by Lemma 7(a). The
inclusion

〈qσ | σ ∈ κ 〉 ⊆ Dπ = Eπ ∩ H

finishes the proof. Note that if κ ≥ n one immediately has Dπ = 〈qσ | σ ∈ n for
any π , and its dimension follows from Lemma 7(a). ��
Remark 3 In Theorem 1 we give a set of affine independent points that span Dπ for
almost any distribution π . From this set of points (vectors) it easy to compute a basis
of the space of linear invariants Lπ as its orthogonal space.

Example 2 We give here the coordinates of the points that span the spaces of mixtures
on trees with n = 4 and κ = 4 or κ = 3.

For κ = 4 we have |4| = B4 = 15 and Dπ = 〈qσ | σ ∈ κ 〉. We start
with 12 partitions σ that correspond to forests in the star tree T∗. We call q• the
point corresponding to the trivial subforest of T∗ (formed by singletons). We call qi j
the points corresponding to the full subforest of T∗ formed by the tree T [i, j] and
singletons (this gives six points, qi j , i < j). Then we consider the forests formed by a
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Table 1 Linearly independent points for DT∗ for n = 4 in coordinates x̃′s

xxxx xxxy xxyx xyxx yxxx xxyy xyxy xyyx xxyz xyxz xyzx yxxz yxzx yzxx xyzw

q• 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

q12
1

πx
1

πx
1

πx
0 0 1

πx
0 0 1

πx
0 0 0 0 0 0

q13
1

πx
1

πx
0 1

πx
0 0 1

πx
0 0 1

πx
0 0 0 0 0

q14
1

πx
0 1

πx
1

πx
0 0 0 1

πx
0 0 1

πx
0 0 0 0

q23
1

πx
1

πx
0 0 1

πx
0 0 1

πy
0 0 0 1

πx
0 0 0

q24
1

πx
0 1

πx
0 1

πx
0 1

πy
0 0 0 0 0 1

πx
0 0

q34
1

πx
0 0 1

πx
1

πx
1

πy
0 0 0 0 0 0 0 1

πx
0

q123
1

π2
x

1
π2
x

0 0 0 0 0 0 0 0 0 0 0 0 0

q124
1

π2
x

0 1
π2
x

0 0 0 0 0 0 0 0 0 0 0 0

q134
1

π2
x

0 0 1
π2
x

0 0 0 0 0 0 0 0 0 0 0

q234
1

π2
x

0 0 0 1
π2
x

0 0 0 0 0 0 0 0 0 0

q1234
1

π3
x

0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 2 The new point added for tree 12|34
xxxx xxxy xxyx xyxx yxxx xxyy xyxy xyyx xxyz xyxz xyzx yxxz yxzx yzxx xyzw

q12|34 1
π2
x

0 0 0 0 1
πxπy

0 0 0 0 0 0 0 0 0

subtree of three leaves i, j, k and a singleton, which gives four points q123, q124, q134,
q234. Finally, we denote by q1234 the point corresponding to the forest F = {T∗}. To
simplify notation we write the normalized coordinates x̃χ1...χ4 instead of xχ1...χ4 . Let
the space of states S be {x, y, z, w}. In order to prove that the 15 points we provide
are affine linearly independent, it is enough to look at the following 15 coordinates of
these points:

x̃xxxx , x̃xxxy, x̃xxyx , x̃xyxx , x̃yxxx , x̃xxyy, x̃xyxy, x̃xyyx ,

x̃xxyz, x̃xyxz, x̃xyzx , x̃yxzx , x̃yxxz, x̃yzxx , x̃xyzw.

In Table 1 we write the coordinates of the first 12 points considered above.
If we consider the previous points plus the point q12|34 that corresponds to the forest

{T [1, 2], T [3, 4]} on the tree T12|34, then we obtain a set of linearly independent points
that span Dπ

12|34. In Table 2 we show the coordinates of this new point.
Nowwe consider the points corresponding to the forests compatible for the remain-

ing quartets, q13|24, q14|23 (their coordinates are shown in Table 3). The previous points
together with these two points span the space of mixtures Dπ .
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Table 3 The two points added when considering the quartets 13|24 and 14|23
xxxx xxxy xxyx xyxx yxxx xxyy xyxy xyyx xxyz xyxz xyzx yxxz yxzx yzxx xyzw

q13|24 1
π2
x

0 0 0 0 0 1
πxπy

0 0 0 0 0 0 0 0

q14|23 1
π2
x

0 0 0 0 0 0 1
πxπy

0 0 0 0 0 0 0

Consider now the case κ = 3. Then, according to Theorem 1, Dπ has dimension
13 for generic π . Indeed, if we consider the 15 points above, then they are no longer
linearly independent when the last column of the table is removed. The last 14 points
suffice to span Dπ in this case.

