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Abstract Lymphocyte selection is a fundamental process of adaptive immunity. In
order to produce B-lymphocytes with a target antigenic profile, mutation selection and
division occur in the germinal center, a specific part of lymph nodes. We introduce in
this article a simplified mathematical model of this phenomenon, taking into account
the main mechanisms. This model is written as a non-linear, non-local, inhomoge-
neous second order partial differential equation, for which we develop a mathematical
analysis.We assess, mathematically and numerically, in the case of piecewise-constant
coefficients, the performance of the biological function by evaluating the duration of
this production process as a function of several parameters such as the mutation rate
or the selection profile, in various asymptotic regimes.
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1 Introduction

Understanding the immune system is a key challenge in current biological, medical
and pharmaceutical research, leading to revolutionary biomedical applications such
as vaccination, immunotherapy or specific antibody production.

Adaptive immunity is responsible for the evolution of the antibody repertoire, a
learning process necessary to identify and fight new foreign pathogens. This adaptation
relies on a Darwinian process of Division-Mutation-Selection (DMS) occurring in the
germinal centers (Kelsoe 1996), where an explosion of the mutation rate associated
with B-cells division, called somatic hypermutation (Teng and Papavasiliou 2007),
is observed, hence providing a unique example of an evolutionary process occurring
within living organisms.

Although the general qualitative description of this process iswell-established in the
literature (Wabl et al. 1999; Neuberger et al. 1998; Diaz and Casali 2002), the quantita-
tive assessment of this DMS process has remained largely unexplored experimentally,
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in particular due to the difficulty to gather precise phylogenetic data of the B-cell reper-
toire during the various phases (Dunn-Walters et al. 2002). Recently, several biological
studies (Gitlin et al. 2014; Victora 2014; Tarlinton 2014) have provided new exper-
imental insights about the microscopic features of B-cell dynamics in the germinal
center.Moreover, several key questions remain highly debated, such as the recycling of
selectedB-cells (Kepler andPerelson 1993;Meyer-Hermann et al. 2001) or the neutral-
ity of the mutation process. Over the last few years, this system has been studied using
relatively detailed computational models and numerical simulations Swerdlin et al.
(2008), Meyer-Hermann (2002), providing a method to investigate several hypothesis
and phenomena such as B-cell migration in the lymph node or the impact of recycling.

The aim of this article is to introduce a simplified macroscopic mathematical model
of this process, in order to establish rigorous mathematical foundations and to inves-
tigate theoretically the impact of a few key parameters, such as the mutation rate or
the selection profile, on the performance of the B-cell production, characterized by
the duration of the process or the final quality of the repertoire.

Mathematical modeling of population dynamics can be approached either from a
microscopic agent-based point of view, considering the behavior of many individuals,
leading to a stochastic system in high dimension, or from amacroscopic point of view,
where global quantities such as the number of individuals in a given state are consid-
ered, leading to partial differential equations (PDE) or integro-differential equations.
In this article, we focus on the latter approach, and introduce a PDE model describing
a population of B-cells subject to division, mutation and selection. In our framework,
the division and mutation features give rise to classical linear diffusion terms, whereas
selection introduces an inhomogeneous term.When a sufficient amount of B-cell with
desired properties has been selected, the overall process shall terminate, which is
modeled through a feedback term. As a result, the proposed model is a non-linear,
non-local and inhomogeneous elliptic PDE.

Several mathematical models of evolutionary dynamics with mutation and selec-
tion have been previously studied, especially in population dynamics (Perthame 2006;
Bürger 2000; Nowak 2006), ranging from the earlyworks of Fisher (1999) to advanced
mathematical models of adaptive dynamics. The model we introduce in this article
has the particularity to combine spatial inhomogeities (in the space of traits) with a
non-linear global feedback, which give rises to a specific PDE, for which we establish
general properties, as well as precise estimates describing the impact of relevant para-
meters. In particular, our aim is to understand how the interplay between the mutation
rate and the selection function influence the characteristic time-scale of the B-cell
production process.

We first start with existence and uniqueness results for solutions of our new model.
This gives a precise meaning to the solution, its regularity under the more general
hypotheses. From the mathematical point of view, the main difficulty is due to the
stiff, non-linear and non-local source term. The non-local feature is expressed in time
and in the trait space.

In a second step, we compute, for a birth rate that is piecewise constant, the produc-
tion time, i.e, the time t�0 for which �0, a threshold selected population, is reached.
This is performed with respect to two parameters of the model: ε the width of the
selection window, and μ the mutation rate.
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The results of this study lead to several conclusions:

– For a general traits-square-integrable initial population of B cells,
– If ε is small enough, and μ is greater than a threshold value, then t�0 behaves
as | log ε|, and is independent on μ,

– For a fixed ε, if μ is small, we observe that t�0 tends towards a constant that
depends on the initial birth rate, ε and initial conditions.

– For a fixed ε, when the mutation rate becomes large, t�0 tends to another finite
value, still depending on the same parameters.

– For an initial datum which is a Dirac mass supported at a given trait z outside of
the selection window:
– If the domain is unbounded, we show that when μ tends to either 0 or ∞, t�0
blows up,

– On the other hand, when the domain is finite, t�0 stays bounded for μ growing
large.

Intuitively these results can be interpreted by the paradigm: the larger the size of
the repertoire, the more likely there should be an optimal mutation rate in terms
of efficiency.

The distinction between different initial conditions comes from a debate in the
literature, opposing supporters of mono-clonal germinal centers at the beginning of
the process (Perelson and Weisbuch 1997) to authors trying to prove and measure
oligo-clonal initial populations (Faro and Or-Guil 2013).

The article is organized as follows. In Sect. 2, we define mathematically our model
and discuss its motivations, assumptions and limitations. In Sect. 3, we derive general
results concerning existence and uniqueness of solutions, as well as their quantitative
properties. To gain further understanding into the dynamical behavior of the system
with respect to the data, we study in Sect. 4 the asymptotic behavior of t�0 when ε

becomes small, whereas in 5 we consider for a fixed ε, the asymptotic regimes when
μ is either large or small. This section focusses as well on different types of initial B-
cell population. Throughout the paper, theoretical results are illustratedwith numerical
simulations.

2 Mathematical model

We consider the time evolution of a population of lymphocytes during the Division-
Mutation-Selection process within the germinal center.

2.1 Biological background

In this first section, we provide an elementary summary of the relevant biological
background to describe our modeling approach. For the interested reader, we refer to
Abbas et al. (2012) for a more detailed account.

The immune response to an external pathogen (virus, bacteria, etc.,) involves many
different types of cells and employs various strategies to eliminate the pathogenic
sources.
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One of the most important way to fight pathogens relies on the bonding between
antigens and antibodies, which triggers an efficient immune response, recruiting many
other agents such as macrophages or T-lymphocytes. Antibodies are macromolecular
compounds, made of peptidic chains, and whose purpose is to bond with antigens,
which are complementary molecules presented at the surface of pathogens. The
antibody-antigens (A–A) bonding can be thought as putting a key in a lock, and
is characterized by the concept of affinity, which quantifies the likelihood that this
bonding occurs for a specific A–A pair.

The production of antibodies in the immune response is ensured by the B-type
lymphocyte, which is an immune cell able to produce a single specific antibody.
Therefore, it is essential for B-cells to be able to learn how to produce high affinity
antibodies with respect to a given antigen. Studying this learning process is precisely
the purpose of the present article.

Once a new antigen, called the target, is detected by the immune system, it is
captured by the follicular dendritic cells, and brought to the lymph nodes. A simplified
vision of the process of affinity maturation in the germinal center, a specific part of
the lymph node, can be summarized as follows:

1. An initial population of a few immature B-cells enters in the germinal center.
The affinity between the initial antibodies carried by these B-cells is in general
relatively low, although it is not known whether this initial choice of B-cells is
generic, or is already somehow adapted to the target.

2. During the first three days, B-cells divide and the population increases, until it
migrates to another part of the germinal center, called the light zone. Notice that
this population ofB-cells is only able to produce a few types of different antibodies,
typically less than 10.

3. In the light zone, the B-cells are now subject to a full division-mutation-selection
process, which is the focus of our model.
– Division-Mutation: At each division, a single B-cell produces two cells, one of
which has undergone a significant amount of mutations in the part of its DNA
responsible for the production of the antibody peptide sequence. This process
is called somatic hypermutation, since the mutation rate is now increased to
extremely high levels, several orders of magnitude higher than in normal cell
divisions.

– Selection: follicular dendritic cells are in the light zone and present at their
surface the target antigen. B-cells are also presenting their antibody at their
surface and wander in a seemingly random manner in the light zone. Then,
the affinity between the presented antibody and the target antigen determines
the probability that a bonding occurs and lasts long enough. In that case, the
B-cell is selected and receives a signal which enables the cell to escape from
the germinal center. Otherwise, low affinity B-cells, which were not able to
receive such a signal, die.

4. After selection, a B-cell might have several fates: either it transforms into a plasma
cell, which is able to produce and release antibodies in order to fight the pathogen,
or into a memory cell whose aim is to remember the antigen (therefore being able
to produce quickly high affinity antibodies, in case the pathogen returns later). A
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third possible fate which is also discussed in the literature (Meyer-Hermann et al.
2001) is the possibility for the selected B-cell to come back inside the germinal
center and to be subject a second time to the DMS process.

5. At some point, this affinitymaturation terminates, and the precise biological mech-
anisms responsible for the determination of the stopping time remain unclear.
However, it seems reasonable to consider that the process would stop as soon as a
sufficient quantity of selected B-cell has escaped the germinal center.

2.2 Assumptions of the model

Of course, the above description is only a simplified and partial overview of a process
which is in reality more complex and involves many different cell types, in particular
T-cells. However, we think that it is neither possible nor wishful to take into account
all the details of real biological processes into a mathematical model. Therefore, after
running numerical simulations of various models (agent-based, stochastic models,
PDE models with many variables), and motivated by the idea of introducing a simple,
yet non-trivial, macroscopic mathematical model of the evolution of a population of
B-cells during DMS phase, we have identified and selected what we consider to be
the key parts of this complex process.

Space of traits:We consider that each B-cell is characterized by a trait corresponding
to a specific antibody sequence. Instead of a discrete space of traits, composed with
strings of amino-acids (as for instance in Balelli et al. 2016a, b), we view here the trait
as an abstract property of the antibody and we therefore consider the space of traits to
be made with real numbers, for instance the interval [0, 1].
Affinity and selection: The target antigen is also characterized by a trait x0 in the
same space, and if x denotes the trait associated with a B-cell, then we consider that
the A-A affinity is given by a function s(x) = F(x0, x): the higher is s(x), the higher
is the likelihood that the B-cell with trait x binds to the target. Since the affinity with
the target summarizes the necessary information about a given B-cell to decide its
fate, it seems reasonable to consider real trait x , directly translated into an affinity
through the function F . However, this model does not address the difficult question of
understanding how a small change in the DNA of the B-cell will result into a change
in the peptide chain of the antibody and finally into a modification of the affinity.

Mutations: In ourmodeling approach,we consider that amutationwill change slightly
the trait x to x + dx in a diffusion manner, and that the affinity will also change
slightly through the function F . This model of mutation does not take into account
the possibility for a small mutation of the DNA to produce a large change in affinity.
One way to overcome this difficulty would be to consider a non-local mutation kernel
instead of a diffusion, but it seems relatively uneasy to us to make precise and justified
assumptions on such a kernel.

