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Abstract A proxy for the invasion fitness in structured metapopulation models has
been defined as a metapopulation reproduction ratio, which is the expected number of
surviving dispersers produced by a mutant immigrant and a colony of its descendants.
When a size-structured metapopulation model involves also individual stages (such
as juveniles and adults), there exists a generalized definition for the invasion fitness
proxy. The idea is to calculate the expected numbers of dispersers of all different
possible types produced by a mutant clan initiated with a single mutant, and to collect
these values into a matrix. The metapopulation reproduction ratio is then the dominant
eigenvalue of this matrix. The calculation method has been published in detail in the
case of small local populations. However, in case of large patches the previously
published numerical calculation method to obtain the expected number of dispersers
does not generalize as such, which gives us one aim of this article. Here, we thus
derive a generalized method to calculate the invasion fitness in a metapopulation,
which consists of large local populations, and is both size- and stage-structured. We
also prove that the metapopulation reproduction ratio is well-defined, i.e., it is equal
to 1 for a mutant with a strategy equal to the strategy of a resident. Such a proof has
not been previously published even for the case with only one type of individuals.
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1 Introduction

Ametapopulation is an assemblage of local populations connected via migration. The
first mathematical metapopulation model was introduced by Levins (1969, 1970). He
described the dynamics of the fraction of occupied patches based on local population
extinctions and recolonizations. Even though the Levins’ classical model ignored the
local population dynamics, it provided the important conceptual base on the future
progress ofmetapopulation theory. Now, as anthropogenic alteration accelerate around
the world and increasing number of species suffer from habitat fragmentation, the
metapopulation setting is receiving ever more attention (e.g., Hanski and Gilpin 1997;
Hanski 1999; Hanski and Gaggiotti 2004; Bulman et al. 2007; Wilson et al. 2009;
Hanski et al. 2011; Schippers et al. 2011; Seppänen et al. 2012).

Since Darwin, we have understood that evolution interweaves with ecology every-
where. The most intuitive evolutionary question concerning metapopulations is, what
selects for and against dispersal. Dispersal is costly but has also benefits for the dis-
persing individuals (Hamilton and May 1977; Gandon and Michalakis 2001). On the
other hand, it is the key feature for patch recolonization and metapopulation viability.
Unsurprisingly, there exist numerous studies on evolution of dispersal in general (e.g.,
Hamilton and May 1977; Comins et al. 1980; Motro 1982a, b, 1983) and in metapop-
ulations (e.g., Clobert et al. 2001; Gyllenberg et al. 2002; Cadet et al. 2003; Parvinen
et al. 2003; Parvinen 2006). Obviously, as one may observe nature full of amazing
adaptations, researchers have investigated evolutionary questions in metapopulations
on many other traits, such as local adaptation (Kisdi 2002), specialization (Parvinen
and Egas 2004; Nurmi et al. 2008; Nurmi and Parvinen 2008), reproductive effort
(Ronce et al. 2000) or cooperation (Parvinen 2011) only to mention few.

To study evolutionary dynamics Metz et al. (1992) defined invasion fitness as the
long-term exponential growth rate r of a rare mutant in an environment set by the
resident. A positive invasion fitness implies that the mutant population is able to grow
and possibly replace the resident. Adaptive dynamics (Metz et al. 1996; Geritz et al.
1997, 1998) now has grown to a wide set of tools to study evolution and has been
applied broadly, also within interdisciplinary goals (Dieckmann et al. 2002; Ferrière
et al. 2004, Dieckmann and Metz, in press).

In metapopulation models, calculating the invasion fitness can be difficult. There-
fore, Metz and Gyllenberg (2001) and Gyllenberg and Metz (2001) defined the
metapopulation reproduction ratio Rm as the expected number of mutant dispersers
produced by a local mutant colony initiated by one mutant disperser. This concept
is analogous to the basic reproduction ratio, widely used in epidemiological models,
with the difference that it operates between dispersal generations instead of traditional
reproductive generations. The logarithm of Rm is sign-equivalent with the invasion
fitness r , so that r > 0 if and only if Rm > 1. Thus, Rm is a proxy for invasion fitness.
This approach has been applied to various types of metapopulation models, including
models with large local populations defined in continuous time (Gyllenberg and Metz
2001; Metz and Gyllenberg 2001; Gyllenberg et al. 2002; Parvinen 2002; Parvinen
et al. 2003; Parvinen and Egas 2004) or in discrete time (Parvinen 2006, 2007; Nurmi
et al. 2008; Nurmi and Parvinen 2008, 2011), as well as metapopulation models with
small local populations with locally stochastic population dynamics defined in con-
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tinuous time (Gyllenberg and Metz 2001; Metz and Gyllenberg 2001; Parvinen et al.
2003; Parvinen and Metz 2008; Parvinen 2011).