6 Phylogenetic mixtures on a fixed tree

In this section we compute the dimension of the space of phylogenetic mixtures on
a tree, give an algorithm to compute a basis of the space of liner topology invariants
and we explain whether Lake-type invariants of Proposition 3 suffice to describe the
space of phylogenetic invariants. For κ = 2 there are known to be no linear topology
invariants (Matsen et al. 2008); these arise for κ ≥ 3 (see Lemma 10 below, though
Lake-type invariants only appear when κ ≥ 4).Moreover, evenwhen κ = 4 for certain
models there exist other linear topology invariants beyond the Lake-type ones (Fu
1995). By considering the E I/RC model we show how it is possible to characterize
the quotient space of linear topology invariants for any number of states and taxa,
and provide an explicit algorithm for constructing a basis for the (quotient) space
of topological invariants. As explained in the introduction, linear topology invariants
are of interest because they provide a way to distinguish distributions coming from
mixtures on a particular topology from distributions arising as mixtures on another
topology.

Recall that Eπ
T is the space of vectors where the linear phylogenetic invariants

vanish. We know by Lemma 3(b) that a homogeneous linear polynomial vanishes on
all distributions PT,
 if and only if it vanishes on all distributions of type PT,
F for
F a full subforest of T . Therefore we have

Eπ
T = 〈qF | F ∈ FT 〉.

Example 3 Let n = 3, let T be the tripod tree and assume that κ ≥ 3. We prove
here that the vectors qF , for F ∈ FT are linearly independent. These vectors are:
q• corresponding to the trivial subforest, q12|3, q13|2, q23|1 corresponding to full sub
forests with one singleton, and q123 corresponding to the tree itself. We choose three
states x, y, z and we provide in Table 4 the submatrix corresponding to the coordinates
xxxx , xxxy , xxxy , xxyx , xyxx , xxyz . It is clear that this submatrix has nonvanishing
determinant if π is positive.

Let T be a binary tree on [n], n ≥ 4, and assume that leaves n and n − 1 form a
cherry c. Let u be the interior node of this cherry, and let e be the edge adjacent to u
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Table 4 Table of Example 3
xxxx xxxy xxxy xxyx xyxx xxyz

q• π3
x π2

x πy π2
x πy π2

x πy πxπyπz

q12|3 π2
x πxπy 0 0 0

q13|2 π2
x 0 πxπy 0 0

q23|1 π2
x 0 0 πxπy 0

q123 πx 0 0 0 0

and not to n, n − 1. Let T ′ be the subtree T − {en, en−1}.We denote by Fc the set of
full subforests of T that contain a tree with the cherry c = {en, en−1}. For any leaf l
we let Fl be the set of full subforests of T that contain l as a singleton and we call Tl
the tree obtained by replacing the two edges adjacent to el by a single edge. Then FT

is the disjoint union of Fc and Fn−1 ∪ Fn .

Lemma 8 For a binary tree on n ≥ 4 leaves we have isomorphisms of vector spaces:

〈qF | F ∈ Fl〉 ∼= 〈qG | G ∈ FTl 〉 , 〈qF | F ∈ Fc〉 ∼= 〈qG | G ∈ FT ′ 〉.

Proof We start with the first isomorphism. For simplicity we assume l = n (and
for this isomorphism n is not necessarily a leaf in a cherry). Let Vn be the vector
space 〈qF | F ∈ Fn〉. For any state s ∈ S we denote by f s the projection map
from R

κn to the subspace Rs corresponding to coordinates xχ1...χn−1s , so that we can
view R

κn as the direct sum Rs1 ⊕ · · · ⊕ Rsκ . For a vector v ∈ R
κn we denote by

( f s1(v), . . . , f sκ (v)) the decomposition of v according to this direct sum. Note that
if F ∈ Fn , then PT (χ1 . . . χn|
F ) = πχnPT ′(χ1 . . . χn−1|
F |Tn ). In particular, we
have f s(qF ) = πsqF |T ′ for any s ∈ S and qF = (πs1qF |Tn , . . . , πsκqF |Tn ).

We prove here that (for any s ∈ S) the linear map f s is an isomorphism between
Vn and the target vector space. First of all, the linear map f s|Vn is injective. Indeed,
if f s|Vn (v) = 0 for a certain v = ∑

F∈Fn
λFqF , then 0 = ∑

F∈Fn
λF f s(qF ) =

∑
F∈Fn

λFπsqF |Tn and hence (assuming πs �= 0)
∑

F∈Fn
λFqF |T ′ = 0. This implies

that v = (0, . . . , 0) in Rs1 ⊕ · · · ⊕ Rsκ and so f s|Vn is an injective linear map.
We prove that the image of f s|Vn is 〈qG | G ∈ FTn 〉. From the above, one can easily

see that Im f s|Vn is contained in 〈qG | G ∈ FTn 〉. Now for any G ∈ FTn we shall find

G̃ ∈ FT such that G̃|Tn = G. If n does not belong to a cherry, we consider G̃ to
be the full subforest of T defined by the singleton {n}, and the trees in G (thinking
of Tn as a subtree of T ). If n belongs to a cherry, we can think of Tn as the tree T ′
described above. Now for any G ∈ FT ′ , we consider G̃ the full subforest of T defined
by: the singleton {n}, t for any t ∈ G not containing e nor u, t ∪ en−1 if there is t ∈ G
containing e, and the singleton {n − 1} if G contains the singleton {u}. In this way we
have G̃|T ′ = G and qG = 1

πs
f s|VnqG̃ ∈ Im f s|Vn , so the other inclusion is proved.

