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Abstract We study a population of individuals playing the infinitely repeated pris-
oner’s dilemma under replicator dynamics. The population consists of three kinds
of individuals adopting the following reactive strategies: ALLD (individuals which
always defect), ATFT (almost tit-for-tat: individuals which almost always repeat the
opponent’s last move) and G (generous individuals, which always cooperate when the
opponent cooperated in the last move and have a positive probability q of cooperating
when their opponent has defected). Our aim is studying in a mathematically rigorous
fashion the dynamics of a simplified version for the computer experiment in Nowak
and Sigmund (Nature 355:250–253, 1992) involving 100 reactive strategies. We see
that as the generosity degree of the G individuals varies, equilibria (rest points) of
the dynamics appear or disappear, and the dynamics changes accordingly. Not only
we prove that the results of the experiment are true in our simplified version, but
we also have complete control on the existence or non-existence of the equilbria for
the dynamics for all possible values of the parameters, given that ATFT individuals
are close enough to TFT. For most values of the parameters the dynamics can be
completely determined.
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1 Introduction

Although cooperation is ubiquitous in human societies and also in biological systems,
cooperating individuals usually have to pay a cost for the benefit of other individuals.
It is therefore an interesting question to understand how cooperation can evolve in the
light of Darwinian natural selection. Sigmund, Nowak and collaborators have studied
in several contributions the evolution of cooperation, see e.g. Nowak (2006a, b) for
some basic information and more references.

The essence of the problem can be grasped by the famous prisoner’s dilemma (PD)
stated in different forms byNowak (2012) and Sigmund (2010). In its one-shot version,
individuals interact only once and each individual has only two strategies: cooperate
(C) or defect (D). Whatever be the choice of his opponent, the pay-off for a defector
is larger than for a cooperator. Using the jargon of game theory (Nowak 2006a), D is
a strict Nash equilibrium, whereas C is not a Nash equilibrium. Rational individuals
must choose D and cooperation cannot evolve in the one-shot PD (Nowak 2006a).

If individuals are given the opportunity of interactingmany times before they receive
their pay-offs, a reciprocitymechanism can favor cooperation.We are then in the realm
of the repeated PD (RPD) and in this settingC andD are not the only possible strategies
and we have the problem of selecting among a huge number of strategies combining
the choice of C or D for each round of the game. In some cases, as in this paper,
we may even repeat the PD infinitely, obtaining the so-called infinitely repeated PD
(IRPD) (Akin 2012).

In the 1970’s Axelrod (1984) studied strategies for the RPD. He organized twoRPD
tournaments, in which contestants could submit any conceivable strategies, and in both
realizations the winning strategy was the simplest among all submitted strategies: tit-
for-tat (TFT). TFT is the strategy which repeats the previous move of its opponent.
After Axelrod’s work much has been done in finding strategies with interesting prop-
erties for the RPD, as well as in other games. As the space of all available strategies is
huge, many results were obtained in the subset of the so-called memory-one strategies
(Akin 2012). The recent discovery (Press and Dyson 2012) of a new remarkable class
of memory-one strategies for the IRPD—the so-called zero-determinant strategies—
stimulated renewed interest in the field, as exemplified by Adami and Hintze (2013),
Hilbe et al. (2013), Stewart and Plotkin (2013), Akin (2012), Stewart and Plotkin
(2014) and Hilbe et al. (2015).

Game theory was introduced in Biology by Maynard Smith and coworkers, see
Maynard Smith and Price (1973) and Maynard Smith (1974), creating the subject of
evolutionary game theory. In evolutionary game theory pay-offs are viewed as biolog-
ical fitness and population frequencies of individuals adopting strategies with larger
pay-offs have the tendency to increase. The dynamics for the changing population
frequencies is usually specified by a system of ordinary differential equations (ODEs)
(Taylor and Jonker 1978) called replicator equations.

Reactive strategies (Nowak and Sigmund 1989), the ones considered in the present
work, are the subset of the memory-one strategies in which the next move of an
individual (C or D) is stochastically determined just by the last move of his opponent.
A reactive strategy is characterized by a vector (p, q) such that p is the probability of
playing C after the opponent played C and q is the probability of playing C after an
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opponent’s D. We may think of p as a loyalty parameter, q as a forgiveness parameter.
Some simple strategies are recognized as reactive: ALLD, individuals which always
defect, is denoted as (0, 0) and TFT is (1, 0). The pay-off for reactive strategy s ≡
(p, q) against reactive strategy s′ ≡ (p′, q ′) may be defined in the IRPD (Nowak and
Sigmund 1990) if

(p − q)(p′ − q ′) �= 1. (1)

This paper originates with the seminal computer experiment performed in Nowak
and Sigmund (1992). In that experiment the authors took 99 reactive strategies with
(p, q) randomly chosen in the square [0, 1] × [0, 1]. To that sample, suggested by
Axelrod’s results, they added by hand strategy (0.99, 0.01), an almost TFT (ATFT)
strategy. TFTwas not selected because (1) implies that the pay-off of TFT against itself
is not well-defined in the IRPD. All 100 strategies were considered as having equal
fractions at the initial time and then replicator dynamics was numerically evaluated.
Results of this evolution—illustrated at one figure inNowak and Sigmund (1992)—are
described as follows:

1. Initially, strategies far from (0, 0) have their frequencies strongly depleted and it
seems that the strategy closest to ALLD will extinguish all the others.

2. After some time the frequency of ATFT starts increasing, and it looks like it will
be the ultimate winner.

3. After amuch longer period theATFT frequency decreases and a surprising strategy
named generous TFT (GTFT) finally drives all other strategies to extinction. With
the parameter values of the experiment, the winner was the strategy closest to
(1, 1

3 ).

GTFT seems to have been discovered in Molander (1985) and rediscovered pre-
cisely in Nowak (1990) and Nowak and Sigmund (1990), to reappear in Nowak and
Sigmund (1992). Whereas TFT only reciprocates cooperation, GTFT does more than
that, it is also forgiving. According to Molander (1985), GTFT defines an optimal
level of generosity up to which it is safe to cooperate “without risk of exploitation by
the other party”.

The purpose of this paper is to provide precise mathematical arguments supporting
the results found in Molander (1985) and in Nowak and Sigmund (1992). Molander’s
paper considers a situation in which there is no dynamics at all, only pairwise compar-
ison between pay-offs obtained using different strategies in the IRPD. Furthermore,
strategies considered in his paper are not reactive, but mixed strategies (Hofbauer and
Sigmund 1998). Unable at this time to prove results for numbers of strategies as large
as 100, we simplify the initial situation of the experiment in Nowak and Sigmund
(1992) and consider the IRPD with only the three more prominent strategies in their
experiment. Our results are valid for any suitable choice of the many parameters of
the problem, not a fixed choice, and any initial condition for the population.

The replicator dynamics with three strategies is relatively easy for a fixed choice
of the pay-offs, see e.g. the many examples treated in Hofbauer and Sigmund (1998).
Despite that, we have seen no rigorous result in the literature as ours, dealing with
many parameters and different dynamics according to the values of the parameters.
An interesting and non-trivial example of a rigorous analysis with four strategies but
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fixed parameters is Zeeman (1981). Although not completely rigorous, an interesting
paper about three strategies with a flavor similar to ours is Adami et al. (2012).

More concretely, in this paper we consider a population of individuals under the
replicator dynamics playing the IRPD with three reactive strategies:

– Strategy 1 is an arbitrary ATFT, i.e. strategy (1 − ε1, ε2), where ε1 and ε2 are
positive and small enough. Differently of Nowak and Sigmund (1992), we need
not consider ε1 = ε2.

