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Abstract In the formation of large clusters out of small particles, the initializing step
is called the nucleation, and consists in the spontaneous reaction of agents which
aggregate into small and stable polymers called nuclei. After this early step, the poly-
mers are involved in a number of reactions such as polymerization, fragmentation and
coalescence. Since there may be several orders of magnitude between the size of a
particle and the size of an aggregate, building efficient numerical schemes to capture
accurately the kinetics of the reaction is a delicate step of key importance. In this arti-
cle, we propose a conservative scheme, based on finite volumemethods on an adaptive
grid, which is capable of simulating well the early steps of the reaction as well as the
later chain reactions.

Keywords Polymerization · Aggregation-fragmentation models · Finite volume
schemes · Adaptive grid

Mathematics Subject Classification 65N08 · 35L02 · 35Q92 · 34K28 · 34E05

1 Introduction

In the formation of large clusters out of small particles, the initializing step is called
the nucleation, and consists of the spontaneous reaction of agents which aggregate
into small and stable polymers called nuclei. After this early step, the polymers are
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involved in a wide range of possible reactions, such as polymerization, fragmentation
and coalescence. These reactions vary from one species to the other, and even from
one application field (microtubule or protein polymerization in general) to another
(phase condensation or crystallization).

To model such nucleation and polymerization processes, deterministic models con-
sist in huge systems of ordinary differential equations, where there may be several
orders of magnitude between the size of a single agent and the size of an aggregate.
In these systems, the concentration of polymers made-up of i monomers, i ∈ N,

is described by a time-dependent variable ci (t). Its kinetics is given by a first-order
differential equation, coupled with the equations of possibly all the other species.
Among such models, we can cite the Bekker–Döring system (Collet et al. 2002),
discrete growth-fragmentation models (Masel et al. 1999) or discrete coagulation-
fragmentation models (Laurençot and Mischler 2002).

Continuous coagulation-fragmentation models have been developed, and proved
to be the (weak) limit of the discrete models when an appropriate rescaling is carried
out (Collet et al. 2002; Laurençot and Mischler 2002; Pruss et al. 2006; Doumic et al.
2009; Prigent et al. 2012). In such models, the discrete concentration ci (t) is replaced
by a continuous concentration c(t, x) of polymers at time t of size x , whereas the
concentration c1(t) ofmonomers is treated separately. The limit is taken for a vanishing
parameter ε := 1

iM
where iM is the average size of a polymer. The concentration c(t, x)

of polymers is then the solution of a one-dimensional nonlinear first-order integro-
partial differential equation on a domain [0, T ] × [x0, xM ] with 0 ≤ x0 < xM ≤ ∞,
and coupled with the equation satisfied by the concentration c1(t) of monomers.

In these asymptotic results however, the integro-PDE satisfied by c(t, x) requires a
boundary condition at x = x0 ≥ 0 for the problem to be well-posed. Such a boundary
condition is formally derived for different models in Collet et al. (2002), Doumic
et al. (2009), Prigent et al. (2012). Complete proofs (in a weak formulation) are also
provided in Collet et al. (2002), Doumic et al. (2009), but with some extra assumptions
either on the parameters (the polymerization rate needs to vanish as one approaches
zero, so that a boundary condition is no longer necessary ) or on x0 (x0 > 0 is required).
Unfortunately, these restrictive cases are often not physically relevant: x0 > 0 would
mean a very large minimal size of stable polymers, since it has to be on the same order
of magnitude as the average size iM � 1 by assumption. If we assume a vanishing
polymerization rate near 0 then spontaneous formation of polymers from monomers
is impossible.

In Prigent et al. (2012) we proposed a general model to take into account both
these large scale phenomena, modeled by a PDE approximation, and the nucleation
step, which becomes a boundary condition for the smallest polymers. This boundary
condition was formally derived but not theoretically proved, since it fails to satisfy
these restrictive assumptions which were used in the previous studies (Collet et al.
2002; Doumic et al. 2009). We also showed via some specific examples the accuracy
of this new model. However, it remains to determine how it is possible to capture
numerically the specific characteristics of the nucleation step, because its scale is of
infinitesimal size compared to the scale where continuous models are valid. This early
step is of key importance because it influences the overall dynamics: as shown below,
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A numerical scheme for nucleation-aggregation 261

it provides the so-called lag time, which is the time needed for the polymerization
chain reaction to ignite when initially the solution contains only monomers.

In considering numerical schemes for coagulation-fragmentation models, many
successful studies have already been carried out, for the continuous equations [see
e.g., Carrillo and Goudon (2004), Goudon and Lagoutière (2012) for the Lifshitz–
Slyozov equation including even a space variable, and Bourgade and Filbet (2008),
Filbet (2008), Filbet and Laurençot (2003, 2004a, b), Kumar et al. (2006)] as well as
for discrete cases (Wulkow 1996; Deuflhard et al. 2008). Our purpose here is not to
elaborate on these studies, but rather to focus on the treatment of the nucleation step,
which, to the best of our knowledge, has not yet been treated when combined with
large chain reactions.

In a first section, we will recall the general model proposed in Prigent et al. (2012),
both in its original ODE version and its approximation by an integro-PDE system. We
then write a simplified version of this system, which is the basis of this article: since
our point is the treatment of the nucleation step, for the sake of clarity we neglect all
the reactions which are of secondary importance when this early step dominates. In a
second section, we detail our numerical strategy: the choice of an adapted grid, and
convenient finite volume schemes. In a third section we present problems we chose to
test our methods—one of them having the main advantage of possessing an analytical
solution, which allows quantitative error estimates.We then give our numerical results.
Finally, we discuss our results and how to adapt our method to more general situations
where secondary pathways need to be considered.

2 Model

2.1 Framework model

In this preliminary section, we recall the general ODEmodel that we wish to simulate.
This model has been designed to be as general as possible so that any type of reaction
is represented. In the remainder of the article, we will call amonomer a single particle
(or dust or atom or molecule) which is the basic unit agent in the aggregation chain
reactions. Its concentration is denoted by c1(t), whereas a concentration of polymers
of size i (assumed here, for the sake of simplicity, to belong to a unique species) is
denoted ci (t). We consider the following reactions.

– Activation scheme. An inert monomer may spontaneously convert into an active
conformer, whose concentration is denoted c∗

1 with reaction

c1
k+
I�

k−
I

c∗
1 .

– Nucleation step. There exist a wide variety of nucleation types—homogeneous or
heterogeneous, progressive or not. Herewe chose the type of reactions proposed by
Oosawa andAsakura (1975) in the case of many protein polymerization processes.
A nucleus here denotes the smallest stable size of polymers: smaller ones are highly
unstable and too transitory to be observed.We call i0 the size of the nucleus, whose
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concentration is ci0 . Instead of modelling a sequential addition (represented by
c1 → c2 → c3 → · · · → ci0 ), the nucleus formation may be equivalently
represented by an i0 order kinetic reaction, i.e., i0c∗

1 → ci0 . The nucleus size i0,
of unknown value, can be equal to 1, 2, 3 or even more, with reaction given by

c∗
1 + · · · + c∗

1
︸ ︷︷ ︸

i0

kNon�
kNof f

ci0 .

– Chain reaction of polymerization. Polymers of size i quickly polymerize into
polymers of size i + 1 by addition of a monomer at a reaction rate kion , and may
also depolymerize with a rate kidep. This is modeled as

ci + c1
kion�
ki+1
dep

ci+1.