In some cases the population sharing the same heritable trait consists of several
types of individuals, which we here call stages. For example, taking maturing or
development into account results in juvenile and adult stages. Thus, dispersers can
also be of different types. Parvinen and Metz (2008) generalized the definition of Rm

to such a case. The idea is to calculate the expected numbers of dispersers of type j
produced by a mutant clan initiated with a single mutant of type i , and then to col-
lect these values into a matrix M. The metapopulation reproduction ratio is then the
dominant eigenvalue of the matrix M. In specific, Parvinen and Metz (2008) showed
how to calculate Rm in a locally stochastic metapopulation with a diploid population,
in which the mutant population thus consists of two types, namely heterozygotes and
mutant homozygotes. For such locally stochastic metapopulations, in which the local
population dynamics is described by a continuous-time Markov chain, this general-
ization is straightforward for any number of disperser types, although the number of
equations needed (and calculation time) will increase dramatically.

In this article we investigate continuous-time metapopulation models, in which
the local populations are large (Gyllenberg and Metz 2001; Metz and Gyllenberg
2001; Gyllenberg et al. 2002; Parvinen 2002). The local population dynamics are
thus described by (a system of) ordinary differential equations. Conceptually, the
generalization of the metapopulation reproduction ratio Rm to the case with several
types of individuals is straightforward (Parvinen and Metz 2008). Nevertheless, the
actual calculation method (Metz and Gyllenberg 2001, Appendix D), explained in
detail by Parvinen (2002), does not generalize as such.

One aim of this article is to provide a novel method to compute the invasion fit-
ness (proxy) in this class of metapopulation models, when there are several types of
individuals, i.e., the metapopulation model is both size- and stage-structured. We find
the method applicable for a very wide spectrum of evolutionary questions and eco-
logical settings. Especially, the cases where evolutionary dynamics might depend on
individual development have not been tractable in large-patch metapopulation models
by adaptive dynamics before. Another aim of this article is to prove that this metapop-
ulation reproduction ratio is well-defined. More precisely, we prove that

Rm(si , Eres) = 1 for all i = 1, . . . , n, (1)

i.e., the metapopulation reproduction ratio of a mutant with strategy si is equal
to 1, when Eres corresponds to an environment set by residents with strategies si ,
i = 1, . . . , n in a stable metapopulation-dynamical equilibrium. Such a consistency
condition must naturally hold for any proxy of invasion fitness. However, such a proof
has not been previously published even for the case with only one type of individuals
(Gyllenberg and Metz 2001; Metz and Gyllenberg 2001).

2 Model and method

2.1 Local population model

Our ecological setting is a metapopulation with an infinite number of patches. In each
patch there is a local population, which consists of individuals of different types, e.g.
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developmental stages, denoted by j = 1, . . . ,m. Each individual has a heritable trait
s, which is under natural selection. Let n denote the number of different strategies,
si , where i = 1, . . . , n, present in the metapopulation. Let X ji denote the population
density of individuals of type j with strategy si in a patch. We collect these values
into a m × n matrix

X = (X1, . . . ,Xn), where Xi =
⎛
⎜⎝

X1i
...

Xmi

⎞
⎟⎠ . (2)

In each patch, local population growth is described by a per capita growth function
A(X, si ). This function takes into account events like birth, death, and development
to different stages. In addition, individuals disperse via a global dispersal pool. Emi-
gration and immigration occur at per capita rates, ρ j (X, si ) and α, respectively. Since
dispersal has costs, we assume individuals experiencing death rate ν in the dispersal
pool. Thus, the probability to survive the dispersal event is π = α

α+ν
. It is straightfor-

ward to generalize to a case where α depends on the stage and the strategy, α = α j (si ),
but for simplicity we assume α to be a constant here.

