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Abstract We consider the problem of determining the topological structure of a phy-
logenetic network given only information about the path-length distances between
taxa. In particular, one of the main results of the paper shows that binary tree-child
networks are essentially determined by such information.
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1 Introduction

A core component in the development and analysis of algorithms for reconstructing
phylogenetic (evolutionary) trees has been the mathematical properties relating the
input data to the desired output structure. For example theBuild algorithmofAho et al.
(1981) and its various generalisations (e.g. Berry et al. 2013; Bordewich et al. 2006;
Huber et al. 2011) rely on the property that the collection of rooted triples of a rooted
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phylogenetic tree T determine the topological structure of T . Another example is the
classical clustering algorithm UPGMA (Sokal and Michener 1958), which relies on
the property that the closest pair of leaves in an ultrametric tree (a rooted phylogenetic
tree with branch lengths satisfying a “molecular clock”) must share a common parent
vertex. Understanding these properties, and under what circumstances they hold, is
vital to developing and selecting accurate algorithms. For example, recognizing the
reliance on the ultrametric assumption and that it is too strong for many situations
has led to the widespread use of Neighbor Joining (Saitou and Nei 1987) instead of
UPGMA to reconstruct phylogenetic trees from inter-taxa distances. Indeed, Neighbor
Joining is one of numerous distanced-based methods for reconstructing phylogenetic
trees that have been developed and refined. Other methods include least squares (Fitch
andMargoliash 1967), BioNJ (Gascuel 1997), minimum evolution (Rzhetsky and Nei
1993), and balanced minimum evolution (Desper and Gascuel 2004).

In this paper, we consider the task of reconstructing phylogenetic networks, rather
than phylogenetic trees, from information about inter-taxa distances, and what under-
lying mathematical properties of the data are required to determine the topological
structure of such networks. This turns out to be a much more challenging and richer
problem than that of reconstructing phylogenetic trees: a phylogenetic tree is deter-
mined uniquely by its inter-taxa distances, whereas this is not necessarily the case for
phylogenetic networks (see Fig. 4). The rest of the introduction highlights three main
results and ends with a description of the organisation of the paper.

Throughout the paper, X denotes a non-empty finite set. A rooted phylogenetic
X-tree T is a rooted tree with no degree-two vertices, except possibly the root which
has degree at least two, and whose leaf set is X . If |X | = 1, then T consists of the
single vertex in X . In addition, T is binary if either |X | = 1 or the root has degree
two and every other interior vertex has degree three. In evolutionary biology, rooted
phylogenetic X -trees are used to represent the ancestral history of a collection X of
present-day species. Here, one assumes that all evolutionary events are tree-like. How-
ever, it is now well-known that, for certain collections, phylogenetic networks rather
than rooted phylogenetic trees provide a more accurate representation of the ances-
tral history as they allow for non-tree-like events. Collectively known as reticulation
events, these events include recombination and hybridisation.

A phylogenetic networkN on X is directed acyclic graph with the following prop-
erties:

(i) a unique vertex of in-degree zero called the root, which has out-degree at least
two (except in the case |X | = 1),

(ii) the set X is the set of vertices of out-degree zero, each of which has in-degree
one, and

(iii) every other vertex either has in-degree one and out-degree at least two, or in-
degree at least two and out-degree one.

The vertices of out-degree zero are called leaves, while the vertices of in-degree one
and out-degree at least two are called tree vertices and the vertices of in-degree at least
two and out-degree one are called reticulations. The arcs directed into a reticulation
are called reticulation arcs; all other arcs are called tree arcs. If |X | = 1, then we also
allow N to be the single vertex in X . In addition, N is binary if either N is a single
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Fig. 1 aA binary phylogenetic networkN on X = {x1, x2, x3, x4, x5}, b the binary phylogenetic network
N ′ on X ′ = {x1, x2, x3, z} obtained fromN by reducing the cherry {x4, x5} and replacing it with a new leaf
z, and c the phylogenetic network N ′′ on X obtained from N by reducing the reticulated cherry {x1, x2}
vertex or the root has degree two and every other non-leaf vertex has degree three. To
illustrate, Fig. 1a shows a binary phylogenetic networkN on X = {x1, x2, x3, x4, x5},
where u3 and u4 are the reticulations ofN . Observe that a rooted binary phylogenetic
X -tree is a binary phylogenetic network on X with no reticulations and,more generally,
a rooted phylogenetic X -tree is a phylogenetic network on X with no reticulations.

LetN be a phylogenetic network on X . For any two vertices u and v inN that are
joined by an arc (u, v), we say u is a parent (or parent vertex) of v and, conversely,
v is a child (or child vertex) of u. We say N is a tree-child network if every non-leaf
vertex has a child which is either a tree vertex or a leaf. The phylogenetic network in
Fig. 1a is a tree-child network. An underlying path (respectively, cycle) ofN is a path
(respectively, cycle) of the undirected graph containing as undirected edges all arcs of
N .

Given a phylogenetic network N on X , we define the multiset-matrix D of inter-
taxa distances as follows. For any two elements x, y ∈ X , an up-down path from x to
y is an underlying path x, v1, v2, . . . , vk−1, y in N such that, for some i ≤ k − 1, N
contains the arcs

(vi , vi−1), (vi−1, vi−2), . . . , (v1, x)

and
(vi , vi+1), (vi+1, vi+2), . . . , (vk−1, y).

The length of an up-down path is the number of arcs it contains, here k. For example,
in Fig. 1a, x1, u2, u1, u4, x3 is an up-down path in N from x1 to x3.
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Now let Px,y be the set of distinct up-down paths from x to y in N . The multiset
of distances between x and y, denoted Dx,y , is the multiset of path lengths in Px,y .
Observe that Dx,y = Dy,x for all x, y ∈ X , and Dx,x = {0} for all x ∈ X . As an
example, in Fig. 1a, it is easily checked that the multiset of distances between x2 and
x3 is {5, 5, 6, 8}. The multiset-matrixD ofN is the |X | by |X | matrix whose (x, y)-th
entry is Dx,y . Note that, when we restrictN to be a rooted phylogenetic X -tree, each
Px,y has a single element and thus D naturally corresponds to the standard matrix
of inter-taxa distances, though technically each entry in our matrix D would be a set
containing a single integer, rather than simply an integer. If D is the multiset-matrix
of N , we say N realises D.

The first two results we highlight are the next two theorems. The first theorem con-
cerns tree-child networks, while the second theorem concerns a subclass of temporal
networks.

Theorem 1.1 Let D be a multiset-matrix of distances between elements of a set X.
If there is a binary tree-child network N on X realising D, with no arc joining the
two children of the root then, up to isomorphism,N is the unique binary phylogenetic
network on X realising D, in which case N can be found in time quadratic in |D|.