As far as the second isomorphism is concerned, we consider the subspace L ⊂ R
κn

given by coordinates of type xχ1...χn−2ss for any χ1, . . . , χn−2, s in S. We have Rκn =
L ⊕ L⊥ and if f denotes the projection to L , then any vector v can be decomposed as
( f (v), v − f (v)). If F ∈ Fc, then PT (χ1 . . . χn−1χn|
F ) is zero if χn−1 �= χn and is
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equal to PT ′(χ1 . . . χn−2|
F |T ′) if χn−1 = χn = s. Hence, if F ∈ Fc we have qF =
( f (q), 0) = (qF |T ′ , 0). Now we prove that f|Vc is injective. Let v = ∑

F∈Fc
λFqF

and suppose that f (v) = 0. Then 0 = ∑
F∈Fc

λF f (qF ) = ∑
F∈Fc

λFqF |T ′ and

v =
∑

F∈Fc

λFqF =
∑

F∈Fc

λF (qF |T ′ , 0) =
⎛

⎝
∑

F∈Fc

λFqF |T ′ , 0

⎞

⎠ = 0.

This proves that f|Vc is injective. Moreover the image of this map is included in the
subspace 〈qG | G ∈ FT ′ 〉. For any G ∈ FT ′ we consider the full subforest Ḡ of T
defined by: the trees inG that do not contain e, t∪c if t contains e, and the cherry c ifG
contains the singleton {u}. Therefore we have Ḡ|T ′ = G and qG = f|VcqG̃ ∈ Im f s|Vc .

Theorem 2 Let T a phylogenetic tree on n leaves, n ≥ 3, evolving under the E I/RC
model for any distribution π on κ ≥ 3 states. Then, {qF | F ∈ FT } are affine inde-
pendent points that span the space of phylogenetic mixtures on T , Dπ

T . In particular,
the dimension of Dπ

T is |FT | − 1 and when T is binary this dimension is equal to the
Fibonacci number F2n−1 minus 1.

Proof We proceed by induction on n. The statement of the theorem is equivalent to
dim Eπ

T = |FT |.
The cases n = 3 and n = 4 are handled by Examples 2 and 3.
For n ≥ 5, suppose first that T is a binary tree. We may assume that the statement

is true for trees with strictly less than n leaves. We suppose that n and n − 1 form a
cherry and adopt the notation fixed above. Then we have that

Eπ
T = 〈qF | F ∈ FT 〉 = 〈qF | F ∈ Fn−1 ∪ Fn〉 + 〈qF | F ∈ Fc〉.

Note that 〈qF | F ∈ Fn−1 ∪ Fn〉 equals 〈qF | F ∈ Fn−1〉 + 〈qF | F ∈ Fn〉. We
know that 〈qF | F ∈ Fn−1〉 and 〈qF | F ∈ Fn〉 have dimension |FT ′ | by Lemma 8
and the induction hypothesis. These subspaces intersect in 〈qF | F ∈ Fn−1 ∩ Fn〉. By
Lemma 8 (applied twice) and the induction hypothesis, this linear space has dimension
|FT ′′ | where T ′′ is a tree on n − 2 leaves. Therefore, using Grassmann’s formula
(dim(U + W ) = dimU + dimW − dim(U ∩ W ) for subspaces U,W of a vector
space) we have that dim(〈qF | F ∈ Fn−1〉+〈qF | F ∈ Fn〉) = |FT ′ |+ |FT ′ |− |FT ′′ |.
As all of these trees are binary, this dimension equals the Fibonacci number F2n−2
since F2n−2 = F2n−3 + F2n−3 − F2n−5.

On the other hand, by Lemma 8 and the induction hypothesis, 〈qF | F ∈ Fc〉
has dimension |FT ′ | = F2n−3. Let us prove now that 〈qF | F ∈ Fc〉 and 〈qF | F ∈
Fn−1 ∪ Fn〉 only intersect in the zero vector. Let v be a vector in the intersection,

v =
∑

F∈Fn−1∪Fn

λFqF =
∑

G∈Fc
μGqG .

Looking at the right-hand sidewe see that all the coordinates ofv of typexχ1...χn−2ss′ for
s �= s′ are zero. Let us fix χ1, . . . , χn−2, s ∈ S and we shall prove that the coordinate
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xχ1...χn−2ss of v, xχ1...χn−2ss(v), is 0. Let us split the sum
∑

F∈Fn−1∪Fn
into two terms

(although this decomposition may not be unique):
∑

F∈Fn−1
λFqF +∑

H∈Fn
λHqH .

We denote by F ′ the restriction of a forest F to T ′. Note that

xχ1...χn−2ss(v) = πsxχ1...χn−2s

⎛

⎝
∑

F∈Fn−1

λFqF ′

⎞

⎠ + πsxχ1...χn−2s

⎛

⎝
∑

H∈Fn

λHqH ′

⎞

⎠ .