– Coalescence and fragmentation. Polymers can coalesce with one another or break
into two smaller polymers. We neglect the breakage into 3 or more pieces, which
is generally much more hazardeous, as well as higher order coalescence of 3 or
more polymers for the same reason. We denote ki, jcol the coagulation rate of two

polymers of respective size i and j, and ki, jo f f the fragmentation rate of a polymer
of size i giving rise to smaller polymers of size j and i − j, with 2 ≤ j ≤ i0.
Thus

ci + c j
ki, jcol�
ki+ j,i
o f f

ci+ j .

We define K j
of f = ∑ j−2

i=2 ki, jo f f . This represents the total rate with which a polymer

of size j can break to give smaller polymers. By symmetry we have that ki, jo f f =
k j−i, j
o f f and ki, jcol = k j,i

col .

– Degradation and monomer addition. Each polymer, conformer or monomer may
degrade with a degradation rate kim, k1∗m and k1m respectively, and monomers may
be added to the system with a rate λ(t).

With these assumptions, the ordinary differential model is given by the sum of the
laws of mass action for each of these reactions, namely

dc1
dt

= −k+
I c1 + k−

I c
∗
1 − k1mc1 + λ(t), (1)

dc∗
1

dt
= k+

I c1 − k−
I c

∗
1 − i0 k

N
on (c∗

1)
i0 + i0 k

N
of f ci0 − k1∗m c∗

1

− c∗
1

∑

i≥i0

kion ci +
∞
∑

j=i0

k j
depc j + 2

i0−1
∑

i=2

∞
∑

j=i0

i ki, jo f f c j , (2)
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dci0
dt

= kNon (c∗
1)

i0 − kNof f ci0 − ki0on ci0 c
∗
1 + ki0+1

dep ci0+1 − ki0mci0

+ 2
∞
∑

j=i0+2

ki0, jo f f c j − Ki0
of f ci0 −

∑

j≥i0

ki0, jcol ci0 c j , (3)

dci
dt

= c∗
1(k

i−1
on ci−1 − kion ci ) − (kidepci − ki+1

dep ci+1) − kimci

+ 2
∞
∑

j=i+2

ki, jo f f c j − Ki
of f ci

+ 1

2

∑

i0≤ j≤i−2

k j,i− j
col c j ci− j −

∑

j≥i0

ki, jcolci c j , ∀ i ≥ i0 + 1. (4)

In this system, as seen above in the description of the reactions, i0 ∈ N
∗ is a fixed

integer representing the size of the nucleus, which is the smallest stable polymer.
When the early steps of nucleation and conformation are absent, this is a classical

system of coagulation-fragmentation reactions. This turns out to be of the family of
physiologically-structured equations (Pruss et al. 2006; Diekmann et al. 2007) if we
only consider fragmentation and polymerization, and to the Becker–Döring system if
we do not consider either fragmentation and coalescence but only polymerization and
depolymerization. This system has a positivity property, and satisfies a mass balance
equation of the form

d

dt

(

c1(t) + c∗
1(t) +

∞
∑

i0

ici (t)

)

= λ(t) − k1mc1(t) − k1∗m c∗
1(t) −

∞
∑

i0

ikimci (t). (5)

2.2 Aim of the article

The primary objective of this article is to find a fast and accurate numerical scheme
to simulate this system. Efficiency is a key factor since intensive simulations may be
necessary, for instance, to estimate parameters from experimentalmeasurements. Such
inverse problem methods and parameter identification algorithms generally require a
nontrivial number of simulations. This is also required if we embed this model into
a more complex one: for instance if we need a space variable (Caizo et al. 2010;
Goudon and Lagoutière 2012), or if we want to model the distribution of polymers in
a proliferating cell population (Sindi et al. 2009).

The main difficulty is that we expect i to take values up to 106 or even more (for
instance in the case of Becker–Döring equation, part of the mass goes to infinity in
the super-critical case (Penrose 1989). This makes an explicit scheme in which each
differential equation for ci must be solved very time-consuming. That is one of the
reasons for the interest in a continuous approximation of ci as it was carried out
in Prigent et al. (2012), following previous studies (Collet et al. 2002; Doumic et al.
2009; Laurençot and Mischler 2002).
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2.3 Continuous approximation and numerical strategy

The continuous version of this model, formally derived in Prigent et al. (2012), is
summarized next. The notation for c1 and c∗

1 is unchanged, c(t, x) represents the
concentration of polymers of size x ≥ x0 ≥ 0 at time t, and the parameter functions are
defined similarly. The continuous variable x replaces the discrete one i . Assumptions
that coefficients must satisfy are detailed in (Prigent et al. (2012), Supplementary
Data 1). The system is given by

dc1
dt

= −k+
I c1 + k−

I c
∗
1 − k1mc1, (6)

dc∗
1

dt
= k+

I c1 − k−
I c

∗
1 − i0 kNon (c∗

1)
i0+1ki0on

kNof f + ki0onc∗
1

− k1∗m c∗
1 − c∗

1

∞
∫

x0

kon(x) c(t, x)dx +
∞

∫

x0

kdep(x)c(t, x)dx, (7)

∂c(t, x)

∂t
= −c∗

1
∂

∂x

(

kon(x)c(t, x)
) + ∂

∂x
(kdep(x)c(t, x)

)

+ 2

∞
∫

x

kof f (x, y) c(y)dy − Kof f (x)c(t, x) − km(x)c(t, x)

+ 1

2

x
∫

x0

kcol(y, x − y)c(t, y)c(t, x − y)dy

−
∞

∫

x0

kcol(x, y)c(t, x) c(t, y)dy, x ≥ x0, (8)

kon(x0)c(t, x0) = kon(x0)
kNon (c∗

1)
i0

kNof f + kon(x0)c1
. (9)

As soon as the average polymer size iM is large, this system is expected to be
a good approximation of System (1)–(4). A second-order approximation for the
polymerizing-depolymerizing terms has been proposed by Collet and Hariz (1999),
and is expected to be second-order accurate as shown by the formal calculation carried
out in Collet et al. (2002) with respect to ε = 1

iM
. The related issue of the limit of

a stochastic Becker–Döring model to the Lifshitz–Slyozov equation with boundary
value has also been recently investigated (Deschamps et al. 2014). The problem is that
if i0 
 iM , which is most often the case, there is a priori no reason for this approx-
imation (and even the second order one) to be accurate, since the main assumption,
which is the large size of i , fails to be satisfied. Our numerical strategy is thus the
following.
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A numerical scheme for nucleation-aggregation 265

Let us set ε as the typical precision that we want to achieve.

– For sizes i ≤ N0 = 1+ � 1
ε
�, we solve the original ODE system described by (1)–

(4) by an accurate scheme of the desired order.
– For sizes larger than N0, we solve the PDE given by (8) by an appropriate finite
volume scheme, as described in Sect. 3, and define a proper approximation of
the polymerised mass

∫ ∞
N0

xc(t, x)dx . For this step, it is also possible to take
advantage of existing schemes, such as developed in Bourgade and Filbet (2008),
Filbet (2008), Filbet and Laurençot (2003, 2004a, b), Carrillo and Goudon (2004),
Goudon and Lagoutière (2012) for instance.

– We define c1 by its equation and c∗
1 by the mass conservation relation.

This corresponds to solving a mixed ODE and PDE system that we write below in the
simplified case on which we will focus.