The dynamics for the local population with the trait si is

d

dt
Xi = A(X, si )Xi − ρ(X, si )Xi + αDi

= A(X, si )Xi − ρ(X, si )Xi + Ii , (3)

where the i th row of the coefficient matrix A contains the growth for each type
j including type changes from another types, the diagonal matrix ρ(X, si ) =
diag(ρ1(X, si ), . . . , ρm(X, si )) contains the emigration rates for each stage, and the
vector Di = (D1i , . . . , Dmi )

T denotes the density of dispersers of types 1, . . . ,m
with strategy si . For convenience we use the notation Ii = αDi for the vector of immi-
gration rates observed in local patches corresponding to strategy si . Furthermore, we
collect these vectors for all present strategies into a m × n matrix I = (I1, . . . , In).

Local populations suffer from extinctions by environmental stochasticity. These
events occur at rate δ(X), which may depend on the local population size. When a
catastrophic event occurs, the local population is wiped out, but the patch remains
habitable to be then recolonized by immigrants from the dispersal pool.

2.2 Metapopulation dynamics

On the metapopulation level the state of the metapopulation is described by the dis-
tribution n(X) of local population sizes in patches, where X ∈ R

nm . The dynamics
of this distribution follows from straightforward book-keeping of local population
dynamics (3), although its calculation can be tedious in practice. Here we focus on
metapopulation-dynamical equilibria, and thus do not give a more detailed expression
of the dynamics of n(X).
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The dynamics of the dispersal pool size Di corresponding the metapopulation with
the trait si incorporates emigration and immigration

d

dt
D ji = −(α + ν)Dji +

∫
ρ j (X, si )X ji n(t, dX). (4)

Next, we will show how to calculate the resident equilibrium and then we will
derive the method to compute the proxy for the invasion fitness for the mutant.

3 Results

3.1 Metapopulation-dynamical equilibria

At a metapopulation-dynamical equilibrium the dispersal pool sizes (and thus immi-
gration rates) and the local population size distributions are constant. Therefore, we
first assume that we know the immigration vectors Ii , and then calculate the resulting
local population size distributions. Using these distributions we obtain conditions that
the immigration vectors Ii need to satisfy at an equilibrium (each local population
must be replaced exactly by itself or another local population). This is rather straight-
forward generalization of earlier results (e.g. Parvinen 2002), and is demonstrated in
details below.

Consider nowwhat happens in a patch after a catastrophe has occurred. Let τ denote
the patch age, which is the time since the last local extinction. Immediately after the
catastrophe (at τ = 0), the patch is empty, and thus the local population size vectors
Xi (0, I) = 0. The local population sizesXi (τ, I) start to grow according to the system
of ordinary differential equations (3) until another catastrophe occurs. This means that
at a metapopulation-dynamical equilibrium, all patches of age τ have precisely the
same local population sizes Xi (τ, I).

Let F(τ, I) denote the probability that a population is still extant at age τ . That
is, there has occurred no catastrophic event before age τ . Therefore, F(τ, I) has to
satisfy the differential equation

d

dτ
F(τ, I) = −δ(X(τ, I))F(τ, I) with F(0, I) = 1. (5)

The solution of this linear differential equation can be written as

F(τ, I) = exp

[
−

∫ τ

0
δ(X(t, I))dt

]
. (6)

The expected life-time of a local population is

L(I) =
∫ ∞

0
τδ(X(t, I))F(τ, I)dτ =

∫ ∞

0
F(τ, I)dτ, (7)

where integration by parts is used in the second equality.
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A patch of age τ sends emigrants with strategy si with the rate ρ(X(τ ), si )X(τ ).
Therefore, during the patch lifetime, the expected production of emigrants with strat-
egy si is

Ei (I) =
∫ ∞

0
ρ(X(τ, I), si )Xi (τ, I)F(τ, I)dτ, (8)

and thus the expected production of surviving emigrants is πEi (I). The corresponding
expected number of immigrants arriving into a patch during its entire life is Ii L(I).
At a metapopulation-dynamical equilibrium these two vectors have to be equal, and
therefore we obtain the condition

Ii = π
Ei (I)
L(I)

for all i = 1, . . . , n. (9)

In case of no stage-structure (m = 1, and each Ii is a number), we can write the
conditions (9) using the metapopulation reproduction ratio (see, e.g., equation (8) of
Parvinen 2002)

Ri (I ) = π
Ei (I )

Ii L(I )
= 1 for all i = 1, . . . , n. (10)

