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Abstract We consider the extra clustering model which was introduced by Durand
et al. (J Theor Biol 249(2):262–270, 2007) in order to describe the grouping of social
animals and to test whether genetic relatedness is the main driving force behind the
group formation process. Durand and François (J Math Biol 60(3):451–468, 2010)
provided a first stochastic analysis of this model by deriving (amongst other things)
asymptotic expansions for the mean value of the number of groups. In this paper, we
will give a much finer analysis of the number of groups. More precisely, we will derive
asymptotic expansions for all higher moments and give a complete characterization
of the possible limit laws. In the most interesting case (neutral model), we will prove
a central limit theorem with a surprising normalization. In the remaining cases, the
limit law will be either a mixture of a discrete and continuous law or a discrete law.
Our results show that, except of in degenerate cases, strong concentration around the
mean value takes place only for the neutral model, whereas in the remaining cases
there is also mass concentration away from the mean.
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1 Introduction and model

A basic and important problem in biology is to gain an understanding of the dynam-
ics of the group formation process of social animals, which are animals who spend
their lives in groups, for instance, wolves, gazelles, elephants, lions, etc. In order
to solve this problem, biologists have proposed many models for animal grouping,
e.g., fusion/fission models, kinship models and models based on game theory; see the
introduction of Durand et al. (2007) for a detailed discussion.

Some of thesemodels use genetic relatedness as one of the driving forces behind the
group formation process. Moreover, in many real-world studies, it has been observed
that animals within a group are indeed often genetically related. Thus, in Durand et al.
(2007), the authors proposed a simplification of previous models where only genetic
relatedness is used to decide which animals belong to the same group.

The advantage of such a simplified model is that one can use the coalescent process
in order to define group patterns. Moreover, the model is simple enough to devise
statistical tests with which one can test whether genetic relatedness really is the major
driving force behind the group formation process. For this, the authors of Durand et al.
(2007) defined the extra clustering model which depends on a parameter 0 ≤ p ≤ 1.
The parameter gives the probability of additional group formation which does not
correspond to genetic relatedness. Hence, for p = 0, no other factors than genetic
relatedness are present and in this case, the authors of Durand et al. (2007) called their
model the neutral model. From a statistical point of view, one is now interested in
testing the hypothesis p = 0 against p > 0. For this purpose, the authors of Durand
et al. (2007) used the maximum-likelihood test and applied it to real-world data. The
outcome was a good fit of the neutral model for many classes of social animals except
classes which have many predators, likely, because in this case, security is another
important reason why animals huddle together.

A first probabilistic analysis of the extra clusteringmodelwas carried out byDurand
and Franco̧is (2010) who derived asymptotic expansions for the mean number of
groups. However, the knowledge of only the mean value might give little information
about the distribution of the number of groups. Thus, in this paper, we will look at
more refined properties. Firstly, we will derive asymptotic expansions of variances
and higher moments of the number of groups. These results will show that there is a
strong concentration around themean value for the neutral model (p = 0), whereas for
the extra clustering model with 0 < p < 1 such a concentration does not take place.
Secondly, we will prove limiting distribution results for all values of p which further
highlight the above mentioned concentration phenomena and also give precise insight
into the behaviour of these limiting distributions. In the neutral model, a surprising
central limit theorem holds which from a theoretical angle adds a further layer of
richness to the model proposed by Durand et al. In the case 0 < p < 1/2 there is
not only no concentration but a mass concentration at 0 with probability p/(1 − p),
whichmeans that there is positive probability that the number of groups is significantly
smaller than the expected number. Finally, a phase changewill be observed at p = 1/2,
where the transition from many small groups to one big group takes place.

Before going into more details, we will give a precise definition of the extra cluster-
ingmodel.We start with the case p = 0 (neutral model). Here, themodel is defined via
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Fig. 1 The tree arising from the
coalescent process applied to
five animals (grey nodes). The
number of groups in this
example is two

the Kingman coalescent (Kingman 1982): start with n animals which are considered
to be singleton units; at every time point pick uniformly at random two units and let
them coalesce; continue this until only one unit is left. This random process can be
depicted by a rooted, binary tree, where the animals are the leaves and every coalescent
event corresponds to the creation of an internal node. If the leaves are drawn at the
bottom and the root at the top, then the Kingman coalescent corresponds to a random
process building the tree bottom-up; see Fig. 1. Alternatively, one can build a random
tree top-down as follows: start with the root and two leaves; choose a leave uniformly
at random and replace it by an internal node with two leaves; do this until n leaves
are created. It is well-known that these two random processes yield the same random
model on the set of all rooted, binary trees; see Blum et al. (2006). Moreover, this
randommodel is also equivalent to the Yule-Harding model on phylogenetic trees; see
Chang and Fuchs (2010) for details.

We recall some properties of the above random tree. First, if the two subtrees of
the root have size j and n − j , respectively, then given the size, the two subtrees are
again random trees generated by the same model. Moreover, the (random) size of the
subtrees is j and n − j with 1 ≤ j ≤ n − 1 with equal probabilities, i.e., probability
1/(n − 1); for these properties see, e.g., Chang and Fuchs (2010).

The above random tree was used in Durand et al. (2007) to define the random
number of groups. More precisely, consider n animals and construct the above random
tree. This random tree describes genetic relatedness of the animals. In particular, for
a given leaf of the tree, all the animals belonging to the subtree rooted at the father
are genetically closely related to the leaf and this set of animals is called a clade; see
Blum and François (2005) and Chang and Fuchs (2010). The number of groups of the
n animals is now given by the number of maximal clades; see Fig. 1. In the sequel, we
will denote this number by Xn . From the top-down construction of the random tree
and the above stochastic properties, we immediately see that Xn satisfies the following
distributional recurrence

Xn
d=

{
1, if In ∈ {1, n − 1};
X In + X∗

n−In
, otherwise,

(n ≥ 3), (1)
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126 M. Drmota et al.

where X2 = 1, In has a uniform distribution on {1, . . . , n − 1}, and X∗
n denotes an

independent copy of Xn . This recurrence is explained as follows: the number of groups
is computed as the sum of the number of groups of the subtrees of the root unless there
is only one maximal clade which is the case if and only if one of the subtrees has size
one.

Recurrences of the above type have been extensively studied over the last few
decades because they also arise in the analysis of certain algorithms and data structures
from computer science. In particular, in Hwang and Neininger (2002), the authors
proposed a very general framework to limit laws of sequences of random variable
satisfying distributional recurrence similar to (1). Our above recurrence, although
closely related, however, does not fall into the framework of Hwang and Neininger
(2002). In particular, new phenomena not observed before for these recurrences will
appear and this makes a detailed analysis of (1) highly interesting.

We next explain the extra clusteringmodel fromDurand et al. (2007). Asmentioned
before, this model depends on a probability p which describes the probability of extra
clustering in the group formation process. More precisely, the recurrence (1) for the
number of groups is replaced by the following distributional recurrence

Xn
d=

⎧⎪⎨
⎪⎩
1, with probability p;
1, with probability 1 − p and In ∈ {1, n − 1};
X In + X∗

n−In
, with probability 1 − p and In /∈ {1, n − 1},

(n ≥ 3),

(2)

where X2 = 1 and notation is as above. Note that p = 0 corresponds to the neutral
model. For this model, the authors in Durand and Franco̧is (2010) computed the
following asymptotic expansion of the mean

E(Xn) ∼

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

c(p)
�(2(1−p))

n1−2p, if 0 ≤ p < 1/2;
log n
2 , if p = 1/2;
p

2p−1 , if 1/2 ≤ p ≤ 1,

(3)

where

c(p) = 1

e2(1−p)

∫ 1

0
(1 − t)−2pe2(1−p)t (1 − (1 − p)t2) dt.

We will refine this result by proving asymptotic expansions for the variance and all
higher moments and by investigating the limiting distribution of Xn for all p. Our
results together with discussions and comparisons with the results from Durand and
Franco̧is (2010) will be given in the next section.

We conclude the introduction by pointing out that a preliminary version of this paper
already appeared as an extended abstract (Drmota et al. 2014). The present version
contains full proofs of our results [in Drmota et al. (2014) the proof of the neutral
model was only sketched and only some special cases of the extra clustering model
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Analysis of extra clustering model 127

were treated]. Moreover, we correct the expression for the density of the continuous
part of the limiting distribution in the case 0 < p < 1/2 which was stated wrongly in
Drmota et al. (2014).

2 Results

In this section, we will state our results and discuss them. We start with the neutral
model. Note that in this case, we have from (3) that E(Xn) = (1 − e−2)n/4 + O(1).