– Strategy 2 is ALLD, i.e. (0, 0).
– Strategy 3, which will be called Generous (G), is (1, q), with q > (ε1 + ε2)

1/2,
i.e. perfectly loyal individuals and more forgiving than the considered ATFT.

We prove the existence of a maximum amount of forgiveness qGT FT and a region of
initial conditions with positive area such that, as in Nowak and Sigmund (1992), only
strategy 3 will survive after infinite time. But we will also see what happens for larger
values of the forgiveness q of the G strategists and find out that if q > qGT FT we may
still have some weaker form of cooperation evolution.

Themethods used are exact calculations of the pay-off matrix for the IRPDwith the
mentioned three strategies and analysis of its entries. Some of the results depend on
asymptotic analysis in parameters ε1 and ε2. A combination of parameters G1, defined
in (7), will appear naturally with its sign being a separator of different cases. For each
q and sign of G1 we will determine all equilibria of the replicator dynamics and find
out the few phase portraits as in the classification in Zeeman (1980) or Bomze (1983)
which are compatible with the existent equilibria and the dynamics at the boundary
of the relevant region. In most cases only a single phase portrait of the complete
table in Bomze (1983) is compatible. In such cases the dynamics will be completely
determined. In someother caseswewere unable to completely determine the dynamics,
because more than one phase portrait in Bomze (1983) was found compatible with the
information available to us. In such cases we formulate some conjectures about the
dynamics.

The results of this work are summarized in Tables 1, 2 and 3, which state which
of the equilibria exist for any value of q and sign of G1, and the corresponding type
of cooperation evolution. In Sect. 2 we introduce the pay-off matrix, the replicator
dynamics and define some important concepts and notations regarding the equilibria
for the replicator dynamics. In Sect. 3 we prove some simpler properties of the entries
of the pay-off matrix. Section 4 contains themost important results of this paper. There
we prove existence and properties of the thresholds qAD, qAG , qDG and qint , which
appear in the mentioned tables. In Sect. 5 we define the various types of evolution of
cooperation, relate the existent equilibria for each value of q and sign of G1 with the
phase portraits in Bomze (1983) and use this information to conclude about the type
of evolution of cooperation in each case. The paper is closed by a conclusions section.

2 Pay-off matrix and notations

In a game among n strategies, the pay-off matrix A is such that element ai j is the pay-
off received by an individual playing strategy i confronted by an individual playing
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strategy j , i, j ∈ {1, 2, . . . , n}. In the one-shot PD, if strategy 1 is C (cooperate) and
strategy 2 is D (defect) then the pay-offs are

Aos =
(

R S
T P

)
, (2)

where, by definition, entries satisfy inequalities

T > R > P > S. (3)

We will also assume the following inequalities as hypotheses for the results in this
paper:

P <
S + T

2
< R. (4)

The upper bound for (S+T )/2 is a natural condition to ensure that alternating between
C and D is not as good as a steady C for a pair of players, and has appeared at least
sinceMolander (1985) in almost all works dealing with the RPD. The lower bound is a
relatively novel condition, necessary for some of our proofs.We have seen it appearing
only in Hilbe et al. (2015). As a consequence of this new assumption we will have
in Proposition 1 that any amount of forgiveness in a reactive strategy will result in a
pay-off larger than P for that strategy against itself.

Consider now the IRPD and reactive strategies s = (p, q) and s′ = (p′, q ′). As
moves of the players are stochastically determined by their states at the previous
instant, then their successive states follow a Markov chain. If and only if (1) holds, a
limit distribution independent of the initial state of the Markov chain exists (Nowak
and Sigmund 1990), and the mean pay-off per move in the IRPD may be defined
precisely using this limit distribution. It can be shown that

c = (p − q)q ′ + q

1 − (p − q)(p′ − q ′)
and c′ = (p′ − q ′)q + q ′

1 − (p − q)(p′ − q ′)
(5)

are respectively the equilibrium probabilities that s cooperates with s′ and vice-versa.
As a consequence, in Nowak and Sigmund (1990) the IRPD pay-off E(s, s′) of s
against s′ is written as

E(s, s′) = G1cc′ + (S − P)c + (T − P)c′ + P, (6)

where
G1 = (R − T ) + (P − S) (7)

is a parameter which will have great importance in this work. Notice that inequalities
(3) and (4) do not fix the sign of G1. The special case of the PD with G1 = 0 is known
as donation game (Hilbe et al. 2013).

Notice that, apart the unimportant case of the paradoxical strategies (Nowak 1990)
s = s′ = (0, 1), condition (1) is not satisfied only if s = s′ = (1, 0), i.e. both players
are TFT. It can be seen that pay-offs for TFT players must depend on their initial
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moves and are also heavily affected by small amounts of noise, see Molander (1985)
and also our Proposition 1. This is why ATFT—a noisy TFT—was naturally included
in the experiment in Nowak and Sigmund (1992) and also in this work.

The pay-off matrix for the IRPD among the three strategies ATFT, ALLD and G
numbered and specified in Sect. 1 may be calculated in a lengthy but straightforward
fashion using (6) and (5). The result is

AI R P D =
⎛
⎝ F( ε1

ε2
) (1 − ε2)P + ε2S a13(q)

(1 − ε2)P + ε2T P (1 − q)P + qT
a31(q) (1 − q)P + q S R

⎞
⎠ , (8)

where

F(ρ) = Pρ2 + (S + T )ρ + R

(1 + ρ)2
, (9)

a13(q) = G1
ε21(1 − q)

[q + (1 − q)(ε1 + ε2)]2
− ε1

q + (1 − q)(ε1 + ε2)

2R − S − T + (T − R)(ε1 + ε2)

1 − ε1 − ε2

+ R(1 − ε2) − ε1S

1 − ε1 − ε2
(10)

and

a31(q) = G1

ε21
1−ε1−ε2

[q + (1 − q)(ε1 + ε2)]2
− ε1

q + (1 − q)(ε1 + ε2)

2R − S − T − [ε1(T − P) + ε2(R − S)]
1 − ε1 − ε2

+ R(1 − ε2) − ε1T

1 − ε1 − ε2
. (11)

We stress that the combination of parameters G1 in (7) reappears in (10) and (11).
Let x = (x1, x2, x3) denote the fractions of individuals in the population using

strategies 1 to 3. The fitness of strategy i , see e.g. Nowak (2006a), Hofbauer and
Sigmund (1998) or Sigmund (2010), is defined as

fi (x) = (AI R P Dx)i , (12)

the i-th element of a matrix product. The mean fitness of the population is then

φ =
3∑

i=1

fi (x)xi . (13)
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The replicator dynamics (Taylor and Jonker 1978), which specifies how strategy fre-
quencies change with time is

ẋi = ( fi (x) − φ)xi , (14)

i = 1, 2, 3. It can be shown (Hofbauer and Sigmund 1998) that the simplex

S3 =
{
x ∈ R

3; xi ≥ 0,
3∑

i=1

xi = 1

}

is invariant under the replicator dynamics.
Instead of studying the replicator dynamics in the simplex S3, in this paper we

will project it onto the (x1, x2) plane. As the resulting dynamics will be well-defined
everywhere in this plane, but we are only interested in its restriction to the projection
of S3, we define the biological region as this projection, i.e. the closed triangle B with
vertices E1 ≡ (1, 0), E2 ≡ (0, 1) and E3 ≡ (0, 0). The sides of B will be denoted
by L1, L2 and L3, where Li is the side on which xi = 0. Of course, because of a one
to one natural correspondence between B and S3, B is invariant under the projected
replicator dynamics.