We can reach the condition (9) also by noting that at a metapopulation-dynamical
equilibrium the patch-age distribution has density

m(τ, I) = F(τ, I)
L(I)

. (11)

Therefore, all patches through the whole metapopulation send surviving emigrants
with strategy si with a rate π

∫ ∞
0 ρ(X(τ, I), si )Xi (τ, I)m(τ, I)dτ . By requiring this

quantity to be equal to Ii , condition (9) follows.
To obtain the factors required for finding the equilibrium can be challenging, espe-

cially in models derived from real life systems. Similarly as in Parvinen (2002) we
compute the integrals numerically following the system:

⎧⎪⎪⎨
⎪⎪⎩

X′
i = A(X, si )Xi − ρ(X, si )Xi + Ii , Xi (0) = 0

F ′ = −δ(X)F , F(0) = 1
L ′ = F , L(0) = 0
E′
i = ρ(X, si )XiF , Ei (0) = 0.

(12)

In practice, however, the integration until τ = ∞ would take too long. It is often
the case, that the local population sizes converge to a local population dynamical
equilibrium X∗, defined as a solution of d

dτ
X(τ ) = 0. In such case, when τ is large

enough (τ = T ) so that X(τ ) is sufficiently close to X∗, we shall stop numerical
integration. Thus we assume

X(τ ) = X(T ), τ ≥ T . (13)
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Using this approximation we obtain

F(τ ) = F(T ) exp(−(τ − T )δ(X(T ))) for τ � T . (14)

Then we approximate the tails of the integration analytically:

Ei (∞) = Ei (T ) + ρ(X, si )Xi (T )F(T )

δ(X(T ))

L(∞) = L(T ) + F(T )

δ(X(T ))
. (15)

In case the residents’ population dynamics approach a limit cycle, see the “Appendix”.
As already noted above, at the equilibrium the condition (9) must hold for all

resident traits si present in the metapopulation. In general, it is not guaranteed to find
the equilibrium explicitly, but a numerical solution is still possible to find, for example,
by using iterative methods which do not require the use of derivatives.

3.2 Invasion fitness

Now, assume the resident population is on its ecological attractor. That is, for all
residents traits si present in the metapopulation, the immigration rate vectors Ii are
constant. A mutant, with a phenotypic trait different from all the residents, appears
into the metapopulation. It immigrates to a random patch which is inhabited by the
residents. The age of the patch is random, and follows the distribution m(τ ) (Eq. 11),
which is determined by the residents.

Consider a mutant population of size Ŷ immigrating into a patch of age tres. In prin-
ciple, dynamics for the mutant’s population density vector Y follows the differential
equation

d

dt
Y(t) = A({X(t),Y(t)}, smut)Y(t) − ρ({X(t),Y(t)}, smut)Y(t). (16)

When dispersal is the evolving strategy, we can replace {X(t),Y(t)} by Y(t) +∑n
i=1 Xi (t). However, initially the mutant population is so small that it has no effect

on resident’s dynamics, and the dynamics for Y becomes linear with respect to Y:

d

dt
Y(t; tres) = [A(X(t), smut) − ρ(X(t), smut)]Y(t; tres), Y(tres; tres) = Ŷ. (17)

Note, that the matrix A depends on the resident’s states X(t), which is the solution
of (3) with X(0) = 0. We call the initial mutant population and all their descendants
in this patch a mutant colony. When the patch experiences a catastrophic event, the
colony will die. However, during its lifetime the mutant colony sends emigrants to the
dispersal pool. The expected number of mutant emigrants of type j for such colony is

Emut
j (tres, Ŷ) =

∫ ∞

tres
ρ j (X(τ ), smut)Y j (τ ; tres) F(τ )

F(tres)
dτ, (18)
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where ρ j (X(τ ), smut) is the emigration rate of the mutant type j . The production of
surviving mutant dispersers through all metapopulation is

Eprod
j (Ŷ) = π

∫ ∞

0
Emut

j (tres, Ŷ)m(tres)dtres. (19)

Let Ỹ( j) = (Ỹ1( j), . . . , Ỹm( j))T denote the unit vector,

Ỹk( j) =
{
1, if k = j,
0, otherwise.