Theorem 1 Suppose that p = 0. Then, we have

Var(Xn) = (1 − e−2)2

4
n log n + cn + O(log n) (4)

with

c = (4γ − 3)(1 − e−2)2

16

+ e−2
∫ 1

0

(
(1 − (1 + 2t − 2t2)e2t )2

8(1 − t)2e2t
+ (1 − t)2e2t − e2(1 − e−2)2(3 − 2t)

8(1 − t)2

)
dt

= − 0.45679 · · · ,

where γ denotes Euler’s constant, and for all k ≥ 3,

E (Xn − E(Xn))k ∼ (−1)k 2k

k − 2

(
1 − e−2

4

)k

nk−1.

Furthermore,

Xn − E(Xn)√
Var(Xn)/2

d−→ N (0, 1),

where N (0, 1) denotes the standard normal distribution, and

Xn ∼ E(Xn) a.s.

with the coupling arising from the top-down construction of the random tree.

Remark 1 Note that according to the above result, the standard deviation has order√
n log n which shows strong concentration of the number of groups around the mean

(which is of order n). For instance, for 100 animals (n = 100), we obtain a standard
deviation of 6.35582 · · · Comparing this with the real value 6.82125 · · · which can
be computed from (1), we see that this is a quite good approximation.

However, the convergence to the normal limit law is slow; see Fig. 2 for a
plot of the limiting distribution functions and the exact distribution function for
n = 100, 200, 400, 800 which were computed from (1) (computations of the exact
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Fig. 2 The distribution functions for n = 100, 200, 400, 800 and limiting distribution function of the
number of groups under the neutral model

distribution function for n beyond 1000 are getting rather time-consuming). Looking
at the data gathered in Durand et al. (2007), sample sizes are too small to make our
limit result applicable (the only larger class considered in Durand et al. (2007) are
browsing springboks from the Etosha National Park in Namibia where 1064 animals
have been observed).

Remark 2 Mathematically there are two surprising facts. First, there is the curious
normalization by half of the variance. Note that a similar (but seemingly unrelated)
phenomenon was also observed by Janson and Kersting (2011) in their analysis of
the total external path length of the Kingman coalescent. A probabilistic proof of the
above central limit theorem shedding further light on the curious normalization was
given recently by Janson; see Janson (2014). Second, the asymptotics of centralized
moments do not correspond to the moments of the normal distribution. Thus, the
central limit theorem cannot be found from the method of moments; for the latter
method see Section 30 in Billingsley (1995). This is in sharp contrast to Hwang and
Neininger (2002), where the method of moments was applied to many examples of
Xn satisfying a recurrence similar to (1).

We next turn to the extra clustering model with p > 0. From the data presented in
Durand et al. (2007), we see that p usually does not exceed 1/2. Thus, the case 0 <

p < 1/2 (together with p = 0) is of particular relevance for real-world applications
and this is the range we will treat next.
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Theorem 2 Suppose that 0 < p < 1/2. Then, for all k ≥ 1,

E(Xk
n) ∼ dk

�(k(1 − 2p) + 1)
nk(1−2p),

where dk is recursively given by d1 = c(p) and for k ≥ 2

dk = 1 − p

(k − 1)(1 − 2p)

k−1∑
j=1

(
k

j

)
d j dk− j .

Moreover,

Xn

n1−2p
d−→ X

with convergence of all moments, where X is the sum of a discrete distribution of
measure p/(1− p) that is concentrated at 0 and a continuous distribution on [0,∞)

with density

f (x) = −δ(p)
1 − 2p

1 − p

∑
k≥0

δ(p)k

k!�(2(k + 1)p − k)
xk, (5)

where

δ(p) = (1 − 2p)2Wp,(1−2p)/2(−2(1 − p))

e2π i p4p−1(1 − p)2p Mp,(1−2p)/2(−2(1 − p))
,

and where Mκ,μ(z) and Wκ,μ(z) are the Whittaker M and W functions (see Section 6.7
in Beals and Wong 2010).

Remark 3 The most remarkable fact is that the limiting distribution has a discontinu-
ous part at 0 (with probability p/(1− p)) which shows that Xn is significantly smaller
than E(Xn) with positive probability p/(1 − p). It is also of interest to look at the
densities of the continuous part. Figure 3 shows a plot of the density functions for
several values of p. Note that the density is getting less peaked for p closer to 1/2
which reflects the fact that the distribution becomes less and less concentrated. In
particular, for p = 1/4, one obtains

f (x) = 0.3780064347 · · · e−0.2525054668···x2 .

For other values of p the resulting expressions are usually less explicit.
Note also that in contrast to the asymptotic expansion of the mean (k = 1), for the

variance

Var(Xn) ∼
(

2(1 − p)

(1 − 2p)�(3 − 4p)
− 1

�(2(1 − p))2

)
c(p)2n2(1−2p), (6)
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Fig. 3 The density f (x) of the continuous part of the limiting distribution of the number of groups X for
p = 1/8, 3/16, 1/4, 5/16 (top to bottom)

if we let p → 0, we do not recover the result of the neutral model. Thus one expects
a less accurate approximation in (6) for p close to 0; see Fig. 4 which shows a plot of
the relative error of the standard deviation for n = 100 when using the approximation
of (6) and different values of p. We see that indeed the error is large for small values
of p. Moreover, the error is also large for values of p approaching 1/2. The latter was
also observed for the mean in Durand et al. (2007), however, the approximation of the
mean is also very accurate for small values of p. The minimum of the relative error
in Fig. 4 is attained at a value of p close to 0.09 (that is why we plotted the relative
error of the standard deviation only for values of p in the vicinity of this minimum).

Remark 4 We have again plotted the limiting distribution functions and the exact
distribution functions for n = 100, 200, 400, 800 and two values of p, namely, p =
0.02 and p = 0.24; see Fig. 5. The reason for these two choices of p comes from
Durand et al. (2007). The former is the maximal-likelihood estimate of p for Alaska
wolves and the second is the maximum-likelihood estimate for browsing springboks
from the Etosha National Park in Namibia (they have one of the smallest values of p
and the largest value of p, respectively, from the real-world data presented in Durand
et al. 2007).

The remaining range of 1/2 ≤ p ≤ 1 is less important fromapractical point of view.
Nevertheless, we will give results for this range as well for the sake of completeness.
Our results show again that no strong concentration around the mean takes place
(except in the trivial case p = 1). We start with the case p = 1/2.
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Analysis of extra clustering model 131

Fig. 4 Relative error of standard deviation of the number of groups for n = 100 as a function of p

Fig. 5 The distribution functions for n = 100, 200, 400, 800 of p = 0.02 (left Alaska wolves) and
p = 0.24 (right browsing springboks) and their limiting distribution functions

Theorem 3 Suppose that p = 1/2. Then, we have

E(Xk
n) ∼ k!J2k−1

(2k − 1)!22k−1 log
2k−1 n,

where J2k−1 are the Euler numbers of odd index (see, e.g., page 144 in Flajolet and
Sedgewick 2009). Furthermore,

123
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Xn
d−→ X,

where X has a discrete law on {1, 2, . . .} which is given by

P(X = k) = 2−2k

2k − 1

(
2k

k

)
.

Note that in this case the moments of Xn do not converge.
Finally, we turn to the case 1/2 < p ≤ 1.

Theorem 4 Suppose that 1/2 < p ≤ 1. Then, for all k ≥ 1,

E(Xk
n) ∼ ek,

where ek is recursively given by e1 = p/(2p − 1) and for k ≥ 2

ek = 1 − p

2p − 1

k−1∑
j=1

(
k

j

)
e j ek− j + p

2p − 1
.

Moreover,

Xn
d−→ X

with convergence of all moments, where X has a discrete law on {1, 2, . . .} which is
given by

P(X = k) = pk(1 − p)k−1

2(2k − 1)

(
2k

k

)
.

Remark 5 Note that Theorems 3 and 4 can be merged. However, there is an signif-
icant difference between these results: in Theorem 3 we only have convergence in
distribution, whereas in Theorem 4 also all moments do converge.