Note that we have specifically disallowed an arc between the children of the root.
If the children of the root are u and v and there is an arc (u, v) inN , then the multiset-
matrix of distances realised byN is also realised by the networkN ′ in which the arc
(u, v) is deleted and replaced by the arc (v, u). In this case, N and N ′ are the only
two binary phylogenetic networks on X realisingD, and the algorithm presented may
easily be adapted to return both these networks.

To state the second theorem, let N be a binary phylogenetic network on X . An
underlying cycle of N is a crown if it consists entirely of reticulation arcs. Further,
a temporal labelling of N is a labelling t : V (N ) → Z

+ of the vertices of N with
positive integers such that if (u, v) is a tree arc, then t (u) < t (v), and if (u, v) is
a reticulation arc, then t (u) = t (v). We say N is temporal if it admits a temporal
labelling. Biologically, the motivation for this definition is that if a phylogenetic net-
work is temporal, then it is guaranteed to satisfy two natural timing constraints. The
first constraint is successively occurring speciation events, and the second constraint
is contemporaneously occurring reticulation events so that such events are realised
by coexisting ancestral species. Note that not every binary phylogenetic network is
temporal. More particularly, binary tree-child networks are not necessarily temporal
as the binary phylogenetic network in Fig. 1a illustrates, and not all temporal binary
phylogenetic networks are binary tree-child networks. A reticulation v is visible if
there is a leaf � such that every directed path from the root of N to � passes through
v.

Theorem 1.2 Let D be a multiset-matrix of distances between elements of a set X,
and let N be a temporal binary phylogenetic network on X with no crowns and in
which every reticulation is visible. If N realises D, then, unless the children of the
root are joined by an arc, up to isomorphism, N is the unique binary phylogenetic
network on X realising D, in which case N can be found in time quadratic in |D|.

Theorem 1.1 shows that, given a multiset-matrix D of distances between elements
of a set X , if there is a binary tree-child network on X realisingD, thenN is the unique
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binary phylogenetic network realising D. What if, instead, we are only given the set,
rather than the multiset, of distances between elements of X? Does the analogous
result hold? The third result we highlight says the answer is yes for temporal binary
tree-child networks.

Let N be a phylogenetic network on X and let x, y ∈ X . The set of distances
between x and y, denoted Dx,y , is the set of lengths of distinct up-down paths from
x to y in N . The set-matrix D of N is the |X | by |X | matrix whose (x, y)-th entry is
Dx,y . If D is the set-matrix of N , we say N realises D.

Theorem 1.3 LetD be a set-matrix of distances between elements of a set X. If there
is a temporal binary tree-child networkN on X realisingD, then, up to isomorphism,
N is the unique binary phylogenetic network on X realising D, in which caseN can
be found in time quartic in |X |.

Tree-child networks were introduced by Cardona et al. (2009). By way of com-
parison with Theorems 1.1 and 1.3, let u be a vertex of a phylogenetic network N
on X = {x1, x2, . . . , xn}. For each i ∈ {1, 2, . . . , n}, let pi (u) denote the number
of distinct directed paths from u to xi in N . Further, let p(u) denote the n-tuple
(p1(u), p2(u), . . . , pn(u)). The multiset P of path n-tuples of N is the multiset
{p(u) : u ∈ V (N )}. If P is the multiset of path n-tuples of N , we say N realises P .
The following theorem is established in Cardona et al. (2009).

Theorem 1.4 (Cardona et al. 2009, Theorem 1) Let X be a set of size n and let P be
a multiset of path n-tuples. If N is a tree-child network on X realising P , then, up to
isomorphism, N is the unique tree-child network on X realising P , in which case N
can be found in polynomial time.

Note that, in the statement of Theorem 1.4, N is not necessarily binary. However,
if N realises P , then it is only guaranteed to be unique within the class of tree-child
networks. For further details, see Cardona et al. (2009).

Relatedwork on reconstructing phylogenetic networks from inter-taxa distances has
been done by Willson (2012, 2013). An arc (u, v) in a rooted phylogenetic network
N is redundant if there is a directed path from u to v in N which does not use
the arc (u, v). A network in normal, if it is a tree-child network with no redundant
arcs. In Willson (2012) it is shown that given both the network topology and average
inter-taxa genetic distances for a normal network, then individual arc lengths and
probabilities at each reticulation vertex can be inferred, which realize these average
distances. In Willson (2013) sufficient conditions are given for when the network
topology itself may be inferred from the average inter-taxa genetic distances, and
these conditions are shown to be satisfied whenever the distances arise from a normal
network with a single reticulation cycle. Hence Willson deals with a more complex
and general case (average genetic distances rather than sets of path lengths) and so
achievesmore restricted results (handling a single reticulation, rather than all tree-child
networks). For further details, including the definition of average genetic distance,
see Willson (2013).
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Throughout the paper, notation and terminology follows (Semple and Steel 2003).
The paper is organised as follows. The next section contains some preliminaries, in
particular, the concepts of cherries and reticulated cherries. In Sect. 3, we describe
an algorithm that is central to the paper. This algorithm takes as input a multiset-
matrixD of distances between elements in a set X and constructs, if possible, a binary
phylogenetic network on X by recursively looking for values inD yielding cherries and
reticulated cherries. The main result of this section shows that if a binary phylogenetic
networkN on X is returned by the algorithm, thenN is the unique binary phylogenetic
network on X realising D. In Sect. 4, we make use of the results in Sect. 3 to prove
the uniqueness parts of Theorems 1.1 and 1.2. Section 5 consists of the proof of the
uniqueness part of Theorem 1.3. The running-time parts of Theorems 1.1–1.3 are
established in Sect. 6. The paper ends with a brief discussion based around several
open problems.

2 Preliminaries

Let N be a binary phylogenetic network on X . A 2-element subset {x, y} of X is a
cherry inN if there is an up-down path of length two between x and y. Equivalently,
{x, y} is a cherry if the parents of x and y are the same. Note that if there is an up-down
path of length two between x and y, then this is the unique up-down path between x and
y. As an example, {x4, x5} is a cherry in the phylogenetic network shown in Fig. 1a.
Reducing a cherry {x, y} is the operation of deleting x and y, and their incident arcs,
and labelling their common parent (now itself a leaf) with an element not in X . Observe
that, by reducing a cherry, the number of leaves in the resulting binary phylogenetic
network is reduced by one, but the number of reticulations is unchanged. In Fig. 1, the
binary phylogenetic network N ′ on X ′ = {x1, x2, x3, z} shown in Fig. 1b has been
obtained from the binary phylogenetic networkN on X shown in Fig. 1a by reducing
the cherry {x4, x5} and replacing it with a new leaf z.