(20)

We calculate the values of Eprod
j (Ŷ) for all Ŷ = Ỹ(k), k = 1, . . . ,m, and collect these

values into a matrix. Analogous to Parvinen and Metz (2008) the invasion fitness
(proxy) for the mutant is the dominant eigenvalue of this matrix:

Rmut(smut) = λd (M) , where Mjk = Eprod
j (Ỹ(k)). (21)

3.2.1 A novel method for the numerical calculation of the invasion fitness

The calculation method for the scalar version of (19) in section 2.3.1 of Parvinen
(2002) (adapted from Appendix D of Metz and Gyllenberg 2001) has to be modified
to cope with the general case of several stages. Some of the equations therein would
become meaningless, as they would include, e.g., division of vectors by vectors.

To calculate (19), we first use (11) and (18) to obtain

Eprod
j (Ŷ) = π

∫ ∞

0

∫ ∞

tres
ρ j (X(τ ), smut)Y j (τ ; tres) F(τ )

F(tres)
dτ

F(tres)

L
dtres. (22)

Notice that the factors F(tres) cancel each other, and then swap the integration order
to obtain

Eprod
j (Ŷ) = π

L

∫ ∞

0
F(τ )ρ j (X(τ ), smut)

∫ τ

0
Y j (τ ; tres)dtresdτ (23)

We still have two integrals within each other. To ease the numerical calculation of the
above integral, we now introduce an auxiliary variable, N,

N(τ ) =
∫ τ

0
Y(τ ; tres)dtres. (24)
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By differentiating we obtain by using (17)

d

dτ
N(τ ) = Y(τ ; τ) +

∫ τ

0
[A(X(τ ), smut) − ρ(X(τ ), smut)]Y(τ ; tres)dtres

= Ŷ + [A(X(τ ), smut) − ρ(X(τ ), smut)]
∫ τ

0
Y(τ ; tres)dtres

= Ŷ + [A(X(τ ), smut) − ρ(X(τ ), smut)]N(τ ). (25)

As above in the resident case we can with the help of (23) and (25) numerically
compute the integrals needed for the invasion fitness:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

X′
i = A(X, si )Xi − ρ(X, si )Xi + Ii , Xi (0) = 0, i = 1, . . . , n

F ′ = −δ(X)F F(0) = 1
L ′ = F L(0) = 0
N′ = Ŷ + [

A(X, smut) − ρ(X, smut)
]
N N(0) = 0

Q′
j = Fρ j (X, smut)N j Q j (0) = 0 j = 1, . . . ,m

(26)

Similarly as in the resident case, we will not integrate until infinity. Instead, we again
solve the system of differential equations numerically until time T large enough, such
that resident population is close to a population-dynamical equilibrium X∗. Then we
again use the approximation X(τ ) = X(T ) for τ ≥ T , and derive the tails needed
analytically. As before we obtain F(τ ) for τ ≥ T from (14). The tail for L is as in
(15). For times large enough the matrix A remains constant, and therefore also N will
approach an equilibrium. Analogous to (15), emigrant production of the type j is

Eprod
j (Ŷ) = π

L

∫ ∞

0
F(τ )ρ j (X(τ ), smut)N j (τ )dτ

= π

L(∞)

(
Q j (T ) + ρ j (X(T ), smut)F(T )N j (T )

δ(X(T ))

)
. (27)

In case the population dynamics approach a limit cycle we recommend the reader to
look at “Appendix”.

We have now shown how to numerically compute the invasion fitness for a mutant
in large patch metapopulations which are both size- and stage-structured and the local
dynamics takes place in continuous time. The method itself is independent of the trait
under selection.Thus, thismethod is applicable to a verywide spectrumof evolutionary
questions.

3.2.2 Proof of consistent fitness

Theorem 1 Rmut(si , Eres) = 1 for all i = 1, . . . , n, where Eres is an environment
set by residents with strategies si , i = 1, . . . , n in a stable metapopulation-dynamical
equilibrium.
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Proof Consider themetapopulation-dynamical equilibrium of strategies si with immi-
gration vectors Ii for i = 1, . . . , n. We can choose the strategy of a mutant to be the
same as one of the resident strategies, smut = si . Now we want to calculate Eprod(Ii ),
defined in (19).When smut = si and Ŷ = Ii , according to (25) we haveN(τ ) = Xi (τ ).
Therefore,