Termination: We assume that the termination of the affinity maturation process is
regulated by a measure of the number of selected B-cells. More precisely, we assume
that the division rate is a decreasing function of the number of selected B-cells. There-
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fore, if this number reaches a certain value, the birth rate becomes lower than the death
rate and the population inside the germinal center should extinct.

2.3 Mathematical model

We are now able to define precisely the mathematical model we will consider in this
article. First, we introduce the following notations:

1. Parameters:
– Cell division rate function Q : R → R+ is monotonic decreasing and Q1 ≤

Q(z) ≤ Q0
– Cell death rate d > 0
– Affinity-dependent selection function s(.), peaked around x0, the target.
– Mutation rate μ > 0, which may either be a constant or a bounded function of
the trait μ : R → R

∗+
2. Variables:

– n(t, x) is the quantity of lymphocytes with a trait x
– �(t) is the quantity of selected lymphocytes at time t and is given by:

�(t) :=
∫ t

0

∫
R

s(x)n(t̃, x)dxdt̃

The domain in the trait-space is denoted Ω and could be practically seen as a
distance to a specific target trait. We are now able to formulate the main evolution
equation, for x in the trait space Ω := (0, 1) and t ≥ 0. It is an initial boundary value
problem reading : find the function n solving
⎧⎨
⎩

∂t n(t, x) = (Q(�(t)) − d − s(x))n(t, x) + ∂x (μ∂xn(t, x)), (t, x) ∈ OT := (0, T ) × Ω,

μ∂nn(t, ·) = 0, (t, x) ∈ ΣT := (0, T ) × ∂Ω,

n(0, x) = nI (x), {0} × Ω,

(1)
where the second line is the homogeneous Neumann boundary condition (∂nn :=
∂xn · n), and the third one is the setting of initial data at time t = 0. Notice that in the
case where μ is a constant scalar, then the main equation simply reads:

∂t n(t, x) = (Q(�(t)) − d − s(x))n(t, x) + μ∂xxn(t, x).

3 General results

In this section, we establish general results of existence and uniqueness, as well as
spectral decomposition, concerning system 1 under various assumptions on the coef-
ficients.

3.1 Existence and uniqueness

Here, we present general existence and uniqueness results concerning system (1)
(Theorem 1 for a Lipschitz continuous Q and Theorem 2 for a piecewise constant Q).
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We consider the Banach space

X = C
([0, T ]; L2(Ω)

)
, ‖m‖X := sup

0≤t≤T
‖m(t)‖L2(Ω),

for some T chosen later. Moreover we set

V (OT ) := L∞((0, T ); L2(Ω)) ∩ L2((0, T ) × H1(Ω))

and we define the form

I (t1, n, η) :=
∫

Ω

n(t1, x) η(t1, x)dx −
∫ t1

0

∫
Ω

n(t, x)∂tη(t, x)dxdt

+
∫ t1

0

∫
Ω

μ∂xn(t, x) · ∂xη(t, x) + (s(x)+d−Q(�))n(t, x) η(t, x)dx .

Definition 3.1 We call a weak solution of problem (1) any solution n ∈ V (OT ) s.t.

I (T, n, η) = 0, (2)

for every function η ∈ H1(OT ) s.t. η ≡ 0 when t = 0. We say moreover that the
solution is consistent with the initial condition if

I (T, n, η) =
∫

Ω

nI (x)η(0, x)dx, ∀η ∈ H1(OT ).

the latter equation will be denoted as the variational formulation associated to the
problem (1).

Hypotheses 3.1 Concerning the data, we assume

(i) The initial data nI (x) belongs to L2(Ω) and is non-negative.
(ii) The function Q is a globally Lipschitz with respect to �, i.e. Q ∈ W 1,∞(R).
(iii) The selection function s is a bounded non-negative function of x .
(iv) The mutation rate μ is a bounded positive definite function of x .
(v) The death rate d is a non-negative constant.

Theorem 1 Under hypotheses 3.1, there exists a unique positive weak solution n ∈
V (OT ) for any positive time T .

Proof We suppose in a first step that the constant d is strictly positive. Then we prove
the existence using the Banach fixed point theorem. We define A a closed subset of X

A = {m ∈ X,m > 0, ‖m‖X ≤ CΦ},

123



Mathematical modeling of lymphocytes selection. . . 941

where CΦ is defined so that ‖nI‖2L2(Ω)
+ ‖Q‖2L∞TC2

Φ/(4d) < C2
Φ . We denote by

c1 := ‖Q‖2L∞/(4d). For each m ∈ A, let n be the weak solution associated to the
problem:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂t n(t, x) − ∂x (μ∂xn(t, x)) + (d + s(x))n(t, x) = Q(�(t))m(t, x), (t, x) ∈ OT

�(t) = ∫ t
0
∫
Ω s(x)m(t̃, x)dxdt̃, t ∈ (0, T ),

∂nn(t, x) = 0 (t, x) ∈ ΣT ,

n(t = 0, x) = nI (x) > 0, t = 0, x ∈ Ω.

(3)

This system defines the operator Φ : m �−→ n. We prove that it admits a unique point
in A.

– Existence:
The solution n ∈ V (OT ) exists uniquely by standard parabolic theory (Theorem
5.1 p. 170 chap. III Ladyženskaja et al. 1968) for any givenm ∈ L∞(OT ). The L∞
bound follows the same way by Theorem 7.1 p. 181 (Ladyženskaja et al. 1968).
Moreover by Theorem 4.2 p. 160 we know that

∫ T−h

0
‖n(t + h, ·) − n(t, ·)‖2L2(Ω)

dt = o(h).

– Non-negativeness:
We suppose that m is a positive function in V (OT ) ∩ L∞(OT ). We follow results
from p. 183 Ladyženskaja et al. (1968) and we choose n−

h := min(nh, 0) as a test
function in (2) where nh is the Steklov approximation of n i.e.

nh(t, x) = 1

h

∫ t+h

t
n(τ, x) dτ, ∀(t, x) ∈ (0, T − h) × Ω.

Applying such a test function is possible since n−
h actually does belong to H1(OT ).

Passing to the limit with respect to the small parameter h then gives the identity

1

2

[∫
Ω

(n−)2(τ, x)dx

]τ=t1

τ=0
+
∫ t1

0

∫
Ω

{
μ∂xn∂xn

− + (s(x) + d)nn−} dxdt

=
∫ t1

0

∫
Ω

Qmn−dxdt.

But the support of n− is the set where n ≤ 0 thus one has due to the positivity of
m and Q that

1

2

[∫
Ω

(n−)2(τ, x)dx

]τ=t1

τ=0
≤ 0,
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which gives that

∫
Ω

(n−)2(t1, x)dx ≤ 0, ∀t1 ≤ T .

Since this integral is also non-negative, we deduce that the negative part of n
vanishes, which proves the claimed non-negativeness property.

– The map Φ is an endomorphism in X :
By the same technique as above, we test by nh and pass to the limit with respect
to h (for a more detailed explanation see p. 141-142 Ladyženskaja et al. 1968) in
the weak formulation, which writes:

1

2

[∫
Ω

n2(τ, x)dx

]τ=t1

τ=0
+
∫
Ot1

{μ|∂xn|2+(d + s(x))n2}dxdt

=
∫
Ot1

Q(�(t))m n dxdt,

and applying Cauchy-Schwarz and the Young inequalities on the right hand side
gives

1

2

[∫
Ω

n2(τ, x)dx

]τ=t1

τ=0
≤ ‖Q‖L∞T

4d
‖m‖2X ≤ ‖Q‖L∞T

4d
C2

Φ, ∀t1 < T .

Using the hypothesis on CΦ we then deduce that in turn

∀t ∈ [0, T ], ‖n(t, ·)‖L2 ≤ CΦ,

and thus n ∈ A.
– The map Φ is a contraction:
We denote ni = Φ(mi ) for i ∈ {1, 2}wheremi are two given functions in A. Then
we denote ñ := n1 − n2 and m̃ := m1 − m2, and we have

1

2

[∫
Ω

ñ2(τ, x)dx

]τ=t1

τ=0
+
∫
Ot1

{μ|∂x ñ|2+(d + s(x))ñ2}dxdt

=
∫
Ot1

(Q(�1(t))m1 − Q(�2)m2)ñ dxdt,

≤ 1

4d

∫
Ot1

[
Q(�1)m1 − Q(�2)m2

]2
dxdt + d

∫
Ot1

ñ2dxdt.

We establish a bound for the first term in the latter right hand side

1

4d

∫
Ot1

[
Q(�1)m1−Q(�2)m2

]2
dxdt ≤ t1‖Q‖2L∞

2d
‖m̃‖2X + ‖m2‖2X

2d

∫ t1

0
|Q̃|2dt.
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The last term above can then be estimated using that

∫ t1

0
|Q̃|2dt =

∫ t1

0
|Q(�1) − Q(�2)|2dt ≤ ‖Q‖2Lip‖s‖2L2(Ω)

‖m̃‖2X
t31
3

,

which gives

‖ñ(t1, ·)‖2L2(Ω)
≤ t1(c1 + t21C

2
Φc2)‖m̃‖2X ,

where

c2 = ‖Q‖2L∞
2d

c3 =
‖Q‖2Lip‖s‖2L2(Ω)

6d
.

This finally provides

‖ñ‖X ≤
√
T (c2 + C2

ΦT 2c3)‖m̃‖X

Choose T small enough so that the contraction holds. The local existence and
uniqueness follow from the Banach-Picard theorem.

– Global existence
Denote Sk = ∑k

i=1 Ti . By induction, we assume that existence and uniqueness of
(1) hold until the time Sk with the corresponding boundCk . Now consider the time
interval [Sk, Sk+1], the new problem is the variational formulation corresponding
to the system written in a strong form:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂t n̆in(t, x)=
[
Q(�out (t))−d−s(x)

]
n̆in(t, x)+∂x (μ∂x n̆in)(t, x), (t, x) ∈ (Sk , Sk+1) × Ω,

�out (t) = �out (Sk) + ∫
[Sk ,t]×Ω

s(x)n̆(t̃, x)dxdt̃, t ∈ (Sk , Sk+1) ,

n̆in(t = Sk , x) = n(Sk , x), (t, x) ∈ ({Sk} × Ω,

∂nn̆in(t, 0) = 0. (t, x) ∈ ((Sk , Sk+1) × ∂Ω.

Iterating the same argument as in the first and second steps, existence and unique-
ness hold on this new time interval if there exist (Tk,Ck)k∈N s.t.

⎧⎨
⎩

‖n(Sk, ·)‖2L2 + c1Tk+1C
2
k+1 < C2

k+1,(
c2 + C2

k+1T
2
k+1c3

)
Tk+1 < 1,

∀k ∈ N.

The first condition ensures that the map Φ is an endomorphism while the second
one insures that it is a contraction. Because ‖n(Sk, ·)‖L2 ≤ Ck , the first inequality
holds if we suppose that

C2
k + c1Tk+1C

2
k+1 < C2

k+1.
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944 V. Milisic, G. Wainrib

We choose (Tk) and (Ck) as

Tk := 1

2k c1
, Ck := αk,

where α is s.t.

α <
c1
c3

(4c1 − c2) = c1
2c3d

‖Q‖2L∞

the series Sk = ∑k
i=1 Ti diverges. Thus global uniqueness and existence hold.

For a fixed positive constant d we proved the theorem: there exists a unique weak
solution nd ∈ V (OT ), for any time T , solving

Id(t1, nd , η) = 0, ∀η ∈ H1(OT ) s.t. η ≡ 0 for t = 0.