A two-element subset {x, y} of X is a reticulated cherry in N if there is an up-
down path of length three, say x, v1, v2, y, between x and y with one of v1 and
v2 a tree vertex and the other a reticulation vertex. Necessarily, the arc joining v1
and v2 is directed from the tree vertex to the reticulation. This arc is referred to as
the reticulation arc of the reticulated cherry. The leaf adjacent to the tree vertex is
called the tree leaf of the reticulated cherry, and the leaf adjacent to the reticulation
is the reticulation leaf of the reticulated cherry. Again note that if there is an up-
down path of length three as above between x and y, then it is the unique up-down
path of length 3 between x and y. In Fig. 1a, {x1, x2} is a reticulated cherry in the
phylogenetic network N . Reducing a reticulated cherry {x, y} is the operation of
deleting the reticulation arc of the reticulated cherry and suppressing the degree-two
vertices resulting from the deletion. Observe that, by reducing a reticulated cherry,
the number of reticulations in the resulting binary phylogenetic network is reduced by
one, but the number of leaves and, in particular, the leaf set, is unchanged. To illustrate,
the binary phylogenetic network N ′′ on X shown in Fig. 1c has been obtained from
the binary phylogenetic networkN on X shown in Fig. 1a by reducing the reticulated
cherry {x1, x2}.
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3 Reconstructing a network from the multiset-matrix of inter-taxa
distances

In this section, we present the algorithm Multiset Cherry Reduction for recon-
structing a binary phylogenetic network from amultiset-matrix of inter-taxa distances.
We also show that, when the algorithm completes, it correctly constructs the unique
binary phylogenetic network realising those distances. In the next section, we show
that it always completes on binary tree-child networks with no arc joining the children
of the root and a certain subclass of temporal binary phylogenetic networks.

For a set X and amultiset-matrixD of distances on X ,Multiset Cherry Reduc-
tion applied to input X and D informally works by recursively finding a pair of
elements x, y ∈ X that yields a cherry or a reticulated cherry. After finding such a
pair x, y, the algorithm reduces {x, y}, updates X and D, and repeats. Eventually,
Multiset Cherry Reduction either reduces X to a singleton or determines that
there is no pair of leaves yielding a cherry or a reticulated cherry. If the former holds,
then the algorithm works backwards and constructs a binary phylogenetic network
on X , in which case, as we shall show, the constructed network is the unique binary
phylogenetic network on X realising D. Formally, Multiset Cherry Reduction
works as follows:

1. If |X | = 1, say X = {x}, then return the unique binary phylogenetic tree on one
leaf x .

2. Else,
(a) If there is a pair x, y ∈ X such that 2 ∈ Dx,y (thereby {x, y} forms a cherry),

then
(i) Reduce the cherry {x, y} by adjusting D as follows. Let z /∈ X , and set

X ′ = (X − {x, y}) ∪ {z} and D′ to be the multiset-matrix of inter-taxa
distances on X ′ given by D′

v,w = Dv,w if v,w ∈ X − {x, y}, and

D′
z,v = D′

v,z = {d − 1 : d ∈ Dx,v}

if v ∈ X − {x, y}.
(ii) ReapplyMultiset Cherry Reduction to input X ′ and D′. If a binary

phylogenetic network N ′ on X ′ is returned, form N by reversing the
cherry reduction, replacing leaf z with a cherry {x, y} by attaching pendant
children x and y to z. Return the binary phylogenetic network N on X .

(b) Else,
(i) If there is a pair x, y ∈ X such that 3 ∈ Dx,y, |X | ≥ 3, and

{d + 1 : d ∈ Dy,v} ⊂ Dx,v

for all v ∈ X − {x, y} (thereby {x, y} forms a reticulated cherry with x
the reticulation leaf), then
(I) For all v ∈ X − {x, y}, let Dy,v = {d1, d2, . . . , dk} and Dx,v =

{d1+1, d2+1, . . . , dk+1}∪{d ′
1, d

′
2, . . . , d

′
l }. SetD′ to be themultiset-

matrix of inter-taxa distances on X given by
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D′
x,v = D′

v,x = {d ′
1 − 1, d ′

2 − 1, . . . , d ′
l − 1},

D′
y,v = D′

v,y = {d1 − 1, d2 − 1, . . . , dk − 1},
D′

x,y = D′
y,x = {d − 2 : d ∈ Dx,y − {3}},

and

D′
v,w = Dv,w

if v,w ∈ X − {x, y}.
(II) Reapply Multiset Cherry Reduction to input X and D′. If a

binary phylogenetic networkN ′ on X is returned, formN by revers-
ing the reticulated cherry reduction, subdividing the arcs to x and y,
and adding an arc from the parent of y to the parent of x . Return the
binary phylogenetic network N on X .

(ii) Else, there is no such pair of elements in X and return “Network not
found”.

Note that, in the description ofMultiset Cherry Reduction, we explicitly assume
that any network returned by the algorithm applied to a set X and a multiset-matrixD
of distances on X is a binary phylogenetic network on X . It follows by construction
that this is indeed the case.

The next three lemmas establish that the various steps in the algorithm work. We
then combine them to show that, up to isomorphism, when the algorithm returns a
binary phylogenetic network on X , it is the unique binary phylogenetic network on X
that realises the input X and D.

Lemma 3.1 LetN be a binary phylogenetic network on X, and let {x, y} be a cherry
of N . Let D be the multiset-matrix of inter-taxa distances of N . Let z /∈ X, and let
X ′ = (X − {x, y}) ∪ {z} and D′ be the multiset-matrix of inter-taxa distances on X ′
given by D′

v,w = Dv,w if v,w ∈ X − {x, y}, and

D′
z,v = D′

v,z = {d − 1 : d ∈ Dx,v}

if v ∈ X − {x, y}. Then D′ is realised by the binary phylogenetic network N ′ on
X ′ obtained from N by reducing the cherry {x, y}, where the new leaf is labelled z.
Moreover, up to isomorphism, if N ′ is the unique binary phylogenetic network on X ′
realising D′, then, up to isomorphism, N is the unique binary phylogenetic network
on X realising D.

Proof Webegin by first noting that, if we label the parent of x and y inN by z, and then
delete x and y, and their incident arcs, we obtainN ′. Thus, for all v,w ∈ X − {x, y},
any up-down path inN ′ between v andw does not pass through z, and so the up-down
paths between v and w in N are exactly the up-down paths between v and w in N ′.
Further, for all v ∈ X − {x, y}, each up-down path between x (respectively, y) and v

passes through the common parent of x and y inN , and corresponds to precisely one
up-down path between z and v in N ′, namely the same up-down path but with (z, x)
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[respectively, (z, y)] omitted. Hence the set of up-down paths between x (respectively,
y) and v inN induces a bijection with the set of up-down paths between z and v inN ′,
where each path maps onto a path that is exactly one arc shorter. Hence D′ is realised
by the binary phylogenetic network N ′ on X ′.