Eprod(Ii ) = π

L
Ei (I) = Ii , (28)

where the second equality follows from (9). Because Eprod(Ŷ) is linear with respect
to Ŷ, Eq. (28) means that

MIi = Ii , (29)

where Mjk = Eprod
j (Ỹ(k)) with Ỹ(k) as in (20). According to (29), the vector Ii

is an eigenvector of the matrix M and the corresponding eigenvalue λ = 1. The
metapopulation reproduction ratio is the dominant eigenvalue of M. To finish the
proof we only need to show that λ = 1 is the dominant eigenvalue: if the matrix M
would have an eigenvalue with |λ| > 1, the metapopulation-dynamical equilibrium
would not be stable. ��

3.3 Examples

To provide a practical view to the question in what kind of ecological situations the
generalized model (and thus the methods provided) can be applied, we describe two
examples, an epidemiological model and a viral infectionmodel. Our examples clearly
show the demand for this generalized model type.

3.3.1 SIR model

Let us consider an epidemiological model in ametapopulation setting. Local dynamics
follow a common SIRmodel (Diekmann and Heesterbeek 2000). Natural death events
occur within each group of individuals, susceptibles S, infected I and recovered R
with rates μS , μI and μR , respectively. The host population can be polymorphic with
several strategies sk present. Local population sizes are then Sk , Ik and Rk denoting
individual types with the inheritable phenotypic trait sk . The trait or strategy s affects
essential life-history parameters as described below. The per capita reproduction rate
b(N , si ) is a function of the whole host population size N = ∑

k Sk + Ik + Rk

and the phenotypic strategy si of the subpopulation. In this example we assume no
vertical transmission, and thus all individuals are susceptibles at birth. However, the
generalization to incorporate vertical transmission would be rather easy. Infection
occurs according to the law of mass action, with a rate β(si ) corresponding to contacts
between susceptibles with strategy si and infected individuals. Recovering occurs
at the rate γ (si ). Patches may represent a cluster or some condensation of the host
population, e.g. cities or schools in case of human host populations. All types of
individuals, S, I and R, may disperse—move from a patch to another with emigration
rate ρ and immigration rate α. A good and conceivable way to model this situation is

123



On fitness in metapopulations that are both size- and stage-structured 913

obviously a metapopulation, which is structured by the population size and the stage
of the individuals.

We write the local dynamics (3) as following

d

dt
Si = b(N , si )(Si + Ii + Ri ) − β(si )Si

∑
Ik − (μS + ρS)Si + αDSi

d

dt
Ii = β(si )Si

∑
Ik − (μI + γ (si ) + ρI )Ii + αDIi

d

dt
Ri = γ (si )Ii − (μR + ρR)Ri + αDRi . (30)

The evolution of traits in the host population can now be studied in a rather realistic
model setting. We could, for example, study the evolution of host behaviour, affecting
the transmission rate β(si ), the recovery rate γ (si ) and the reproductive rate b(N , si )
with different trade-off functions depending on the characteristics of the host popula-
tion and the infectious disease. We can write (30) using the notation used elsewhere in
this article by setting X1i = Si , X2i = Ii and X3i = Ri , after which all the methods
presented here are applicable.

3.3.2 Viral infection model

Consider a hepatitis C infection in a (human) host. The hepatitis C virus particle
contains positive-strand RNA in an envelope. In its replication, which occurs only
inside the cells of the host, RNA+ strands are used in the production of RNA− strands
and vice versa. Furthermore, RNA+ strands are packed in envelopes to form virus
particles, which can exit the cell to the blood stream, and enter new target cells.
At least three stages (virus particles and the RNA+ and RNA− strands) are thus
involved. The within-cell viral dynamics can be described with a system of differential
equations (e.g., Guedj and Neumann 2010). The viral dynamics within a host can be
modeled using the general size- and stage-structured metapopulation model, in which
the dispersal pool corresponds to the blood circulation, and cells are habitable patches.