Overall, our above results combined give a full picture of the limiting behavior of
the number of groups under the extra clustering model. In particular, we see that the
limit law is continuous for p = 0, is a mixture of a discrete and continuous distribution
for 0 < p < 1/2, and finally becomes discrete as 1/2 ≤ p ≤ 1 (and degenerates at
p = 1). The most important range for real-world applications is 0 ≤ p < 1/2. Here,
a notable phenomenon is the strong concentration around the mean for the neutral
model which, however, does not hold for the extra clustering model with p > 0. This
shows a quantitative difference between the neutral model and the extra clustering
model with p > 0, something which was not visible from the previous analysis of the
mean value (Durand and Frano̧is 2010). Moreover, from amathematical point of view,
an interesting aspect is that the limit law can be obtained via the method of moments
if and only if 0 < p < 1/2 and 1/2 < p ≤ 1, but not in the two cases p = 0 and
p = 1/2.
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We conclude the introduction with a short sketch of the paper. Since the derivation
of the moments of Xn is quite technical but standard, we have put this analysis to
Appendix 1 (as main tool we will use singularity analysis which will briefly reviewed
at the beginning of this appendix). In Sect. 3, we will introduce the mathematical tools
needed for the proofs of our limit laws. More precisely, this section will contain a
short discussion of Whittaker functions and some of their properties which are needed
in the proofs. Moreover, we will explain our approach to limit laws via singularity
perturbation analysis. The proofs of the limiting distribution results will then be con-
tained in Sect. 4 for p = 0 and Appendix 2 for 0 < p ≤ 1. We will end the paper with
a conclusion.

3 Whittaker functions and singularity perturbation analysis

In this section, we will explain our analytic method used for proving our limiting
distribution results of the number of groups under the extra clusteringmodel (Theorems
1–4). The method will rely on the explicit solution of (7) which will involveWhittaker
functions. Thus, properties of Whittaker functions will play a crucial role and we will
recall them below. The method itself then uses singularity perturbation analysis and
will also be explained in details below.

We consider the moment-generating function of Xn which by (2) satisfies the recur-
rence, for n ≥ 3,

E
(
ey Xn

) = pey + (1 − p)
2

n − 1
ey + 1 − p

n − 1

n−2∑
j=2

E
(
ey X j

)
E

(
ey Xn− j

)

with initial condition E
(
ey X2

) = ey (the above sum is equal to 0 for n = 3). Next, set

X (y, z) =
∑
n≥2

E
(
ey Xn

)
zn .

Then, by a straightforward computation

z
∂

∂z
X (y, z) = X (y, z) + (1 − p)X (y, z)2 + ey z2(1 − (1 − p)z2)

(1 − z)2
(7)

with X (y, 0) = 0.

Solution of (7). Note that (7) is a Riccati differential equation for which a standard
solution procedure exists. Therefore, set

X̃(y, z) = X (y, z)

z
.

Then, (7) becomes

∂

∂z
X̃(y, z) = (1 − p)X̃(y, z)2 + ey 1 − (1 − p)z2

(1 − z)2
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134 M. Drmota et al.

with X̃(y, 0) = 0. Next, set

X̃(y, z) = − 1

1 − p
· V ′(y, z)

V (y, z)
,

where V (y, 0) = 1 and differentiation is with respect to z. Then, we obtain the second-
order differential equation

V ′′(y, z) + (1 − p)ey 1 − (1 − p)z2

(1 − z)2
V (y, z) = 0

with V (y, 0) = 1 and V ′(y, 0) = 0. This differential equation is a variant of Whit-
taker’s differential equation. Thus, its solution can be expressed in terms of the
Whittaker functions as follows

V (y, z) = M−(1−p)ey/2,
√
1−4p(1−p)ey/2(2(1 − p)ey/2(z − 1))

+ c(y)W−(1−p)ey/2,
√
1−4p(1−p)ey/2(2(1 − p)ey/2(z − 1))

with

c(y) =
(1 + √

1 − 4p(1 − p)ey − 2(1 − p)ey/2)M−(1−p)ey/2+1,
√
1−4p(1−p)ey/2(−2(1 − p)ey/2)

2W−(1−p)ey/2+1,
√
1−4p(1−p)ey/2(−2(1 − p)ey/2)

.

We will work in the next section with this explicit solution. Consequently, we will
need some background knowledge on Whittaker functions which we will recall next.

Whittaker functions. Here, we gather some properties of the Whittaker functions. The
exposition will follow Section 6 in Beals and Wong (2010).

We start with the definition of the Whittaker functions which are independent solu-
tions of Whittaker’s differential equation

v′′(z) +
(

−1

4
+ κ

z
+ 1 − 4μ2

4z2

)
v(z) = 0.

They can be expressed as follows

Mκ,μ(z) = e−z/2zμ+1/2M

(
μ − κ + 1

2
, 1 + 2μ, z

)
,

Wκ,μ(z) = e−z/2zμ+1/2U

(
μ − κ + 1

2
, 1 + 2μ, z

)
.

Here, M(a, c; z) and U (a, c; z) are the Kummer functions. The former is defined for
all a, c, z ∈ C with c �= 0,−1,−2, . . . by the following series

M(a, c; z) =
∞∑

�=0

(a)�

(c)��! z�,
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where (a)� is the Pochhammer symbol

(a)� := a(a + 1) · · · (a + � − 1).

Note that the above expression shows that M(a, c; z) is analytic in all three variables.
The definition of the Kummer function of second kind, namely U (a, c; z), is slightly
more involved. More precisely, U (a, c; z) is defined as

U (a, c; z) = �(1 − c)

�(a + 1 − c)
M(a, c; z) + �(c − 1)

�(a)
z1−c M(a + 1 − c, 2 − c; z)

for all a, c, z with c /∈ Z. The definition can be extended to c = m ∈ N (where the
limit exists) as follows

U (a, m; z) = (−1)m

�(a + 1 − m)(m − 1)!

(
M(a, m; z) log z

+
∞∑

�=0

(a)�

(m)��! (ψ(a + �) − ψ(� + 1) − ψ(m + �)) z�

)

+ (m − 2)!
�(a)

z1−m
m−2∑
�=0

(a + 1 − m)�

(2 − m)��! z�

with ψ(z) = �′(z)/�(z). We will in the sequel choose the determination of log and
powers such that we have a branch cut at [0,∞). Then, from the above definitions we
obtain the following lemma.

Lemma 1 Assume that μ �= −1/2,−1,−3/2, . . . Then, both Whittaker functions
are analytic on C\[0,∞).

Finally, note that the above expressions also give singularity expansions as z → 0.
For instance, if μ �= −1/2,−1,−3/2, . . ., then

Mκ,μ(z) ∼ zμ+1/2, (z → 0)

and if in addition μ �= 0, 1/2, 1, . . . , then

Wκ,μ(z) ∼
⎧⎨
⎩

�(2μ)
�(μ−κ+1/2) z−μ+1/2, if μ > 0;

�(−2μ)
�(−μ−κ+1/2) zμ+1/2, if μ < 0.

Similar expansions can be found for Wκ,μ(z) when μ = 0, 1/2, 1, . . . as well.

Singularity perturbation analysis. We will now explain our method of proof of our
limit laws from Sect. 1. The method is based on singularity perturbation analysis, a
term coined by Flajolet and Lafforgue (1994). The idea is to directly work with the
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136 M. Drmota et al.

moment-generating function of Xn which by Cauchy’s integral formula is obtained
from X (y, z) by

E
(
ey Xn

) = 1

2π i

∫
γ

X (y, z)

zn+1 dz. (8)

Here, y is considered to be a parameter for which we assume that |y| < η with η > 0
suitably small.

In order to use (8), one has to choose a suitable contour γ and to study the singularity
structure of X (y, z). Due to the above explicit expression for X (y, z), we see that the
singularities are either the branch point singularities (with moving branch-cut) of the
Whittaker functions or are poles arising from the zeros of V (y, z). By doing a change
of variable in (8) (replacing ey/2(z − 1) by z − 1), we can consider

Ṽ (y, z) = V (z, 1 + e−y/2(z − 1)) = M−(1−p)ey/2,
√
1−4p(1−p)ey/2(2(1 − p)(z − 1))

+ c(y)W−(1−p)ey/2,
√
1−4p(1−p)ey/2(2(1 − p)(z − 1)). (9)

Now, the branch cut is fixed at [1,∞). As for the zeros of this function, we will prove
that there are two cases:

• Case I: p = 0. Here, we will show that for |z| < 1 + δ with a suitable δ, we
have exactly one zero z0(y) of Ṽ (y, z). Moreover, this zero has the property that
it converges to the branch point singularity as y tends to 0.

• Case II: p > 0. Here, we will show that for |z| < 1+ δ with a suitable δ, we have
no zeros of Ṽ (y, z).

The second case is more in line with other instances to which singularity perturba-
tion analysis was applied; see Flajolet and Lafforgue (1994) and Chapter X of Flajolet
and Sedgewick (2009). In this case, γ will be deformed into a Hankel-type contour;
see the right contour in Fig. 6. The asymptotic evaluation of (8) is then immediate and
the main term comes from the part of the contour close to the branch point singularity.