In order to keep the physical meaning and orders of magnitude, let us note that we
did not carry out any dimensionless reformulation of the equations. This leads to large
values of x in Eq. (8) and also to rather big values for our space step �x ≥ 1. The
expected precision is not linked to a small �x but rather to a small ratio �x

x , assumed
to be in the order of ε. In this case, our PDE approximation is perfectly valid under the
same kind of assumptions as in the previous studies (Collet et al. 2002; Doumic et al.
2009; Prigent et al. 2012), for example under the assumption kon(x) = Kon(εx) with
a function Kon ∈ C1b independent of ε. This also means that the larger x, the more we
neglect small variations of the coefficients. This is at least correct while nucleation
and small polymers dominate the reactions.

2.4 Simplified model

Since our interest here is to study the nucleation step and how one can build adaptive
numerical schemes, for the sake of simplicity we describe our method on a simpli-
fied case. This then is meant to be combined with existing numerical schemes for
coagulation-fragmentation or the Lifshitz–Slyozov–Wagner equation.

We focus on the casewhen fragmentation, coalescence, depolymerization and death
are not present, and we apply the previously described strategy. The ODE system is
then the following

dc1
dt

= −k+
I c1 + k−

I c
∗
1, (10)

dc∗
1

dt
= k+

I c1 − k−
I c

∗
1 − i0 k

N
on (c∗

1)
i0 + i0 k

N
of f ci0 − c∗

1

∑

i≥i0

kion ci , (11)

dci0
dt

= kNon (c∗
1)

i0 − kNof f ci0 − ki0on ci0 c
∗
1, (12)

dci
dt

= c∗
1(k

i−1
on ci−1 − kion ci ), ∀ i ≥ i0 + 1, (13)
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with the initial conditions

ci (t = 0) = c∗
1(t = 0) = ci0(t = 0) = 0, c1(t = 0) = c0 ∈ R. (14)

The mass conservation, which may replace either Eqs. (10) or (11), becomes

d

dt

(

c1(t) + c∗
1(t) +

∞
∑

i0

ici (t)

)

= 0. (15)

3 Numerical scheme

The domain size on the order of up to a million (shown in experiments as a maximal
size for protein polymers, but still larger for other applications like cluster formation)
presents a challenge in the computations. Our simplified model begins with an initial
concentration of only monomers. After the nucleation step, the polymers bind one
monomer at a time. After the usually relevant observation times, smaller polymers are
thus found at a higher concentration than larger polymers. A uniform grid, which ide-
ally should not contain a large amount of elements in order to remain computationally
tractable, does not capture these peaks at the left-hand side of the polymer distribution
efficiently.

As explained in Sect. 2.3, we approximate (13) by solving the ODE system as long
as i ≤ N0 and by a PDE for x ≥ N0. The system of equations is thus given as

dc1
dt

= −k+
I c1 + k−

I c
∗
1, (16)

dc∗
1

dt
= k+

I c1 − k−
I c

∗
1 − i0 k

N
on (c∗

1)
i0 + i0 k

N
of f ci0

− c∗
1

( N0
∑

i0

kion ci +
∞

∫

N0

kon(x)c(t, x)dx

)

, (17)

dci0
dt

= kNon (c∗
1)

i0 − kNof f ci0 − ki0on ci0 c
∗
1, (18)

dci
dt

= c∗
1(k

i−1
on ci−1 − kionci ), i ≤ N0, (19)

∂c

∂t
= −c∗

1∂x (kon(x)c(x, t)), x > N0. (20)

with the initial and boundary conditions

c∗
1(t = 0) = ci0(t = 0) = ci (t = 0) = 0, c1(t = 0) = c0 ∈ R, (21)

c(t = 0, x) = 0, c(t, x = N0) = cN0(t). (22)
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A numerical scheme for nucleation-aggregation 267

The mass conservation equation becomes

d

dt

(

c1(t) + c∗
1(t) +

N0
∑

i0

ici +
∞

∫

N0

xc(t, x)dx

)

= 0. (23)

We will now discuss different types of finite volume approximations for the PDE.

3.1 Finite volume approximation

We use a finite volume scheme to approximate Eq. (20). Let the mesh be defined
by N0 = x1/2 < x3/2 < · · · < xN−1/2 = imax with, for 1 ≤ i ≤ N − 1, Ii =
[xi−1/2, xi+1/2] and hi = xi+1/2− xi−1/2, not necessarily uniform.We define the cell
average on the interval Ii as

Qk
i := 1

hi

∫ xi+1/2

xi−1/2

c(x, tk) dx = 1

hi

∫

Ii
c(x, tk) dx, 1 ≤ i ≤ N − 1. (24)

The integral form of (20) on the interval [tk, tk+1] is given by

d

dt

∫

Ii
c(x, t) dx = fi−1/2(c, c

∗
1, t) − fi+1/2(c, c

∗
1, t) (25)

with fi−1/2(c, c∗
1, t) = c∗

1(t)kon(xi−1/2)c(xi−1/2, t). By integration, we obtain the
time stepping scheme

Qk+1
i = Qk

i − �t

hi
(Fk

i+1/2 − Fk
i−1/2), 1 ≤ i ≤ N − 1, (26)

with

Fk
i−1/2 ≈ 1

�t

∫ tk+1

tk
fi−1/2(c, c

∗
1, t) dt (27)

being an approximation to the average flux on the interval [tk, tk+1]. Choosing
Fk
i−1/2 = c∗

1(tk)k
i−1/2
on Qk

i−1 with ki−1/2
on := kon(xi−1/2), we have the simple upwind

method

Qk+1
i = Qk

i − �t

hi
c∗,k
1 (ki+1/2

on Qk
i − ki−1/2

on Qk
i−1). (28)

This scheme is of first order. To increase the accuracy of the numerical simulations,
we add a second order correction term and employ a Flux Limiter method on a non-
uniform mesh (LeVeque 2002, Chapter 6.17.1). We have, for 1 ≤ i ≤ N − 1,

Qk+1
i = Qk

i − �t

hi
c∗,k
1 (ki+1/2

on Qk
i − ki−1/2

on Qk
i−1) − �t

hi
(F̃k

i+1/2 − F̃k
i−1/2), (29)
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where we approximate the correction term by

F̃k
i−1/2 = c∗,k

1

2

(

hi−1 − c∗,k
1 ki−1/2

on �t
)

ki−1/2
on

(

Qk
i − Qk

i−1
1
2 (hi−1 + hi )

)

�(λki−1) (30)

with

λki−1 =
⎧

⎨

⎩

Qk
i−1−Qk

i−2

Qk
i −Qk

i−1
, Qk

i �= Qk
i−1

0, else
. (31)

For�(λki ) = 1, we obtain the Lax–Wendroff (LW)method which is a classical second
order scheme. However, it often leads to oscillations if sharp fronts are present in the
solution. As second choice we use the Van Leer (VL) Limiter given by

�(λ) = |λ| + λ

1 + |λ| =
{

0, λ < 0
2|λ|
1+|λ| , λ > 0

. (32)

Last, we will use a combination of Beam–Warming and Lax–Wendroff (BWLW)
defined through

�(λ) =
⎧

⎨

⎩

0, λ ≤ 0
λ, 0 ≤ λ ≤ 1
1, 1 ≤ λ

. (33)

3.2 Implementation of boundary conditions

To advance the overall algorithm by one time step, we first compute ci0(tk+1) and
solve the finite ODE system ck+1

i for i = 1, . . . , N0. The computation of Qn+1
1 in (26)

requires the flux Fk−1/2 which is outside the defined problem domain. One approach
would be to employ a special formula for the first cell and to compute the flux (27) by
numerical integration. This in our case is not possible as c∗,k+1

1 is necessary, but still
unknown (we will discuss the exact algorithm in Sect. 3.3). As alternative, we use a
ghost cell approach as defined in LeVeque (2002) (Fig. 1).