Finally, suppose that, up to isomorphism, N ′ is the unique binary phylogenetic
network on X ′ realising D′. Let N1 be a binary phylogenetic network on X that
realises D. Since {x, y} is a cherry in N , we have 2 ∈ Dx,y , so {x, y} is a cherry in
N1. By the first part of the lemma, the networkN ′

1, obtained fromN1 by reducing the
cherry {x, y}, also realises D′, and so, by assumption, N ′

1 must be isomorphic to N ′.
It now follows that N1 is isomorphic to N , completing the proof of the lemma. 	

Lemma 3.2 Let D be the multiset-matrix of inter-taxa distances on X with |X | ≥ 3.
Suppose there is a pair of elements x, y ∈ X such that 3 ∈ Dx,y and {d + 1 : d ∈
Dy,v} ⊂ Dx,v for all v ∈ X − {x, y}. If N is a binary phylogenetic network on X
realising D, then {x, y} is a reticulated cherry of N with x the reticulation leaf.

Proof Suppose N is a binary phylogenetic network on X realising D. Then there is
an up-down path P of length 3 between x and y in N . Let p and q be the parents of
x and y, respectively, in N . Now P contains the arcs (q, y) and (p, x), and an arc
between q and p. Due to the condition relating Dx,v and Dy,v for all v ∈ X − {x, y}
in the statement of the lemma, it can only be that the third arc is (q, p). Since q has
two child vertices, it must be a tree vertex. Suppose, for a contradiction, that p is also
a tree vertex. Then, for all v ∈ X − {x, y}, there is a bijection between the set of
up-down paths from y to v and those from x to v. In particular, |Dx,v| = |Dy,v| for all
v ∈ X −{x, y}, contradicting the assumption that {d+1 : d ∈ Dy,v} is a proper subset
of Dx,v for all v ∈ X − {x, y}. Hence p is a reticulation, and the lemma immediately
follows. 	

Lemma 3.3 LetN be a binary phylogenetic network on X with |X | ≥ 3, and let {x, y}
be a reticulated cherry ofN with x the reticulation leaf. Let D be the multiset-matrix
of inter-taxa distances of N . Then the following hold:

(i) Let v ∈ X − {x, y}. If Dy,v = {d1, d2, . . . , dk}, then

Dx,v = {d1 + 1, d2 + 1, . . . , dk + 1} ∪ {d ′
1, d

′
2, . . . , d

′
l },

where the elements in the first set correspond to the lengths of up-down paths
between x and v that make use of the reticulation arc of the reticulated cherry
{x, y}, and the elements in the second set correspond to the lengths of up-down
paths between x and v that make use of the arc incident with the parent of x that
is not the reticulation arc of {x, y}.

(ii) Let D′ be the multiset-matrix of inter-taxa distances on X given by

D′
x,v = D′

v,x = {d ′
1 − 1, d ′

2 − 1, . . . , d ′
l − 1}

and

D′
y,v = D′

v,y = {d1 − 1, d2 − 1, . . . , dk − 1}
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if v ∈ X − {x, y},

D′
x,y = D′

y,x = {d − 2 : d ∈ Dx,y − {3}},

and D′
v,w = Dv,w if v,w ∈ X − {x, y}. Then D′ is realised by the binary

phylogenetic network N ′ on X obtained from N by reducing the reticulated
cherry {x, y}.

(iii) If, up to isomorphism, N ′ is the unique binary phylogenetic network on X real-
ising D′, then, up to isomorphism,N is the unique binary phylogenetic network
on X realising D.

Proof Let p and q be the parents of x and y, respectively, in N . Since q is a tree
vertex, it has a unique parent q ′ and, since p is a reticulation vertex, it has a parent p′
additional to q. The reduction of the reticulated cherry {x, y} involves removing the
arc (q, p) and suppressing the resulting degree-two vertices q and p. Intuitively, we
delete q and p, and their incident arcs, and introduce arcs (q ′, y) and (p′, x). Part (i)
of the lemma follows easily from the definitions by noting that every up-down path
P from x to a leaf v ∈ X − {x, y} does exactly one of the following: either passes
through q, in which case we could remove the two arcs (q, p) and (p, x) from P , and
replace them with the arc (q, y) to obtain an up-down path from y to v that is one arc
shorter than P , or it does not pass through q, in which case it uses the arc (p′, p).

For (ii), first note that any up-down path between a pair of vertices in N that uses
the reticulation arc of the reticulated cherry {x, y} is a path between x and some other
leaf. Consider first the up-down paths between x and y inN . The only up-down path
between x and y that uses the reticulation arc of the reticulated cherry {x, y} is the
unique up-down path of length 3 between x and y. All other up-down paths between
x and y are preserved in the reduction of the reticulated cherry {x, y}, although their
lengths are shortened by 2 as the vertices q and p are suppressed.

Now consider the up-down paths between x and v in N , where v ∈ X − {x, y}.
The up-down paths present in N but not N ′ between x and v are precisely those
that use (q, p). All remaining up-down paths between x and v each have their length
reduced by 1 following the reduction of the reticulated cherry {x, y} as the vertex p
is suppressed. It is now easily checked that D′ is realised by N ′.

Finally, for (iii), supposeN ′ is the unique binary phylogenetic network on X realis-
ingD′, and letN1 be a binary phylogenetic network on X realisingD. By Lemma 3.2,
{x, y} is a reticulated cherry inN1. Furthermore, by (ii), the binary phylogenetic net-
workN ′

1 on X obtained fromN1 by reducing the reticulated cherry {x, y} also realises
D′. Therefore, by the assumption in the statement, N ′

1 is isomorphic to N ′. It is now
easily seen that N1 is isomorphic to N . 	

Theorem 3.4 Let D be a multiset-matrix of inter-taxa distances on X. If Multiset
Cherry Reduction applied to X and D returns a binary phylogenetic network N
on X, then, up to isomorphism, N is the unique binary phylogenetic network on X
that realises D.

Proof Suppose that Multiset Cherry- Reduction applied to X and D returns a
binary phylogenetic network N on X . The proof is by induction on the sum of the
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number n of leaves and the number r of reticulations inN . The base case is when this
sum is 1, in which case N has one leaf and zero reticulations. Up to isomorphism,
there is only one binary phylogenetic network on X with these parameters, which is
the unique rooted binary phylogenetic tree on one leaf, and it is correctly returned by
the algorithm. Now suppose thatN has n leaves and r reticulations, where n+ r ≥ 2.
The inductive hypothesis is that, for any multiset-matrix D′ of inter-taxa distances on
a set X ′, if Multiset Cherry Reduction applied to X ′ and D′ returns a binary
phylogenetic network N ′ on X ′ with n′ leaves and r ′ reticulations such that 1 ≤
n′ + r ′ < n + r , then, up to isomorphism, N ′ is the unique binary phylogenetic
network on X ′ that realises D′.