The first case is more involved, in particular, due to the fact that the polar singularity
(arising from the zero of Ṽ (y, z)) coalesces with the branch point singularity as y
tends to 0. Note that a somewhat similar situation was encountered in a recent study of
Drmota et al. (2009). In fact, our approach in case I will resemble the one of Drmota
et al. (2009). More precisely, we will again deform the contour into the same type of
contour as in case II; see the left contour in Fig. 6. This will lead to a contribution
coming from the polar singularity by a straightforward application of the residue
theorem. Then, in contrast to case II, we will show that the contribution of the branch
point singularity is negligible. From this, the unusual central limit theorem of the
neutral model will follow.

Remark 6 Analytically, the unusual normalization in Theorem 1 arises from the two
coalescing singularities. If, for instance, one would only have a polar singularity, then
a central limit theorem with the usual normalization would hold; see Flajolet et al.
(1997).
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Fig. 6 The integration contour and singularities in the two cases. The only (but crucial) difference is the
additional polar singularity in case I

4 Limit laws

In this section, we will prove the limiting distribution result for the neutral model
(Theorem 1). The corresponding proofs of the limiting distribution results for the
extra clustering model with p > 0 (Theorems 2–4) will be given in Appendix 2.
For the proof, we will use singularity perturbation analysis and the properties of the
Whittaker functions from the previous section.

We first collect some properties of Ṽ (y, z) and Ṽ ′(y, z) = ∂
∂z Ṽ (y, z) (for the

definition see (9)).

Lemma 2 Let |y| < η and

�̃ = {z ∈ C : |z| < 1 + δ, arg(z − 1) �= 0},

where η, δ > 0. Then, Ṽ (y, z) and Ṽ ′(y, z) are analytic in �̃ and satisfy

Ṽ (y, z) = 2(z − 1) + 2ay + 4ay(z − 1) log(z − 1)

+O(max{|y|2, |y||z − 1|, |z − 1|2}), (10)

Ṽ ′(y, z) = 2 + 4ay log(z − 1) + O (max{|y|, |z − 1|}) , (11)

where a = (1 − e−2)/4.

Proof This follows from the properties of the Whittaker function from Sect. 3. �
Next, we need the following lemma which was already announced in the previous

section.

Lemma 3 For η, δ sufficiently small, Ṽ (y, z) as a function of z has only one (simple)
zero z0(y) in �̃. Moreover, we have, as y → 0,

z0(y) = 1 − ay + 2a2y2 log y + O(y2).
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Proof First note that Ṽ (0, z) = 2(z − 1)ez−1 which is an entire function with only
one (simple) zero at z = 1. Next, Ṽ (y, z) is analytic in both y and z in �̃ and thus its
zeros vary continuously with y. Also, note that because of (10) of the above lemma,
there is no zero in a sufficiently small neighborhood of z = 1 for y sufficiently small
(the limits as z tends to the branch-cut in the neighborhood are never equal to zero
as well). Thus, for η, δ sufficiently small, we exactly have one zero in �̃ which in
addition must move to 1 as y tends to 0. This proves the first claim.

As for the proof of the second claim, we use bootstrapping. We already know that

z0(y) = 1 + o(y).

Plugging this into (10), we obtain that, as y → 0,

z0(y) = 1 − ay + o(y).

Using another bootstrapping step, this can be refined to

z0(y) = 1 − ay + 2a2y2 log y + o(y2 log y).

Yet another bootstrapping step gives the following refined error bound

z0(y) = 1 − ay + 2a2y2 log y + O(y2).

This is the second claim. �
Now, we state the key lemma for the proof of the central limit theorem.

Lemma 4 Let y = i t/(2a
√

n log n). Then,

E
(
ey Xn

) = z0(y)−n + O
(

1

log n

)
. (12)

Proof For the proof, we use Cauchy’s integral formula

E
(
ey Xn

) = [zn]X (y, z) = −[zn−1] V ′(y, z)

V (y, z)

= − 1

2π i

∫
γ̃

V ′(y, z)

V (y, z)

dz

zn

= − 1

2π i

∫
γ

Ṽ ′(y, w)

Ṽ (y, w)

dω

(e−y/2(w − 1) + 1)n
,

where γ̃ is a small positively oriented circle centered at the origin and the last step
follows from the change of variables ey/2(z −1) = w−1.We now deform the contour
γ into a contour γ ′ which is given by γ ′ = γ ′

1 ∪ γ ′
2 with

γ ′
1 = {w = 1 + v/n : v ∈ Hn},
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where Hn denotes the major part of the Hankel contour with

Hn = {v ∈ C : |v| = 1,�(v) ≤ 0}
∪

{
v ∈ C : 0 ≤ �(v) ≤

√
(1 + δ′)2n2 − 1 − n,�(v) = ±1

}

(here, as usual � and � denote the real part and imaginary part of a complex number)
and γ ′

2 completes the contour with an almost circle of radius 1 + δ′ with 0 < δ′ < δ;
see Fig. 6 where γ ′

1 is the small noose around the branch cut and the almost circle γ ′
2

is the remainder of the contour. Note that the above integral then becomes

E
(
ey Xn

) = (e−y/2(z0(y) − 1) + 1)−n − 1

2π i

∫
γ ′

Ṽ ′(y, w)

Ṽ (y, w)

dω

(e−y/2(w − 1) + 1)n

since by the residue theorem, we have to add the residue

Res

(
Ṽ ′(y, w)

Ṽ (y, w)
(e−y/2(w − 1) + 1)−n, w = z0(y)

)
= (e−y/2(z0(y) − 1) + 1)−n .

In order to derive (12) from this, we first note that from z0(y) = 1+O(1/
√

n log n),
we obtain that

(e−y/2(z0(y) − 1) + 1)−n = z0(y)−n
(
1 + O

(
1

n log n

))−n
= z0(y)−n + O

(
1

log n

)
.

Next for the integral, note that by (10) and (11) and again z0(y) = 1+O(1/
√

n log n),
we have for w ∈ γ ′

1,

Ṽ ′(y, w)

Ṽ (y, w)
= O

(
n

log2 n

)
.

Moreover, for w ∈ γ ′
1

|e−y/2(w − 1) + 1|−n ≤
(
1 + �(e−y/2v)

n

)−n

≤ e−�(e−y/2v) = O(
e−ε�(v)

)
(13)

for a suitable ε > 0. Hence, we obtain that for w ∈ γ ′
1,

Ṽ ′(y, w)

Ṽ (y, w)
· 1

(e−y/2(w − 1) + 1)n
= O

(
n

log2 n
e−ε�(v)

)
.
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Consequently,

− 1

2π i

∫
γ ′
1

Ṽ ′(y, w)

Ṽ (y, w)

dω

(e−y/2(w − 1) + 1)n

= − 1

2π i

∫
Hn

O
(

n

log2 n
e−ε�(v)

)
dv

n
= O

(
1

log2 n

)
.

Finally, suppose that |w| = 1+ δ′. First, from the analyticity of Ṽ (y, z) and Ṽ ′(y, z),
we obtain that

Ṽ ′(y, z)

Ṽ (y, z)
= O(1).

Moreover,

|e−y/2(w − 1) + 1| ≥ |w| + O
(

1√
n log n

)
≥ 1 + δ′′

for n large enough with 0 < δ′′ < δ′. Thus,

− 1

2π i

∫
γ ′
2

Ṽ ′(y, w)

Ṽ (y, w)

dω

(e−y/2(w − 1) + 1)n
= O((1 + δ′′)−n).

Putting everything gives

E
(
ey Xn

) = z0(y)−n + O
(

1

log n

)
+ O

(
1

log2 n

)
+ O((1 + δ′′)−n)

= z0(y)−n + O
(

1

log n

)

which is the claimed result. �
The proof of the central limit theorem (from Theorem 1) follows now from the last

lemma.

Proof of the central limit theorem from Theorem 1 As in Lemma 4 set y = i t/
(2a

√
n log n). Then, by the expansion of z0(y) from Lemma 3, we obtain

z0(y) = 1 − i t

2
√

n log n
+ t2

4n
+ O

(
log log n

n log n

)
.

Inserting this into the result from Lemma 4 yields

E

(
ey Xn

)
= exp

(
i t

√
n

2
√
log n

− t2

4

)(
1 + log log n

log n

)
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and by rearranging

E

(
eit (Xn−an)/(2a

√
n log n)

)
= exp

(
− t2

4

) (
1 + log log n

log n

)
.

Since exp(−t2/4) is the characteristic function of a normal distribution with mean
0 and variance 1/2, the claimed central limit theorem follows from this by Lévy’s
continuity theorem. �

The proofs of the remaining limiting distribution results can be found inAppendix 2.
Note that in the cases 0 < p < 1/2 and 1/2 < p ≤ 1 our results can be also derived
from the moment asymptotics (given in Appendix 1) together with the property that
the limiting distribution is characterized by its moments.