Testing again with an appropriate averaged test function and passing to the limit gives:

1

2

[∫
Ω

n2d(τ, x)dx

]τ=t1

τ=0
+
∫
Ot1

{μ|∂xnd |2+s(x)n2d}dxdt ≤
∫
Ot1

Q(�d(t)) n
2
d dxdt,

which provides by standard techniques

‖nd‖V (Ot1 ) ≤ Ce‖Q‖L∞ t1‖nI ‖L2(Ω).

This estimate is uniform with respect to d. By weak convergence, one passes to the
limit when d → 0. This proves the theorem in this specific case. 
�

Hereafter we weaken the Lipschitz hypothesis made on Q and we define

Hypotheses 3.2 We suppose that Hypotheses 3.1 (i),(iv) hold, moreover we suppose
that

(ii)’ Q is a smooth function on R\{�0}, it admits two possibly different limits in the
neighborhood of �0 Q± := lim�→�±

0
Q(�).

(iii)’ s is a positive definite function : inf x∈Ω s(x) > 0.

Theorem 2 Under Hypotheses 3.2, one has the same conclusions as in Theorem 1,
except for uniqueness that holds until a time t−0 defined below.

Proof We define Qδ a regularized non-linear source term

Qδ(�) :=
{
Q(�) if � ∈ R\]�0, �0 + δ[,
Q− + Q(�0+δ)−Q−

δ
(� − �0) otherwise.

As Qδ is now Lipschitz continuous, one applies Theorem 1, denoting nδ the corre-
sponding unique solution, it belongs to V (OT ) for any time T , uniformly with respect
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to δ. Moreover, one has also that nδ ∈ C(0, T ; L2(Ω)) uniformly with respect to δ.
Thus, one might extract a subsequence denoted again nδ that converges weakly in
L2(0, T ; H1(Ω)) and weak star in L∞(0, T ; L2(Ω)). For every fixed t ≥ 0, nδ(t, x)
tends to n(t, x) in L2(Ω) weak. This shows that as δ → 0,

∫
Ω

nδ(t1, x)η(t1, x)dx →
∫

Ω

n(t1, x)η(t1, x)dx,
∫
Ot1

nδ(t, x)∂tη(t, x)dxdt →
∫
Ot1

n(t, x)∂tη(t, x)dxdt,

∫
Ot1

μ∂xnδ(t, x)∂xη(t, x)dxdt →
∫
Ot1

μ∂xn(t, x)∂xη(t, x)dxdt,

∫
Ot1

(s(x) + d)nδ(t, x)η(t, x)dxdt →
∫
Ot1

(s(x) + d)n(t, x)η(t, x)dxdt.

It remains to show that

∫
Ot1

Qδ(�δ)nδ(t, x)η(t, x)dxdt →
∫
Ot1

Q(�)n(t, x)η(t, x)dxdt.

– �δ converges strongly to � in C(0, T ).
Indeed, because s ∈ L∞(Ω),

ρδ(t) =
∫ t

0

∫
Ω

s(x)nδ(t, x)dxdt →
∫ t

0

∫
Ω

s(x)n(t, x)dxdt =: ρ(t).

and because s and n are non-negative functions � is a non-decreasing function.
– �δ is a strictly increasing
In the weak formulation I (t, nδ, η) = 0, we set η as a time dependent function
independent on x that solves

{
∂tη = (‖s‖L∞(Ω) + d − Q(�δ(t)))η, t ∈ (0, t1)
η(0) = 1, t = 0

η is then explicit and reads:

η = exp

(∫ t

0
(‖s‖L∞(Ω) + d − Q(�δ(t̃)))dt̃

)
.

We denote hereafter n the average of n with respect to the trait variable :

n :=
∫

Ω

n(t, x)dx .
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946 V. Milisic, G. Wainrib

Finally one has that:

nδ(t) exp

(∫ t

0
(‖s‖L∞(Ω) + d − Q(�δ(t̃)))dt̃

)

= nδ(0) +
∫
Ot

(‖s‖L∞ − s(x))nδ(t̃, x)η(t̃)dx dt̃

the latter term being non-negative, and because the initial condition does not
depend on δ, one concludes:

nδ(t) ≥ n(0) exp

(∫ t

0
(Q(�δ(t̃)) − (‖s‖L∞(Ω) + d))dt̃

)

≥ exp

((
inf

�∈R+
Q(�) − (‖s‖L∞ + d)

)
t

)
=: b(t) > 0

which is positive definite for every finite time and the bound from below is uniform
with respect to δ. Then one remarks that

∂t�δ ≥ inf
x∈Ω

s(x)nδ(t) ≥ inf
x∈Ω

s(x)b(t) > 0

which proves that �δ is strictly increasing for any fixed time uniformlywith respect
to δ provided condition (iii)’ of Hypotheses 3.2.

– Reaching �0:
As �δ is an increasing function whose initial datum is zero, there are two possibil-
ities
1. Either �δ never reaches �0 i.e. �(t) < �0 for every non negative t ∈ R. Then

for all times Qδ(�δ) = Q(�δ) and Q is always regular thus uniqueness results
from Theorem 1 imply that nδ = n a.e. in (0,∞) × Ω . There is nothing to
prove

2. Or there exists a time t0 s.t. �δ(t0) = �0. Again by uniqueness, one has that

nδ(t, x) = n(t, x) a.e (t, x) ∈ (0, t0) × Ω.

and thus this time t0 is equal for every δ. We fix a time t1 = 2t0 and define c
as

c := inf
t∈[0,t1]

n(0) exp

((
inf

�∈R+
Q(�) − (‖s‖L∞ + d)

)
t

)
> 0

We deduce then that in the neighborhood of t0 one can write

�δ(t0 + ω) − �0 > cω, ∀ω > 0.
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Choosing then ω = δ/c, one writes

∫
Ot1

(Qδ(�δ)nδ − Q(�)n)ηdxdt

=
∫

((0,t0)∪(t0+ω,t1))×Ω

(Q(�δ)nδ − Q(�)n)ηdxdt

+
∫

((t0,t0+ω))×Ω

(Qδ(�δ)nδ − Q(�)n)ηdxdt =: R1 + R2

As previously shown nδ(t, x) ≡ n(t, x) everywhere on (0, t0) a.e. x ∈ Ω , thus
R1 reduces to

R1 =
∫

((t0+ω,t1))×Ω

(Q(�δ)nδ − Q(�)n)ηdxdt

=
∫

((t0+ω,t1))×Ω

(Q(�δ)nδ − Q(�)nδ + Q(�)nδ − Q(�)n)ηdxdt

≤ c1‖�δ − �‖L∞(0,t1)‖nδ‖L∞((0,t1);L2(Ω))

+
∣∣∣∣
∫

((t0+ω,t1))×Ω

(nδ − n)Q(�)ηdxdt

∣∣∣∣

where c1 = ‖Q‖W 1,∞(R\B(�0,δ))
, the latter term tends to zero when δ → 0

thanks to weak convergence arguments on nδ . On the other hand,

R2 ≤ √
ω‖Q‖L∞

(‖n‖L∞(0,t1;L2(Ω)) + ‖nδ‖L∞(0,t1;L2(Ω))

) ‖η‖H1(Ot1 )

This proves existence of a weak solution n ∈ V (OT ) of (1). Uniqueness follows up
to the time t−0 . 
�
We end this part with a time asymptotic result.

Proposition 1 Under hypotheses 3.1 and supposing that

d > lim
�→∞ Q(�),

the solution of (1) provides a monotone increasing function �(t) = ∫ t
0

∫
Ω
s(x)n(t̃, x)

dxdt̃ that satisfies

�∞ := lim
t→∞ �(t) < ∞

Proof One has

d

dt
� =

∫
R

s(x)n(t, x)dx ≥ 0,
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948 V. Milisic, G. Wainrib

and thus �(t) is monotone increasing. By contradiction, assume that �(t) → ∞.
Setting n(t) := ∫

Ω
n(t, x)dx and testing the weak formulation with 1 gives

[
n(t) + �(t)

]t=t2
t=t1

=
∫ t2

t1

[
Q(�(t)) − d

]
n(t)dt

Since d > limt→∞ Q(�(t)), for t1 large enough, the right hand side becomes negative
implying n(t) + �(t) shall not increase any more. This contradicts the assumption
�(t) → ∞. We conclude that �∞ < ∞. 
�

3.2 Spectral analysis

In this part, we investigate the spectral decomposition of the solution, in particular
under the assumption of piecewise-linear coefficient Q(.).

3.2.1 Spectral decomposition

As it is usual in the field of parabolic equations (Dautray and Lions 1990), one shall try
the variable separation. To this aim we consider the spectral problem in the trait-space
Ω .

We denote A the operator defined by:

An(x) = −μ∂2xxn(x) + s(x)n(x).

Lemma 1 We suppose that s is a bounded function for almost every x ∈ Ω . We
denote the eigenvaluesΛk (resp. the eigenvectors Vk) ofA the solution of the following
equation: {

AVk = ΛkVk, a.e. x ∈ Ω, ∀k ∈ N

∂x Vk(−1) = ∂x Vk(1) = 0, x ∈ ∂Ω
(4)

All eigenvalues are simple. The sequence of eigenvalues (Λk)k∈N is monotone increas-
ing and positive. The limit of Λk when k goes to infinity is infinite. Moreover the
sequence (Vk)k∈N is an orthonormal basis of L2(Ω). One can bound the eigenvalues,
setting m := inf x∈Ω min(μ, s) and M := supx∈Ω max(μ, s),

m

((
kπ

2

)2

+ 1

)
≤ Λk ≤ M

((
kπ

2

)2

+ 1

)
.

The eigenvector associated to the smallest eigenvalue is positive. The eigenvector
associated to the kth eigenvalue Λk has precisely k zeros on Ω .

Proof The proof is standard (Coddington and Levinson 1955; Dautray and Lions
1990) and can be found for instance in Zettl (2005) Theorem 4.6.2 p. 87. 
�

123



Mathematical modeling of lymphocytes selection. . . 949

Then we project the initial data on the eigen-basis. The solution n of (1) shall be
expressed as a time dependent superposition of modes:

n =
∑
k∈N

αk(t)Vk(x), ∀(t, x) ∈ R+ × Ω

where the αk should satisfy

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tαk + (Λk + d)αk = Q

(∑
k

sk

∫ t

0
αk(t̃)dt̃

)
αk, k ≥ 1

sk =
∫

Ω

Vk(x)s(x)dx = Λk

∫
Ω

Vkdx,

αk(0) =
∫

Ω

Vk(x)nI (x)dx

(5)

We now make the assumption that the non-linearity Q is piecewise-constant:

Assumption 3.1 The function Q(.) is piecewise-constant: Q(�) = Q0 for � ≤ �0
and Q(�) = Q1 for � > �0.

Under this assumption, and for a time small enough t < t0, i.e before ρ(t) reaches
�0, one solves explicitly (5) which gives:

{
αk = αk(0) exp ((Q0 − d − Λk)t) , t ∈ [0, t0[
αk(0) =< Vk, nI >

where< ., . > denotes the usual scalar product on L2(Ω).We denote byΛ0
k := b−Λk

where b := Q0 − d, so that we can write the solution as:

n(t, x) =
∞∑
k=0

< nI , Vk > eΛ0
k t Vk(x), t ≤ t�0 (6)

Let us define:
t�0 = inf{t ≥ 0; �(t) = �0} (7)

Then, one estimates the value of t�0 , from the above expression, and solve the system
for time greater than t�0 . To find the value of t�0 , one solves the non-linear equation
�0 = �(t�0), more precisely:

�0 =
∑
k

φk

(
eΛ0

k t�0 − 1
)

(8)

with

φk := < nI , Vk >< Vk, s >

Λ0
k

.
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950 V. Milisic, G. Wainrib

It appears relatively difficult to solve analytically (8). However, we will study in Sects.
4 and 5 several approaches to derive asymptotic estimates of this key quantity.