Consider the run of the algorithm on input X and D. Since it returns a binary
phylogenetic network on X , the first iteration finds either (i) a pair of elements x, y ∈ X
at distance 2 inD, or (ii) no pair of elements in X at distance 2 inD, but a pair x, y ∈ X
such that 3 ∈ Dx,y, |X | ≥ 3, and {d + 1 : d ∈ Dy,v} ⊂ Dx,v for all v ∈ X − {x, y}.
If (i) occurs in the first iteration, let X ′ = (X − {x, y}) ∪ {z}, where z /∈ X is the new
element replacing the cherry {x, y}, and set D′ to be the multiset-matrix of inter-taxa
distances on X ′ given by D′

v,w = Dv,w if v,w ∈ X − {x, y}, and

D′
z,v = D′

v,z = {d − 1 : d ∈ Dx,v}

if v ∈ X − {x, y}. After the first iteration, Multiset Cherry Reduction is recur-
sively applied to X ′ and D′, and eventually constructs a binary phylogenetic network
N ′ on X ′. Since n′ < n and, by construction, r ′ = r , it follows by the inductive
hypothesis that, up to isomorphism, N ′ is the unique binary phylogenetic network
on X ′ realising D′. By Lemma 3.1, N , which the algorithm constructs from N ′ by
replacing the leaf z with the cherry {x, y}, is the unique binary phylogenetic network
on X realising D up to isomorphism.

We may now assume that (ii) occurs. Let D′ be the multiset-matrix of inter-taxa
distances on X as given in the statement of Lemma 3.3(ii). After the first iteration,
Multiset Cherry Reduction is recursively applied to X and D′, and constructs
a binary phylogenetic network N ′ on X with r ′ reticulations. Finally, the algorithm
constructsN fromN ′ by subdividing the pendant arcs incident with the leaves x and
y, and adding an arc from the parent of y to the parent of x . Since this creates a new
reticulation, r ′ < r . As n′ = n, it follows by the inductive hypothesis that, up to
isomorphism, N ′ is the unique binary phylogenetic network on X realising D′. By
Lemmas 3.2 and 3.3, up to isomorphism,N is the unique binary phylogenetic network
on X realising D. This completes the proof of the theorem. 	


4 Tree-child networks

In this section, we prove the uniqueness parts of Theorems 1.1 and 1.2. For an arbitrary
phylogenetic network on X , a non-leaf vertex u has the tree-child property if it has a
child that is either a tree vertex or a leaf. With this definition, a phylogenetic network
on X is a tree-child network if each non-leaf vertex has the tree-child property. We
begin with the following lemma.
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Lemma 4.1 Let N be a binary tree-child network on X. Then the following hold:

(i) If |X | ≥ 2, then N contains either a cherry or a reticulated cherry.
(ii) IfN ′ is obtained fromN by reducing either a cherry or a reticulated cherry, then

N ′ is a binary tree-child network.

Proof To prove (i), suppose that |X | ≥ 2 and N does not contain a cherry. Since all
rooted binary phylogenetic X -trees with |X | ≥ 2 contain a cherry, it follows that N
has a reticulation. Let v be a reticulation inN such that amongst all reticulations it is
at maximum distance from the root; thus a longest directed path P from the root to
v is a maximum length directed path from the root to any reticulation in N . Let u1
and u2 denote the parent vertices of v. If ui is a reticulation for some i ∈ {1, 2}, then,
as v is a reticulation and the only child of ui (since N is binary), it follows that ui
does not have the tree-child property; a contradiction. Thus both u1 and u2 are tree
vertices. Now P passes through either u1 or u2. Without loss of generality, we may
assume it passes through u1. Let the child vertex of u1 that is not v be w. Note that
w is a tree vertex or a leaf; otherwise, u1 does not have the tree-child property. By
the maximality of P , no reticulations can be reached by a directed path from either v

or w. Intuitively, this implies that the structures below v and below w are tree-like. If
two or more leaves are reachable from v via a directed path, thenN contains a cherry;
a contradiction. So the only vertex reachable from v is a single leaf, x say. A similar
argument shows that w itself is a leaf. Thus {x, w} is a reticulated cherry inN with x
the reticulation leaf. This establishes (i).

For the proof of (ii), let N ′ be obtained from N by reducing either a cherry or
a reticulated cherry. Consider some non-leaf vertex u′ in N ′, and let u denote the
corresponding non-leaf vertex in N . Since N is a tree-child network, u has a child
vertex w inN which is either a tree vertex or a leaf. First assume we reduced a cherry
{x, y} to create N ′. Let z /∈ X denote the leaf in N ′ that replaces the cherry {x, y}.
Then either u′ is the parent of z in N ′ and the vertex corresponding to w in N ′ is
z (hence a leaf) or the vertex corresponding to w in N ′ is unchanged and therefore
still a tree-vertex or a leaf in N ′ after the reduction. In both cases, N ′ is a binary
tree-child network. Now assume we reduced a reticulated cherry {x, y} with x the
reticulation leaf to create N ′. Then either u′ is the parent of x or y in N ′, or the
vertex corresponding to w inN ′ is unchanged and still a tree-vertex or a leaf after the
reduction. Regardless, N ′ is a binary tree-child network, thereby establishing (ii). 	

Proposition 4.2 Let N be a binary tree-child network on X with no arc joining the
children of the root, and letD be the multiset-matrix of inter-taxa distances ofN . Then
Multiset Cherry Reduction applied to X and D returns N , up to isomorphism.

Proof If |X | = 1, then there is only one possible binary tree-child network on X ,
and this is the unique binary phylogenetic network consisting of the vertex in X , in
which case it is correctly returned by the algorithm. Using this as the base case, a
simple induction argument in combination with Lemmas 3.1, 3.3, and 4.1 proves the
proposition. 	


Combining Theorem 3.4 and Proposition 4.2 establishes the uniqueness part of
Theorem 1.1. We next prove the uniqueness part of Theorem 1.2.
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Lemma 4.3 Let N be a temporal binary phylogenetic network on X with no crowns
and in which every reticulation is visible. Then the following hold:

(i) If |X | ≥ 2, N contains either a cherry or a reticulate cherry.
(ii) If N ′ is obtained from N by reducing either a cherry or a reticulated cherry,

thenN ′ is a temporal binary phylogenetic network with no crowns and in which
every reticulation is visible.