5 Conclusion

In this paper, we gave a detailed analysis of the extra clustering model which was
recently introduced by Durand et al. (2007) because of two reasons: (i) to model the
group formation process of social animals and (ii) to test whether genetic relatedness
is the main driving force behind the group formation process. Our analysis extends the
previous analysis ofDurand andFranco̧is (2010)whichwas concernedwith asymptotic
expansions of the mean of the number of groups formed by the animals. We derived
all higher moments and completely classified the limiting distribution of the number
of groups for all values of p. Our results are most relevant for the range 0 ≤ p < 1/2
which were the p values observed in real-word data. They show that the distribution of
the number of groups is strongly concentrated around the mean for the neutral model,
but not for the extra clustering model with p > 0. Thus, there is a phase change in
the behaviour from p = 0 to p > 0, something which was not visible from previous
results for the mean.

As for limiting distributions, our results show that the limit law is a continuous
law for the neutral model (p = 0), a mixture of discrete and continuous law for the
extra clustering model with 0 < p < 1/2 and a discrete law for 1/2 ≤ p ≤ 1. This
transition from continuous to discrete is in fact expected since the extra clustering
model is getting less random as p increases (because animals are more likely to form
one huge group).

From a mathematical point of view, our results contain two surprises. First, not in
all cases, the limit law can be obtained by the method of moments. In fact, we have
seen two cases, namely, p = 0 and p = 1/2, where we have weak convergence but
moments do not converge. The case of the neutral model is in particular surprising
because the underlying sequence of random variables satisfies a divide-and-conquer
recurrence of a type which often appears in computer science and for which in many
previous studies an application of the method of moments led to the limit law. The
second surprise is the curious limit law for the neutral model. In fact, our proof does
not give a lot of insight of as to why this surprising result holds. A better explanation
was given in a recent paper of Janson (2014). However, many things about this result
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are still shrouded in mystery, in particular, whether such a surprising result also holds
for other classes of random trees such as random m-ary search trees (in this work, we
considered trees which are equivalent to random binary search trees; for a definition
of this family of trees as well as random m-ary search trees see Mahmoud 1992). We
hope to come back to this question in a future work.
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Appendix 1: Moments

In this appendix we will investigate the moments of Xn . The method we use for this
has already been used in many other studies and was nicknamed “moment pumping”;
see, e.g., Chern et al. (2007) or Fill and Kapur (2004) and references therein. It is
based on induction and singularity analysis. The latter is a standard tool of analytic
combinatorics, see Chapter VI of Flajolet and Sedgewick (2009), and says—in a
nutshell—that the leading asymptotic behavior of the coefficients an of a power series
f (z) = ∑

n≥0 anzn is mainly governed by the kind of the dominating singularity z0
of f (z) on the radius of convergence |z| = |z0| = R. For example, if z0 = 1 and we
have

f (z) = A(1 − z)α + O((1 − z)β)

for z → 1, z ∈ �, where α, β are real numbers and � is a so-called �-domain of the
form

� = {z ∈ C : |z| < 1 + δ, | arg(z − 1)| > ϕ}, (δ > 0, 0 < ϕ < π/2),

then we have

an = A
n−α−1

�(−α)
+ O(

nmax{−β−1,−α−2}).
Actually, we can also work without an error term. For example, f (z) ∼ A(1 − z)α

as z → 1, z ∈ �, implies an ∼ An−α−1/�(−α). This tool will be extensively used
below.

We next explain in more details the above mentioned method of moment-pumping.
Due to singularity analysis, it suffices to find singularity expansions for the generating
functions of themoments of Xn . By differentiating (7)with respect to y and setting y =
0, we see that these generating functions satisfy differential equations. In particular,
the resulting differential equations are all of the following general form
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f ′(z) =
(
1

z
+ 2(1 − p)z

1 − z

)
f (z) + g(z), (14)

where g(z) is a function of generating functions ofmoments of smaller order. Thus, we
have a recursive schemewithwhich generating functions ofmoments can be computed
inductively once a general solution of the above differential equation is known. Such
a solution is provided in the next lemma.

Lemma 5 Let f (z) and g(z) be functions which are analytic at zero and satisfy

f ′(z) =
(
1

z
+ 2(1 − p)z

1 − z

)
f (z) + g(z),

where f (0) = 0. Then,

f (z) = z

(1 − z)2(1−p)e2(1−p)z

∫ z

0

(1 − t)2(1−p)e2(1−p)t

t
g(t) dt.

Proof This is proved by applying the standard approach for solving first-order differ-
ential equations. �

We will use this general solution and induction to obtain the singularity expansion
(in a �-domain) of generating functions of moments of all order. Moreover, in the
same way, generating functions of moments are also proved to be analytic in a suit-
able domain. Both these properties will follow from closure properties of singularity
analysis; see Fill et al. (2004) or Section VI.10 in Flajolet and Sedgewick (2009).

We demonstrate first how this works for the neutral model and then apply a similar
approach to the extra clustering model with p > 0.

Moments for p = 0.We start with mean and variance. Differentiating (7) with respect
to y once and twice and setting y = 0 gives

M ′(z) =
(
1

z
+ 2z

1 − z

)
M(z) + z(1 + z)

1 − z

and

S′(z) =
(
1

z
+ 2z

1 − z

)
S(z) + 2

z
M(z)2 + z(1 + z)

1 − z
,

with the notation

M(z) =
∑
n≥2

E(Xn)zn, S(z) =
∑
n≥2

E(X2
n)zn .

Now, for the mean, an application of Lemma 5 gives

M(z) = (−1 + e2z + 2ze2z − 2z2e2z)z

(1 − z)24e2z
. (15)
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Thus, as z → 1, z ∈ �,

M(z) = 1 − e−2

4
· 1

(1 − z)2
+ O

(
1

1 − z

)
.

Consequently, by applying singularity analysis,

E(Xn) = 1 − e−2

4
n + O(1).

Next, for the second moment, again by Lemma 5

S(z) = z

(1 − z)2e2z

∫ z

0

(
2(1 − t)2e2t

t2
M(t)2 + (1 − t)2e2t

)
dt.

Using (15) together with a proper use of a computer algebra system (we used Maple),
we obtain that for the integrand, as t → 1, t ∈ �,

2(1 − t)2e2t

t2
M(t)2 + (1 − t)2e2t ∼ (e2 − 1)2

8e2
· 1

(1 − t)2
+ (e2 − 1)2

4e2
· 1

1 − t
.

This leads to,

S(z) = (1 − e−2)2

8
· 1

(1 − z)3
+ (1 − e−2)2

4
· 1

(1 − z)2
log

(
1

1 − z

)

+ o

(
1

(1 − z)2
log

(
1

1 − z

))

as z → 1, z ∈ �. Hence, again by singularity analysis,

E(X2
n) = (1 − e−2)2

16
n2 + (1 − e−2)2

4
n log n + o(n log n).

From this and the above expansion of the mean, we obtain that

Var(Xn) ∼ (1 − e−2)2

4
n log n.

Remark 7 More terms in the asymptotic expansions of the mean and variance can
be obtained in a straightforward manner by computing more terms in the singularity
expansion of the functions above and again applying singularity analysis. Such a
refined computation in particular gives the claimed expansion for the variance from
Theorem 1.

From the last two results, we also obtain a strong law of large numbers for Xn (with
the coupling arising from the top-down construction of the random tree as explained
in Sect. 1). This is the last statement of Theorem 1.
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Lemma 6 Suppose that p = 0. Then, we have

P

(
lim

n→∞

∣∣∣∣ Xn

E(Xn)
− 1

∣∣∣∣
)

= 1.

In other words,

Xn ∼ E(Xn) a.s.

Proof First, consider n = k2. Then, by Chebyshev’s inequality,

P

(∣∣∣∣ Xk2

E(Xk2)
− 1

∣∣∣∣ ≥ ε

)
= P(|Xk2 − E(Xk2)| ≥ εE(Xk2)) = O

(
log k

k2

)

for all ε > 0, where in the last step, we used the above results for the mean and
variance of Xn . A standard application of the lemma of Borel–Cantelli now gives

lim
k→∞

Xk2

E(Xk2)
= 1 a.s. (16)

Next, for general n, find k such that

k2 ≤ n < (k + 1)2.

Note that by the above asymptotics for the mean, we have that

E(X(k+1)2) ∼ E(Xk2) (k → ∞). (17)

Moreover, the fact that Xn is non-decreasing (from the coupling) gives

Xk2

E(X(k+1)2)
≤ Xn

E(Xn)
≤ X(k+1)2

E(Xk2)
.