For each α ∈ S we denote by a(α) the value of the coordinate xχ1...χn−2α of∑
F∈Fn−1

λFqF ′ and by b(α) the value of this coordinate at
∑

H∈Fn
λHqH ′ . We want

to prove that a(s) + b(s) = 0. Consider s′ and s′′ states in S different from s (this is
possible because κ ≥ 3). As

0 = xχ1...χn−2ss′(v) = πs′a(s) + πsb(s
′),

0 = xχ1...χn−2s′s(v) = πsa(s′) + πs′b(s),

0 = xχ1...χn−2s′s′′(v) = πs′′a(s′) + πs′b(s
′′), and

0 = xχ1...χn−2s′′s′(v) = πs′a(s′′) + πs′′b(s
′),

we have

a(s) + b(s) = − πs

πs′
(b(s′) + a(s′)) = π ′

s

πs′′
πs

πs′
(a(s′′) + b(s′′)).

But now we use the analogous relations between a(s), a(s′′), b(s), b(s′′):

0 = xχ1...χn−2ss′′(v) = πs′′a(s) + πsb(s
′′) and

0 = xχ1...χn−2s′′s(v) = πsa(s′′) + πs′′b(s),

in order to obtain that a(s) + b(s) = − πs
πs′′

(b(s′′) + a(s′′)). Therefore, a(s) + b(s) =
−a(s) − b(s) and this quantity vanishes.

Applying Grassmann’s formula again, we have 〈qF | F ∈ Fn−1 ∪ Fn〉 ∩ 〈qF | F ∈
Fc〉 = 0 and

dim Eπ
T = dim(〈qF | F ∈ Fn−1〉 + 〈qF | F ∈ Fn〉) + dim〈qF | F ∈ Fc〉.

We have already seen that the first term is equal to F2n−2. The second term is equal to
F2n−3 by Lemma 8 and the induction hypothesis. Therefore dim Eπ

T = F2n−1 = |FT |.
Let us assume now that T is not binary.We already know that Eπ

T = 〈qF | F ∈ FT 〉
and we only need to check that the vectors qF , F ∈ FT , are linearly independent. As
the forests in T are also subforests of any binary tree that refines T , these vectors are
linearly independent by the binary tree case proved above. This finishes the proof.

Recall that Lπ = (Eπ )⊥ and Lπ
T = (Eπ

T )⊥ and therefore the quotient space Lπ
T /Lπ

of linear topology invariants is isomorphic to Eπ/Eπ
T . As an immediate consequence

of Theorems 1 and 2 we have:
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Corollary 1 The dimension of the space of linear topology invariants is |k |−|co(T )|
if π is either a generic distribution or the uniform distribution, or κ ≥ n (and in this
last case the dimension equals |I nc(T )|).

As a consequence of Theorem 2, we are able to provide an algorithm to obtain a
basis of the space of linear topology invariants for any tree T , Lπ

T /Lπ . To do so, note
that if proj is the orthogonal projection from Eπ to the subspace Lπ

T = (Eπ
T )⊥, then

proj provides an isomorphism between Eπ/Eπ
T and Lπ

T /Lπ and therefore we have:

Algorithm.

1. For each F ∈ FT compute the coordinates of the vector qF ∈ Eπ
T .

2. Complete the basis {qF | F ∈ FT } by vectors v1, . . . , vd from Eπ in order to
obtain a basis of Eπ .

3. Then the classes of proj (v1), . . . , proj (vd) form a basis of the space of linear
topology invariants Lπ

T /Lπ .

Note that step 2 can be done using the Steinitz exchange lemma and the spanning
set of vectors of Eπ provided in Theorem 1.

We prove now that Lake-type invariants suffice to define the space of linear topology
invariants of a tree when κ ≥ n and π is the uniform distribution. We first need a
combinatorial lemma.

Lemma 9 For any phylogenetic tree T on [n] and any partition σ that is incompatible
with T there exist two blocks B, B ′ of σ and leaves x ∈ B, x ′ ∈ B ′ and an interior
vertex v of T in the path connecting x and x ′ for which the following holds:

For each leaf l of T in the same connected component of T − v as x, l ∈ B or
{l} ∈ σ .
For each leaf l of T in the same connected component of T − v as x ′, l ∈ B ′ or
{l} ∈ σ .

Proof First suppose that σ has no singleton blocks. Let us say that an edge e = {u, v}
of T is terminating if:

(i) all the leaves of T that are in the subtree te of T − v containing u are contained
in a single block of σ (say, Bi ), and

(ii) at least two of the other subtrees of T − v contain elements of [n] not in Bi .

For each such terminating edge e delete the pendant subtree te from T and label u
by Bi . Let T ′ be the resulting tree. This tree T ′ has at least four leaves (since σ is
incompatible with T ) and so T ′ has a cherry (two leaves that are adjacent to a shared
vertex v). This vertex v and the label sets of the incident leaves (B and B ′) then satisfies
the property claimed in the lemma. The extension to allow σ to have singleton blocks
is now straightforward—we can simply delete them first, repeat the argument above,
and add them in afterwards.

Corollary 2 If πU is the uniform distribution and κ ≥ n, then the Lake-type invari-
ants of Proposition 3 and model invariants generate the space of linear phylogenetic
invariants for T .
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Proof We omit the superscript πU for the spaces of linear invariants in this proof. By
Lemma 7(b) the space of model invariants L is spanned by the polynomials xχ − xχ ′
for σ(χ) = σ(χ ′) and has dimension κn − |n| (because κ ≥ n). We also have
that dim LT = κn − dim EπU

T = κn − |FT | = κn − (|n| − |Inc(T )|) and dim L =
κn−dim EπU = κn−|n|. Hence,we have dim LT /L = dim LT −dim L = |Inc(T )|.
So we need to prove that Lake’s invariants give a set of |Inc(T )| linearly independent
vectors in LT /L .