For i �= j we denote

ni j = {(x1, x2) ∈ R
2; fi (x1, x2, 1 − x1 − x2) = f j (x1, x2, 1 − x1 − x2)}

the straight lines in which two fitnesses are equal. We will also denote Pi jk the point
at which the line ni j intercepts the xk = 0 line. Notice that the coordinates for the Pi jk

can be easily calculated in terms of the entries in the pay-off matrix (8).
From general arguments, see Hofbauer and Sigmund (1998), the equilibria for the

replicator dynamics with three strategies can be:

– Points in which only one strategy is present, i.e. the vertices E1, E2 and E3 of B.
– Points in which one strategy is absent and the other two have the same fitness, i.e.

P123, P132 and P231, whenever they lie in B.
– One point in which all three strategies have the same fitness. This is the intersection
of the three lines n12, n13 and n23, whenever it lies in the interior of B, and will
be denoted Q. Notice that if two among these lines cross at a point, then the third
line must also pass through this point.

The following definition is given to rule out the caseswhen the above cited equilibria
in the plane (x1, x2) do not correspond to points in the simplex S3:

Definition 1 We will say that equilibria P123, P132 and P231 are biological whenever
they lie in B, but not coincide with any of the vertices. We will say that equilibrium
Q is biological whenever it lies in the interior of B.

As a mnemonic tool for dealing with the ni j and the Pi jk equilibria, we will use A
for strategy 1 (ATFT), D for strategy 2 (ALLD) and G for strategy 3. Thus n12 will be
referred to as the AD-isocline, n13 will be the AG-isocline and n23 the DG-isocline.
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Equilibrium P123 will be termed AD-equilibrium, P132 the AG-equilibrium and P231
the DG-equilibrium. Equilibrium Q will be simply called interior equilibrium.

We will always be interested in positive values for ε1 and ε2. We define polar
coordinates r and θ in the (ε1, ε2) plane, so that

ε1 = r cos θ and ε2 = r sin θ. (15)

Throughout this paper, r and θ will always be used with this meaning.
Many times we will use ε to refer to vector (ε1, ε2). We define the phrase “property

P holds if ε is small enough” as meaning “there exists r0 > 0 such that property P
holds if 0 < r < r0”.

The overwhelming majority of the intermediate and final results in this paper will
hold if ε is small enough. From now on, as with (3) and (4), we will assume as a
hypothesis for the rest of this paper that ε is small enough. In the beginning we will
be explicit in stating this hypothesis, because we want the reader to be aware of it, but
with time we will be increasingly more relapse in reminding it.

In some instances we will also use the notation O(rα) standard in asymptotic
analysis. For definiteness, if f is some function depending on ε, we will write f =
O(rα) if there exist r0 > 0 and a constant K independent of r such that | f/rα| < K
for 0 < r < r0.

3 Some properties of the entries of the pay-off matrix

Westart by considering the pay-off F( ε1
ε2

) of strategyATFTagainst itself, with function
F being given by (9).

Proposition 1 (i) F(0) = R.
(ii) limx→∞ F(x) = P.
(iii) F is a decreasing function in [0,+∞).
(iv) There exist positive constants K1, K2 such that

K1

r
≤ F( ε1

ε2
) − P

ε2
≤ K2

r
. (16)

(v) There exist positive constants K3, K4 such that

K3

r
≤ R − F( ε1

ε2
)

ε1
≤ K4

r
. (17)

Proof The first two items are direct consequences of (9). The third item follows easily
by calculating the derivative of F and using both inequalities in (4).

Using polar coordinates (15) we get

F( ε1
ε2

) − P

ε2
= 1

r

(R − P) sin θ + (S + T − 2P) cos θ

(cos θ + sin θ)2
.
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By using (3) and (4) the function of θ in the right-hand side is clearly strictly positive
and continuous in the compact [0, π

2 ]. Letting K1 be itsminimumand K2 itsmaximum,
assertion (iv) is proved.

Item (v) can be proved in an analogous way. 
�
Items (i), (ii) and (iii) in Proposition 1 prove that the pay-off of an ATFT against

another ATFT may be any number in (P, R) regardless of the smallness of ε.
If q = 0, strategy G becomes TFT. As a consequence of this, see Nowak and

Sigmund (1990),

a13(0) = a31(0) = F

(
ε1

ε2

)
. (18)

Also at q = 1 both formulas for a13 and a31 simplify and we obtain

a13(1) = R + (T − R)ε1 and a31(1) = R − (R − S)ε1. (19)

Other important properties of a13 and a31 are:

Proposition 2 (i) a13(q) > a31(q) ∀q ∈ (0, 1].
(ii) a13(q) − a31(q) is an increasing function in [0, 1].
(iii) If ε is small enough, then both a13(q) and a31(q) are increasing functions in

[0, 1].
(iv) a′

13(0)
r→0→ ∞ and a′

31(0)
r→0→ ∞.

(v) a′
13(1)

r→0→ 0 and a′
31(1)

r→0→ 0.
(vi) If ε is small enough, a′′

13(q) and a′′
31(q) are both negative in [0, 1].

Proof After some easy manipulations with (10) and (11), we obtain

a13(q) − a31(q) = ε1(T − S)q

q + (1 − q)(ε1 + ε2)
,

which proves assertion (i). Differentiating the above equation proves (ii).
To prove (iii), we define first an auxiliary variable

x ≡ q + (1 − q)(ε1 + ε2) (20)

which leads us to

a′
31(q) = ε1

2R − S − T − ε1(T − P) − ε2(R − S)

x2
− 2G1ε

2
1

x3
. (21)

Notice then that a′
31(q)/ε1 is a continuous function of ε, positive at ε = 0. As a

consequence, a′
31(q) is positive if ε1 > 0, provided that ε is small enough. Using (ii)

the analog result is obtained for a13(q).
To prove (iv), we substitute q = 0, thus x = ε1+ε2, in (21). Using polar coordinates

and (7), we get

a′
31(0) = 1

r

(S + T − 2P) cos2 θ + (2R − S − T ) sin θ

(cos θ + sin θ)3
+ O(1).
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As the function of θ multiplying 1/r is positive, then the result for a′
31(0) is proved.

Using again (ii), we prove the same for a′
13(0).

The proofs of (v) and (vi) follow similar ideas. 
�
Although formulas (10) and (11) are complicated, Proposition 2 tells a lot about

these functions. In particular, properties (iv) and (v) show that both a13 and a31 grow
very fast for q close to 0 and then saturate before q = 1.

To close this section, a simple and important

Corollary 1 If ε is small enough and α ∈ (F( ε1
ε2

), R + (T − R)ε1), then equation
a13(q) = α has a unique root q in interval (0, 1). Analogously, if β ∈ (F( ε1

ε2
), R −

(R − S)ε1), then a31(q) = β has a unique root in (0, 1).

4 Locating the equilibria

We start this section by studying the AD-equilibrium P123, the simplest among the
equilibria in which only two strategies coexist, because its location is independent of
the variable q, as shown by the following result.

Proposition 3 The AD-equilibrium P123 is independent of q and always biological.

Proof Equating fitnesses f1 and f2, given by (12), and writing x2 = 1− x1, which is
equivalent to x3 = 0, we obtain

x1(P123) = 1

1 − T −P
P−S + 1

P−S

F(
ε1
ε2

)−P

ε2

, (22)

which is indeed independent of q. Using (iv) in Proposition 1 we see that the denom-
inator in the above equation is dominated by a positive term of order 1/r . Thus
x1(P123) > 0 and as small as we want if ε is small enough. 
�

The next result will be important when showing that the interior equilibrium will
become biological for some intervals in q, because it states that the intercepts of lines
n12, n13 and n23 appear always in the same order on L3. Notice the appearance for the
first time of a hypothesis stating that forgiveness q of individuals adopting strategy
3 must not be too close to 0. This will happen in other parts of this section and has
the clear meaning that strategy 3 must be more forgiving than strategy 1 for some of
the results to be true. If it were otherwise, then what we are calling strategy 3 would
be closer to TFT than strategy 1 and strategy 1 more generous than strategy 3, their
names ATFT and G appearing reversed.