From this, the claimed results follows by using (16) and (17). �
This result suggests looking at central moments. Hence, we set

X̄(y, z) := X (y, ze−ya) =
∑
n≥2

E
(
ey(Xn−an)

)
zn

with a := (1 − e−2)/4. Then, (7) becomes (recall that p = 0)

z
∂

∂z
X̄(y, z) = X̄(y, z) + X̄2(y, z) + ey(1−2a)z2 + 2ey(1−3a)z3

1 − ze−ya
.
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Now, taking the k-th derivative with respect to y and setting y = 0 yields for

M̄ [k](z) := ∂k

∂yk
X̄(y, z)

∣∣∣∣
y=0

the differential equation

M̄ [k]′(z) =
(
1

z
+ 2z

1 − z

)
M̄ [k](z) + 1

z

k−1∑
j=1

(
k

j

)
M̄ [ j](z)M̄ [k− j](z) + h̄[k](z),

where M̄ [k](0) = 0 and

h̄[k](z) = (1 − 2a)k z + dk

dyk

2ey(1−3a)z2

1 − ze−ya

∣∣∣∣∣
y=0

.

This differential equation is of the type (14). Thus, we can apply Lemma 5 and induc-
tion to obtain the following lemma.

Lemma 7 For k ≥ 3, as z → 1, z ∈ �,

M̄ [k](z) ∼ 2(−1)kk!ak

(k − 2)(1 − z)k
.

Proof First note that from the computations above for the mean and the variance, we
have the following bounds, as z → 1, z ∈ �,

M̄ [1](z) = O
(

1

1 − z

)
and M̄ [2](z) = O

(
1

(1 − z)2
log

1

1 − z

)
. (18)

Weprove our claimby induction. Since the proofs for the base step and the induction
step are the same, we merge them into one. So, assume that the claim holds for all
k′ < k. In order to show that it holds for k, we use Lemma 5 which yields

M̄ [k](z) = z

(1 − z)2e2z

∫ z

0

(1 − t)2e2t

t

⎛
⎝1

t

k−1∑
j=1

(
k

j

)
M̄ [ j](t)M̄ [k− j](t) + h̄[k](t)

⎞
⎠ dt.

(19)

We first consider the two terms inside the bracket. For the first, by (18) and induction
hypothesis, we obtain that, as t → 1, t ∈ �,

1

t

k−1∑
j=1

(
k

j

)
M̄ [ j](t)M̄ [k− j](t) = O

(
1

(1 − t)k+ε

)
,
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where ε > 0 is an arbitrarily small constant (this constant comes from the additional
log term of M̄ [2](z)). For the second term, it is not complicated to see that, as t → 1,
t ∈ �,

h̄[k](t) ∼ 2(−1)kak

(1 − t)k+1 .

Thus, for the integrand of (19), as t → 1, t ∈ �,

(1 − t)2e2t

t

⎛
⎝1

t

k−1∑
j=1

(
k

j

)
M̄ [ j](t)M̄ [k− j](t) + h̄[k](t)

⎞
⎠ ∼ 2e2(−1)kak

(1 − t)k−1 .

Hence, by the closure properties of singularity analysis, as z → 1, z ∈ �,

∫ z

0

(1 − t)2e2t

t

⎛
⎝1

t

k−1∑
j=1

(
k

j

)
M̄ [ j](t)M̄ [k− j](t) + h̄[k](t)

⎞
⎠ dt ∼ 2e2(−1)kak

(k − 2)(1 − z)k−2 .

Inserting this into (19) gives the claimed result. �

The proposed expansion for all central moments of order higher than two (as stated
in Theorem 1) now follows from Lemma 7 and singularity analysis. In particular, note
that by

E(Xn − E(Xn))k = E(Xn − an)k + O(|E(Xn − an)k−1|),

we can easily transfer asymptotic results for E(Xn − an)k to corresponding ones for
E(Xn − E(Xn))k .

Next we prove the results for the moments of the number of groups under the extra
clustering model with p > 0. We will follow the same proof strategy as in the above
proof for the case p = 0 with the only difference that we now directly work with
moments instead of central moments.

Moments for 0 < p < 1/2. Set

M [k](z) := ∂k

∂yk
X (y, z)

∣∣∣∣
y=0

=
∑
n≥2

EXk
nzn .

Then, (7) implies that

M [k]′(z) =
(
1

z
+ 2(1 − p)z

1 − z

)
M [k](z) + 1 − p

z

k−1∑
j=1

(
k

j

)
M [ j](z)M [k− j](z) + h(z).
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where M [k](0) = 0 and

h(z) = z(1 − (1 − p)z2)

(1 − z)2
.

By Lemma 5, the solution of this differential equation is given by

M [k](z) = z

(1 − z)2(1−p)e2(1−p)z

∫ z

0

(1 − t)2(1−p)e2(1−p)t

t

×
⎛
⎝1 − p

t

k−1∑
j=1

(
k

j

)
M [ j](t)M [k− j](t) + h(t)

⎞
⎠ dt. (20)

Now, the asymptotic of the moments for the case 0 < p < 1/2 (as stated in
Theorem 2) follows from the next lemma by singularity analysis.

Lemma 8 For k ≥ 1, as z → 1, z ∈ �,

M [k](z) ∼ dk

(1 − z)k(1−2p)+1
.

Proof We start with k = 1. Here, according to (20), we have

M [1](z) = z

(1 − z)2(1−p)e2(1−p)z

∫ z

0

(1 − t)2(1−p)e2(1−p)t

t
h(t) dt.

Note that the integrand has the singularity expansion, as t → 1, t ∈ �,

(1 − t)2(1−p)e2(1−p)t

t
h(t) ∼ pe2(1−p)

(1 − t)2p
.

Since 2p < 1, applying the closure properties of singularity analysis yields, as z → 1,
z ∈ �,

∫ z

0

(1 − t)2(1−p)e2(1−p)t

t
h(t) dt ∼ e2(1−p)d1.

Inserting this into the above expression for M [1](z) gives the claimed asymptotics for
k = 1.

Now, assume that the claim is true for all k′ < k. We want to show that it also holds
for k. First, observe that by the induction hypothesis, the integrand of (20) satisfies,
as t → 1, t ∈ �,
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(1 − t)2(1−p)e2(1−p)t

t

⎛
⎝1 − p

t

k−1∑
j=1

(
k

j

)
M [ j](t)M [k− j](t) + h(t)

⎞
⎠

∼ (1 − p)e2(1−p)

⎛
⎝k−1∑

j=1

(
k

j

)
d j dk− j

⎞
⎠ · 1

(1 − t)(k−1)(1−2p)−1
.

Thus, by the closure properties of singularity analysis, as z → 1, z ∈ �,

∫ z

0

(1 − t)2(1−p)e2(1−p)t

t

⎛
⎝1 − p

t

k−1∑
j=1

(
k

j

)
M [ j](t)M [k− j](t) + h(t)

⎞
⎠ dt

∼ e2(1−p)dk

(1 − z)(k−1)(1−2p)
.

Inserting this into (20) gives, as z → 1, z ∈ �,

M [k](z) ∼ dk

(1 − z)k(1−2p)+1

which is the claimed result. �
Moments for p = 1/2. Again the proof is similar as in the previous case. More
precisely, we show the following lemma.

Lemma 9 For k ≥ 1, as z → 1, z ∈ �,

M [k](z) ∼ bk

1 − z
log2k−1 1

1 − z
,

where bk is recursively given by b1 = 1/2 and for k ≥ 2

bk = 1

2(2k − 1)

k−1∑
j=1

(
k

j

)
b j bk− j . (21)

Proof The proof is again by induction. We start with k = 1. In this case, the integrand
of (20) satisfies, as t → 1, t ∈ �,

(1 − t)et

t
h(t) ∼ e

2(1 − t)
.

Thus, as z → 1, z ∈ �,∫ z

0

(1 − t)et

t
h(t) dt ∼ e

2
· log 1

1 − z
.

Inserting this into (20) gives the claimed result.
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For the induction step, assume that the claim holds for all k′ < k. Then, for the proof
that it also holds for k, by the induction hypothesis, the integrand of (20) satisfies, as
t → 1, t ∈ �,

(1 − t)et

t

⎛
⎝ 1

2t

k−1∑
j=1

(
k

j

)
M [ j](t)M [k− j](t) + h(t)

⎞
⎠

∼ e

2

⎛
⎝k−1∑

j=1

(
k

j

)
b j bk− j

⎞
⎠ · 1

1 − t
log2k−2 1

1 − t
.

Hence, by the closure properties of singularity analysis, we obtain that, as z → 1,
z ∈ �,

∫ z

0

(1 − t)et

t

⎛
⎝ 1

2t

k−1∑
j=1

(
k

j

)
M [ j](t)M [k− j](t) + h(t)

⎞
⎠ dt ∼ ebk log

2k−1 1

1 − z
.