It remains to solve the system for time t larger than t�0 . The strategy is exactly the
same, except that the new eigenvalues are now Λ1

k = (Q1 − d) − Λk , and that the
new initial condition is n(t�0 , x), denoted nt�0 (x). Therefore, for t > t�0 :

n(t, x) =
∑
k

< nt�0 , Vk > eΛ1
k (t−t�0 )Vk(x) (9)

Since the spectrum of A is located on the positive real axis : if d > Q1 then

lim
t→∞ n(t, x) = 0, a.e. x ∈ Ω

3.2.2 Spectral calculus

We now consider the problem of finding explicit expressions for the eigenvalues and
eigenvectors associated with problem (4). To this end, we now make some more
assumptions on Q, s and μ:

Assumption 3.2 1. The function Q(.) is piecewise-constant: Q(�) = Q0 for � ≤ �0
and Q(�) = Q1 for � > �0

2. The function s(.) is piecewise-constant: s(x) = sε(x) = 1 if x ∈ [−ε, ε] ∩ Ω and
0 otherwise.

3. The function μ(.) is constant μ(x) = μ > 0.

Notice that ε is a parameter in (0, 1] that we do not assume, here, to be small. We
consider this limit in Sect. 4 instead.

We study the eigen-problem (4) under Assumptions 3.2. This means find the
sequence (Vk,Λk) solving

−μV ′′
k + sεVk = ΛkVk, in ]0, 1[, V ′

k(0) = V ′
k(1) = 0.

On each part of the domain one has a constant coefficient problem that can be solved.
Our goal is to construct by composition the complete eigenproblem in this particular
case. Converting the second order problem into a first order system one has:

{
∂xY(x,Λ) = M(x,Λ)Y(x,Λ), in ]0, 1[
Y2(0,Λ) = Y2(1,Λ) = 0, x ∈ {0, 1} (10)

where Y = (Vk, ∂x Vk)T . So the complete problem can be solved by piecewise expo-
nentials:

Y(x,Λ) = Φ(x,Λ)Y(0), Φ(x,Λ) :=
{
eM(Λ−1)x if x < ε

eM(Λ)(x−ε)eM(Λ−1)ε if x > ε
,
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and

M(Λ) =
(

0 1
−ω2

0(Λ) 0

)
1(0,ε)(x) +

(
0 1

−ω2
1(Λ) 0

)
1(ε,1)(x)

where ω2
0 := − s0−Λ

μ
and ω2

1 := Λ
μ
. The exponential matrices are then explicit:

eM(Λ)x =
(

cos(ω0x) sin(ω0x)/ω0
−ω1 sin(ω0x) cos(ω0x)

)
1(0,ε)(x)

+
(

cos(ω1x) sin(ω1x)/ω1
−ω1 sin(ω1x) cos(ω1x)

)
1(ε,1)(x).

The boundary problem (10) can be rewritten in an algebraic form:

TY(0) = 0, T := N1 + N2Φ(1), N1 :=
(
0 1
0 0

)
, N2 :=

(
0 0
0 1

)
,

that has a solution when det T = 0 i.e.

∣∣∣N1 + N2e
M(Λ)(1−ε)eM(Λ−1)ε

∣∣∣ = 0

this leads to a simpler condition

ω0 tan0 +ω1 tan1 = 0

where tan j := tan(ω j x j ), j ∈ {0, 1}, x0 = ε and x1 = (1 − ε). As a function of Λ

the latter equation becomes:

√
Λ − 1 tan

(
δ
√

Λ − 1μ
)

+ √
Λ tan((1 − δ)

√
Λ) = 0. (11)

The corresponding eigenvector is

V (x) =1x≤ε cos(xω0)

+ 1x≥ε

{
cos(εω0) cos(ω1(x − ε)) − sin(εω0) sin(ω1(x − ε))

ω0

ω1

}
,
(12)

and one should simply take into account whetherω0 is a pure imaginary or real number
in order to pass from hyperbolic to standard trigonometric functions. So there exists
a sequence (Λk, Vk)k∈N, s.t. for each k ∈ N, Λk solves (11) and Vk writes as in (12).
But, for a given set of data s(x) and μ, Λk , the solution (11) is not explicit. In what
follows we approximate it by a spectral asymptotic expansion.
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4 Asymptotic analysis for narrow selection profiles

In this section, we focus our attention on the case of a narrow selection profile, namely
considering that the selection function s(x) can be written as s(x/ε)where ε is a small
parameter. In biological terms, this assumption means that selection is very specific,
and that only B-cells with a trait very similar to the target are selected.

We first consider this asymptotic regime from the spectral point of view, and then
construct an asymptotic expansion of the solution in ε. These two approaches enable
an asymptotic estimation of the time to threshold, characterizing the duration of the
production process until a sufficient level of selected B-cell is reached.

4.1 Asymptotic spectral analysis

4.1.1 Spectrum of auto-adjoint operators with compact inverse

Because the Neumann problem admits a zero eigenvalue we shift the spectrum by
adding the identity because then−∂2

x2
+ I has an auto-adjoint compact inverse and the

spectral theory can be used. Since the shift is artificial and does not change any of the
results presented below we omit it—in what follows we return to the original operator.
Any time that we mention that the operator has a compact inverse, it is understand in
the sense above (i.e., modulo a unit shift).

In a first step we study again problem (4) under assumptions 3.2. Since the operator
A is auto-adjoint and has a compact inverse from L2(0, 1) into itself L2(0, 1) it admits
(seeTheorem6. p. 38Dautray andLions 1990) a discrete spectrum that can be arranged
into an increasing sequence of real eigenpairs denoted (Λε,k, Vε,k) for k ∈ N.

4.1.2 An asymptotic Ansatz

We develop Vε,k using an asymptotic expansion, to this purpose we approach Vε,k by
a series reading

Vε,k(x, y) := v0,k(x, y) + εv1,k(x, y) + ε2πε,2,k(x, y)

where x represents the slow variable (x ∈ (0, 1)) and y the fast variable (typically
y = x/ε). Replacing this expansion in the eigen-problem and gathering terms for
each power of ε provides equations at each scale. For instance, at the order ε−2 one
recovers that v0,k does not depend on y, while at order ε0 it solves

{ − μv′′
0,k = λ0,kv0,k, x ∈ (0, 1),

v′
0,k(0) = v′

0,k(1) = 0,
(13)

the solution is explicit : λ0,k := μ(kπ)2 for k ∈ Z, whereas normalizing the eigen-
vectors gives:
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v0,k(x) =
{
1, if k = 0√
2 cos(kπx), otherwise

Since v0,k does not solve the original equation, we correct it by adding a second order
microscopic corrector πε,2,k(x) := π2(x/ε)v0,k(x) where π2(y) solves

{ − μ∂2y2π2 + s0(y) = 0, x ∈ (0,∞),

∂yπ2(0) = 0.
(14)

The solution is explicit:

π2(y) = π2(0) + 1

μ

∫ y

0

∫ z

0
s(z̃)dz̃dz.

Since all the functions are defined up to a constant we omit them in the rest of the
section. If we take the first order derivative of π2,k one has:

∂yπ2,k(y) = 1

μ

{∫ y
0 s(z)dz if y < 1,

s := ∫ 1
0 s(z)dz otherwise .

In order to reduce the contribution of the growth at infinity of the latter microscopic
boundary layer function, we introduce the first order spectral problem: v1,k solves

⎧⎨
⎩

−μv′′
1,k = λ0,kv1,k + λ1,kv0,k + 2sv′

0,k, x ∈ (0, 1),
v′
1,k(0) = 0, if x = 0,

v′
1,k(1) = − s

μ
v0,k(1), if x = 1.

Because the operator−∂2
x2

−λ0,k admits a kernel of dimension one and is auto-adjoint,
the data of this problem should be polar to the kernel of this operator. Therefore, due
to this latter condition:

λ1,k := s v20,k(0)∥∥v0,k∥∥2L2(0,1)

=
{
2s if k �= 0,

s otherwise.

Interestingly enough this first order eigen-contribution is independent on μ. The solu-
tion of the latter problem then reads (modulo a multiple of v0,k)

v1,k = − s

μ
·
{
x2/2 if k = 0,

(1 − x)
v′
0,k (x)

(kπ)2
+ xv0,k(x) otherwise
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We compute the problem solved by Vε,k :

−μV ′′
ε,k + sεVε,k = − μv′′

0,k + sεv0,k − εμv′′
1,k + εsεv1,k

− ε2μ

(
∂2
y2

π2,k(x/ε)

ε2
v0,k + 2

∂yπ2,k(x/ε)

ε
v′
0,k + π2,kv

′′
0,k

)

+ ε2sεπε,2,k

= (λ0,k + ελ1,k)(v0,k + εv1,k + ε2πε,2,k) − ε2(λ1,kv1,k + επε,2,k)

+ εsε(v1,k + επε,2,k) + 2ε

(∫ ε

x
s(z/ε)dz1(0,ε)(x)

)
v′
0,k

= λε,1,kVε,k + ε

(
sεv1,k + 2

(∫ ε

x
s(z/ε)dz1(0,ε)(x)

)
v′
0,k

)

+ O(ε2).

where we defined λε,1,k := λ0,k + ελ1,k . We define the bi-continuous bi-linear form
associated to the elliptic operator above:

aε(u, v) :=
∫

Ω

u′(x)v′(x)dx + sε(x)u(x)v(x)dx

which is coercive on H1(Ω) for any positive definite ε.

Theorem 3 Under the hypotheses on sε, and for ε0 small enough, the tuple
(λε,1,k,Vε,k) is a generalized eigen-pair, i.e., it verifies

∣∣aε(Vε,k, v) − λε,1,k(Vε,k , v)
∣∣ ≤ C1(k + 1)πε

3
2
∥∥Vε,k

∥∥
L2(0,1)‖v‖L2(0,1), ∀v∈H1(0, 1),

which implies that

∣∣Λε,k − λε,1,k
∣∣ ≤ C2(k + 1)πε

3
2 .

The constants C1 and C2 depend on s, but not on μ.

Proof A simple triangular inequality shows that there exists a constant c0 independent
on ε and on k s.t.

0 < c0 ≤ ∥∥Vε,k
∥∥
L2(Ω)

, ∀k ∈ N, ε ∈ (0, ε0),

for ε0 small enough. ThenUε being regular (typicallyUε ∈ H2(Ω)), the error estimates
computed above hold as well in the weak formulation associated and lead to estimate
from above:
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ε

((
sεv1,k + 2

(∫ ε

x
s(z/ε)dz1(0,ε)(x)

)
v′
0,k

)
, v

)
L2(0,1)

≤ ε‖sε‖L2(0,1)

∥∥v1,k∥∥L∞(0,1)‖v‖L2(0,1)

+2ε‖sε‖L∞
∥∥10,ε

∥∥
L2(0,1)

∥∥v′
0,k

∥∥
L∞(0,1)

‖v‖L2(0,1)

≤ c1ε
3
2 (1 + k)π

∥∥Vε,k
∥∥
L2(0,1)‖v‖L2(0,1)

while higher order terms are bounded in the L∞(0, 1) norm with respect to ε and
independent on k. Then we apply Theorem 6 p. 38 in Dautray and Lions (1990),
whose proof by contradiction, based on the spectral decomposition of aε, can be
found in Bendali et al. (2009) and Bendali et al. (2008). 
�

4.1.3 Numerical comparison

In Fig. 1, we compare the first order approximation of the eigenvalues for the first
ten values of k and we display the numerical solution of the characteristic polynomial
(11). We choose ε = 0.1.