4 Discussion

TheLevins (1969, 1970)metapopulationmodelwas inspiring for the researchfield, but
nevertheless very simplistic, because it only described the dynamics of the fraction
of occupied patches. Beyond patches being occupied or empty, the local popula-
tion size was not taken into account in the model. This simplification has later been
lifted in structured metapopulation models. The metapopulation reproduction ratio
Rm(smut, Eres) introduced by Gyllenberg and Metz (2001) and Metz and Gyllenberg
(2001) is a useful concept for studying adaptive dynamics in (structured) metapop-
ulation models. It is the expected number of mutant dispersers (with strategy smut)
produced by a local mutant colony initiated by one mutant disperser in the environ-
ment Eres set by the resident. It measures growth between dispersal generations, and
is often easier to calculate than the invasion fitness r(smut, Eres) (Metz et al. 1992),
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which measures growth in real time. The definition of the metapopulation reproduc-
tion ratio suggests that it is a fitness proxy, i.e., it is greater than one, Rm(smut, Eres),
if and only the invasion fitness is positive, r(smut, Eres) > 0.

Although structured metapopulation models are more realistic than the Levins
metapopulation, they do not necessarily take individual development into account.
Two individuals with the same strategy in the same habitat patch are typically assumed
to be identical. More detailed models are structured not only with respect to the local
population size, but also take into account differences of individuals (other than the
strategy). Properties taking into account such differences can be continuous (such as
the weight of an individual) or discrete (such as a juvenile or an adult). In the latter
case the population is stage-structured.

In this articlewe have presented ametapopulationmodel that is both size- and stage-
structured. Our contribution consists of two parts. First, since the previously published
algorithm to calculate the metapopulation reproduction ratio is not applicable in the
general case, we have modified the algorithm to cope with the stage structure. Second,
we have presented a proof showing that the metapopulation reproduction ratio is well-
defined. In other words, we have shown that Rm(si , Eres) = 1 for all such strategies
si that are present in the stable metapopulation-dynamical equilibrium resulting in the
resident environment Eres. To illustrate the variety of potential applications, we have
presented two examples, an epidemiological (SIR) model, and a viral infection model.
We hope that our methods will be found useful by a large number of applicants in the
future.

Acknowledgments The authors wish to thankAvidanNeumann for valuable discussions on viral evolution
which brought up the need for the methods developed in this article. This study was funded by the Academy
of Finland, project number 128323 to K.P.

Appendix: Cyclic case

In the main text we considered only the case, in which the local population sizes
approach an equilibrium, when τ → ∞. In a stage-structured model, however, this is
not necessarily the case. Instead, population sizes may approach, e.g., a limit cycle.
In that case we calculate Eqs. (12) and (26) until time T so that the population sizes
are close enough to a point on the limit cycle. After this we use the approximation
X(T + kΔT + τ) = X(T + τ) for all 0 � τ � ΔT and k = 0, 1, 2, . . ., where ΔT
is the length of the limit cycle.

First we denote t = T + kΔT + τ . Then we can write the expression for F
corresponding to (14)

F(t) = F(T ) exp

(
−

∫ t

T
δ(X(s))ds

)

= F(T ) exp

(
−

∫ T+ΔT

T
δ(X(s))ds

)k

exp

(
−

∫ T+τ

T
δ(X(s))ds

)
. (31)
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By using an auxiliary variable z = exp(− ∫ T+ΔT
T δ(X(s))ds) we can write

Ei (∞) = Ei (T ) +
∫ ∞

T
ρ(X(τ ), si )Xi (t)F(t)dt

= Ei (T )

+F(T )

∞∑
k=0

zk
∫ T+ΔT

T
ρ(X(τ ), si )Xi (τ ) exp

(
−

∫ T+τ

T
δ(X(s))ds

)
dτ

= Ei (T ) + F(T )

1 − z

∫ T+ΔT

T
ρ(Xi (τ ), si )Xi (τ )

exp

(
−

∫ T+τ

T
δ(X(s))ds

)
dτ (32)

and

L(∞) = L(T ) +
∫ ∞

T
F(t)dt

= L(T ) + F(T )

1 − z

∫ T+ΔT

T
exp

(
−

∫ T+τ

T
δ(X(s))ds

)
dτ (33)

which correspond to Eq. (15).
Similarly as above, we obtain the invasion fitness (proxy) in a cyclic case by rewrit-

ing the emigrant production Eprod
j in the Eq. (27)

Eprod
j (Ŷ) = π

L

∫ ∞

0
F(t)ρ j (X(t), smut)N j (t)dt

= π

L(∞)

[
Q j (T ) + F(T )

1 − z

∫ T+ΔT

T
ρ j (X(τ ), smut)N j (τ )

exp

(
−

∫ T+τ

T
δ(X(s))ds

)
dτ

]
. (34)
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