Inserting this into (20) concludes the induction step. �
The asymptotic expansion of the moments in the case p = 1/2 follows from this

by singularity analysis and the following lemma which solves the recurrence for bk in
terms of Euler numbers.

Lemma 10 The solution of the recurrence (21) from Lemma 9 is given by

bk = k!J2k−1

(2k − 1)!22k−1 ,

where J2k−1 are the Euler numbers of odd index.

Proof We use generating functions. Set

B(z) =
∑
k≥1

bk
zk

k! .

Then, the recurrence (21) becomes

B(z)B ′(z) = 2zB ′′(z) + B ′(z) − 1/2

with B(0) = 0. Integrating yields

4zB ′(z) = B(z)2 + 2B(z) + z

which has the solution

B(z) = √
z tan

(√
z

2

)
.
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Expanding and using that tan(z) is the generating function of the Euler numbers gives
the claim. �
Moments for 1/2 < p ≤ 1. This final case is again treated similar to the two previous
cases. More precisely, the result follows from the following lemma and singularity
analysis.

Lemma 11 For k ≥ 1, as z → 1, z ∈ �,

M [k](z) ∼ ek

1 − z
.

Proof Again,we use induction and (20). First, for k = 1, the integrand of (20) satisfies,
as t → 1, t ∈ �,

(1 − t)2(1−p)e2(1−p)t

t
h(t) ∼ pe2(1−p)

(1 − t)2p
.

Then, from the closure properties of singularity analysis, as z → 1, z ∈ �,

∫ z

0

(1 − t)2(1−p)e2(1−p)t

t
h(t) dt ∼ pe2(1−p)

(2p − 1)(1 − z)2p−1 .

Inserting this into (20) gives the claimed result.
Next, assume by induction that the claim holds for all k′ < k. In order to show it

for k note that the integrand of (20) satisfies, as t → 1, t ∈ �,

(1 − t)2(1−p)e2(1−p)t

t

⎛
⎝1 − p

t

k−1∑
j=1

(
k

j

)
M [ j](t)M [k− j](t) + h(t)

⎞
⎠

∼ e2(1−p)

⎛
⎝(1 − p)

k−1∑
j=1

(
k

j

)
e j ek− j + p

⎞
⎠ · 1

(1 − t)2p
.

Thus, by the closure properties of singularity analysis, we obtain that, as z → 1,
z ∈ �,

∫ z

0

(1 − t)2(1−p)e2(1−p)t

t

⎛
⎝1 − p

t

k−1∑
j=1

(
k

j

)
M [ j](t)M [k− j](t) + h(t)

⎞
⎠ ∼ e2(1−p)ek

(1 − z)2p−1 .

Inserting this into (20) gives the desired result. �

Appendix 2: Limit laws for 0 < p ≤ 1

Here we present the proofs of the limiting distribution results for the number of groups
under the extra clustering model with p > 0 (Theorems 2–4). We will use a similar
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approach as for the proof of the central limit theoremofTheorem1 inSect. 4.Moreover,
for 0 < p < 1/2 and 1/2 < p ≤ 1 the limiting distributions can be derived, too, by
the method of moments applied to the moment asymptotics given in Appendix 1.

Limiting distribution for 0 < p < 1/2. As in the proof of the central limit theorem
(in the case p = 0) we start by giving expansions for Ṽ (z, y) and Ṽ ′(z, y).

Lemma 12 Let |y| < η and

�̃ = {z ∈ C : |z| < 1 + δ, arg(1 − z) �= π},

where η, δ > 0. Then, Ṽ (y, z) and Ṽ ′(y, z) are analytic in �̃ and satisfy

Ṽ (y, z) = 21−p(1 − p)1−p(z − 1)1−p − 2p−1(1 − p)p+1

(1 − 2p)2
m(p)y(z − 1)p

+O(
max{|y|2|z − 1|p, |y||z − 1|1−p, |z − 1|2−p}), (22)

Ṽ ′(y, z) = 21−p(1 − p)2−p(z − 1)−p − p2p−1(1 − p)p+1

(1 − 2p)2
m(p)y(z − 1)p−1

+O(
max{|y|2|z − 1|p−1, |y||z − 1|−p, |z − 1|1−p}). (23)

Proof This follows from the properties of Whittaker functions from Sect. 3. �
Next, we need to study zeros of Ṽ (y, z). In contrast to Lemma 3, in the current

case, we have no zeros.

Lemma 13 For η, δ sufficiently small, Ṽ (y, z) as a function of z has no zeros in �̃.

Proof First note that

Ṽ (0, z) = 21−p(1 − p)1−p(z − 1)1−pe−(1−p)(z−1)

which has no zero in �̃ and only tends to 0 on the branch-cut when z tends to 1. The
latter property holds for Ṽ (y, z) for η and δ small enough as well as can be easily
seen from (22). Thus, due to the analyticity of Ṽ (y, z), all its zeros have to escape to
infinity as y tends to zero. Consequently, for η sufficiently small, Ṽ (y, z) has no zero
in �̃. �

The main lemma in this context is the following one.

Lemma 14 Let y = i t/n1−2p. Then,

E

(
ey Xn

)
= 1

2π i

∫
H

�(y, v)e−vdv + O
(
log2 n

n1−2p

)
,

where H is the Hankel contour starting in the upper half plane at +∞ and winding
around 0 counterclockwise before tending to +∞ in the lower half plane and

�(y, v) = 4(1 − 2p)2 − ypm(p)4p(1 − p)2p−1v2p−1

4(1 − 2p)2v − ym(p)4p(1 − p)2pv2p
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with determination of the powers in t chosen such that the branch cut is at [0,∞) and

m(p) = Mp,(1−2p)/2(−2(1 − p))

Wp,(1−2p)/2(−2(1 − p))
.

Proof The proof is similar to the proof of Lemma 4 with the crucial difference that
now the main contribution will come from the branch-point singularity (since there is
no polar singularity). The starting point is again Cauchy’s integral formula which as
in Lemma 4 can be rewritten to

E
(
ey Xn

) = − 1

2(1 − p)π i

∫
γ

Ṽ ′(y, w)

Ṽ (y, w)

dw

(e−y/2(w − 1) + 1)n
.

We again deform the contour γ into a contour γ ′ which this time is γ ′ = γ ′
1 ∪ γ ′

2 ∪ γ ′
3,

where

γ ′
i = {w = 1 + v/n : v ∈ H(i)

n }, i = 1, 2

withH(i)
n , i = 1, 2, given by

H(1)
n = {v ∈ C : |v| = 1,�(v) ≤ 0} ∪ {v ∈ C : 0 ≤ �(v) ≤ log2 n,�(v) = ±1},

H(2)
n = {v ∈ C : log2 n < �(v) ≤

√
(1 + δ′)2n2 − 1 − n,�(v) = ±1}

and γ ′
3 completes the contour with an almost circle of radius 1 + δ′ with δ′ < δ. The

difference to the contour from Lemma 4 is that Hn there is split into the two parts
H(1)

n and H(2)
n . Moreover, note that now, deforming the contour in the integral above

will leave the value of the integral unchanged.
We proceed by treating the three integrals corresponding to the above three parts

of the contour. First, for γ ′
1 note that from (22) and (23), we obtain that

Ṽ ′(y, w)

Ṽ (y, w)
= n(1 − p)�(i t, v)

(
1 + O

(
log2−2p n

n1−2p

))
.

Moreover, we have that

(e−y/2(w − 1) + 1)−n = e−v

(
1 + O

(
log2 n

n1−2p

))
.

Thus,

− 1

2(1 − p)π i

∫
γ ′
1

Ṽ ′(y, z)

Ṽ (y, z)

dw

(e−y/2(w − 1) + 1)n

= − 1

2π i

∫
H(1)

n

n�(i t, v)e−v

(
1 + O

(
log2−2p n

n1−2p

))
e−v

(
1 + O

(
log2 n

n1−2p

))
dv

n
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= − 1

2π i

∫
H(1)

n

�(i t, v)e−v dv + O
(
log2 n

n1−2p

)

= 1

2π i

∫
H

�(i t, v)e−v dv + O
(
log2 n

n1−2p

)
,

where the last step follows by attaching the tails of the Hankel contour (which intro-
duces a negligible error) and changing the orientation of the contour.

Next, we consider the contribution of the integral over γ ′
2. Here, we have

Ṽ ′(y, w)

Ṽ (y, w)
= O(1).

Moreover, by using (13) which holds in the current situation as well, we obtain that

− 1

2(1 − p)π i

∫
γ ′
2

Ṽ ′(y, z)

Ṽ (y, z)

dw

(e−y/2(w − 1) + 1)n

= − 1

2π i

∫
H(2)

n

O(
e−ε�(v)

)dv
n

= O
(
1

n

)
.