4.1.4 Application: estimation of the time to threshold

We consider the non-linear equation:

�0 =
∑
k

Φε,k

(
e(b−Λε,k )t�0 − 1

)
(15)

Vε,0

1.02

1.04

1.06

1.08

1.1

0 0.2 0.4 0.6 0.8 1

y

x

Vε,0

1

Vε,1

-1

-0.5

0

0.5

1

1.5

0 0.2 0.4 0.6 0.8 1
x

Vε,1

-1.5

k λε,1,k Λε,k

0 0.1 0.09735591831
1 10.0696044 10.06329604
2 39.6784176 39.6548511
3 89.02643961 88.97754925
4 158.1136704 158.0375159
5 246.94011 246.840386
6 355.5057584 355.3903082
7 483.8106157 483.6890491
8 631.8546817 631.7357679
9 799.6379565 799.5275421
10 987.1604401 987.0604181
11 1194.422133 1194.330628

Fig. 1 Numerical comparison between asymptotic and numerical eigen-pairs. On the left the eigenvectors
for k ∈ {0, 1} and ε = 0.1, on the right the eigenvalues for k ∈ {0, . . . , 11}
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with

Φε,k := <nI , Vε,k><Vε,k, s>

b − Λε,k
.

There exists no analytical solution for t�0 for the above equation. However, it is pos-
sible to obtain an asymptotic description of t�0 . In Sect. 3.2, we derived an asymptotic
expansion of the eigenvalues Λε,k and eigenvectors Vε,k when ε → 0 in the form:

Λε,k =
∑
l≥0

λl,kε
l and Vε,k =

∑
l≥0

vl,kε
l (16)

We first show the following:

Lemma 2 Assuming that the following limits exists:

lim
ε→0

1

ε

∫
s(x/ε)vi,k(x)dx = vi,k (17)

and that λ0,k �= b for all k ≥ 0, the coefficient Φε,k can be approximated by: Φε,k =
εφ0,k + O(ε2), with φ0,k = <nI ,v0k>v0k

b−λ0,k
.

Proof By definition,

Φε,k := <nI , vε
k><sε, vε

k >

b − Λε
k

(18)

From the asymptotic description of the spectrum, we know that:

Λε,k = λ0,k + ελ1,k + O(ε2) (19)

Vε,k = v0,k + εv1,k + O(ε2) (20)

Therefore, assuming that the following limits exists:

lim
ε→0

1

ε

∫
s(x/ε)vi,k(x)dx = vi,k (21)

we obtain:
<sε, Vε,k> = εv0,k + ε2v1,k + O(ε3) (22)

Gathering the above estimates, we obtain the desired result. 
�
An asymptotic description of t�0 is given by the following result, which essentially

assumes that only the first mode is growing (assumption (iii) below).

Lemma 3 If t�0 is the solution of Eq. (15), with:

(i) Λε,k = λ0,k + O(ε)

(ii) Φε,k = εφ0,k + O(ε2)

(iii) b − λ0,0 > 0 and b − λ0,k < 0 for all k > 0
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Then t�0 diverges to +∞ when ε → 0 as:

t�0 = 1

b − λ0,0
ln

(
�0

φ0,0

1

ε
+ o

(
1

ε

))
(23)

Proof We introduce x = et�0 and look for an expansion of the form:

x = x0
εβ

+ o

(
1

εβ

)
(24)

First,wewrite xb−Λε,k = Ck,ε

(
x0
εβ

)b−λ0,k
whereCk,ε → 1when ε → 0. Furthermore,

using assumption (iii), one controls the convergence of xb−Λε,k to 0 uniformly in k.
Therefore,

�0

ε
= Φε,0C0,ε

( x

εβ

)b−λ0,0 −
∑
k≥0

Φε,k +
∑
k≥1

Φε,k x
b−Λε,k (25)

= φ0,0

( x0
εβ

)b−λ0,0 + O(1) (26)

We deduce that
�0

φ0,0xb−λ0,0ε
= 1

εβ(b−λ0,0)
(27)

implying that β = 1/(b − λ0,0) and x0 = (�0/φ0,0)
1/(b−λ0,0). 
�

In terms of the original parameters of the model, we conclude that the time to produce
an output quantity �0 is asymptotically given by:

t�0 = 1

Q0 − d
ln

(
�0(Q0 − d)

<nI , v0,0>v0,0

1

ε
+ o

(
1

ε

))
(28)

This formula relates in a compact form the birth rate Q0, the death rate d, the width
of the selection function ε, the mutation rate μ and the initial condition nI to the
characteristic time-scale of the B-cell production process. Notice that this formula
relies on the assumption that only the first mode grows, meaning that μ must be larger
than (Q0 − d)/π2. Numerical comparison between the time t�0 computed from the
numerical solution of the PDE and this formula is displayed in Fig. 2. From the spectral
decomposition, we learn that decreasing themutation rateμ has the effect of recruiting
further modes, whereas a large μ implies that the evolution of the solution forgets the
other modes which were present in the initial condition.
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Fig. 2 Time to threshold t�0 as a function of the threshold parameter ρ0 in log-scale. The crosses are
obtained by a direct numerical simulations of the PDEmodel with constant birth-rate Q. The line is obtained
by evaluating formula (28) at first order, i.e., discarding the terms of o(1/ε). Parameters: b = Q−d = 0.1,
ε = 0.01

4.2 Asymptotic expansion

4.2.1 Asymptotic expansion of the solution

When Q is piecewise constant, using the notation b = Q0 − d, n(t, x), the solution
of (1), solves as well the following linear problem, until ρ(t) reaches ρ0:

⎧⎨
⎩

∂t nε − μ∂2
x2
nε = (b − sε)nε (t, x) ∈ OT ,

∂xnε(t, x) = 0 (t, x) ∈ ΣT ,

nε(0, x) = nI (x) (t, x) ∈ {0} × Ω

(29)

Dropping the balance term between death and birth, we look for an approximation
of the solution of:

⎧⎨
⎩

∂tNε − μ∂2
x2
Nε + sεNε = 0, (t, x) ∈ OT ,

∂xNε = 0, (t, x) ∈ ΣT ,

Nε(0, x) = nI (x), (t, x) ∈ {0} × Ω.

(30)
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We make the Ansatz:

Nε = N0

(
t, x,

x

ε

)
+ εN1

(
t, x,

x

ε

)
+ · · ·

When we plug it in (30), it gives after separating orders of ε that N0(t, x, y) is inde-
pendent of the fast variable y. Moreover, it solves the homogeneous equations:

⎧⎪⎨
⎪⎩

∂tN0 − μ∂2
x2
N0 = 0, (t, x) ∈ OT

∂xN0 = 0, (t, x) ∈ ΣT

N0(0, x) = nI (x)(t, x) ∈ {0} × Ω,

(31)

and thus N0(t, x) = ∑
k∈N nkI exp(−λ0,k t)vk(x).

Proposition 2 If n I ∈ L2(Ω) ∩ L∞(Ω) then at zeroth order, one can approach
nε(t, x) solving (29) by exp(bt)N0(t, x) and the error in the L∞((0, T ); L2(Ω))

norm is estimated as:

sup
t∈(0,T )

‖nε(t, ·) − exp(bt)N0(t, ·)‖L2(Ω) ≤ ε exp(bT )T ‖nI‖L∞(Ω).

Proof One defines the zero order error:

E0(t, x) := Nε(t, x) − N0(t, x)

which solves in the strong sense

⎧⎪⎨
⎪⎩

∂tE0 − μ∂2
x2
E0 + sE0 = −sN0, (t, x) ∈ OT

∂xE0 = 0, (t, x) ∈ ΣT

E0(0, x) = 0, (t, x) ∈ {0} × Ω,

using standard a priori estimates, one obtains that

1

2
∂t‖E0(t, ·)‖2L2(Ω)

≤ ‖sN0‖L2(Ω)‖E0‖L2(Ω)

which then by dividing both sides by
√

‖E0‖2L2(Ω)
+ δ one gets:

1

2
∂t

√
‖E0(t, ·)‖2L2(Ω)

+ δ ≤ ‖sN0‖L2(Ω).

This, integrated in time, provides after passing to the limit δ → 0,

‖E0(t, ·)‖L2(Ω) ≤
∫ t

0

∥∥s(·)N0(t̃, ·)
∥∥
L2(Ω)

dt̃ ≤ εt‖N0‖L∞((0,t)×Ω) ≤ ‖nI ‖L∞(Ω)εt
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where we used the maximum principle in order to provide the L∞ bound on N0 and
the result follows. 
�

4.2.2 Estimation of the time to threshold

Using asymptotic expansions above, we estimate the time t�0 :

Theorem 4 If s satisfies hypotheses 3.2, and μ > b/π2, then for every given �0 ,
there exists a time

t�0 := 1

b
ln

(
1 + �0b

εn0

)
, (32)

and a constant C independent on t�0 s.t.

∣∣�0 − �out(t�0)
∣∣ ≤ | ln(ε)|√εC(μ, nI )

Proof The previous proposition allows to compute � app, an approximation of �out
which reads:

� app(t) :=
∫ t

0

∫
Ω

s(x)N0(t, x) exp(bt̃)dxdt̃

= (exp(bt) − 1)

b

∫
Ω

nI (x)dx
∫

Ω

s(x̃)dx̃ +
∑
k∈N∗

(exp((b − λk)t) − 1)

(b − λk)

×<nI , vk><s, vk>

where (λk)k∈N denote eigenvalues associated to the homogeneous heat equation (31).
Under hypotheses 3.2, the previous computation gives

� app(t) := ε
(exp(bt) − 1)

b
n0I +

∑
k∈N∗

(exp((b − λk)t) − 1)

(b − λk)
<nI , vk><s, vk>

Using Cauchy-Schwartz, one has that

∣∣�out(t) − � app(t)
∣∣ ≤

∫ t

0

∫
Ω

s|n(t, x) − exp(b t)N0(t̃, x)|dxdt̃

≤
∫ t

0
‖s‖L2(ω)

∥∥n(t, ·) − exp(bt̃)N0(t̃, ·)
∥∥
L2(Ω)

dt̃ ≤ ε
3
2 ‖nI‖L∞(Ω)

×
∫ t

0
exp(bt̃)t̃d t̃ ≤ ε

3
2 ‖nI‖L∞(Ω)

t exp(bt)

b

On the other hand using the explicit expression of � app one writes:

∣∣∣∣� app −
(
exp(bt) − 1

b

)
n0I s

∣∣∣∣ ≤ S(t)
∑
k∈N∗

|<n, vk><s, vk>|

≤ S(t)‖s‖L2(Ω)‖nI ‖L2(Ω) ≤ S(t)
√

ε‖nI ‖L2(Ω)

(33)
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where we denoted S(t) := supk∈N∗
∣∣∣ exp((b−λk)t)−1

(b−λk)

∣∣∣. Then two cases occur:

(i) either there exists k0 s.t. λk0 ≤ b ≤ λk0+1 and then

S(t) ≤ exp((b − μπ2)t) − 1

b − λk0
,

(ii) or b < λ1 = μπ2 and thus

S(t) ≤ 2

(λ1 − b)
= 2

(μπ2 − b)
,

which justifies our hypothesis between b and μ.