The main idea is to make use of the solution of the ODE at time tn . As we have a
hyperbolic equation, all information is transported along the streamlines through the

i0 i0 i0
i0c i0c i0c

N0N0N0
cN0cN0cN0

+1 +2

x x−1/2−3/2 1/2 x xxx 2/72/52/3

Q QQQQ 32101−

+1 +2 ...
...

imax

...

...

−1−2
−2 −1

Fig. 1 Mesh interpretation for ghost cell approach
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domain. We define x−1/2 := N0 − 1, x1/2 = N0 and define the linear function

g(x) = cN0−1 + (x − N0 + 1)
(

cN0 − cN0−1
)

(34)

for x ∈ [N0 − 1, N0]. We then define

Qk
0 :=

∫ x1/2

x−1/2

g(x) dx (35)

and consequently obtain (28).

3.3 The algorithm

To obtain c∗,k
1 , we need to compute the total polymerized mass Mk . In case of our

ODE–PDE approximation, the total polymerizedmass is given byMk = Mk
ode+Mk

pde
with

Mk
ode =

N0
∑

i=i0

icki , Mk
pde =

∫ ∞

N0

xc(tk, x) dx .

Let now xi be the midpoint of Ii , i.e. xi = 1
2 (xi−1/2 + xi+1/2). As in Goudon and

Lagoutière (2012), we use the approximation

Mpde(tk) =
N

∑

i=1

∫

Ii
xc(tk, x) dx ≈

N
∑

i=1

xi

∫

Ii
c(tk, x) dx =

N
∑

i=1

xi hi Q
k
i .

The computational algorithm is thus given by

1. Given c∗
1(tk), compute ci0(tk+1).

2. Given ci0(tk), solve the finite ODE system for ck+1
i , i = 1, . . . , N0.

3. Given ckN0−1, c
k
N0
, compute a ghost cell average Qk

0. (Analogously for Q
k−1, Q

k−2
in case of the flux limiter methods).

5. Solve the PDE using one of the methods defined in Sect. 3.1 and obtain c(xi , tk+1)

for i = N0, . . . , N
5. Compute M(tk+1) and update c∗

1(tk+1) with the mass balance equation (23), i.e.
c∗
1(tk+1) = c1(0) − Mk+1

ode − Mk+1
pde − c1(tk+1).

Remark 1 Time discretization. In our numerical implementation, the ODE systen (19)
for i ≤ N0 is solved with the forward Euler method. This scheme is explicit and of first
order. To make use of the full higher order convergence that the Lax–Wendroff as well
as Flux Limiter methods provide, it is necessary to also employ a second order scheme
in time. The difficulty herein lies in the algorithm given above. A classical Runge–
Kutta scheme can not be used, as it requires in step 2 the evaluation of c∗

1(tk+1) which
is still unknown. A remedy is provided by the Adams–Bashforth multi-stepmethod, as
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it depends only on previous time steps. In our discussion below, we will keep however
the backward Euler method. The CFL condition dictates a rather small time step for
stability, such that the measured error is mainly spatial and convergence rates become
clearly visible.

Remark 2 Properties of our scheme. By replacing (18) with c∗
1(t) = c1(0) − M(t) −

c1(t) = c1(0) − Mode(t) − Mpde(t) − c1(t), our scheme is conservative for the mass
balance by construction. In case of discretizing the PDEby the upwind scheme,we also
have a positive method. On the uniform mesh, the Lax–Wendroff method as defined
in (29) is consistent and of second order (LeVeque 2002, Chapter 9).

4 Numerical experiments

4.1 Description of numerical examples

4.1.1 Example 1

As a first example, we neglect the conformation step and choose c∗
1 = a ∈ R, use

a constant polymerization rate kon ∈ R and set kof f = 0. The Eqs. (10)–(13) then
become

c∗
1 = a (36)

dci0
dt

= kNon(c
∗
1)

i0 − konci0c
∗
1, (37)

dci
dt

= c∗
1kon(ci−1 − ci ), ci (0) = 0, i = i0, . . . . (38)

A solution in closed form to this simplified model can be found.

Lemma 1 For c∗
1 = a ∈ R, kon ∈ R and kof f = 0, we have

ci0 = −kNona
i0−1

kon
e−konat + kNona

i0−1

kon
, (39)

For i > i0, the polymer distribution is given by

ci+1(t) = ci (t) − (kona)i−i0 kNona
i0

(i + 1 − i0)! t
i+1−i0e−konat . (40)

Having the exact solution provides the possibility to determine a discretization error
for the distribution c of our method. However, we chose here to use a representative
parameter set, for which the simulation of (40) becomes numerically unstable. When
comparing the discretization error in the following section, we will therefore use a
numerically computed distribution, obtained by (36), (39) and an explicit very accurate
scheme for (19).
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The inverse problem uses the total polymerized mass in the cost function, as this
is measured in the experiments. In the following, we derive explicit solutions for the
total polymerized mass to (36)–(38). Let therefore P = ∑

i≥i0 ci . We add up Eqs.
(37) and (38) and use the telescoping sum

dP

dt
= dci0

dt
+

∑

i>i0

dci
dt

= kNon(c
∗
1)

i0 − konci0c
∗
1 +

∑

i>i0

c∗
1kon(ci−1 − ci )

= kNon(c
∗
1)

i0 .

With P(0) = 0, we obtain

P(t) =
∫ t

0
kNon(c

∗
1)

i0 dt = kNona
i0 t. (41)

Similarly, we obtain the first moment (or total polymerized mass) M = ∑

i≥i0 ici by
multiplying equations (37) and (38) by i and summing over i

dM

dt
= i0

dci0
dt

+
∑

i>i0

k
dci
dt

= i0k
N
on(c

∗
1)

i0 − i0konci0c
∗
1 +

∑

i>i0

c∗
1kon((i − 1)ci−1 − ci + ci−1)

= i0k
N
on(c

∗
1)

i0 + Pc∗
1kon .

Since M(0) = 0, we find

M(t) =
∫ t

0
i0k

N
on(c

∗
1)

i0 + konc
∗
1P ds = i0k

N
ona

i0 t + konkNona
i0+1

2
t2. (42)

4.1.2 Example 2

In a second example, we again allow a conformation step and choose the polymeriza-
tion function kion to be linear in i , i.e.,

kion = k(1)
on + ik(2)

on

for some constants k(1)
on , k(2)

on ∈ R. With this choice for kion , the setting is a variation of
the typical nucleation-aggregation model given by

dc1
dt

= −k+
I c1 + k−

I c
∗
1, (43)
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dc∗
1

dt
= k+

I c1 − k−
I c

∗
1 − i0k

N
on(c

∗
1)

i0 + i0k
N
of f ci0 − c∗

1

∑

i≥i0

kionci , (44)

dci0
dt

= kNon (c∗
1)

i0 − kNof f ci0 − ki0on ci0 c
∗
1, (45)

dci
dt

= c∗
1(k

i−1
on ci−1 − kion ci ), (46)

with initial conditions

ci (t = 0) = c∗
1(t = 0) = ci0(t = 0) = 0, c1(t = 0) = c0. (47)

A solution in closed form cannot be found, but we derive an aggregated version of the
model. We follow (Prigent et al. 2012, Supplementary Data 1) and in an analogous
manner as above obtain

dP

dt
= kNon(c

∗
1)

i0 − kNof f ci0 (48)

and

dM

dt
= c∗

1k
(1)
on P + c∗

1k
(2)
on M + i0k

N
on(c

∗
1)

i0 − i0k
N
of f ci0 . (49)

Equations (43)–(45) and (48)–(49) form a (finite) system of ODEs which are easily
solved at a high precision using an explicit scheme. This numerical solution is then
used in Sect. 4.2 to compute an error for the numerical approximation.