Proof Let t be a temporal labelling ofN . For the proof of (i), let v be a reticulation of
N that maximises t (v). Starting at v construct amaximal underlying path P consisting
entirely of reticulation arcs. Since each reticulation is visible, the child vertex of every
reticulation inN is a tree vertex or a leaf, and so P alternates between following arcs
against the direction andwith the direction. Furthermore, asN has no crowns, this path
eventually terminates at each end at a tree vertex, u say, with one child u1 of u a tree
vertex or a leaf and the other child u2 a reticulation in P . Since t (u1) > t (u) = t (v),
it follows by the maximality of t (v) that no reticulation can be reached from u1, that
is there is no directed path starting at u1 and ending at a reticulation. Moreover, as
t (u2) = t (u) = t (v), no reticulation can be reached from u2 except for u2 itself. If
two or more leaves can be reached from u1, or two or more leaves can be reached from
u2, thenN contains a cherry. Therefore we may assume that u1 itself is a leaf and the
child vertex of u2, say x , is a leaf. But then {x, u1} is a reticulated cherry of N with
x the reticulation leaf, completing the proof of (i).

To prove (ii), letN ′ be a binary phylogenetic network obtained fromN by reducing
either a cherry or a reticulated cherry, {x, y} say. First assume that {x, y} is a cherry, and
N ′ is obtained by reducing {x, y} and replacing it with a leaf z /∈ X . Let t ′ : V (N ′) →
Z

+ be the labelling obtained from t by setting t ′(u′) = t (u), where u is the vertex of
N corresponding to u′ if u′ �= z, and t ′(z) = t (p), where p is the parent of x and y
inN . Since t is a temporal labelling ofN , it follows that t ′ is a temporal labelling of
N . Furthermore, it is easily checked that, as N has no crowns and each reticulation
is visible, N ′ has no crowns and each reticulation is visible.

Now assume that {x, y} is a reticulated cherry with x the reticulation leaf. Let
t ′ : V (N ′) → Z

+ be the labelling obtained from t by setting t ′(u′) = t (u), where
u is the vertex of N corresponding to u′. Noting that t (x) > t (p) and t (y) > t (q),
where p and q are the unique parents of x and y inN , respectively, it follows that t ′ is
a temporal labelling of N ′. Also, since deleting a reticulation arc keeps the property
of having no crowns and each reticulation being visible, N ′ has no crowns and each
reticulation is visible. This completes the proof of (ii). 	


A simple induction argument in combination with Lemmas 3.1, 3.3, and 4.3 estab-
lishes the following proposition.

Proposition 4.4 Let N be a temporal binary phylogenetic network on X with no
crowns and in which every reticulation is visible. ThenMultiset Cherry Reduc-
tion applied to X and D returns N up to isomorphism.

The uniqueness part of Theorem 1.2 now follows from Theorem 3.4 and Proposi-
tion 4.4.
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Fig. 2 A binary phylogenetic
network N on
{x1, x2, x3, x4, x5} with a
double-reticulated cherry
(x3, x2, x4)

x1 x2 x5

N
x3 x4

5 Temporal tree-child networks

This section consists of the proof of the uniqueness part of Theorem 1.3. The overall
approach is similar to that used to prove the analogous parts of Theorems 1.1 and 1.2
but, instead of working with multisets, we are working with sets. We begin with three
lemmas.

LetN be a binary phylogenetic network on X . A triple (x, y, z) of distinct elements
of X is a double-reticulated cherry if both {x, y} and {x, z} are reticulated cherries of
N , in which case, necessarily, x is the reticulation leaf for both {x, y} and {x, z}. To
illustrate, (x3, x2, x4) is a double-reticulated cherry of the binary phylogenetic network
N on {x1, x2, x3, x4, x5} shown in Fig. 2.

Lemma 5.1 LetN be a temporal binary tree-child network on X. Then the following
hold:

(i) If |X | ≥ 2, then N contains either a cherry or a double-reticulated cherry.
(ii) IfN ′ is obtained fromN by reducing either a cherry or a reticulated cherry, then

N ′ is a temporal binary tree-child network.

Proof To prove (i), let t be a temporal labelling ofN , and suppose that |X | ≥ 2 andN
has no cherries. ThenN has a reticulation. Let v be a reticulation inN that maximises
t (v). Let u1 and u2 be the parents of v. Furthermore, let y and z be the child of u1 and
u2, respectively, that is not v. Since each of u1 and u2 has the tree-child property, y
and z exist. Now t (y) > t (u1) = t (v) and t (z) > t (u2) = t (v). Therefore, as N has
no cherries, it follows by the maximality of t (v) that both y and z are leaves. A similar
argument shows that the unique child of v, say x , is also a leaf. Hence (x, y, z) is a
double-reticulated cherry, completing the proof of (i).

For the proof of (ii), first note that, as each non-leaf vertex in N has the tree-
child property,N has no crowns and every reticulation is visible. Thus, by combining
Lemmas 4.1(ii) and 4.3(ii), we deduce (ii). 	

Lemma 5.2 Let D be the set-matrix of inter-taxa distances on X. Suppose that there
are distinct elements x, y, z ∈ X with the following properties:

(i) 3 ∈ Dx,y and 3 ∈ Dx,z ,
(ii) {d + 1 : d ∈ Dy,v} ⊆ Dx,v for all v ∈ X − {x, y}, and
(iii) {d + 1 : d ∈ Dz,v} ⊆ Dx,v for all v ∈ X − {x, z}.
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If N is a binary phylogenetic network on X realising D, then (x, y, z) is a double-
reticulated cherry of N .

Proof Suppose N is a binary phylogenetic network on X realising D. Then there
are up-down paths P1 and P2 of length 3 between x and y, and between x and z,
respectively. If p denotes the parent of x , and q1 and q2 denote the parents of y and z,
respectively, then P1 contains (q1, y) and (p, x), and P2 contains (q2, z) and (p, x).
As x, y, z satisfy (ii) and (iii) in the statement of the lemma, P1 must contain (q1, p)
and P2 must contain (q2, p). Thus p is a reticulation, and it follows that (x, y, z) is a
double-reticulated cherry of N . 	


The proof of the next lemma is similar to the proofs of Lemmas 3.1 and 3.3, and
omitted. However, we note that Lemma 5.2 is used to prove Lemma 5.3(ii) in the
analogous way that Lemma 3.2 was used to prove Lemma 3.3.