Using a triangular inequality gives:

|�out(t�0) − �0| ≤ ∣∣�out(t�0) − � app(t�0)
∣∣ + ∣∣� app(t�0) − �0

∣∣

which, because of the estimates ii) above, gives

|�out(t�0) − �0| ≤ C
(
ε

3
2 t�0 exp(bt�0) + √

ε
)

≤ C
√

ε| ln(ε)|.


�
Remark 1 In fact, if b is large enough [case (i) above], the previous estimate does not
hold since in this case S(t�0) blows as 1/ε.

Remark 2 Due to (33), one can not, to our knowledge, improve the accuracy when
computing t�0 by increasing the order of the asymptotic expansion since the major
source of error comes from this step, when integrating in the selection window the
zero order term.

4.2.3 Numerical simulation

The parameters we choose are �0 = 100, b = 2 together with a random initial condi-
tion nI . We compute the error between th,k

�0
, the time to reach �0 and the theoretical

formula (32). The direct simulation is made using a P1-Finite Element Method with
first order implicit Euler scheme for the time discretization. The same numerical tools
are used for the rest of the paper. Results are displayed for various (small) values
of ε. We plot, in Fig. 3, the error estimates for two values of μ corresponding to
μ = b/((k + 1/2)2π2 for k ∈ {0, 1}. When k = 0 we are in the hypotheses of the
latter theorem, whereas for k = 1 the theoretical error is not uniform with respect to
ε. For this specific test-case, the error is comparable in both cases, although greater as
μ becomes smaller as expected. The numerical order of convergence is greater than
what is predicted theoretically.
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-1

0
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t

ε

th,1
�0 − t�0

th,0
�0 − t�0

ε√
ε

Fig. 3 Starting from a random initial condition, the difference between the numerical th,k
�0 and the limit

time to reach t�0 for various values of ε

5 Asymptotic analysis for small and large mutation rates

In this section, we focus on the regimes of small and large mutation rates. We first
consider the case of initial conditions restricted to a single trait (Dirac initial data),
deriving explicit solutions in this case, and providing asymptotics for the time to
threshold. Then, we establish asymptotic expansions of the solution in the regimes
μ � 1 and μ � 1.

5.1 The initial condition is a Dirac mass

5.1.1 The case of the whole space

When the size of the domain goes to infinity we face the problem

{
∂tGε − μ∂2

x2
Gε + sεGε = bGε, (t, x) ∈ R+ × R,

Gε(0, x) = δz(x), x ∈ R,
(34)

Definition 5.1 Wedefine a very weak solution of (34) the functionGε ∈ L2(0, T ×R)

that solves:
∫

(0,T )×R

Gε

(
−∂t − ∂2x2 + (sε(x) − b)

)
ϕdxdt − ϕ(0, z) = 0

for every ϕ ∈ C(0, T ; H1(R)) ∩ L2(0, T ; H2(R)) s.t. ϕ(T, x) = 0, ∀x ∈ (0, 1).

Theorem 5 Providing sε ∈ L∞(R) there exists a unique very weak function Gε ∈
L2((0, T ) × R) solving (34). Moreover one has the comparison principle:

G̃b−s∞(t, x, z) ≤ Gε(t, x, z) ≤ G̃b(t, x, z), a.e (t, x) ∈ (0, T ) × R
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where G̃b is the fundamental solution of the heat equation and reads :

G̃b(t, x, z) = 1√
4μπ t

exp

(
bt − (x − z)2

4μt

)
,

and s∞ := ‖s‖L∞(R).

Proof The proof of existence and uniqueness relies on duality arguments and the Riesz
Theorem and is left to the reader for sake of conciseness. We detail the comparison
principle. The maximum principle shows that if we define the backward equation :

⎧⎨
⎩

−∂tϕ − ∂2
x2

ϕ + bϕ = Ψ, (t, x) ∈ OT

∂xϕ = 0, (t, x) ∈ ΣT

ϕ(T, 0) = 0, (t, x) ∈ {T } × Ω

(35)

where b is a bounded function inOT ,Ψ ∈ D(OT ) andΨ (t, x) ≥ 0 for all (t, x) ∈ OT ,
then ϕ(t, x) ≥ 0. Indeed, testing the forward expression of the previous equation in
the weak form with ϕ−

h := min(ϕh, 0) where ϕh is a Steklov approximation of ϕ i.e.,

ϕh(t, x) = 1

h

∫ t+h

t
ϕ(τ, x)dτ

and passing then to the limit with respect to h, one has

1

2

[∥∥ϕ−(τ, ·)∥∥2L2(Ω)

]τ=T

τ=0
+
∫
OT

b+ϕϕ− dx dt ≤ −
∫
OT

b−ϕϕ−

≤ ∥∥−b−∥∥
L∞(OT )

∥∥ϕ−∥∥2
L2(Ω)

by Gronwall, the result comes easily.
The difference between Gε and G̃b−s∞ that we denote Ĝ := Gε − G̃b−s∞ solves

∫
OT

Ĝ
{
−∂tϕ − ∂2x2ϕ + (sε − b)ϕ

}
dxdt =

∫
OT

{s∞ − sε} G̃b−s∞(t, x)ϕ(t, x)dxdt

As G̃b−s∞(t, x) is non-negative for a.e. (t, x) ∈ (0, T )×Ω , and choosing b := (sε−b)
in the dual problem (35), withΨ ∈ D(OT ) andΨ ≥ 0, proves that Ĝ is positive almost
everywhere in OT . 
�

Lemma 4 Suppose that a ∈ R+ and set Ja(t) := ∫ t
0 exp

(
at − 1

t

) dt̃√
t̃
then

Ja(t) ≥ 1

2e
exp

(
−2

t

)
, ∀t ≥ 0.
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Proof Using Jensen’s inequality one writes

Ja(t) ≥
∫ t

0
exp

(
−1

t̃

)
dt̃√
t̃

=
∫ ∞

1/t
exp(−z)

dz

z
3
2

≥
(∫ ∞

1/t
exp(−z)dz

)

×
(∫∞

1/t exp(−z)zdz∫∞
1/t exp(−z)dz

)− 3
2

= exp

(
−1

t

)(
t

t + 1

) 3
2 ≥ exp

(
−1

t

)
1

2
exp

(
− t + 1

t

)
= 1

2e
exp

(
−2

t

)

The last inequality comes when estimating t
3
2 by an exponential, i.e. ∀t ≥

0, exp
(− 1

t

)
< 2t

3
2 . 
�

Theorem 6 We suppose that sε is the characteristic function of the set (−ε, ε) and
that z > ε. If we denote the time t�0 s.t. ρε(t) := ∫ t

0

∫
R
s(x)Gε(t, x, z)dxdt reaches

�0, one has that t�0 → ∞ when either μ → 0 or μ → ∞. Moreover t�0 does not
grow faster than any polynomial with respect to μ.

Proof We shall provide a lower bound for I�(t) := 2ε
∫ t
0 G̃b−s∞(t,−ε, z)dt and un

upper bound for Iu(t) := 2ε
∫ t
0 G̃b(t, ε, z)dt . If there exists a time tu (resp. t�) s.t.

I�(tu) ≥ �0 (resp. Iu(t�) ≤ �0) then t�0 ≤ tu (resp. t�0 ≥ t�).
Because the lower bound from Lemma 4 is not accurate for large values of t , we

distinguish two cases:

– Either t < t0 := (z + ε)/(2
√

(b + s∞)μ) and one uses Lemma 4:

I�(t) ≥ ε(z + ε)

4μe
√

π
exp

(
− (z + ε)2

2μt

)
=: j1(t).

– Or t > t0 and we split the integral I� in two parts : integrating first on (0, t0) and
then on (t0, t). The first part is estimated thanks to Lemma 4 again, whereas for
the latter integral one writes:

I�(t) ≥ j1(t0) + exp(−(b − s∞)t0)√
μπ

∫ t

t0
exp((b − s∞)t̃)

dt̃√
t̃

≥ j1(t0) + exp(−(b − s∞)t0)√
μπk!

∫ t

t0
(b − s∞)k t̃ k−

1
2 dt̃

= j1(t0) + exp(−(b − s∞)t0)√
μπk!(k + 1

2 )
(b − s∞)k

[
t̃ k+

1
2

]t̃=t

t̃=t0
=: j2(t).

since for larger times the linear term (b − s∞) t dominates (z + ε)2/(4μt) inside
the exponential.
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Inverting the latter piecewise formula, one obtains

tu :=
{
j−1
1 (�0) if �0 < j (t0),

j−1
2 (�0) otherwise ,

where

j−1
1 (�0) := (z + ε)2

−2 ln
(

�04eμ
ε(z+ε)

) , and j−1
2 (�0)

:=
(

(k + 1
2 )k!

√
πμ

(b − s∞)k
exp((b − s∞)t0)(�0 − j1(t0)) + t

k+ 1
2

0

) 1
k+ 1

2
.

This proves the second part of the claim.
In order to provide a lower bound t�, we estimate �out by Iu . Indeed we write:

Iu(t) ≤ 2ε√
μπ

exp

(
bt − (z − ε)2

4μt

)√
t ≤ 2ε√

μπ
exp

(
(b + 1)t − (z − ε)2

4μt

)

this gives that

t� := lnω +
√
ln2 ω + (z − ε)2(b + 1)/μ

2(b + 1)
, ω := (

�0/2ε
√

π
)√

μ

which proves the first part of the claim. 
�
In the previous proof the results remain identical if z < −ε by symmetry. We plot

in Fig. 4, left, the comparison between our bounds and numerical computations of the
integrals Il and Iu for a given set of data (b, �0, ε, z) when μ varies : t�0 is always
between the tIu and tIl curves.

5.1.2 The case of a bounded domain

We consider the problem: find Gε solution of

⎧⎨
⎩

∂tGε − μ∂2
x2
Gε + sεGε = bGε, (t, x) ∈ R+ × (0, 1),

G′
ε(t, 0) = G′

ε(t, 1) = 0, t ∈ R+,

Gε(0, x) = δz(x), x ∈ (0, 1),
(36)

where the support of the dirac mass is located in z ∈ (0, 1).

Theorem 7 If s ∈ L∞(0, 1) and b ∈ R, there exists a unique very weak solution
Gε ∈ L2(OT ) for every given positive T i.e.,

∫
(0,T )×R

Gε

(
−∂t − ∂2x2 + (s(x) − b)

)
ϕdxdt − ϕ(0, z) = 0
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966 V. Milisic, G. Wainrib

for every test function ϕ ∈ C([0, T ]; H1((0, 1)))∩L2((0, T ); H2((0, 1))). Moreover,
one has for a.e. (t, x) ∈ OT :

G̃b−s∞(t, x, z) ≤ Gε(t, x, z) ≤ G̃b(t, x, z),

the bounds being fundamental solutions of the heat equation with Neumann boundary
conditions: ⎧⎪⎨

⎪⎩
∂t G̃b − μ∂2

x2
G̃b = bG̃b, (t, x) ∈ R+ × (0, 1),

G̃′
b(t, 0) = G̃′

b(t, 1) = 0, t ∈ R+,

G̃b(0, x) = δz(x), x ∈ (0, 1),
(37)

given explicitly as series by the formula:

G̃b(t, x, z) := exp(bt)√
4πμt

∑
n∈Z

{
exp

(
− (x − 2n + z)2

4μt

)
+ exp

(
− (x − 2n − z)2

4μt

)}
.