Note that in LT /L we can work with polynomials in indeterminates xσ , σ ∈ n .
Let us prove that, if σ is an incompatible partition on T , then xσ is a linear com-

bination of xσ ′ for compatible partitions σ ′ of size > |σ |. To this end, we proceed by
induction on m = n − |σ |.

If m = 0 or 1, then σ is convex on T and there is nothing to prove. Let m ≥ 2
and assume that we have proved the statement when n − |σ | is smaller than m. Let
σ = {B1, . . . , Br } and we call s1, . . . , sr the states associated to σ . Assume first that
σ has no singletons. Then, according to Lemma 9 we can find two blocks of σ , say
B1, B2, and an interior vertex v for which all leaves in one of the subtrees T ′

1 of T − v

are in B1, and all leaves in one of the other subtrees T ′
2 of T − v are in B2. We write

l ′i for the set of leaves in T ′
i so that Bi is the disjoint union of l ′i and another set li .

We let E be the event that leaves Bi are in state si for i ≥ 3, leaves in l1 are in state
s1 and leaves in l2 are in state s2. As the fully symmetric model satisfies the partial
separability property (PS) and as |σ | ≤ n−2 ≤ κ −2, we can consider two new states
s′
1, s

′
2 to apply Proposition 3 (with t = T ′

1 and t
′ = T ′

2). Thus we obtain the following
linear invariant (written in terms of partitions because the states do not matter, as soon
as they are different):

xσ + xl1|l ′1|l2|l ′2|B3|...|Br − xl1|l ′1|B2|B3|...|Br − xB1|l2|l ′2|B3|...|Br .

Note that all partitions involved in this expression, except for σ , have size larger
than |σ | and we can apply the induction hypothesis to any xσ ′ appearing here with σ ′
incompatible, to write xσ as a linear combination of x′

σ ′s using only compatible σ ′.
If σ has singletons, we remove these singletons in T and σ obtaining a tree T0 and a

partition σ0 without singletons on T0. We apply the previous argument to σ0 and T0 to
obtain a linear invariant. Then we apply the Extension Lemma 6(a) recursively to add
singletons and we end up also with a linear polynomial that involves σ and partitions
of larger size. Hence, we can apply the induction hypothesis again.

The linear invariants obtained in this way for each incompatible partition σ are
of Lake-type and form a set of linearly independent vectors in LT /L because they
involve partitions of larger size.

Remark 4 Case κ = 2. For κ = 2, Theorem 2 and Corollary 2 do not apply. In this
case it is already known (see Matsen et al. 2008) that there are no linear topology
invariants for the uniform distribution πU and hence DπU

T = DπU for any tree T
(see Matsen et al. 2008). One can actually prove that this also holds for any generic
distribution π and this space has dimension |2| = 2n−1−1, seeMatsen et al. (2008).

Remark 5 Case κ = 3. For κ = 3 and n = 4, we cannot apply Corollary 2 either. But
in this case we can provide another topology invariant. We describe it in the following
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lemma for n = 4 but can be easily generalized for the uniform distribution to any tree
by using a similar argument as in Proposition 3. Moreover, it is not difficult to see that
for κ ≥ 4 it can be derived form Lake-type invariants.

Lemma 10 For the tree 12|34 and any positive distribution π on a set S of κ ≥ 3
states, the polynomial

x̃xyxy + x̃xyyz + x̃xyzx − x̃xyyx − x̃xyxz − x̃xyzy, (6)

for any three different states x, y, z ∈ S, is a topology invariant if T evolves under the
EI/RC model.

Proof According to Lemma 3 we need to prove that (6) vanishes when we evaluate
it at the points qF , F ∈ FT . If F is a forest such that σ(F) does not refine any of
the partitions {{1, 3}, {2, 4}}, {{1, 4}, {2, 3}}, then the coordinates that appear in (6)
are all zero. If σ(F) refines {{1, 3}, {2, 4}}, then σ(F) is either {{1, 3}, {2}, {4}}, or
{{2, 4}, {1}, {3}} or the trivial forest. In the first two cases (6) evaluated at qF vanishes.
As the evaluation of any coordinate x̃ at the point associated to the trivial forest is one,
it also vanishes in this case. The remaining cases follow from the symmetry of leaves
3 and 4 in (6).

Remark 6 Case κ = 4. For n = 5 not all linear topology invariants are of Lake-type.
In Fu (1995) a complete list of 17 (= |4| − |co(T )| = 61− 34) linear invariants that
generate the space of linear topology invariants is given. For example, for the fully
symmetric model on the set of states {x, y, z, w} (i.e. Jukes–Cantor model),

xxyyxy + xxyzwz − xxyyzy − xxyzxz

is a topology linear invariant that cannot be described by Proposition 3.