Lemma 1 (Order on L3) If q ∈ [(ε1 + ε2)
1/2, 1], then 0 < x1(P123) < x1(P233) <

x1(P133) < 1.

Proof For ease of comparison, we may rewrite all three quantities in the form
x1(Pi j3) = 1

1+c̃i j
, where formulas for the c̃i j will be presented. We will show that

0 < c̃13 < c̃23 < c̃12, from which the claim will be a trivial consequence.
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An easy calculation leads to

c̃13 = a31(q) − F( ε1
ε2

)

q(P − S)

and

c̃23 = a31(q) − P − ε2(T − P)

q(P − S)
.

c̃12 may be obtained in (22). As a31(q) is increasing and a31(0) = F( ε1
ε2

), then c̃13 > 0.
If the ratio ε1

ε2
is fixed and ε is taken small enough, we obtain, using (ii) and (iii) in

Proposition 1, that F( ε1
ε2

) > P + ε2(T − P), thus proving that c̃13 < c̃23 for small
enough ε and q > 0.

Using (19) and, again, the fact that a31(q) is increasing, we may see that, if q >

(ε1 + ε2)
1/2,

c̃23 <
R − (R − S)ε1 − P − ε2(T − P)

(ε1 + ε2)1/2(P − S)
,

which increases as r−1/2 when r → 0. On the other hand, by (22) and (iv) in Proposi-
tion 1, we see that c̃12 increases as r−1. We conclude that c̃23 < c̃12 for small enough
ε. 
�

We may now define two important thresholds for q related to when the AG and
DG equilibria become or cease to be biological:

Definition 2 According to Corollary 1,

a13(q) = R

has a unique root in (0, 1). Let qAG be this root.
Let also

qDG = R − P

T − P
(23)

be the unique root of equation a23 = R.

With these definitions we prove an important general result:

Theorem 1 Let q ∈ (ε2, 1]. Then:

– The DG-isocline intercepts L1 if and only q ≤ qDG and intercepts L2 if and
only if q ∈ [qDG, 1]. In particular, the DG-equilibrium is biological if and only
if q < qDG.

– The AG-isocline intercepts L1 if and only q ≤ qAG and intercepts L2 if and
only if q ∈ [qAG , 1]. In particular, the AG-equilibrium is biological if and only if
q > qAG.
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Proof After easy calculations we get

x2(P231) = 1

1 + q(P−S)
R−P−q(T −P)

, (24)

x1(P232) = 1

1 − a31(q)−P−ε2(T −P)
R−P−q(T −P)

, (25)

x1(P132) = 1

1 + a31(q)−F(ε1/ε2)
a13(q)−R

, (26)

and

x2(P131) = 1

1 − (q−ε2)(P−S)
a13(q)−R

, (27)

all in the form 1/(1+ X), which will be in (0, 1) if and only if the corresponding X is
positive. In all four cases the proof that the necessary X is positive if and only if the
respective condition on q is satisfied is trivial. In the cases related to the AG-isocline,
we must use item (iii) in Proposition 2. 
�

Besides qDG and qAG wewill define a threshold qAD , which will signal the passage
of the AD-isocline through the origin. In order to do that, let μ(q) be defined by

μ(q) = a13(q) − P − q(T − P). (28)

In terms of this new function we may easily obtain

x2(P121) = μ(q)

μ(q) + ε2(P − S)
(29)

and

x1(P122) = μ(q)

μ(q) − [F(ε1/ε2) − P − ε2(T − P)] , (30)

which show that the AD-isocline passes through the origin of the (x1, x2) plane when-
ever μ has a zero.

The following lemma proves existence and uniqueness of such a zero:

Lemma 2 Function μ defined by (28) has a single critical point q and a single zero
qAD in (0, 1) such that qAD > q. Furthermore, q is a maximum point, μ is positive
in (0, qAD) and negative in (qAD, 1].
Proof As μ′(q) = a′

13(q) − (T − P), then (iv) and (v) in Proposition 2 imply that
μ′(0) > 0 and μ′(1) < 0 if ε is small enough. Then μ has at least a critical point
q ∈ (0, 1). Item (vi) in the same proposition proves uniqueness for q and that it must
be a maximum point.

Asμ(0) = F( ε1
ε2

)− P > 0, thenμ(q) > 0. And asμ(1) = R−T −(T − R)ε1 < 0,
then μ has a unique zero in (0, 1) located in (q, 1). The assertion on the signs of μ

follows from the fact μ′(qAD) < 0. 
�
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It is now time to start displaying important results in which the sign of G1 defined
in (7) plays an important role. The first thing to notice is that formula (10) for a13(q) is
notably simplified when G1 = 0. Solving equation a13(q) = R becomes then trivial
and we get, for G1 = 0,

qAG = 2R − S − T

R − S
.

If we calculate the difference between this value and qDG we discover the identity

2R − S − T

R − S
− qDG = G1(T − R)

(R − S)(T − P)
, (31)

which shows that qAG and qDG coincide when G1 = 0. As a13(qAG) = R, we
discover that μ(qAG) = (qDG − qAG)(T − P), from which we can deduce that qAD

also coincides with qAG and qDG when G1 = 0.
If G1 �= 0, although more complicated, equation a13(q) = R leads only to a

second-degree equation in q and a closed formula for qAG can also be obtained. If we
solve the equation in the auxiliary variable x defined in (20) and notice that q and x
differ by O(r), we prove in general that

qAG = 2R − S − T

R − S
− G1(T − R)

(R − S)(2R − S − T )
ε1 + O(r2), (32)

with the interesting consequence that the exact calculated value of qAG for G1 = 0
holds as a good approximation for qAG even when G1 �= 0.

By using the ideas above we can easily prove

Theorem 2 (i) If G1 = 0, then qAG = qDG = qAD.
(ii) If G1 < 0, then qAG < qDG < qAD.
(iii) If G1 > 0, then qAG > qDG > qAD.

Equation (32) will be useful later to guarantee that qAG does not tend to 0 when
r → 0. We will also need to prove the same for qAD . This is an easy consequence of
the next result.

Proposition 4
qAD = qDG + O(r) (33)

Proof Using (10) in (28), we may rewrite equation μ(q) = 0 as

R(1 − ε2) − ε1S

1 − ε1 − ε2
− ε1[2R − S − T + (T − R)(ε1 + ε2) + G1ε1]

1 − ε1 − ε2

1

x

+ G1ε
2
1

1 − ε1 − ε2

1

x2
= P + x − ε1 − ε2

1 − ε1 − ε2
(T − P),

which solution xAD in x will yield qAD through (20). When ε1 = ε2 = 0, the solution
is simply xAD = x0 = qDG .
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Substituting x0 in the above equation, then xAD is implicitly given by the solution
of g(x, ε) = 0, where

g(x, ε) = −ε1[2R − S − T + (T − R)(ε1 + ε2) + G1ε1]
1 − ε1 − ε2

1

x

+G1ε
2
1

x2
+ x0 − x + ε1(T − S) + ε2(T − R).