Lemma 5.3 LetN be a binary phylogenetic network on X, and letD be the set-matrix
of inter-taxa distances of N . Then the following hold:

(i) Let {x, y} be a cherry of N and let z /∈ X. Let X ′ = (X − {x, y}) ∪ {z}, and
let D′

be the set-matrix of inter-taxa distances on X ′ given by Dv,w
′ = Dv,w if

v,w ∈ X − {x, y}, and

Dz,v
′ = Dv,z

′ = {d − 1 : d ∈ Dx,v}

if v ∈ X − {x, y}. Then D′
is realised by the binary phylogenetic network N ′ on

X ′ obtained from N by reducing the cherry {x, y}, where the new leaf is labelled
z. Moreover, if, up to isomorphism,N ′ is the unique binary phylogenetic network
on X ′ realising D′

, then, up to isomorphism,N is the unique binary phylogenetic
network on X realising D.

(ii) Let (x, y, z) be a double-reticulated cherry of N . Let D′
be the set-matrix of

inter-taxa distances on X given by

Dx,v
′ = Dv,x

′ = {d : d ∈ Dz,v}

and

Dy,v
′ = Dv,y

′ = {d − 1 : d ∈ Dy,v}

if v ∈ X − {x, y, z},

Dx,y
′ = Dy,x

′ = {d − 2 : d ∈ Dx,y − {3}},
Dy,z

′ = Dz,y
′ = {d − 1 : d ∈ Dy,z},

Dx,z
′ = Dz,x

′ = {2}

and Dv,w
′ = Dv,w if v,w ∈ X − {x, y, z}. Then D′

is realised by the binary
phylogenetic networkN ′ on X obtained fromN by reducing the reticulated cherry
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{x, y}. Moreover, if, up to isomorphism, N ′ is the unique binary phylogenetic
network on X realising D′

, then, up to isomorphism, N is the unique binary
phylogenetic network on X realising D.

We next present an algorithm, called Set Cherry Reduction, that plays the role
of Multiset Cherry Reduction for the results in the previous two sections. The
input to Set Cherry Reduction is a set-matrixD of inter-taxa distances on a set X .
Furthermore, its description is the same as that for Multiset Cherry Reduction
except that any multiset is replaced by its set counterpart, and Step 2.(b) is replaced
with the following:

2.(b) Else,
(i) If there are distinct elements x, y, z ∈ X such that 3 ∈ Dx,y , 3 ∈ Dx,z ,

{d + 1 : d ∈ Dy,v} ⊆ Dx,v

for all v ∈ X − {x, y}, and

{d + 1 : d ∈ Dz,v} ⊆ Dx,v

for all v ∈ X −{x, z}, thereby (x, y, z) forms a double-reticulated cherry, then
(I) Set D′

to be the set-matrix of inter-taxa distances on X given by

Dx,v
′ = Dv,x

′ = {d : d ∈ Dz,v}

and

Dy,v
′ = Dv,y

′ = {d − 1 : d ∈ Dy,v
′}

if v ∈ X − {x, y, z},

Dx,y
′ = Dy,x

′ = {d − 2 : d ∈ Dx,y − {3}},
Dy,z

′ = Dz,y
′ = {d − 1 : d ∈ Dy,z},

Dx,z
′ = Dz,x

′ = {2},

and

Dv,w
′ = Dv,w

if v,w ∈ X − {x, y, z}.
(II) Reapply Set Cherry Reduction to input X and D′

. If a binary phylo-
genetic networkN ′ on X is returned, formN by reversing the reticulated
cherry reduction, subdividing the arcs to x and y, and adding an arc from
the parent of y to the parent of x . Return the binary phylogenetic network
N on X .
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(ii) Else, there is no such three elements in X and return “Network not found”.

The proof of the next theorem is similar to that of Theorem 3.4 but, instead of using
Lemmas 3.1–3.3, it uses Lemmas 5.2 and 5.3. It is worth noting that the crucial point
here is that when we reduce a cherry, or reduce a reticulated cherry that is part of a
double-reticulated cherry in a binary phylogenetic network N , the set-matrix D′

of
inter-taxa distances of the resulting binary phylogenetic network N ′ is recoverable
from D, the set-matrix of inter-taxa distances of N .

Theorem 5.4 LetD be a set-matrix of inter-taxa distances on a set X. If Set Cherry
Reduction applied to X and D returns a networkN , then, up to isomorphism,N is
the unique binary phylogenetic network on X that realises D.

A simple induction together with Lemmas 5.1 and 5.3 establishes the following
proposition.

Proposition 5.5 Let N be a temporal binary tree-child network on X and let D be
the set-matrix of inter-taxa distances of N . Then Set Cherry Reduction applied
to X and D returns N , up to isomorphism.

The proof of Theorem 1.3 now follows by combining Theorem 5.4 and Proposi-
tion 5.5.

6 Running times

In this section, we analyse the running times of Multiset Cherry Reduction
and Set Cherry Reduction, thereby establishing the running-time parts of Theo-
rems 1.1–1.3. The input is a set X and a multiset-matrix D (respectively, set-matrix
D) of inter-taxa distances on X . We iteratively search through the input for a cherry or
reticulated cherry (respectively, double-reticulated cherry), and then either recurse or
end the algorithm.Wewill show that there are at most |D| (respectively, |D|) iterations
with each iteration taking at most O(|D|) [respectively, O(|D|)] steps. Hence both
algorithms run in time quadratic in their input size. Moreover, we will show that if Set
Cherry Reduction is applied to an input realised by a temporal binary tree-child
network N on X , then, up to isomorphism, N is found in time O(|X |4).

6.1 Multiset Cherry Reduction

The algorithmMultiset Cherry Reduction takes as input a set X , and a |X | by |X |
multiset-matrix D of inter-taxa distances on X . For all x, y ∈ X , we will assume that
each entryDx,y is presented as a sorted list of distances. Each step involves searching
the entries in D for an element 2, or an element 3 with additional conditions. Since
any 2 will be the smallest element in its entry, and any 3 will be the smallest element in
its entry if there is no 2, we can find every 2 or candidate 3 in O(|X |2) steps. Checking
the additional conditions on a 3 involves comparing the multisets in two columns ofD,
which may be done in time O(|D|). Therefore identifying any cherries or reticulated
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cherries, or deciding there are none can be done in time O(|X |2|D|) = O(|D|2).
However, if X andD arises from a binary phylogenetic networkN on X , then, as any
leaf x inN can be at distance 3 from at most two other leaves, any column ofD has at
most two entries containing a 3, and thus each column will be compared with at most
two other columns. Using this knowledge, we can find and check all candidate 3’s, or
reject the input as not being realised by a binary phylogenetic network on X in time
O(|X |2 + |D|) = O(|D|).

If a 2 or suitable 3 is found in some entry, we compute D′, as in the description of
Multiset Cherry Reduction, and this can be done in O(|D|) time. Furthermore, if
a binary phylogenetic networkN ′ is returned, then it can augmented toN in constant
time. Thus the whole iteration takes time linear in |D|. If we recurse, then the multiset-
matrixD′ passed to the recursive call is strictly smaller than the current input since we
have either reduced a cherry, and therebyD′ has one less row and column, or reduced a
reticulated cherry, and thereby removed at least one element, namely 3, from an entry
inD. Thus the total number of iterations is at most |D|, and so the algorithm completes
in time O(|D|2). This establishes the running-time parts of Theorems 1.1 and 1.2.