4.2 Numerical results

We now present numerical results for the finite volume schemes applied to the two
examples of the previous section. We make two choices for the mesh required in the
discretization of the PDE. First, we use a simple uniform mesh defined as

xi = N0 + i · h, i = 0, . . . , N ,

with h = imax−N0
N . Second, we use a progressive mesh that is defined such that a ratio

between the spatial step size and the corresponding mesh element is kept constant,
i.e., �xi

xi
= q < 1. This results in the formula

xi = 1

1 − q
xi−1. (50)

Remark 3 The progressive mesh is a quasi uniform mesh in the sense that �xi−1
�xi

=
1 − q = 1 + O(h). With this property, it can be shown that the upwind and Lax–
Wendroff methods are consistent on the progressive mesh.
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Based on the parameter estimation problem, where the cost-function uses the total
polymerized mass M for the minimization process, we compute the relative L2[0, T ]-
discretization error eM as

eM = ‖Mh − M‖L2[0,T ]
‖M‖L2[0,T ]

with Mh being the solution of the discretized problem. It should be emphasized here
that the exact solution M corresponds to the infinite ODE setting, i.e., M = ∑

i≥i0 ici .
We thus compare the numerical solution Mh (discretized by the ODE–PDE scheme)
to the ODE solution. The obtained error is therefore always influenced by the quality
of the continuous (PDE) approximation of the ODE system. In case of Example 1, we
also compute a relative L2 error for the distribution c at the final time tN as

ec(tN ) =
(∑

i≥i0(c̃i (tN ) − ch(tN , x = i))2
)1/2

(∑

i≥i0 c̃i (tN )2
)1/2 . (51)

The approximation to the exact solution c is obtained, as described above, by solving
(36), (39) and (19) with �tmax = 1e − 3. The integer steps of ch(x = i, tN ) are
obtained by linear interpolation between two grid points xk . Again, we compare the
solution of theODE–PDE scheme to the (numerical)ODE solution. The observed error
does not obey any convergence results known from the literature for an approximation
of a PDE. However it will give a rough estimate of the convergence properties of our
scheme.

To measure the computational efficiency of the schemes, we also include the com-
putation times of each method. These are measured using theMatlab tic-toc command
on an Intel Core i7 processor.

4.3 Example 1

We begin by investigating a uniform mesh for the PDE with N elements and compare
the flux limiter methods. The parameters are chosen as

c0 = 285 · 10−6,

kNon = 5.5079 · 103,
kon = 2.1691 · 106,
imax = 3.2907 · 105,

i0 = 3.

These parameters are derived from a previous paper (Prigent et al. 2012), where sim-
ilar values were found as best-fit parameters to the polymerization problem and thus
represent some typical values.We choose themaximal time step size�t = 1e−3. The
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Table 1 Ex. 1: error eM and convergence rates λi for the uniformmeshwith�tmax = 1e−3 and N0 = 100

N Upw. λ1 LW λ2 VL λ3 BWLW λ4

10 1.7063 1.2790 1.1047 1.2803

20 0.8531 1.00 0.4753 1.43 0.4384 1.33 0.5379 1.25

40 0.4265 1.00 0.1348 1.82 0.1688 1.38 0.2246 1.26

80 0.2132 1.00 0.0312 2.11 0.0638 1.40 0.0933 1.27

160 0.1065 1.00 0.0077 2.01 0.0238 1.42 0.0385 1.28

320 0.0532 1.00 0.0019 2.04 0.0088 1.43 0.0157 1.29

640 0.0265 1.00 0.0004 2.15 0.0032 1.45 0.0064 1.30

1280 0.0132 1.01 0.0001 2.62 0.0012 1.47 0.0026 1.32

2560 0.0065 1.01 0.0000 0.52 0.0004 1.54 0.0010 1.35

5120 0.0032 1.03 0.0001 −0.44 0.0001 1.77 0.0004 1.43
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Fig. 2 Example 1: convergence plots for error eM (uniform mesh)

smallest time step size is determined by the CFL condition (and thus is unknown a pri-
ori). Consequently, we have a fine time stepping and expect to see (for a rather coarse
spatial mesh) mainly a spatial error. We compute the simulations up to T = 40 h. The
discretization error eM is found inTable 1 togetherwith the corresponding convergence
rates. These are computed in the usual way as λki = log(eM (Nk)/eM (Nk−1))

log(Nk/Nk−1)
indicating the

slope of the error curves in Fig. 2. The computation times of each method with cor-
responding discretization error are presented in Table 2 and the polymer distributions
are given in Fig. 3.

The simple upwind method converges with a rate of 1, while the Lax–Wendroff
method converges with a rate of 2. The Flux-Limiter method rates are between 1 and
2 with the Van-Leer Limiter exhibiting a somewhat better convergence. The uniform
mesh does not take the high concentration of smaller polymer sizes into account,
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Table 2 Ex. 1: error eM for the uniform mesh and computation time cti , �tmax = 1e − 3, N0 = 100

N Upw. ct1 LW ct2 VL ct3 BWLW ct4

10 1.7063 1.58 1.2790 2.93 1.1047 3.50 1.2803 3.69

20 0.8531 1.60 0.4753 3.04 0.4384 3.85 0.5379 3.77

40 0.4265 1.62 0.1348 3.11 0.1688 4.80 0.2246 4.01

80 0.2132 1.74 0.0312 3.23 0.0638 4.21 0.0933 4.29

160 0.1065 2.03 0.0077 3.70 0.0238 4.59 0.0385 4.53

320 0.0532 2.21 0.0019 4.21 0.0088 4.87 0.0157 5.34

640 0.0265 2.73 0.0004 5.02 0.0032 6.18 0.0064 6.72

1280 0.0132 3.92 0.0001 7.37 0.0012 9.00 0.0026 9.85

2560 0.0065 7.74 0.0000 15.04 0.0004 17.91 0.0010 19.99

5120 0.0032 12.74 0.0001 25.54 0.0001 29.79 0.0004 32.75
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Fig. 3 Example 1: polymer distribution (uniform mesh)

but gives each spatial interval equal importance. The exact polymer distribution ci to
Example 1 contains a sharp front. It is thus expected and confirmed in Fig. 3 that this
feature will not be captured properly. The upwind method on a uniform grid smooths
out the sharp front. While the Lax–Wendroff method converges the fastest for M ,
it leads to large oscillations for the distribution ci . The flux limiter methods avoid
oscillations and approximate the sharp front better than the upwind method. On the
other hand, they have a slightly larger error eM than Lax–Wendroff.