As g(x0, 0) = 0 with ∂g
∂x (x0, 0) = −1 + O(r) �= 0 for small enough r , the implicit

function theorem proves that in some neighborhood of ε = 0 the root xAD of g(x, ε) =
0 is a differentiable function of ε. Differentiability implies that xAD = x0 + O(r).
Noticing that qAD and xAD differ by O(r) leads to (33). 
�

The first result in the next lemma shows that if q does not tend to 0 as r → 0, then
the difference a13(q) − a13(0) also remains large compared to r . The second result in
the lemma shows that point P132 moves very slowly unless q is very close to 0.

Lemma 3 Let q0 ∈ (0, 1] be fixed and independent of ε. Then:

– a31(q0) − F( ε1
ε2

) does not tend to 0 when r → 0.

– If q ∈ [q0, 1], d
dq x1(P132) = O(r).

Proof Using variable x , defined in (20), and (11) we may write

a31(q) − F

(
ε1

ε2

)
= R − F

(
ε1

ε2

)
+ (R − T )ε1

1 − ε1 − ε2

− ε1

1 − ε1 − ε2

2R − S − T − [(T − P)ε1 + (R − S)ε2]
x

+ G1ε
2
1

(1 − ε1 − ε2)x2
.

Remember that if q0 is fixed, the corresponding x does not tend to 0 when r → 0.
So, except for the term R − F( ε1

ε2
), the remaining terms in the right-hand side do tend

to 0 when r → 0. On the other hand, (v) in Proposition 1 proves that R − F( ε1
ε2

) is
positive and does not tend to 0. This proves the first part.

In order to prove the second part, notice that

d

dq
x1(P132) =

a′
13(q)

(
a31(q) − F( ε1

ε2
)
)

+ (R − a13(q))a′
31(q)

[
a13(q) − R + a31(q) − F( ε1

ε2
)
]2 .

If q ≥ q0, then (10) implies that a13(q) − R is O(r). Moreover, by the first part of
this Lemma, a31(q)− F( ε1

ε2
) does not tend to 0 when r → 0. Thus the denominator in

the expression above does not tend to 0 when r → 0. In the numerator both terms are
O(r), as can be seen in (21) and its analog for a13. As a consequence, the derivative
of x1(P132) is O(r). 
�

The following monotonicity result will also turn out to be fundamental ahead.
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Proposition 5 If q ∈ [qAD, 1], then

d

dq
(x1(P122) − x1(P132)) > 0.

Proof Formulas for x1(P122) and x1(P132) have already been given, see (30) and (26).
Equation (33) guarantees that qAD does not tend to 0 as r → 0. Then, by Lemma

3, using e.g. q0 = 1/2qDG < qAD , we conclude that d
dq x1(P132) is O(r) in [qAD, 1].

By an easy calculation, we have

d

dq
x1(P122) = [(T − P) − a′

13(q)][F( ε1
ε2

) − P − ε2(T − P)]
[F( ε1

ε2
) − P − ε2(T − P) − μ(q)]2 . (34)

It follows that

d

dq
x1(P122) >

(T − P) − a′
13(qAD)

F( ε1
ε2

) − P − ε2(T − P)
,

because in [qAD, 1] we have μ(q) ≤ 0, a′
13(q) < a′

13(qAD) and F( ε1
ε2

) − P − ε2(T −
P) > 0. In this last expression a′

13(qAD) is O(r) and the denominator does not tend
to 0. So there exists a positive constant C independent of r such that d

dq x1(P122) > C .

We conclude that for small enough ε, d
dq (x1(P122) − x1(P132)) > 0 for q ∈

[qAD, 1]. 
�
At this point we start separating the case G1 > 0 of the other cases G1 = 0 and

G1 < 0. Our first result is on the interior equilibrium:

Proposition 6 If G1 ≥ 0, the interior equilibrium is biological for all q ∈ (qAD, 1].
If G1 > 0 the conclusion extends also to q = qAD.

Proof First of all, ifG1 ≥ 0, byTheorem2weknow thatqAD ≤ qAG . Forq = qAD we
then know that the AG-isocline intercepts the sides L3 (Lemma 1) and L2 (Theorem
1) and then we must have x1(P132) ≤ 0 for q = qAD . But x1(P122) = 0 at qAD . By
Proposition 5 we discover that x1(P122) > x1(P132) for all q ∈ (qAD, 1]. Comparing
this order in which the isoclines intercept side L1 with the corresponding order on
side L3 given by Lemma 1, we see that the AD and AG isoclines must cross at the
interior of B for all q ∈ (qAD, 1]. If G1 = 0 we already knew that the AD and AG
isoclines crossed exactly at the origin for q = qAD . But for G1 > 0, x1(P132) < 0
already at q = qAD , and the isoclines cross in the interior. 
�

Our task is now to find out when the interior equilibrium first becomes biological
and if it ever loses its biological status. We start with a general result:

Proposition 7 For any value of G1 and q = (ε1 + ε2)
1/2 we have x2(P121) >

x2(P131).

Proof The coordinates for the intercepts of the ni j lines with x1 = 0may all be written
as
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x2(Pi j1) = 1

1 + bi j (q)
.

where, after easy calculations, we get

b12(q) = ε2(P − S)

μ(q)
and b13(q) = (q − ε2)(P − S)

R − a13(q)
. (35)

As a13((ε1 + ε2)
1/2) = R − O(r1/2) and μ((ε1 + ε2)

1/2) = R − P − O(r1/2), then
by the above expressions our assertion is true. 
�

The order just proved between x2(P121) and x2(P131) at q = (ε1+ε2)
1/2 is reversed

at q = qAD if G1 > 0. In fact, if G1 > 0 and q = qAD , we have x2(P131) > 0,
because qAG > qAD , and x2(P121) = 0. It turns out that the AG and AD isoclines
must cross on L1 for at least one q ∈ ((ε1 + ε2)

1/2, qAD). We will show that this
crossing is indeed unique, defining qint . If G1 = 0, we saw that the AG and AD
isoclines crossed at q = qAD . We will also show that no other crossing will happen if
q ∈ ((ε1 + ε2)

1/2, qAD).
If x2(P121) − x2(P131) were monotonic in ((ε1 + ε2)

1/2, qAD) the assertions in the
preceding paragraph would be trivial. As this does not happen, we must work a bit
harder, starting with

Proposition 8 Equation
μ(q) = (ε1 + ε2)

1/2 (36)

has a single root q̃ ∈ [0, qAD], which is asymptotically given by

q̃ = qDG − (ε1 + ε2)
1/2

T − P
+ O(r). (37)

In particular, q̃ does not tend to 0 as r → 0.

Proof Let q be the critical point of μ as in Lemma 2. As μ(0) > (ε1 + ε2)
1/2 if ε

is small enough, and μ is increasing in [0, q], then Eq. (36) has no solution in that
interval. On the other hand, as μ is decreasing in (q, qAD] with μ(qAD) = 0, then
(36) must have one root exactly in (q, qAD).

In order to obtain (37) we rewrite (36) using definition (28) along with (10) written
in terms of variable x defined by (20). Putting ε1 = ε2 = 0 we obtain the approximate
solution x ≈ qDG , which suggests us to define a new auxiliary variable y as y = (x −
qDG)r−1/2. Substituting x = qDG +r1/2y in (36) and making several simplifications,
we get that (36) is equivalent to H(r, y) = 0, where

H(r, y) = G1r3/2 cos2 θ(1 − r1/2y − qDG)

− r1/2 cos θ [2R − S − T − r cos θ(T − P) − r sin θ(R − S)]
qDG + r1/2y

+ r1/2[(T − S) cos θ + (T − R) sin θ)]
− (cos θ + sin θ)1/2[1 − r(cos θ + sin θ)] − (T − P)y.
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Repeating the argument with the implicit function theorem as in the proof of Propo-
sition 4 we obtain (37). 
�

We now prove a monotonicity argument for x2(P121) − x2(P131), but restricted to
(q̃, qAD):

Proposition 9 If G1 ≥ 0, x2(P121) − x2(P131) is a decreasing function of q in
(q̃, qAD).