We need here two technical lemmas:

Lemma 5 If x ∈ (0, ε) and z ∈ (ε, 1) and t ≥ 0 then

G̃b(t, x, z) ≤ exp

(
bt − (z − ε)2

4μt

)(
4√
4πμt

+ 2√
2(1 − ε)

)
.

The proof uses an upper bound of the higher order terms (|n| ≥ 1) in the expansion
above, and is skipped for sake of conciseness.

Lemma 6 Setting

ρ̃b(t, z) :=
∫ t

0

∫ ε

0
G̃b(t̃, x, z)dxdt̃,

we fix ε > 0, z ∈ (ε, 1),

ρ̃b(t, z) ≤ ε
exp

(
(b + 1)t − (z−ε)2

4μt

)
√
4μπ

(
1 +

√
2μ

(1 − ε)

)
,

the time that ρ̃b reaches �0 is then greater than

t0 :=
lnω +

√
ln2 ω + (z−ε)2

μ

2(b + 1)
, and ω := 2�0

√
(1 − ε)μπ

ε(
√
1 − ε + √

2μ)
.

If μ is small then

t0 ∼ |z − ε|
2(b + 1)

1√
μ

.
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When μ → ∞,

t0 → 1

(b + 1)
ln

(
�0

√
2π(1 − ε)

ε

)
.

Proof Thanks to the previous results there exists a t1 s.t. ρ̃b(t1) > �0. This implies
that tb, the time such that ρ̃b(t) > �0 for all t > tb is greater than t1. As in turn t0 ≥ tb
this ends the proof. 
�
Lemma 7 If (x, z) ∈ (0, 1)2, the fundamental solution can be estimated from below
as:

G̃b(t, x, z) ≥ exp

(
bt − (x + z)2

4μt

){
1√
4πμt

+ 1

4
√
3
erfc

(√
3

μt

)}
.

Proof We write simply that:

∑
|n|≥1

exp

(
bt − (x + z − 2n)2

4μt

)
≥ exp

(
bt − (x + z)2

4μt

)

×
∑
|n|≥1

exp

(
− (x + z)|n|

μt
− n2

μt

)

≥ 2 exp

(
bt − (x + z)2

4μt

)∑
n≥1

exp

(
−3n2

μt

)
≥ 2 exp

(
bt − (x + z)2

4μt

)

×
∫ ∞

1
exp

(
−3s2

μt

)
ds

which ends the proof. 
�
Again we can estimate the time t�0 for which the selected population �out reaches

the threshold value �0.

Theorem 8 We suppose that sε is the characteristic function of the set (0, ε) and that
z > ε, b ∈ R+ s.t. b > s∞ := ‖s‖L∞(0,1) and z > ε, then if we denote t�0 the time
s.t. �out reaches �0, for large (resp. small) values of μ one has:

lim
μ→0

t�0 = +∞,

(
resp. lim

μ→∞ t�0 ∈ (t, t)

)
,

where the interval (t, t) depends only on the data set (�0, ε, z, b, s∞), and 0 < t <

t < ∞.

Proof When x < ε < z, the heat kernel G̃b is monotone with respect to x . Firstly, we
compute the lower bound t� which is provided estimating Iu(t) := ε

∫ t
0 G̃b(t, ε, z)dt
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968 V. Milisic, G. Wainrib

from above. By Lemma 5, one has that

Iu(t) ≤ ε
exp

(
(b + 1)t − (z−ε)2

4μt

)
√
4μπ

(
1 +

√
2μ

(1 − ε)

)

and so the time that Iu reaches �0 is then greater than

t� :=
lnω +

√
ln2 ω + (z−ε)2

μ

2(b + 1)
, and ω := 2�0

√
(1 − ε)μπ

ε(
√
1 − ε + √

2μ)
.

If μ is small then

t� ∼ |z − ε|
2(b + 1)

1√
μ

.

Whereas if μ → ∞,

t� → 1

(b + 1)
ln

(
�0

√
2π(1 − ε)

ε

)
=: t .

For what concerns tu , one has, thanks to Lemma 7,

G̃b−s∞(t, x, z) ≥ G̃b−s∞(t, 0, z) ≥ exp

(
(b − s∞)t − z2

4μt

)

{
1√
4πμt

+ 1

4
√
3
erfc

(√
3

μt

)}
,

which allows to write:

I�(t) := ε

∫ t

0
G̃b−s∞(t, 0, z)dt ≥ I1(t) + I2(t),

where

I1(t) := ε

2
√

πμ

∫ t̃

0
exp

(
(b − s∞)t̃ − z2

4μt̃

)
dt̃√
t̃
,

I2(t) := ε

4
√
3

∫ t

0
exp

(
(b − s∞)t̃ − z2

4μt̃

)
erfc

(√
3

μt̃

)
dt̃,

and both functions are increasing with respect to t . This allows us to estimate I� as

I�(t) ≥ I1(t)1(0,t0)(t) + {I1(t0) + I2(t) − I2(t0)}1(t0,∞)(t)
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where, as in the unbounded case, t0 represents the time at which the coefficient of
the exponential function changes sign i.e. t0 := z/(2

√
μ(b − s∞)). As before, when

t < t0, the estimate follows the same from Lemma 4. Thus we re-define j1(t) :=
εz/(4μe) exp(−z2/(2μt)). Instead when t > t0, one writes:

I�(t) ≥ j1(t0) + ε

4
√
3

∫ t

t0
exp((b − s∞)(t − t0))erfc

(√
3

μt̃

)
dt̃,

but because erfc(
√
3/(μt)) is a monotone increasing function with respect to t , one

may estimate again the latter term as:

I�(t) ≥ j1(t0) + erfc

(√
3

μt0

)
ε

4
√
3

∫ t

t0
exp((b − s∞)(t − t0))dt̃

= j1(t0) + erfc

(√
3

μt0

)
ε

4
√
3

(exp ((b − s∞)(t − t0)) − 1)

(b − s∞)
,

which leads to the inverse function:

tu :=

⎧⎪⎨
⎪⎩
j−1
1 (�0) if �0 < j1(t0)

t0 + 1
(b−s∞)

ln

(
1 + 4

√
3(b−s∞)

εerfc
(√

3
μt0

) (�0 − j1(t0))

)
otherwise.

when studying the limit of the latter expression when μ → ∞ one concludes that
j1(t0) → 0 and t := t0 + ln(1 + 4

√
3(b − s∞)�0/ε). 
�

Corollary 1 Under hypotheses of Theorem 7, one might give another upper bound
for tρ0 :

tρ0 ≤ t∞u :=
{
j−1
1 (ρ0) if ρ0 < j1(t0),

j−1
2 (ρ0) otherwise,

where

t0 = z

2
√
b − s∞

, j1(t0) := εz

4μe
√

π
exp

(
− z

√
b − s∞√

μ

)
,

and

j−1
1 (�0) := z2

−2 ln
(

�04eμ
εz

) ,

j−1
2 (�0) :=

(
(k + 1

2 )k!
√

πμ

(b − s∞)k
exp((b − s∞)t0)(�0 − j1(t0)) + t

k+ 1
2

0

) 1
k+ 1

2
.
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Fig. 4 The mutation rate μ is plotted in the log scale on the x-axis. The left (resp. right) figure displays the
unbounded (resp. bounded) case. On the left side, one shows the upper and lower estimates of tρ0 , the time
to reach �0, between these curves we computed numerically tIl and tIu in order to validate our estimates.
On the right, one plots a numerical computation of Gε solving (36) and the respective theoretical bounds

The proof simply takes into account that the Green function Gb−s∞ in the bounded
case is greater that the Green function in the case of the whole space, applying the
same arguments as in Sect. 5.1.1 one concludes. These latter estimates shall improve
the upper bound of t�0 for μ small.

We plot in Fig. 4, right, the comparison between our bounds tu , t∞u and tl and the
direct numerical simulations of Gε solving (36) for a given set of data (b, �0, ε, z)
when μ varies.

5.2 Asymptotic expansion for large mutation rates

5.2.1 The formal result

When μ, the mutation rate dominates, one sets the decomposition :

Nμ(t, x) = N0(μt, x) + 1

μ
N1(μt, x) + · · ·

and one gathers powers of 1/μ, separating the scales this leads to solve:

– At zero order one obtains the equation:

∂tN0 − ∂2x2N0 = 0

– While at j th order one writes:

∂tN j − ∂2x2N j = (b − s)N j−1, j ∈ N
∗.

Using the spectral decomposition, one gets, for the zeroth order term, that it reads

N0(t, x) :=
∑
k∈N

nkI vk(x) exp(−λ0,k t), nkI :=< nI , vk >,
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where the brackets denote the scalar product in L2((0, 1)), and the eigenvectors
are those of the homogeneous problem (13). This expression leads to exponentially
decreasing modes and a mean that remains constant.

Denoting N j := ∑
k∈N γ j,k(t)vk(x) and Γ j (t) := (γ j,k(t))k∈N one can write the

modal equivalent of the equation above:

Γ̇ j + diag(λ)Γ j = (b − M)Γ j−1, (M)ik := <svi , vk>, Γ j (0) = 0, ∀ j ≥ 1.
(38)

where diag(λ) := diag(λ0,0, . . . , λ0,k, . . . ). As the dominant mode is the constant
one, we prove below that

γ j,k ∼
{
n0I

(b−M0,0)
j t j

j ! if k = 0

0 otherwise
+ O(t j−1)

when t is large. This gives the asymptotic limit:

Nμ ∼ n0I
∑
j

(b − M0,0)
j t j

j !μ j
+ R j t

j−1 = n0I exp

(
(b − M0,0)t

μ

)
+ . . . .

Returning to the original variables and after integration in time this gives that the final
formula shall be

t�0 := 1

b − M0,0
ln

⎛
⎝1 + ρ0

(
b − M0,0

)
(∫ 1

0 s(x)dx
)
n0I

⎞
⎠ + O

(
1

μ

)
.

Assuming that s fulfills hypotheses 3.2 this provides

t�0 := 1

b − ε
ln

(
1 + ρ0 (b − ε)

εn0I

)
+ O

(
1

μ

)
. (39)

5.2.2 Numerical simulations

We display in Fig. 5 for various values of μ, t�0 computed using direct numerical
simulations with a random initial data nI , compared with the value given by (39). In
this particular case, the convergence occurs for values of μ larger then 1.

5.2.3 Mathematical proofs

Setting ñ(t, x) := n(t, x) exp(−(b − M0,0)t)/n0I , with n0I := ∫
Ω
nI (x)dx , it is

solution of ⎧⎨
⎩

∂t ñ − μ∂2
x2
ñ = (M0,0 − s)ñ (t, x) ∈ OT ,

∂x ñ(t, x) = 0 (t, x) ∈ ΣT ,

ñ(0, x) = nI (x)/n0I (t, x) ∈ {0} × Ω

(40)
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Fig. 5 Time to reach �0 starting from a random initial condition, for various values of μ (in the logscale)

When μ, the mutation rate dominates one sets the decomposition:

Nμ = N0 + 1

μ
N1 + · · ·

We suppose moreover that we focus on solutions for long times so that the time scaling
should be

Nμ(μt, x) ∼ ñ(t, x), (t, x) ∈ R+ × (0, 1).

One then writes the asymptotic expansion of the equations with respect to 1/μ:

– O (μ) terms provide:

⎧⎨
⎩

∂tN0 − ∂2
x2
N0 = 0, (t, x) ∈ OT ,

∂xN0(t, x) = 0, (t, x) ∈ ΣT ,

N0(0, x) = nI (x)/n0I , (t, x) ∈ {0} × Ω.