The first experiment for the progressive mesh keeps the ratio q fixed and changes
N0. The error does not change significantly. Due to the constant inflow of conformers
and as seen in Fig. 4, the distribution ci is constant for smaller polymer sizes. Any
of the four proposed discretization methods approximates a constant accurately. The
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Fig. 4 Example 1: convergence plots for error eM (progressive mesh)

Table 3 Ex. 1: error eM for the
progressive mesh with
�tmax = 10−3

q N0 N BWLW Upwind LW VL

0.10 10 97 0.0554 0.00549 0.0126 0.0199

0.10 100 77 0.0554 0.00549 0.0127 0.0199

0.10 1000 55 0.0553 0.00549 0.0127 0.0199

0.01 10 1009 0.0049 0.00005 0.0003 0.0008

0.01 100 803 0.0049 0.00003 0.0003 0.0008

0.01 1000 577 0.0049 0.00002 0.0003 0.0008

number of N0 is thus, for this particular example, not important. In the following
simulations, we set N0 = 100 (Table 3).

The second experiment for the progressive mesh focuses on the convergence of
the error in q (or in the corresponding number of elements N ). All methods converge
satisfactorily (Tables 4, 5; Fig. 4). In terms of the error eM , the Lax–Wendroff method
is best but again exhibits oscillations in the distribution c. In Fig. 5, we present the

relative error erel(t) = |Mh(t)−M(t)|
|M| . At the beginning, all methods have a large relative

error. Themodel uses an instantaneous inflow of conformers which could be compared
to a Dirac-delta function. Since all methods start with solving (19) up to i = N0, this
peak is the same for all cases. For t ≥ 1, the relative error is about constant and thus
the approximation Mh is found in a fan-shaped environment around M . It is clearly
shown thatLax–Wendroff gives the best approximation toM ,while the upwindmethod
performs the worst.

Comparing the two meshes, the error using the progressive mesh is smaller than
the one using the uniform mesh. In conclusion, a choice for practical simulations
would be a flux limiter method to avoid the oscillations in the approximation of ci in
combination with a progressive mesh to make use of the smaller error (Fig. 6; Tables
6, 7).
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Table 4 Ex. 1: error eM and convergence rates λi for the progressive mesh with �tmax = 10−3 and
N0 = 100

q N Upwind λ1 LW λ2 VL λ3 BWLW λ4

1/2 12 0.4995 0.2525 0.2780 0.3329

1/4 29 0.1665 1.2451 0.0416 2.04 0.0614 1.71 0.0830 1.57

1/8 61 0.0713 1.1409 0.0089 2.08 0.0182 1.63 0.0277 1.48

1/16 126 0.0332 1.0536 0.0020 2.04 0.0060 1.53 0.0102 1.38

1/32 255 0.0160 1.0357 0.0004 2.17 0.0020 1.53 0.0039 1.36

1/64 513 0.0078 1.0266 0.0001 2.91 0.0007 1.56 0.0015 1.37

1/128 1029 0.0038 1.0312 0.0000 0.34 0.0002 1.76 0.0005 1.44

1/256 2062 0.0018 1.0413 0.0001 −0.86 0.0000 3.00 0.0002 1.75

Table 5 Ex. 1: error eM and computation time cti for the progressive mesh with �tmax = 10−3 and
N0 = 100

q N Upwind ct1 LW ct2 VL ct3 BWLW ct4

1/2 12 0.2857 0.63 0.2018 0.93 0.1253 1.21 0.1990 1.19

1/4 29 0.1480 0.62 0.0475 0.93 0.0159 1.19 0.0488 1.23

1/8 61 0.0726 0.64 0.0102 0.96 0.0023 1.22 0.0114 1.29

1/16 126 0.0354 0.71 0.0018 1.10 0.0002 1.38 0.0027 1.42

1/32 255 0.0172 0.76 0.0003 1.25 0.0004 1.51 0.0005 1.60

1/64 513 0.0083 0.97 0.0007 1.74 0.0007 1.91 0.0004 2.00

1/128 1029 0.0039 1.16 0.0008 2.14 0.0009 2.82 0.0008 3.11

1/256 2062 0.0017 2.41 0.0008 3.71 0.0010 4.66 0.0008 4.99
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Fig. 5 Example 1: development of error erel in time (progressive mesh) for q = 1/32, N0 = 100 and
�tmax = 10−3
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Fig. 6 Example 1: polymer distribution (progressive mesh)

Table 6 Ex. 1: error ec and convergence rates λi for the uniform mesh with �tmax =10−3 and N0 = 100

N Upwind λ1 LW λ2 VL λ3 BWLW λ4

80 3.11e−01 2.35e−01 2.52e−01 2.59e−01

160 2.58e−01 0.27 1.94e−01 0.27 1.89e−01 0.42 1.98e−01 0.39

320 2.14e−01 0.27 1.62e−01 0.26 1.41e−01 0.42 1.52e−01 0.38

640 1.78e−01 0.27 1.33e−01 0.28 1.04e−01 0.43 1.16e−01 0.39

1280 1.47e−01 0.27 1.08e−01 0.31 7.55e−02 0.47 8.71e−02 0.41

2560 1.21e−01 0.28 8.50e−02 0.34 5.24e−02 0.53 6.36e−02 0.45

5120 9.88e−02 0.29 6.48e−02 0.39 3.32e−02 0.66 4.40e−02 0.53

Table 7 Ex. 1: error ec and convergence rates λi for the progressive mesh with �tmax = 10−3 and
N0 = 100

q N Upwind λ1 LW λ2 VL λ3 BWLW λ4

1/8 61 0.2521 0.1931 0.2113 0.2153

1/16 126 0.2039 0.2927 0.1500 0.35 0.1520 0.45 0.1586 0.42

1/32 255 0.1670 0.2831 0.1204 0.31 0.1093 0.47 0.1176 0.42

1/64 513 0.1371 0.2821 0.0965 0.32 0.0775 0.49 0.0865 0.44

1/128 1029 0.1121 0.2890 0.0758 0.35 0.0528 0.55 0.0620 0.48

1/256 2062 0.0910 0.3010 0.0582 0.38 0.0329 0.68 0.0421 0.56

1/512 4128 0.0727 0.3227 0.0434 0.42 0.0170 0.95 0.0255 0.72
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4.4 Example 2

In the second numerical example, we approximate (43)–(46) using (16)–(20). The
polymerization function is chosen as kion = k1on + ik2on for the ODE, and as kon(x) =
k1on + xk2on in the continuous case. We use the following parameter values

c0 = 285 · 10−6,

k+
I = 5.7428 · 10−1,

k−
I = 1 · 10−2,

kNon = 5.5079 · 103,
k1on = 8.2766103,

k2on = 6.5916 · 103,
imax = 3.2907 · 105,

i0 = 3.

The simulated curve for the total polymerized mass has a typical shape (Fig. 7) for the
polymerization–aggregation model. After having a lag-phase at the beginning where
the conforming step takes place, it grows steeply (polymerization) and damps out in
the end when all monomers are bound to a polymer.

We again discuss the convergence of the different suggested schemes in terms of the
total polymerized mass M . This example does not permit an exact solution. We solve
the (finite) system of ODEs (43)–(45) and (48)–(49) numerically, which gives a good
approximation M̃ to the exact solution. The approximation error is then computed as
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Fig. 7 Example 2: distribution of polymers at t = 12
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eM̃ = ‖M̃ − Mh‖L2[0,T ]
‖M̃‖L2[0,T ]

. (52)

We define a maximum time step size to solve the ODE system for M̃ , while the
minimum time step size is determined through the CFL condition. In the following
numerical computations, we use�tmax = 10−4. For the uniformmesh, we distinguish
two different N0. The errors eM̃ vs. the convergence rates as well as computation times
for the four different methods using the uniform mesh with N0 = 100 and N0 = 500
are given in Tables 8, 9, 10 and 11. For the progressive mesh, the errors eM̃ and
convergence rate are given in Tables 12, 13, 14, 15 and 16. We distinguish between
�tmax = 0.5 · 10−3 and �tmax = 10−3, as well as N0 = 100 and N0 = 500.