Proof

d

dq
x2(P131) = − (q − ε2)(P − S)a′

13(q) + (R − a13(q))(P − S)

[R − a13(q) + (q − ε2)(P − S)]2

shows that d
dq x2(P131) is negative and O(r) in (q̃, qAD). In order to conclude that,

we are using the fact proved in Proposition 8 that q̃ does not tend to 0 when r → 0,
which implies that both R − a13(q) and a′

13(q) are O(r) for q ≥ q̃ . The denominator
is of course O(1) due to the (q − ε2)(P − S) term.

For x2(P121) we have

d

dq
x2(P121) = ε2(P − S)μ′(q)

[μ(q) + ε2(P − S)]2 = μ′(q)

ε2(P − S)

[
1

1 + μ(q)
ε2(P−S)

]2

.

In (q̃, qAD), μ′(q) = a′
13(q) − (T − P) < − 1

2 (T − P), where we are using again
that a′

13(q) is O(r). Also,

1

1 + μ(q)
ε2(P−S)

>
1

1 + μ(q̃)
ε2(P−S)

= sin θ

sin θ + r−1/2(cos θ+sin θ)1/2

P−S

>
sin θ

r−1/2[sin θ + (cos θ+sin θ)1/2

P−S ]
≥ K sin θ r1/2,

where K = maxθ∈[0,π/2]
(
sin θ + (cos θ+sin θ)1/2

P−S

)
> 0.

Finally, we obtain, for q ∈ (q̃, qAD),

d

dq
x2(P121) < −1

2

T − P

P − S
K 2 sin2 θ,

from which it turns out that d
dq (x2(P121) − x2(P131)) < 0. 
�

Putting together all known facts, we can now prove

Theorem 3 (Interior equilibrium, G1 > 0) If G1 > 0 and q ∈ ((ε1 + ε2)
1/2, 1], there

is a single value qint ∈ (q̃, qAD) such that the AG, AD and DG isoclines cross on
the border of B. Moreover, the crossing is on L1.
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Table 1 The bullets indicate which equilibria are biological at each interval in the case G1 > 0

AG DG Interior Diagrams Type

((ε1 + ε2)
1/2, qint ) • 38R F

(qint , qDG ) • • 9R F

(qDG , qAG ) • 15R N

(qAG , 1] • • 12, 12R, 13 N?

The AD-equilibrium and vertices E1, E2 and E3 are biological at all intervals. Diagram, see Sect. 5, refers
to numbers in the classification scheme in Bomze (1983), where a number followed by R means that the
dynamics is given by the corresponding diagram with all orbits reversed. Possible evolution of cooperation
types, see again Sect. 5, are F (full), P (partial), W (weak) or N (no). A type followed by a ? means a
conjectured result

Proof By the properties of μ proved in Lemma 2, and noticing that

x2(P121) = 1

1 + ε2(P−S)
μ(q)

,

it is clear that the minimum of x2(P121) in [0, q̃] is attained at one of the boundaries of
the interval. But as μ(0) = O(1), and μ(q̃) = (ε1 + ε2)

1/2, the minimum is attained
at q̃ and its value is thus 1 − O(r1/2).

An easy calculation shows that the derivative of x2(P131) is negative in [(ε1 +
ε2)

1/2, qAD). It can be seen also that x2(P131) = 1− O(1) at q = (ε1 + ε2)
1/2. Thus

the maximum of x2(P131) is less than the minimum of x2(P121) in [(ε1 + ε2)
1/2, q̃].

This proves that the AG and AD isoclines do not cross on L1 for q ∈ [(ε1+ε2)
1/2, q̃].

On the other hand, they do cross for q somewhere in (q̃, qAD) because we have
already seen that at q = qAD < qAG we have x2(P131) > 0 = x2(P121). We have
also just proved that the reverse holds at q = q̃ . Uniqueness of this crossing in
(q̃, qAD) follows from Proposition 9. Uniqueness in ((ε1+ε2)

1/2, 1] is a consequence
of Proposition 6. 
�

This result settles the question of the existence of a threshold qint for the appearance
of the interior equilibrium for G1 > 0, and the fact that qint < qAD . We remember
that the question of whether the other equilibria are biological or not is already solved
in Proposition 3 and Theorem 1, and the order of the corresponding thresholds is
established in Theorem 2. The results on which equilibria are biological for G1 > 0,
all justified, are summarized in Table 1. The two rightmost columns in that table (and
in the other two tables) will still be the subject of the next section.

As in the case G1 > 0, the results on the equilibria for the case G1 = 0 (donation
game) are summarized in Table 2. All we need for justifying these results was already
proved. It remains for us just the task remembering the needed results. First of all, in
the case G1 = 0 we define qint to be equal to the common value qDG = qAG = qAD .
We then have

Theorem 4 (Equilibria for G1 = 0) If G1 = 0, besides equilibria at the vertices
of B and the AD-equilibrium, which are always biological, these are the biological
equilibria at each interval:
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Table 2 The bullets indicate which equilibria are biological at each interval in the case G1 = 0 (donation
game)

AG DG Interior Diagrams Type

((ε1 + ε2)
1/2, qint ) • 38R F

qint 45 F

(qint , 1] • • 12, 12R, 13 W?

The AD-equilibrium and vertices E1, E2 and E3 are biological at all intervals. Diagram, see Sect. 5, refers
to numbers in the classification scheme in Bomze (1983), where a number followed by R means that the
dynamics is given by the corresponding diagram with all orbits reversed. Possible evolution of cooperation
types, see again Sect. 5, are F (full), P (partial), W (weak) or N (no). A type followed by a ? means a
conjectured result

Table 3 The bullets indicate which equilibria are biological at each interval in the case G1 < 0

AG DG Interior Diagrams Type

((ε1 + ε2)
1/2, qAG ) • 38R F

(qAG , qDG ) • • 34R P

(qDG , qint ) • 36 P

(qint , 1] • • 12, 12R, 13 W?

The AD-equilibrium and vertices E1, E2 and E3 are biological at all intervals. Diagram, see Sect. 5, refers
to numbers in the classification scheme in Bomze (1983), where a number followed by R means that the
dynamics is given by the corresponding diagram with all orbits reversed. Possible evolution of cooperation
types, see again Sect. 5, are F (full), P (partial), W (weak) or N (no). A type followed by a ? means a
conjectured result

– The DG-equilibrium is biological if and only q ∈ [0, qint ).
– If q > (ε1 + ε2)

1/2, the AG and interior equilibria are biological if and only if
q ∈ (qint , 1].

Proof The assertions for the DG and AG equilibria were already proved in Theorem
1. In Theorem 6 we have already proved that the interior equilibrium is biological for
q ∈ (qint , 1]. The only thing remaining to be proved is that the AG, AD and DG
isoclines do not cross on the border of B for q ∈ ((ε1 + ε2)

1/2, qint ).
In fact, by Proposition 7 and the same argument in the proof of Theorem 3, we

show that there is no crossing for q ∈ ((ε1 + ε2)
1/2, q̃). No crossing for q ∈ (q̃, qAD)

is a consequence of Proposition 9. Finally, for (qAD, 1] the argument is Proposition
6. So the AD, AG and DG isoclines only cross at the origin for q = qint . 
�

The arguments necessary for proving validity of the equilibria results of the remain-
ing case G1 < 0 are similar and simpler than the ones used for the other two cases,
so that we will leave them to the reader. The results are summarized in Table 3.