– while O
(

1
μ j

)
terms give :

⎧⎪⎨
⎪⎩

∂tN j − ∂2x2N j = (M0,0 − s)N j−1, (t, x) ∈ OT ,

∂xN j (t, x) = 0, (t, x) ∈ ΣT ,

N j (0, x) = 0, (t, x) ∈ {0} × Ω,

for j ∈ N
∗.

Proposition 3 For any nI ∈ L2(Ω), one has

– If j = 0

‖N0(t, ·) − 1‖L2(0,1) ≤ c0 exp(−π2t), ∀t ≥ 0
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– If j ≥ 1 then

∥∥N j (t, ·)
∥∥
L2(0,1) ≤ c j t

j−1, ∀t ≥ 0

where the constant c j does not depend on t.

Proof The proof follows in two steps

– If j = 0 then the spectral decomposition gives directly the claim.
– For the second part we proceed by induction. If j = 1, N1 solves

∂tN1 − ∂2x2N1 = (M0,0 − s)N0

complemented with homogeneous Neumann boundary and zero initial conditions.
Integrating in space shows that N 1(t) := ∫

Ω
N1(t, x)dx solves

∂tN 1 = (M0,0 − s)N0 = (M0,0 − s)
∑
k∈N

γ0,kvk = −
∑
k �=0

M0,kγ0,k,

but the functions γ0,k are explicit and read: γ0,k = nkI exp(−λk t). Integrating in
time and using Cauchy-Schwartz gives:

|N 1|2 ≤
(
sup
k∈N

|M0,k |
)2

∣∣∣∣∣∣
∑
k �=0

nkI

(
(1−exp(−λk t))

λk

)∣∣∣∣∣∣
2

≤c‖s‖2L∞(0,1)‖nI‖2L2(0,1).

For the rest, we set N 1 := N1 − N 1, it solves

∂tN 1 − ∂2x2N 1 = (M0,0 − s)N0 − ∂tN 1,

which multiplied by N 1 and integrated with respect to x reads :

1

2
∂t
∥∥N 1

∥∥2
L2(0,1) + λ1

∥∥N 1

∥∥2
L2(0,1) ≤ c‖N0‖L2(0,1)

∥∥N 1

∥∥
L2(0,1),

by Young’s inequality and Gronwall’s lemma, the second claim holds for j = 1.
– We suppose now that for � ≤ j − 1 the property is true. Again for the constant
mode one has

∂tN j =
∫

Ω

(M0,0 − s)N j−1dx ≤ ∥∥M0,0 − s
∥∥
L2(0,1)

∥∥N j−1
∥∥
L2(0,1) ≤ ct j−2,

where the last inequality comes from the induction hypothesis. Integrating the
latter inequality in time provides the result for the zero mode. As above, one has

∂tN j − ∂2x2N j = (M0,0 − s)N j−1 − ∂tN j ,
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the latter term being constant in space andN j being of zero mean value provides
after multiplication by N j and integration with respect to x that

1

2
∂t

∥∥∥N j

∥∥∥2
L2(0,1)

+ λ1

∥∥∥N j

∥∥∥2
L2(0,1)

≤ 2‖s‖L∞(0,1)

∥∥N j−1
∥∥
L2(0,1)

∥∥∥N j

∥∥∥
L2(0,1)

,

which again by Young inequality and Gronwall proves the second claim for � = j .
This ends the induction argument. 
�

5.2.4 Error estimates

Wedefine the error EN := n(t, x) exp(−bt)/n0I −exp(−M0,0t)Nμ,N whereNμ,N :=∑ j=N
j=0

1
μ j N j (μt, x), it solves

⎧⎪⎨
⎪⎩

∂tEN −μ∂2
x2
EN +sEN = (M0,0−s)

μN NN (μt, x) exp(−M0,0t), (t, x) ∈ OT ,

∂xEN = 0, (t, x) ∈ ΣT ,

EN (0, x) = 0, (t, x) ∈ {0} × Ω.

Theorem 9 If n I ∈ L2(Ω) and s satisfies hypotheses 3.2, one has for any fixed time
T that

‖EN (T, ·)‖L2(Ω) ≤ c

μMN
0,0

,

where the constant c is independent both on T and on μ.

Proof Multiplying the latter equation by EN and integrating with respect to x , one has

∂t‖EN‖2L2(Ω)
≤ 2c

μN
‖NN‖L2(Ω)‖EN‖L2(Ω) exp(−M0,0t)

dividing both sides by
√

‖EN‖2
L2(Ω)

+ δ, one gets:

∂t

√
‖EN‖2

L2(Ω)
+ δ ≤ 2c

μN

‖NN‖L2(Ω)‖EN‖L2(Ω)√
‖EN‖2

L2(Ω)
+ δ

exp(−M0,0t)

≤ 2c

μN
‖NN (μt, ·)‖L2(Ω) exp(−M0,0t)

here we use the estimates of Proposition 3 to conclude that

√
‖EN (t, ·)‖2L2(Ω)

+ δ ≤ √
δ + c

μ

∫ t

0
sN−1 exp(−M0,0s)ds ≤ √

δ + c

μMN
0,0

,

which finally gives the claim, since the result holds for any arbitrarily small δ > 0.

�
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Turning back to the original function n(t, x) solving (29), the consequence of results
above is that

Corollary 2 nI ∈ L2(Ω) and s satisfies hypotheses 3.2, one has for any fixed time t
that

∥∥∥n(t, ·) − n0I exp((b − M0,0)t)
∥∥∥
L2(Ω)

≤ c|n0I |
μMN

0,0

exp(bt).

where the constant c is independent both on t and on μ.

Remark 3 These results show that it is possible to compute the limit of n when μ is
large. Nevertheless, the approximation is only first order accurate with respect to μ.
An interesting and open question is whether one is able to construct a higher order
approximation.

Theorem 10 If n I ∈ L2(Ω) and s satisfies hypotheses 3.2, for any η > 0, there exists
a μ large enough, s.t. if

t�0 := 1

b − M0,0
ln

⎛
⎝1 + ρ0

(
b − M0,0

)
(∫ 1

0 s(x)dx
)
n0I

⎞
⎠ ,

then
∣∣�out(t�0) − �0

∣∣ ≤ η.

5.3 Asymptotic expansion for small mutation rates

On the other hand, if we consider μ small, one can decompose the solution of (29)

n(t, x) ∼
∑
j∈N

μ jN j (t, x)

where the different terms N j solve:

– if j = 0 {
∂tN0 = (b − s(x))N0, (t, x) ∈ OT ,

N0(0, x) = nI (x).
(41)

– if j ≥ 1 {
∂tN j = (b − s(x))N j + ∂2x2N j−1, (t, x) ∈ OT ,

N j (0, x) = 0.
(42)

5.3.1 Formal computations

One can solve explicitly N0, which reads:

N0(t, x) = exp((b − s(x))t)nI (x).
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We compute a zero order approximation of �out:

�out ∼
∫ t

0

∫
Ω

s(x) exp((b − s(x))t̃)nI (x)dxdt̃ =: ρapp(t).

For the particular case when s satisfies hypotheses 3.2, one recovers

ρapp(t) = exp((b − 1)t) − 1

(b − 1)

∫
Ω

s(x)nI (x)dx,

which gives then an explicit formula for μ small

t�0 := 1

(b − 1)
log

(
1 + (b − 1)�0∫

Ω
s(x)nI (x)dx

)
. (43)

5.3.2 Numerical simulations

We display, in Fig. 6, t�0 , the time to reach �0, for various values of μ and for a given
random initial data nI ∈ L2(Ω).

5.3.3 Rigorous proofs

Lemma 8 We suppose that s satisfies the hypotheses 3.2. For any given Ψ ∈ L2(OT )

there exists a unique solution ϕ ∈ C((0, T ); H1(Ω)) ∩ L2((0, T ); H2(Ω)) solving

⎧⎨
⎩

∂tϕ − μ∂2
x2

ϕ + sϕ = Ψ (t, x), (t, x) ∈ OT

∂xϕ(t, x) = 0, (t, x) ∈ ΣT

ϕ(0, x) = 0, (t, x) ∈ {0} × Ω,

(44)

6.15
6.2

6.25
6.3

6.35
6.4

6.45
6.5

6.55
6.6

6.65
6.7

-10 -9 -8 -7 -6 -5

t

μ

th�0

tμ=0
�0

Fig. 6 Time to reach �0 starting from a random initial condition, for various values of μ, we use again the
same code as in Fig. 5
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and one has continuity with respect to the L2((0, T ); H2(Ω)) norm:

‖ϕ‖L2((0,T );H2(Ω)) ≤ C‖Ψ ‖L2(OT ).

The proof, based on the Galerkin decomposition, is classical and can be found in
Ladyženskaja et al. (1968) Chap III, Sect. 6, p. 172–178.

Theorem 11 If n I ∈ L2(Ω) and s satisfies hypotheses 3.2, one has the L2(OT )-error
estimates:

‖n − N0‖L2(OT ) ≤ μ

√
exp(2bT ) − 1

2b
‖nI‖L2(Ω)

Proof We rescale the problem (29) and the asymptotic expansion so to drop the
damping term b, in the respective equations. Let define Y := C0((0, T ); H1(Ω)) ∩
L2((0, T ); H2(Ω)). Considering (41), the equation is satisfied also in the weak sense
namely, for any ϕ ∈ Y , one has

[∫
Ω

N0(t, x)ϕ(t, x)dx

]t=T

t=0
−
∫
OT

N0(t, x) (∂tϕ − s(x)ϕ) dxdt = 0.

On the other hand, one has also that n solving (29), satisfies as well for any ϕ ∈ Y ,

[∫
Ω

n(t, x)ϕ(t, x)dx

]t=T

t=0
−
∫
OT

n(t, x)
(
∂tϕ + μ∂2x2ϕ − s(x)ϕ

)
dxdt = 0.

This gives when setting E(t, x) := n(t, x) − N0(t, x), for any ϕ ∈ Y

[∫
Ω

E(t, x)ϕ(t, x)dx

]t=T

t=0
−
∫
OT

E(t, x)
(
∂tϕ + μ∂2x2ϕ − s(x)ϕ

)
dxdt

= μ

∫
OT

N0(t, x)∂
2
x2ϕ(t, x)dxdt.

For any Ψ ∈ L2(OT ), there exists ϕ ∈ Y , the forward form solving (44). Now let
insert the backward expression of ϕ in the latter weak form, this gives:

∫
OT

E(t, x)Ψ (t, x)dxdt≤μ‖N0‖L2(OT )

∥∥∥∂2x2ϕ
∥∥∥
L2(OT )

≤Cμ‖N0‖L2(OT )‖Ψ ‖L2(OT ),

which holds for any Ψ ∈ L2(OT ). Taking the supremum over all functions in this
latter space provides the bound ‖E‖L2(OT ) ≤ Cμ‖N0‖L2(OT ). Turning back to the
correct scaling with respect to the damping term b, one recovers the claim. 
�
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Corollary 3 Under the same hypotheses as in Theorem (11), the time t�0 being defined
in (43), one has the error estimates : there exists a constant C(s, nI , b) > 0, indepen-
dent of μ, s.t.

∣∣�out(t�0) − �0
∣∣ ≤ μC(s, nI , b)‖nI ‖L2(Ω)‖s‖L2(Ω).

The proof comes easily combining a triangular inequality as in the proof of Theorem
4, results above and the definition of t�0 . As the latter time does not depend on μ, the
claim follows straightforwardly.
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