Finally, the integral over γ ′
3 is exactly treated as in Lemma 4 and it contributes only

an exponential decreasing error term. Collecting these three parts yields the claimed
result. �

Now, we can complete the proof of the limiting distribution of Theorem 2.

Proof of the limiting distribution result for 0 < p < 1/2. Weak convergence follows
from the previous lemma.

In order to show that also moments converge, we work with the moments (stated in
Theorem 2 and proved in Appendix 1) and use the method of moments. Accordingly,
the only thing which one has to verify is that there is unique random variable whose
moment sequence is given by dk/�(k(1 − 2p) + 1). For this purpose, it suffices to
show that

∑
k≥1

dk

�(k(1 − 2p) + 1)
zk

has a positive radius of convergence. This clearly follows from the estimate

dk ≤ Akk!kk(1−2p) (24)

for a sufficiently large A. We will prove this by induction, where in the proof we will
show how large one has to choose A.

First, by choosing A suitably, it is clear that we can assume that the estimate holds
for all small k. Now, assume that it holds for all k′ < k. In order to prove it for k, we
insert the induction hypothesis into the recurrence for dk (see Theorem 2). This gives
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dk ≤ Akk! 2(1 − p)

k(k − 1)(1 − 2p)

k−1∑
j=1

j (k − j)(k− j)(1−2p) j j (1−2p)

≤ Akk! 2(1 − p)

k(1 − 2p)

k−1∑
j=1

((k − j)k− j j j )1−2p.

Now, note that (k − j)k− j j j is decreasing for 0 < j ≤ j/2. Choose j0 such that
j0 > 1/(1 − 2p). Then,

dk ≤ Akk! 2(1 − p)

k(1 − 2p)

(
2 j0k(k−1)(1−2p) + k1+(k− j0)(1−2p) j j0(1−2p)

0

)
≤ Akk!kk(1−2p),

where the last inequality holds for k large enough. This concludes the induction step.
Finally, since we know already that Xn/n1−2p weakly converges to X , we must

have that E(Xk) = dk/�(k(1 − 2p) + 1).

E
(
ey X ) = 1

2π i

∫
H

�(y, v)e−v dv.

This concludes the proof of the limiting distribution.
We complete the proof by showing that the limiting distribution has the shape stated

in Theorem 2. It is sufficient to show that

∫ ∞

0
f (x)eyx dx = 1

2π i

∫
H

(
�(y, v) − p

v(1 − p)

)
e−v dv

for every fixed y ∈ C. For this purpose, we use the series representation (5) and
Hankel’s representation of the reciprocal of the Gamma function

1

�(2(k + 1)p − k)
= − 1

2π i

∫
H

(−v)−2(k+1)p+ke−v dv.

Next, we replace the Hankel contourH by the contourH′ that starts in the upper half
plane at +eiϕ∞, winds around 0 counterclockwise before it tends to +e−iϕ∞ in the
lower half plane, where 0 < ϕ < π/2 is chosen such that (π − ϕ)(1 − 2p) < π/2.
In particular, we can choose H′ in a way that �(δ(−v)1−2p + y) < 0 for all v ∈ H′;
note that δ = δ(p) < 0.

Hence, after interchanging the integral and the series and by evaluating the expo-
nential series

∑
k≥0

(δ(−v)1−2px)k

k! = eδ(−v)1−2p x
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we can compute the (inner) integral

∫ ∞

0
e(δ(−v)1−2p+y)x = −1

δ(−v)1−2p + y

and finally get

∫ ∞

0
f (x)eyx dx = 1

2π i

∫
H′

(
�(y, v) − p

v(1 − p)

)
e−vdv.

It is clear that H′ can be (again) replaced by H and so the result follows. �
Limiting distribution for 1/2 ≤ p < 1. We will consider here the proofs of the
limiting distribution of Theorems 3 and 4 which can be proved together. For the weak
convergence, we will proceed as in the previous paragraph. The following two lemmas
can be proved with the same method as before.

Lemma 15 Let |t | < η and

�̃ = {z ∈ C : |z| < 1 + δ, arg(1 − z) �= π},

where η, δ > 0. Then, Ṽ (i t, z) and Ṽ (i t, z) are analytic in �̃ and satisfy

Ṽ (i t, z) = d(t)(z − 1)

(
1−

√
1−4p(1−p)eit

)
/2 + O

(
(z − 1)

(
1+

√
1−4p(1−p)eit

)
/2

)
,

(25)

Ṽ ′(i t, z) = d(t)

(
1 − √

1 − 4p(1 − p)eit

2

)
(z − 1)

(
−1−

√
1−4p(1−p)eit

)
/2

+O
(

(z − 1)

(
−1+

√
1−4p(1−p)eit

)
/2

)
, (26)

where

d(t) = �(
√
1 − 4p(1 − p)eit/2)

�(1/2 + (1 − p)eit/2 + √
1 − 4p(1 − p)eit/2)

×(2(1 − p))

(
1+

√
1−4p(1−p)eit

)
/2

c(i t).

Lemma 16 For η, δ sufficiently small, Ṽ (i t, z) as a function of z has no zeros in �̃.

From these two lemmas, we prove the following result.

Lemma 17 Let |t | < η with η sufficiently small. Then,

E
(
eit Xn

) −→ 1 − √
1 − 4p(1 − p)eit

2(1 − p)
.
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Proof Obviously, we can assume that |t | > 0. The proof is then similar to the one
of Lemma 14. We only highlight differences. First, as in the proof of Lemma 14, we
obtain that

E
(
eit Xn

) = − 1

2(p − 1)π i

∫
γ

Ṽ ′(i t, w)

Ṽ (i t, w)

dw

(e−i t/2(w − 1) + 1)n
.

Then, we again deform the contour to γ ′ = γ ′
1 ∪ γ ′

2 ∪ γ ′
3.

The treatment of the integral over γ ′
2 and γ ′

3 is completely the same as in the proof
of Lemma 14. Thus, we only have to concentrate on γ ′

1. Here, we have from (25) and
(26),

Ṽ ′(i t, w)

Ṽ (i t, w)
= 1 − √

1 − 4p(1 − p)eit

2
nv−1

⎛
⎝1 + O

⎛
⎝(

log2 n

n

)�(
√

1−4p(1−p)eit )
⎞
⎠

⎞
⎠ .

Note that the above real part is positive for |t | small (even in the boundary case
p = 1/2). Moreover, we have

(e−i t/2(w − 1) + 1)−n = e−e−i t/2v

(
1 + O

(
log2 n

n2

))
.

Plugging into the above integral yields

− 1

2(p − 1)π i

∫
γ1

Ṽ ′(i t, w)

Ṽ (i t, w)

dw

(e−i t/2(w − 1) + 1)n

= 1 − √
1 − 4p(1 − p)eit

2(p − 1)

(
− 1

2π i

∫
H(1)

n

v−1e−e−i t/2vdv

)
+ o(1).

The last integral can be reduced to

− 1

2π i

∫
H(1)

n

v−1e−e−i t/2v dv = 1

2π i

∫
H

v−1e−v dv + o(1) = 1 + o(1),

where the last step follows from Hankel’s integral representation of 1/�(z). Thus, the
part of the integral over γ ′

1 gives the main contribution and the result follows. �
We can now finish the proof of Theorems 3 and 4.

Proof of the limiting distribution result for 1/2 < p ≤ 1. The weak convergence part
follows from the last lemma. We just add that

1 − √
1 − 4p(1 − p)x

2(1 − p)
=

∑
k≥1

pk(1 − p)k−1

2(2k − 1)

(
2k

k

)
xk .
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Hence the limiting distribution of X is discrete with

P(X = k) = pk(1 − p)k−1

2(2k − 1)

(
2k

k

)
.

Next, we prove that when 1/2 < p < 1, then also all moments converge. To this
end, as in the case 0 < p < 1/2, we only need to show that with the ek’s fromTheorem
4, the following series

E(z) =
∑
k≥1

ek
zk

k!

has a positive radius of convergence. In fact, using the recurrence for ek , we can directly
show that

E(z) =
√
1 − 4p(1 − p)ez

2
− 1

as must be the case. To prove this, note that the recurrence for ek implies that

(2p − 1)E ′(z) − p = 2(1 − p)E(z)E ′(z) + p(ez − 1)

with E(0) = 0. Integrating gives

(2p − 1)E(z) − pz = (1 − p)(E(z))2 + p(ez − z − 1).

Thus,

E(z) = 2p − 1 − √
(2p − 1)2 − 4p(1 − p)(ez − 1)

2(1 − p)
= 1 − √

1 − 4p(1 − p)ez

2(1 − p)
− 1.

This proves the claimed result. �
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