5 The dynamics

Zeeman (1980) studied the replicator dynamics for n strategies from the point of view
of the theory of Dynamical Systems. He addressed mainly the robust cases, where
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robust means cases in which the dynamics remains unchanged for arbitrarily small
changes of parameters. In particular, for n = 3 Zeeman showed that it was possible to
obtain the phase portraits of replicator dynamics by only knowing about the existence
or not of equilibria at each face of the simplex S3, existence or not of an interior
equilibrium, and the stability of each equilibrium. In this case the number of possible
phase portraits was small enough so that each possibility could be shown. Bomze
(1983) continued Zeeman’s work including also the non-robust cases, thus obtaining
a complete classification of all possible 47 phase portraits for the replicator dynamics
with three strategies.

As we will also be interested in some non-robust cases, in this section we will refer
to the classification by Bomze. In particular, we will see that, for most among the
possible intervals and values of G1 in Tables 1, 2 and 3, our knowledge up to now can
associate a single diagram in Bomze (1983), thus fully determining the dynamics for
that interval for q and sign for G1. The enumeration of the diagrams in our tables is
the same as in Bomze (1983). In only one row in each table, because we were unable
to determine whether the interior equilibrium was asymptotically stable, neutral or
unstable, more than one diagram was found to be compatible. Of course, for fixed
values of the parameters, it is straightforward to linearize the dynamics around the
interior equilibrium, and by calculating eigenvalues of a 2 × 2 matrix, discover the
missing stability information. But we found the exact expression for the eigenvalues
depending on the many parameters too complicated for a rigorous analysis.

Another information necessary for reading our Tables 1, 2 and 3 is that the letter R
in front of the number of a diagram in Bomze (1983) means that one should take the
corresponding diagram with all arrows reversed. In fact, the reader should notice that
replacing matrix A by −A in Eq. (14) has only the effect of reversing the orientation
of all orbits.

The last column in each of the tables refers to the type of evolution of cooperation,
a consequence of the dynamics for that case. We now define each of the possible types
of evolution of cooperation.

Definition 3 We will say that the population admits

– full evolution of cooperation if equilibrium E3 is asymptotically stable. In other
words, if there is a region RG ⊂ B with positive area, such that for any initial
condition in RG only individuals adopting strategy G will survive after infinite
time.

– partial evolution of cooperation if E3 is unstable, but the AG-equilibrium P132 is
biological and asymptotically stable.

– weak evolution of cooperation if E3 is unstable, P132 is unstable or not biological
and there is a region RADG ⊂ B with positive area, such that for any initial
condition in RADG individuals adopting all the three strategies will survive for
infinite time.

– no evolution of cooperation if the dynamics leads to extinction of the G individuals
for any initial condition in a region of total area contained in the triangle B.

We now start describing how we obtained the “Diagrams” column in each of the
tables. In order to do that, we must know about the dynamics restricted to the sides
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of B. On each side of B one of the strategies is absent and we only need to study the
one-dimensional replicator dynamics for two strategies. Results for this case are rather
trivial, see e.g. (Nowak 2006a, p. 50), and only depend on the strategies being or not
Nash equilibria. The results enumerated below are simple consequences of pairwise
comparisons between elements of the pay-off matrix (6).

1. In the absence of strategy 3, strategies 1 and 2 are both strict Nash equilibria. Thus,
for the replicator dynamics restricted to side L3, the AD-equilibrium is unstable.
Moreover, for any q ∈ ((ε1 + ε2)

1/2, 1] the fitness ranking is fixed, see Lemma 1,
so we can divide this side in the following four regions:
– In the region between E2 and P123, we have f2 > f1 > f3.
– In the region between P123 and P233. we have f1 > f2 > f3.
– In the region between P233 and P133. we have f1 > f3 > f2.
– In the region between P133 and E1. we have f3 > f1 > f2.

In particular, between E2 and P233, f3 is the smallest fitness. This implies that
f3 < φ in a neighborhood of P123, with the consequence that orbits in the interior
of B close to P123 must have ẋ3 < 0, and flow towards L3, which makes P123
a saddle point. This property is particularly important, because in some cases
it is necessary in order to discard some diagrams in Bomze (1983) otherwise
compatible.

2. In the absence of strategy 1, we have two possibilities:
– If q < qDG , the DG-equilibrium is biological, and as strategies 2 and 3 are
both strictNash equilibria, then the DG-equilibrium is unstable if the dynamics
is restricted to the L1 side.

– If q ≥ qDG , the DG-equilibrium is not biological, and only strategy 2 is a
Nash equilibrium. Then all orbits on L1 must flow into E2.

3. In the absence of strategy 2, we also have two possibilities:
– If (ε1 + ε2)

1/2 < q ≤ qAG , then the AG-equilibrium is not biological, and
between strategies 1 and 3, only 3 is a Nash equilibrium. All orbits on L2 must
flow into E3.

– If q > qAG , then the AG-equilibrium is biological. Because neither strategy 1,
nor strategy 3 are Nash equilibria, then the AG-equilibrium is asymptotically
stable when dynamics is restricted to L2.

Using an example we now explain how we have obtained all the results in the
“Diagrams” column in the table. The example we take is the first line in all three
tables, for its greater importance regarding understanding of the results in Nowak and
Sigmund (1992). We know that for (ε1 + ε2)

1/2 < q < min{qAG , qint }, regardless of
G1 we will have as biological equilibria only the three vertices, and the AD and DG
equilibria. By the above reasoning on the dynamics at the border of B, E1 must be a
saddle point, whereas E2 and E3 are attractors, the AD-equilibrium is a saddle with
outgoing orbits on L3, and the DG-equilibrium has outgoing orbits on L1. Point Q is
not in the biological region.

Among the diagrams in Bomze (1983) not a single one is compatible with the above
situation. But if we reverse the orbits, then diagrams 37 and 38 become compatible.
The only one which remains compatible when we take into account that interior orbits
close to the AD-equilibrium must flow towards L3 is 38R. In Fig. 1 we show a plot
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Fig. 1 Phase portrait and graph of the fractions x1, x2 and x3 as functions of time for a choice of parameters
corresponding to the first row in Table 1: T = 5, R = 4, P = 2, S = 0, ε1 = 0.05, ε2 = 0.10, q = 0.40.
The initial condition for the graphs is (x1, x2) = (0.18, 0.76). Observe the full evolution of cooperation

of some numerically calculated orbits for a choice of parameters in one of the cases,
the first row in Table 1, leading to diagram 38R. Notice that all orbits below the
separatrix joining the DG and AD equilibria lead to survival only of strategy G.
We have full evolution of cooperation, where RG is the region below the mentioned
separatrix. For orbits in RG starting very close to the AD-equilibrium P123 we can
see the occurrence of the phenomenon in the experiment of Nowak and Sigmund
(1992): an initial population with majority of ALLD, some ATFT and a minority of
G individuals evolves to a population where only the G individuals are present, after
passing through a transient in which the ATFT comprise almost the entire population.
The phenomenon is illustrated by the graphs of fractions x1, x2 and x3 as functions of
time in Fig. 1.

All information about diagrams in our tables was obtained in a way similar to the
example treated above.

As already mentioned, in the cases at the last line of each Tables 1, 2 and 3 we
could not find a rigorous argument for proving which of diagrams 12, 12R and 13 is
the correct one.

In the case G1 > 0, we already know for interval (qDG , qAG)—see third row in
Table 1—that the only compatible diagram is 15R, in which the interior equilibrium
is unstable and, consequently, there is no evolution of cooperation. It is not reasonable
that increasing q will foster cooperation. In fact, larger values of q will make the G
individuals more susceptible to exploitation by ALLDs. Thus the natural conjecture
is that if G1 > 0 and q ∈ (qAG, 1] the interior equilibrium will still be unstable and
no evolution of cooperation will happen. If this conjecture is true, then the associated
diagrammust be 12R. The conjecture is supported also by numerical calculation of the
eigenvalues of the linearized dynamics around the interior equilibrium and by results
in Fig. 2.