7 Explicit linear invariants for quartet trees

In this section we assume that κ ≥ 4 and we shall deal with quartet trees and the star
tree on four leaves. Note that in the previous section we gave an explicit description of
linear phylogenetic invariants only when the distribution was uniform. For a generic
distribution π we managed to compute the dimension of the space of linear phyloge-
netic invariants, but we did not provide a explicit set of generators. We do it in this
section for the case n = 4, κ ≥ 4, and any distribution π .

Remark 7 In the case of quartet trees on the set of taxa X = [4], the possible tree
topologies are 12|34, 13|24, 14|23, and the star tree T∗. As the star tree is a subtree of
the others, the vector space of phylogenetic mixtures is

Eπ =〈qF | F ∈ F12|34〉+〈qF | F ∈ F12|34〉+〈qF | F ∈ F13|24〉+〈qF | F ∈F14|23〉.

By Theorem 2 we know that the vectors qF are linearly independent if we let F move
in the set of full subforests of the tree A|B. As F12|34,F13|24 and F14|23 intersect at

123



Phylogenetic mixtures and linear invariants for equal input models 1133

the set of forests for the star tree T∗, in order to check whether a homogeneous linear
polynomial vanishes at the vectors of Eπ one needs to check whether it vanishes at the
15 vectors of Tables 1, 2 and 3 that correspond to 12 subforests of T∗ and one forest
qA|B for each refined quartet).

Proposition 4 Let x, y, z, w be four different states and define

βx,y = π2
x x̃xxxy + πxπy[x̃xxyy + x̃xyxy + x̃yxxy]

+πxπy[x̃zwxx + x̃zxwx + x̃xzwx ] + π2
y x̃xyzw,

δx,y = π2
x [πx x̃xxxx + πyx̃xxxy + πzx̃xxxz + πwx̃xxxw]

+πxπy[πx x̃xxyx + πyx̃xxyy + πzx̃xxyz + πwx̃xxyw]
+πxπy[πx x̃xyxx + πyx̃xyxy + πzx̃xyxz + πwx̃xyxw]
+πxπy[πx x̃yxxx + πyx̃yxxy + πzx̃yxxz + πwx̃yxxw]
+π2

y [πx x̃xyzx + πyx̃xyzy + πzx̃xyzz + πwx̃xyzw].

Then following are linear model invariants for quartet trees evolving under the
E I/RC model:

πyx̃xxyy + πzx̃xxyz − πyx̃xxzy + πzx̃xxzz (7)

πx x̃xxyz + πwx̃xwyz − πwx̃wwyz + πx x̃wxyz (8)

βx,y − βy,x (9)

δx,y − δy,x (10)

One obtains analogous linear model invariants by considering any permutation of the
set of leaves.

Proof From the extension Lemma 6(b) it follows that (7) and (8) are model invariants.
Indeed, if we consider the star tree T2 on two leaves, then it is easy to check that

πyx̃yy + πzx̃yz − πyx̃zy − πzx̃zz

is a linear phylogenetic invariant. By identifying T2 with the star tree T3,4 on leaves 3, 4
we can apply Lemma 6(b) with μ = xx to obtain (7) for the quartet tree T = 12|34
(because T can be obtained by attaching the tripod tree T1,2,l to the edge leading to
leaf 3 of T2). In particular, (7) vanishes for the star tree T∗ on four leaves. Similarly,
in order to see that (8) is a phylogenetic invariant for the star tree T∗, we use the
phylogenetic invariant

πx x̃xx + πwx̃xw − πwx̃ww − πx x̃wx

for the tree T2 = T1,2 and apply Lemma 6(b) with μ = yz. By Lemma 6(c) we see
that (8) is a phylogenetic invariant for the quartet tree 12|34 (and hence also for the
star tree T∗).

123



1134 M. Casanellas, M. Steel

In order to prove that (7) and (8) are model invariants, it only remains to check that
these expression vanish when evaluated at q13|24 and q14|23, which is straight forward
because all coordinates involved in the expressions are 0 for these vectors.

We check now that (9) and (10) are model invariants having Remark 7 in mind.
Looking at Table 1, we observe that βx,y (respectively δx,y) evaluated at q• is π2

x +
6πxπy + π2

y (resp. π
2
x + 3πxπy + π2

y (πx + πy + πz + πw)). As these expressions are
symmetric for x and y, (9) and (10) vanish in this case.

Now we consider the other vectors in Table 1, qB , where B is a block of m leaves,
m ≥ 2, and the partition associated to this point is B and singleton blocks.

We start with m = 2. Using the equalities of lemma 4, we can see that βx,y

and δx,y are symmetric under the permutation of leaves 1,2, and 3. Thus we only
need to consider that B is formed either by {1, 2} or by {3, 4}. In the first case, βx,y

evaluated at qB is πx + πy and δx,y is (πx + πy)(πx + πy + πz + πw). As these
expressions are symmetric in x and y, (9) and (10) alsovanish in this case. If B = {3, 4},
then the evaluation of βx,y at qB equals πx + πy and the evaluation of (10) gives
π2
x + 3πxπy + π2

y . Again, these are symmetric in x, y and (9), (10) vanish.
Now we consider m = 3. Let us assume first that B = {1, 2, 3}. In this case, the

evaluation of βx,y at qB equals 1 and the evaluation of δx, y is πx + πy + πz + πw.
Therefore (9) and (10) vanish at qB . If B contains the leaf 4, then all terms in the
evaluation of βx,y at qB are zero and the evaluation of δx, y at qB isπx +πy . Therefore
(9) and (10) also hold for these vectors.