Lastly, we note that D can be very much larger than X . The number of distinct
up-down paths between two leaves in a binary phylogenetic network on X , or even
a binary tree-child network on X , can be exponential in the number of vertices in
the network. Although we might locate a pair of elements at distance 2, or a pair of
elements at distance 3 in time polynomial in |X |2, checking whether a pair of elements
at distance 3 form a reticulated cherry may involve a number of individual checks that
is exponential in |X |.
6.2 Set Cherry Reduction

The algorithm Set Cherry Reduction takes as input a set X , and a |X | by |X |
set-matrix D of inter-taxa distances on X , and its analysis is almost the same as that
for Multiset Cherry Reduction. The only step that is significantly different is
that we must check for a double-reticulated cherry in D. However, we can again use
the observation above. In particular, if we find more than two entries containing a 3
in a single column of D, we can reject the input as not being realised by a binary
phylogenetic network on X . Therefore, each column of D is involved in a constant
number of checks for being part of a double-reticulated cherry, and so we can find a
cherry or double-reticulated cherry in time O(|D|).

As forMultiset Cherry Reduction, the reduction and augmentation steps are
easily implemented in time linear in |D|, and the number of iterations is again bounded
by |D|, so the whole algorithm completes in time O(|D|2). However, since we are
dealing nowwith sets, rather than multi-sets, of distances, we are also able to boundD
in terms of the size of the outputted binary phylogenetic network on X if that is what
is finally returned by the algorithm. Suppose Set Cherry Reduction applied to X
andD returns such a networkN . Let |N | denote the number of edges inN . Then the
maximum distance between any two leaves is bounded by |N |, and so each entry in
D is a set of size at most N . Thus

|D| ≤ |X |2|N | ≤ |N |3.
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This gives a running-time bound for Set Cherry Reduction of O(|N |4) since,
in each iteration, we effectively reduce the number of edges in N by at least one,
and so there are no more than N iterations, each taking time O(|D|). Lastly, if N
is a binary tree-child network on X , then N has O(|X |) edges (Cardona et al. 2009,
Proposition 1) in which case the running time of Set Cherry Reduction applied
to X and D is O(|X |4). This establishes the running-time part of Theorem 1.3.

7 Open problems

In this section, we raise several questions relating to the work presented in the paper.

Question 1 What is the classM of binary phylogenetic networks that, up to isomor-
phism, are uniquely determined by their multiset-matrix of inter-taxa distances?

Theorems 1.1 and 1.2 show thatM contains all binary tree-child networks, and all
temporal binary phylogenetic networks with no crowns and inwhich every reticulation
is visible. However, M is strictly bigger than the union of these two classes. For
example, consider the binary phylogenetic networkN1 on {x1, x2, x3} shown in Fig. 3.
Let D1 be the multiset-matrix of inter-taxa distances of N1. It is easily checked that
whenMultiset Cherry Reduction is applied to {x1, x2, x3} andD1, the algorithm
completes and so, by Theorem 3.4,N1 is inM. ButN1 is neither a tree-child network
nor has the property that every reticulation is visible.

We also note that M is not the class of all binary phylogenetic networks as the
following example illustrates. LetN2 andN3 denote the binary phylogenetic networks
on {x1, x2, x3, x4, y} shown in Fig. 4a, b, respectively. The multiset-matrices D2 and
D3 of inter-taxa distances of N2 and N3 have exactly the same entries, namely

Dx1,x2 = {4, 6, 9, 9},
Dx1,x3 = {6, 6, 9, 9},
Dx1,x4 = {4, 6, 9, 9},
Dx1,y = {5, 6},
Dx2,x3 = {4, 6, 9, 9},
Dx2,x4 = {6, 6, 9, 9},

Fig. 3 A binary phylogenetic
network N1 on {x1, x2, x3} that
is neither tree-child nor has the
property that every reticulation
is visible

x1

x2

x3

N1
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x1 x2 x3 x4

N2

y

x1 x2 x3 x4

N3

y

(a) (b)

Fig. 4 Two non-isomorphic binary phylogenetic networksN2 andN3 on {x1, x2, x3, x4, y}with the same
multiset-matrix of inter-taxa distances on {x1, x2, x3, x4, y}

Dx2,y = {5, 6},
Dx3,x4 = {4, 6, 9, 9},
Dx3,y = {5, 6},
Dx4,y = {5, 6}.

But N2 is not isomorphic to N3.

Question 2 What is the class of binary phylogenetic networks that, up to isomorphism,
are correctly reconstructed whenMultiset Cherry Reduction is applied to their
multiset-matrix of inter-taxa distances?

Again, as the binary phylogenetic networkN1 in Fig. 3 shows, this class is strictly
bigger than the union of the class of binary tree-child networks and the class of temporal
binary phylogenetic networkswith no crowns and inwhich every reticulation is visible.
This prompts the next question.

Question 3 CanMultiset Cherry Reduction applied to a set X and a multiset-
matrix D of inter-taxa distances on X be extended to allow networks which exhibit
neither a cherry nor a reticulated cherry, i.e. with a minimum distance of 4 between
elements of X?

Of course, one also wants the property that if the extended algorithm returns a
binary phylogenetic network N on X , then, up to isomorphism, N is the unique
binary phylogenetic network on X that realises D.

Questions 1–3 are posed in the context of multiset-matrices. However, given the
results in Sect. 5, the analogous questions in the context of set-matrices can also be
asked.

Question 4 What is the class of binary phylogenetic networks that, up to isomorphism,
are uniquely determined by their set-matrix of inter-taxa distances?

Question 5 What is the class of binary phylogenetic networks that, up to isomorphism,
are correctly reconstructed when Set Cherry Reduction is applied to their set-
matrix of inter-taxa distances?
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Question 6 Can Set Cherry Reduction applied to a set X and a set-matrix D
of inter-taxa distances on X be extended to allow for networks exhibiting neither a
cherry nor a double-reticulated cherry?

In this paper, we have measured the distance between taxa as the graph-theoretic
path length. However, practical methods for phylogenetic reconstruction will need to
be based on distance estimates of the amount of genetic mutation along a path, and not
simply the number of speciation and reticulation events along a path. This motivates
our final question.

Question 7 Given a binary phylogenetic network N on X with positively-weighted
edge lengths, when does the information of up-down path lengths between elements
in X, as measured by the sum of edge lengths in the path and not the number of edges,
determine N up to isomorphism?
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