In theG1 < 0 case (Table 3)we know that there is full evolution of cooperation until
q = qAG and only partial evolution for qAG < q < qint , due to the AG-equilibrium
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Fig. 2 Phase portrait and graph of the fractions x1, x2 and x3 as functions of time for a choice of parameters
corresponding to the last row in Table 1: T = 5, R = 4, P = 2, S = 0, ε1 = 0.05, ε2 = 0.10, q = 0.90. The
initial condition for the graphs is (x1, x2) = (0.40, 0.20). Observe that there is no evolution of cooperation
for this set of parameter values

P132

P123

Q

D

AG

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

x1

x 2

0 100 200 300 400 500
0.0

0.2

0.4

0.6

0.8

1.0

t

fr
ac

ti
on

s

ATFT
ALLD
G

Fig. 3 Phase portrait and graph of the fractions x1, x2 and x3 as functions of time for a choice of parameters
corresponding to the last row in Table 3: T = 5, R = 3, P = 1, S = 0, ε1 = 0.05, ε2 = 0.10, q = 0.70.
The initial condition for the graphs is (x1, x2) = (0.10, 0.80). Observe the weak evolution of cooperation
for this set of parameter values, with the interior equilibrium Q being asymptotically stable

entering the biological region and destabilizing E3. For larger values of q the interior
equilibrium becomes biological and we have no knowledge on its stability. Numerical
calculation of eigenvalues suggests that in the case G1 < 0 the interior equilibrium
is asymptotically stable and will attract all orbits in a region of positive area, which
means weak evolution of cooperation and that the correct diagram should be 12. This
conjecture is illustrated in Fig. 3.

Finally, in the G1 = 0 case for q > qint we may expect a situation intermediate
between the other two cases. Numerical calculations suggest that the real part of the
eigenvalues of the linearized dynamics around the interior equilibrium may be null.
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Fig. 4 Phase portrait and graph of the fractions x1, x2 and x3 as functions of time for a choice of parameters
corresponding to the last row in Table 2: T = 5, R = 3, P = 2, S = 0, ε1 = 0.05, ε2 = 0.10, q = 0.50.
The initial condition for the graphs is (x1, x2) = (0.40, 0.20). Observe the weak evolution of cooperation
for this set of parameter values, with the interior equilibrium Q being possibly neutral

Numerically calculated orbits around the interior equilibrium seem to be closed. The
correct diagram is conjectured to be 13, in which the interior equilibrium is a center,
leading to weak evolution of cooperation. Figure 4 illustrates this conjecture.

6 Conclusions

We have proved that the results of the computer experiment in Nowak and Sigmund
(1992) are true for a simplified version of the situation in which, instead of 100
reactive strategies, we only have the three more prominent ones in the experiment:
ATFT, ALLD and G. More precisely, if we define

qGT FT = min{qAG , qDG} (38)

then for q ∈ ((ε1 + ε2)
1/2, qGT FT ) there exists a region RG ⊂ B with positive area

such that the orbit of the replicator dynamics for any initial condition in RG will
converge to E3, i.e. only the G individuals will survive. Using our Definition 3, we can
rephrase this: we showed existence of a maximum forgiveness qGT FT given by (38)
such that if ε is small enough and q ∈ ((ε1 + ε2)

1/2, qGT FT ), irrespective of the sign
of G1, we will have full evolution of cooperation in our version with three strategies
for the situation in Nowak and Sigmund (1992).

In Molander (1985), the statement of Theorem 1 introduces qGT FT as a value
“arbitrarily close to”

min

{
2R − S − T

R − S
, qDG

}
(39)

for “low noise levels”, i.e. for small ε. Although Molander was aware that the value
in (39) should be corrected due to the noise, in his paper there is no expression such
as (32) to quantify this correction.
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In Nowak and Sigmund (1992), the same (39) appears as the definition of the GTFT
strategy winner in their computer experiment. Although the arguments in the present
paper cannot be naively extended to a case such as theirswith 100 strategies, we believe
that the correct value for which the results in Nowak and Sigmund (1992) should hold
is instead (38). For the parameters T = 5, R = 3, P = 1, S = 0 and ε1 = ε2 = 0.01,
we find qGT FT ≈ 0.339574 by numerically solving equation a13(q) = R. This value
is, for the accuracy conditions of the experiment, indistinguishable of the 1/3 given
by (39). Despite their possibly inexact definition in Nowak and Sigmund (1992), we
should note that Nowak and Sigmund had been more precise in defining qGT FT in
their previous paper (Nowak and Sigmund 1990) (see e.g. their first Theorem at page
258), although no formula such as (38) was given.

IfweunderstandqGT FT as themaximumforgiveness such that there is full evolution
of cooperation for any values of ε1 and ε2 in our simplified version of the experiment
with only three strategies, then we are forced to take a limit of (38) when ε → 0
and (39) is recovered. If, on the other hand, we take a fixed AT FT strategy, i.e. fixed
values of ε1 and ε2, then (38) should be thought as the rigorous version of (39) for
only three strategies as in this paper. If we have a situation as in Nowak and Sigmund
(1992) withmore than three strategies and a fixedATFT, we do not knowwhich among
(38), (39) or some other number is the right value for the maximum forgiveness. We
conjecture that our value (38) might be the correct one. A repetition of the experiment
in Nowak and Sigmund (1992) having this question in mind might help in solving this
puzzle.

We have also partially understood the population dynamics for values of q larger
than qGT FT . We have seen that in some cases some weaker forms of cooperation
evolution will still hold, but we have also seen that if G1 > 0 and q ∈ (qDG, qAG)

no evolution of cooperation is possible, because for almost all initial conditions only
ALLD individuals will survive. The same conclusion probably holds also for q ≥ qAG

and G1 > 0.
As already stated in our Introduction section, much has changed in this field since

the discovery of the so-called zero-determinant (ZD) strategies for the IRPD (Press
and Dyson 2012). ZD strategies are memory-one strategies, a set which contains the
reactive strategies considered in this study and much more. Among the various types
of ZD strategies, extortion and generous strategies (Stewart and Plotkin 2013) deserve
some mention here, because they seem to have roles similar respectively to ATFT
and G when the evolutionary context is taken into account. According to Hilbe et al.
(2013), extortion ZD strategies “can act as catalysts for the evolution of cooperation,
similar to tit-for-tat, but · · · they are not the stable outcome of natural selection”.
On the other hand, in the context of all memory-one strategies, Akin (2012) defines
good strategies, also called partner strategies in Hilbe et al. (2015). In a context
different from ours, Stewart and Plotkin (2013) claim that good ZD strategies, which
includes GTFT, “forgive defecting opponents but nonetheless dominate in evolving
populations”.

We feel that considering memory-one strategies would take us out of the original
context of the reactive strategies as in the experiment in Nowak and Sigmund (1992).
Moreover, it would also introduce technical difficulties, as formulas (5) and (6) would
cease to be true. We believe that extending the results of this paper to the setting of
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the more general memory-one strategies, including thus the ZD strategies, is another
important task to be accomplished by researchers in the near future.

As the main tool used in this work for predicting the dynamics from knowledge on
the equilibria is the two-dimensional classification in Bomze (1983), increasing the
number of considered strategies from three to only four would imply rather difficult
technical difficulties. We also expect that these technical barriers may be overcome
by future researchers.
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