If m = 4, then (9) vanishes trivially because all its terms are 0. Moreover δx, y is
equal to 1 when evaluated at q1234 and there fore both equations hold for this vector.

The only remaining cases to check correspond to the vectors q12|34, q13|24 and
q14|23 of Tables 2 and 3. As βx,y is equal to 1 and δx,y is equal to πx + πy when
these expressions are evaluated at these vectors, both Eqs. (9) and (10) vanish on these
vectors.

Note thatwhenwe apply a permutation of the set of leaves, the resulting polynomials
are phylogenetic invariants becausewe have just proven that the original ones are linear
model invariants.

Theorem 3 For any distribution π , the space of linear model invariants Lπ for n = 4
and κ ≥ 4 is generated by the phylogenetic invariants of Proposition 4 together with
x̃χ − x̃χ ′ for any χ ≡ χ ′ and has dimension κ4 − B4 = κ4 − 15.

For the fully symmetric model we have already seen in Remark 2 that xχ − xχ ′
are linear phylogenetic invariants if σ(χ) = σ(χ ′). In this case this set of invariants
defines the same vector space as the phylogenetic invariants in Theorem 3.

Remark 8 Although one could replace (9) by other phylogenetic invariants obtained
from marginalization from a phylogenetic invariant relating x̃xxy and x̃yyx on the
tripod, this expression would have less symmetries than (9) and therefore we decided
to use (9) instead (similarly for (10)).

Proof We let Fπ be the space of vectors where all the linear polynomials in the
statement vanish. Then we shall prove that for the vectors in Fπ , any coordinate x̃χ
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can be expressed as a linear combination of the following 15 coordinates:

x̃xxxx

x̃xxxy, x̃xxyx , x̃xyxx , x̃yxxx

x̃xxyy, x̃xyxy, x̃xyyx

x̃xxyz, x̃xyxz, x̃xyzx , x̃yxzx , x̃yxxz, x̃yzxx

x̃xyzw

This will prove that Fπ is a vector space of dimension 15 or lower. By Lemma 7
we know that dimDπ is ≥ |κ | − 1, which is B4 − 1 = 14 for n = 4. As we have the
inclusion Dπ = Eπ ∩ H ⊆ Fπ ∩ H this will finish the proof.

First note that by Lemma 4 we have x̃xxxy′ = x̃xxxy , x̃xxy′z′ = x̃xxyz , x̃x ′y′z′w′ =
x̃xyzw for any y′ �= x, x ′, z′ �= y, y′, x, x ′, w′ �= x, y, z, x ′, y′, z′.

Using the equation (8) = 0 one can write x̃x ′x ′y′z′ as a linear combination of x̃xxyz

and x̃xyzw. The Eq. (7) = 0 allows us to put x̃xxy′y′ as a linear combination of x̃xxyy

if y′ �= y. In order to write x̃yyxx (or similarly x̃yxxy) in terms of the allowed coordi-
nates we need to do two steps. We use expression (7) three times to put first x̃yyxx in
terms of x̃yyzz first, then x̃yyzz in terms of x̃xxzz and finally x̃xxzz in terms of x̃xxyy .
Interchanging the role of leaves 1,2 with 3,4 we also obtain x̃x ′x ′yy as a linear combi-
nation of x̃xxyy if x ′ �= x . In the same way, we can use the Eq. (9) = 0 to put x̃x ′x ′x ′y′
as a linear combination of x̃xxxy and other coordinates which we now know that are
linear combinations of the allowed coordinates. Finally, we use the Eq. (10) = 0 to put
x̃x ′x ′x ′x ′ for x ′ �= x as a linear combination of x̃xxxx and other allowed coordinates.

By considering these relations above and all permutations of the leaves, we end
up with every coordinate written as a linear combination of the allowed list of 15
coordinates.

We now consider the two linear topology invariants that we obtained in Example 1:
in terms of the x̃′s above, the corresponding equations for the quartet tree 12|34 these
are

H1 : x̃xyxy + x̃xyzw = x̃xyzy + x̃xyxw

H2 : x̃xyyx + x̃xywz = x̃xyyz + x̃xywx .

Equations H1 and H2 are linearly independent and drop the dimension by two.
In total, we have that Dπ

12|34 is contained in an affine space Eπ ∩ H ∩ H1 ∩ H2 of
dimension 12. As the dimension of Dπ

12|34 is 12 and for the star tree dimDπ
T∗ = 11 we

have:

Corollary 3 For n = 4 and any distribution π one has

Dπ = Eπ ∩ H

Dπ
12|34 = Eπ ∩ H ∩ H1 ∩ H2

Dπ
T∗ = Eπ ∩ H ∩ H1 ∩ H2 ∩ H3

123



1136 M. Casanellas, M. Steel

where H3 : x̃xxyy + x̃xzyw = x̃xzyy + x̃xxyw and T∗ denotes the star tree on four
leaves. In particular, Lake-type invariants generate all linear topology invariants for
quartet trees evolving under the E I model.