Table 8 Ex. 2: error eM̃ and convergence rates λi for the uniform mesh with �tmax = 10−3 and
N0 = 100

N Upwind λ1 LW λ2 VL λ3 BWLW λ4

10 0.5400 0.5234 0.4761 0.5234

20 0.5065 0.09 0.4808 0.12 0.3944 0.27 0.4808 0.12

40 0.4642 0.13 0.4277 0.17 0.2859 0.46 0.4277 0.17

80 0.4130 0.17 0.3649 0.23 0.1796 0.67 0.3650 0.23

160 0.3537 0.22 0.2948 0.31 0.1071 0.75 0.2948 0.31

320 0.2882 0.30 0.2213 0.41 0.0651 0.72 0.2214 0.41

640 0.2207 0.38 0.1504 0.56 0.0389 0.74 0.1505 0.56

1280 0.1568 0.49 0.0888 0.76 0.0209 0.90 0.0891 0.76

2560 0.1023 0.62 0.0432 1.04 0.0094 1.15 0.0439 1.02

5120 0.0615 0.74 0.0164 1.40 0.0034 1.46 0.0173 1.35

10,240 0.0345 0.83 0.0044 1.89 0.0010 1.82 0.0057 1.60

Table 9 Ex. 2: error eM̃ and computation time cti for the uniform mesh with �tmax = 10−3 and
N0 = 100

N Upwind ct1 LW ct2 VL ct3 BWLW ct4

10 0.5400 0.61 0.5234 0.90 0.4761 1.14 0.5234 1.19

20 0.5065 0.62 0.4808 0.90 0.3944 1.16 0.4808 1.22

40 0.4642 0.62 0.4277 0.93 0.2859 1.18 0.4277 1.23

80 0.4130 0.66 0.3649 1.08 0.1796 1.24 0.3650 1.30

160 0.3537 0.76 0.2948 1.44 0.1071 1.63 0.2948 1.71

320 0.2882 0.89 0.2213 1.78 0.0651 2.06 0.2214 1.76

640 0.2207 1.10 0.1504 1.82 0.0389 2.42 0.1505 2.63

1280 0.1568 2.13 0.0888 4.11 0.0209 5.44 0.0891 5.48

2560 0.1023 8.10 0.0432 16.21 0.0094 21.10 0.0439 21.34

5120 0.0615 24.07 0.0164 50.11 0.0034 62.94 0.0173 73.25

10,240 0.0345 104.97 0.0044 198.91 0.0010 234.69 0.0057 267.99
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Table 10 Ex. 2: error eM̃ and convergence rates λi for the uniform mesh with �tmax = 10−3 and
N0 = 500

N Upwind λ1 LW λ2 VL λ3 BWLW λ4

10 0.3900 0.3698 0.3178 0.3697

20 0.3489 0.16 0.3188 0.21 0.2367 0.42 0.3188 0.21

40 0.2992 0.22 0.2586 0.30 0.1515 0.64 0.2586 0.30

80 0.2428 0.30 0.1931 0.42 0.0853 0.83 0.1932 0.42

160 0.1839 0.40 0.1288 0.58 0.0440 0.95 0.1288 0.58

320 0.1283 0.52 0.0736 0.81 0.0205 1.10 0.0736 0.81

640 0.0820 0.65 0.0344 1.10 0.0083 1.32 0.0344 1.10

1280 0.0484 0.76 0.0127 1.44 0.0028 1.55 0.0128 1.42

2560 0.0268 0.85 0.0037 1.76 0.0009 1.71 0.0043 1.58

5120 0.0142 0.92 0.0009 2.09 0.0003 1.66 0.0014 1.61

Table 11 Ex. 2: error eM̃ and computation times cti for the uniform mesh with �tmax = 10−3 and
N0 = 500

N Upwind ct1 LW ct2 VL ct3 BWLW ct4

10 0.3900 0.77 0.3698 1.09 0.3178 1.31 0.3697 1.35

20 0.3489 0.78 0.3188 1.07 0.2367 1.34 0.3188 1.42

40 0.2992 0.79 0.2586 1.13 0.1515 1.37 0.2586 1.43

80 0.2428 0.81 0.1931 1.16 0.0853 1.44 0.1932 1.49

160 0.1839 0.88 0.1288 1.29 0.0440 1.55 0.1288 1.62

320 0.1283 0.94 0.0736 1.43 0.0205 2.02 0.0736 1.90

640 0.0820 1.33 0.0344 1.96 0.0083 2.49 0.0344 2.62

1280 0.0484 2.64 0.0127 4.53 0.0028 6.08 0.0128 7.45

2560 0.0268 9.15 0.0037 17.39 0.0009 20.89 0.0043 22.81

5120 0.0142 27.48 0.0009 52.64 0.0003 64.11 0.0014 72.69

Table 12 Ex. 2: error eM̃ and convergence rates λi for the progressive mesh with �tmax = 10−3 and
N0 = 100

q N Upwind λ1 LW λ2 VL λ3 BWLW λ4

1/2 12 0.2857 0.2018 0.1253 0.1990

1/4 29 0.1480 0.75 0.0475 1.64 0.0159 2.34 0.0488 1.59

1/8 61 0.0726 0.96 0.0102 2.07 0.0023 2.58 0.0114 1.95

1/16 126 0.0354 0.99 0.0018 2.38 0.0002 3.24 0.0027 1.99

1/32 255 0.0172 1.02 0.0003 2.54 0.0004 −0.73 0.0005 2.48

1/64 513 0.0083 1.04 0.0007 −1.11 0.0007 −0.82 0.0004 0.12

1/128 1029 0.0039 1.09 0.0008 −0.21 0.0009 −0.39 0.0008 −0.83

1/256 2062 0.0017 1.19 0.0008 −0.05 0.0010 −0.28 0.0008 −0.05
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Table 13 Ex. 2: error eM̃ and computational times cti for the progressive mesh with �tmax = 10−3 and
N0 = 100

q N Upwind ct1 LW ct2 VL ct3 BWLW ct4

1/2 12 0.2857 0.63 0.2018 0.93 0.1253 1.21 0.1990 1.19

1/4 29 0.1480 0.62 0.0475 0.93 0.0159 1.19 0.0488 1.23

1/8 61 0.0726 0.64 0.0102 0.96 0.0023 1.22 0.0114 1.29

1/16 126 0.0354 0.71 0.0018 1.10 0.0002 1.38 0.0027 1.42

1/32 255 0.0172 0.76 0.0003 1.25 0.0004 1.51 0.0005 1.60

1/64 513 0.0083 0.97 0.0007 1.74 0.0007 1.91 0.0004 2.00

1/128 1029 0.0039 1.16 0.0008 2.14 0.0009 2.82 0.0008 3.11

1/256 2062 0.0017 2.41 0.0008 3.71 0.0010 4.66 0.0008 4.99

Table 14 Ex. 2: error eM̃ and convergence rates λi for the progressive mesh with �tmax = 0.5 ·10−3 and
N0 = 100