8 The infinite-state random cluster model RC∞

Recall that in the random cluster model, each edge of T is cut with some probability
θe to obtain a resulting partition σ of the leaf set X . Each block is then assigned a
state independently according to the distribution π . However, we could just consider
the partition σ itself as the output of this process (rather than assigning states, which
has the effect of combining some blocks together when they receive the same state).
We call this the infinite state RC model RC∞ since it has a natural interpretation as
the limiting distribution on partitions induced by the E I/RC model as the number of
states κ in S tends to infinity when states have at least roughly similar probabilities.

More precisely, under the RC model, the probability that two blocks of σ are
assigned a same state in the equal input model is at most n

∑
α∈S π2

α , by Boole’s
inequality (note that there are at most n blocks in σ ). Suppose that πα ∈ [a/k, b/k]
for some fixed a, b then as k = |S| → ∞ all blocks of σ receive distinct states with
probability converging to 1 (this restriction on π can be weakened a little further).
The RC∞ model is sometimes referred to as the ‘Kimura’s infinite alleles’ model in
phylogenetics, and it was studied mathematically in Mossel and Steel (2004).

8.1 Linear invariants for RC∞

The linear phylogenetic invariants for the infinite-state random cluster model are par-
ticularly easy to describe.

Let pσ = PT (σ |
) be the probability of generating partition σ on T under the
RC∞ model with edge cut probabilities 
 = (θe), and recall the definitions of co(T )

and Inc(T ) from Sect. 4.1.

Proposition 5 Under the RC∞ model:

(i) PT (σ |
) = 0 for all 
 if and only if σ ∈ Inc(T ).
(ii) {xσ : σ ∈ Inc(T )} forms a basis for the vector space LT of linear phylogenetic

invariants for T and of the space of linear topology invariants. Consequently,
this space has dimension |Inc(T )| = Bn − |co(T )|.

(iii) The space of all phylogenetic mixtures on T has dimension | co(T )| − 1.
(iv) The space of all phylogenetic mixtures on all n-leaf trees under the RC∞ model

has dimension Bn − 1.

Proof (i) Suppose that σ ∈ Inc(T ). Then there exists two blocks B, B ′ of σ and
leaves x, y ∈ B and x ′, y′ ∈ B ′ for which the paths P(T ; x, y) and P(T ; x ′, y′)
share at least one vertex. Now since x, y ∈ B and x ′, y′ ∈ B ′ the only way to
generate σ under RC∞ is if none of the edges in the two paths P(T ; x, y) and
P(T ; x ′, y′) is cut. Since these paths intersect on a vertex this implies that x and
x ′ must be the same block, i.e. that B = B ′. Thus σ cannot be generated with
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positive probability under the RC∞ model. Conversely, suppose that σ is convex
on T . Then set θe = 0 for all edges in {T [B] : B ∈ σ } and set θe = 1 for all
other edges. Then pσ = 1.

(ii) If
∑

λσxσ is a linear phylogenetic invariant, then for any σ convex on T we can
choose a set of parameters 
 such that pσ = 1 (see above). This implies that
λσ = 0 for any σ ∈ co(T ). This and (i) show that the set spans the space of
all linear phylogenetic invariants, and linear independence follows immediately
from the observation that each polynomial involves a variable not present in
any other polynomial in this set. Note that all these polynomials are topology
invariants.

(iii) The space of phylogenetic mixtures DT on T is equal to ET ∩ H where ET is
the space of vectors on which the linear phylogenetic invariants vanish and H is
the hyperplane defined by the trivial equation

∑
σ xσ = 1 (the sum is over all

partitions of [n]). By (ii), ET has dimension Bn − Inc(T ) = |co(T )| and we are
done.

(iv) Note that in the basis {xσ : σ ∈ Inc(T )} of (ii) there are no model invariants.
Therefore, the set D of phylogenetic mixtures on all trees coincides with the
trivial hyperplane H and has dimension Bn − 1.

The construction of certain quadratic phylogenetic invariants for RC∞ is also quite
easy. Let x ∼ y denote the event that x and y are in the same block of the partition
generated by a phylogeny under the RC∞ model, and let p(x, y) denote the probability
of that event. Note that p(x, y) is a sum of pσ values over all σ for which x and y are
in the same block. Then p(x, y) = ∏

e∈P(T ;x,y)(1− θe), where P(T ; x, y) is the path
in T between x and y. It follows (from the four point condition) that if the quartet tree
obtained by restricting T to x, y, w, z is either xy|wz or the star tree, then

p(x, w)p(y, z) − p(x, z)p(y, w) = 0.

9 Future work

It would be interesting to generalize Lake-type invariants in such a way that they
generate the space of linear topology invariants for κ < n (cf. Corollary 2). On the
other hand, it also would be useful to give explicit linear model invariants (with many
symmetries) for any number of leaves, as was done in Sect. 4 for n = 3, 4. These
model invariants could be used for model selection as it was done in Kedzierska et al.
(2012) for the uniform distribution. Extending the work of Sect. 4 to other models is
also of interest because this would increase the range of models that can be considered
in certain model selection software such as SPIn (http://genome.crg.es/cgi-bin/phylo_
mod_sel/AlgModelSelection.pl).
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