q N Upwind λ1 LW λ2 VL λ3 BWLW λ4

1/2 12 0.2857 0.2017 0.1252 0.1990

1/4 29 0.1480 0.75 0.0474 1.64 0.0157 2.35 0.0487 1.59

1/8 61 0.0726 0.96 0.0100 2.09 0.0022 2.67 0.0113 1.96

1/16 126 0.0354 0.99 0.0016 2.49 0.0001 4.41 0.0026 2.04

1/32 255 0.0172 1.02 0.0004 1.96 0.0005 −2.53 0.0003 2.98

1/64 513 0.0083 1.04 0.0008 −1.01 0.0008 −0.67 0.0006 −0.86

1/128 1029 0.0039 1.09 0.0010 −0.18 0.0011 −0.33 0.0010 −0.71

1/256 2062 0.0017 1.19 0.0010 −0.04 0.0012 −0.24 0.0010 −0.04

Table 15 Ex. 2: error eM̃ and convergence rates λi for the progressive mesh with �tmax = 10−3 and
N0 = 500

q N Upwind λ1 LW λ2 VL λ3 BWLW λ4

1/2 10 0.2022 0.1429 0.0901 0.1406

1/4 23 0.0992 0.85 0.0329 1.76 0.0119 2.43 0.0334 1.73

1/8 49 0.0474 0.98 0.0074 1.98 0.0018 2.50 0.0078 1.92

1/16 101 0.0228 1.01 0.0017 2.05 0.0003 2.45 0.0019 1.97

1/32 205 0.0110 1.03 0.0004 2.17 0.0001 1.32 0.0005 1.99

1/64 412 0.0053 1.06 0.0001 1.37 0.0001 −0.09 0.0001 1.61

1/128 827 0.0024 1.12 0.0002 −0.16 0.0001 −0.15 0.0001 0.21

1/256 1657 0.0010 1.26 0.0002 −0.09 0.0002 −0.14 0.0001 −0.18

For the uniform mesh and N0 = 100 and N0 = 500, the numerical method has not
reached the asymptotic range yet for N , as the convergence rates are still changing. A
convergence rate of 1 for the upwind method and 2 for the LW method are likely. We
stopped the computations at this point and did not further investigate the convergence
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Table 16 Ex. 2: error eM̃ and computational times cti for the progressive mesh with �tmax = 10−3 and
N0 = 500

q N Upwind ct1 LW ct2 VL ct3 BWLW ct4

1/2 10 0.2022 0.82 0.1429 1.18 0.0901 1.42 0.1406 1.41

1/4 23 0.0992 0.81 0.0329 1.11 0.0119 1.38 0.0334 1.43

1/8 49 0.0474 0.81 0.0074 1.13 0.0018 1.43 0.0078 1.50

1/16 101 0.0228 0.88 0.0017 1.22 0.0003 1.47 0.0019 1.52

1/32 205 0.0110 0.88 0.0004 1.33 0.0001 1.67 0.0005 1.76

1/64 412 0.0053 1.06 0.0001 1.58 0.0001 2.00 0.0001 2.12

1/128 827 0.0024 1.34 0.0002 2.00 0.0001 2.62 0.0001 2.79

1/256 1657 0.0010 1.78 0.0002 3.41 0.0002 4.13 0.0001 4.23
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Fig. 8 Example 2: convergence plots of error eM̃ (uniform mesh), �tmax = 10−3 and N0 = 100

rates, as the computation times in combination with the size of the error had already
reached an impractical size for our application. It should be noted that the error eM̃
is smaller for N0 = 500 throughout all methods and mesh sizes. This confirms the
theory; the longer we use the actual ODE model for smaller polymers, the better is
the approximation.

In case of the progressive mesh, the numerical scheme ceases to converge at a
certain mesh size. To explain this, we first lowered the maximum time step size, to
exclude that the error is caused by the temporal approximation. Having a smaller time
step however gives an error in roughly the same range as before.Wemay conclude that
the stagnating error is not caused by the temporal approximation. Recall that the PDE
is only an approximation to the infinite ODE system, but the error eM̃ is computed
with respect to the (numerical) ODE solution. Increasing N0 to 500 shows a smaller
error and the stagnated error is smaller than in the case of N0 = 100.We thus conclude
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Fig. 9 Example 2: convergence plots of error eM̃ (uniform mesh), �tmax = 10−3 and N0 = 500
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Fig. 10 Example 2: convergence plots of error eM̃ (progressive mesh), �tmax = 10−3 and N0 = 100

that we obtained a converged solution for the chosen N0 for which the error to the
ODE model can only be diminished by choosing a larger N0 or a better continuous
approximation to the ODE system (e.g., a second order PDE).

The goal of our studywas to find an efficient scheme for the nucleation step in terms
of accuracy and computation time. Fixing an acceptable computation time of 1.5 s,
for example, and interpreting M̃ as good approximation to the exact solution, we can
make several conclusions from Tables 13 and 16. For N0 = 100 and for the allowed
upper temporal bound, the Upwind method achieves a minimal error of 4 ·10−3, while
LW and VL fall below an error of 3 ·10−4. The VLmethod performs best with an error
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Fig. 11 Example 2: convergence plots of error eM̃ (progressive mesh), �tmax = 10−3 and N0 = 500

of 0.02 % in 1.38s. A similar outcome is observed for N0 = 500 in Table 16. Again
for a maximal computation time of 1.5 s, the VL method obtains the smallest error
of 0.03 % in 1.45s (with q = 1/16), which is about 8x smaller than the corresponding
Upwind error of 0.23 % in 1.34s (with q = 1/128).

Since no limiter functions have to be computed, the LWmethod is faster for roughly
the same small error.However, due to possible oscillations, theVLmethod is preferable
(Figs. 8, 9, 10, 11).

5 Conclusion

In this article we propose a method to deal numerically with both small sizes, predom-
inant during early reaction phases for instance, and with very large aggregates. It is
based on amixedODE–PDEapproach,which keeps the originalODE system for small
sizes and uses an approximate PDE, on a progressive grid, for larger sizes. The choice
for the domain where we keep the ODE, i.e. the choice for N0, is guided by the order of
magnitude of the error ε we want to achieve, with N0 = O(1/ε). Tested on simplified
cases for which explicit solutions are available, the method proved to be accurate,
especially when using a flux limiter method in combination with a progressive mesh.

For the PDEcomponent,we used finite volumemethodswhichwere accurate for the
simplified case we were investigating. The methods presented in this paper neglect the
possibility of depolymerization. However, they could be applied equally, by defining
the flux limiter method according to (LeVeque 2002, Chapter 9.5)

Fi−1/2 = ki−1/2
on Qi−1 + ki−1/2

dep Qi + F̃i−1/2 (53)

where F̃i−1/2 is defined in [LeVeque 2002, Chapter 9.3.1, (9.19)].
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To adapt our ideas to more general equations or to capture long-time asymp-
totic behaviors, containing for instance fragmentation or coagulation terms, any other
method could be used as soon as it is proved efficient to deal with the continuous
equation considered on a non-uniform mesh. For instance, the very recent and accu-
rate method developed by Goudon, Lagoutière and Tine in Goudon and Lagoutière
(2012) for the Lifshitz–Slyozov equation, even if derived on uniform meshes, can be
adapted on a non-uniform mesh, and others like (Filbet and Laurençot 2004b) are
already written on non-uniform grids.
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