
J. Math. Biol. (2016) 72:973–996
DOI 10.1007/s00285-015-0934-8 Mathematical Biology

Mathematical modeling and simulation of the evolution
of plaques in blood vessels

Yifan Yang1 · Willi Jäger1 · Maria Neuss-Radu2 ·
Thomas Richter3

Received: 2 January 2015 / Revised: 13 August 2015 / Published online: 18 September 2015
© Springer-Verlag Berlin Heidelberg 2015

Abstract In this paper, a model is developed for the evolution of plaques in arteries,
which is one of the main causes for the blockage of blood flow. Plaque rupture and
spread of torn-off material may cause closures in the down-stream vessel system and
lead to ischemic brain or myocardial infarctions. The model covers the flow of blood
and its interactionwith the vesselwall. It is based on the assumption that the penetration
of monocytes from the blood flow into the vessel wall, and the accumulation of foam
cells increasing the volume, are main factors for the growth of plaques. The dynamics
of the vessel wall is governed by a deformation gradient, which is given as composi-
tion of a purely elastic tensor, and a tensor modeling the biologically caused volume
growth. An equation for the evolution of themetric is derived quantifying the changing
geometry of the vessel wall. To calculate numerically the solutions of the arising free
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boundary problem, the model system of partial differential equations is transformed to
an ALE (Arbitrary Lagrangian-Eulerian) formulation, where all equations are given in
fixed domains. The numerical calculations are using newly developed algorithms for
ALE systems. The results of the simulations, obtained for realistic system parameters,
are in good qualitative agreement with observations. They demonstrate that the basic
modeling assumption can be justified. The increase of stresses in the vessel wall can be
computed. Medical treatment tries to prevent critical stress values, which may cause
plaque rupture and its consequences.

Keywords Atherosclerotic plaque formation · Fluid-structure interaction ·Coupling
biochemical reactions and biomechanics · Modeling tissue growth · Computing wall
stresses

Mathematics Subject Classification 35Q30 · 74L15 · 92C10 · 92C50

1 Introduction

Atherosclerosis is a far spread disease of arteries and is related to coronary artery
disease, stroke and other conditions. It is linked to build up of cholesterol in the vessel
walls and the formation of plaques, which are in general slow processes, however
in their consequences may be dangerous. Plaques are formed primarily in the inner-
most layer of the vessel the wall, the intima. They might rupture and become partially
detached. Their formation is initiated by endothelial dysfunction, and involves sev-
eral biochemical processes. This investigation is concentrating on the most important
subprocesses, described in the following. Leucocytes, in particular monocytes, from
the blood flow are attracted to the vessel wall. They migrate into the inflamed intima.
Here, a cytokine, known as macrophage colony-stimulating factor, induces the dif-
ferentiation of monocytes to macrophages. These immune cells take up low-density
lipoproteins, which carry cholesterol and triglycerides to the tissues, and are finally
transformed into foamcells,which are engorgedwith lipidsHahn andSchwartz (2009).

The accumulation of foam cells in the vessel causes a swelling of the vessel walls.
The subsequent evolution of the plaques consists of formation of structures and com-
ponents typical for a mature plaque: a soft, lipid-rich atheromatous core and a hard,
collagen-rich sclerotic tissue, called fibrous cap Pasterkamp and Falk (2000). It is
generally believed that the death of foam cells plays an important role in lipid accu-
mulation and core formation, making the plaque vulnerable to rupture. The fibrous
cap is produced mainly by smooth muscle cells. It stabilizes the plaque by separating
the lipid core from the vessel lumen.

A plaquewith a large core and a thin cap becomes vulnerable andmay rupture, if the
biomechanical forces reach a critical value. After plaque rupture, platelets in the blood
to the flow adhere to the ruptured region and lead to thrombus formation Fasano et al.
(2011),Weller (2008),Weller et al. (2013). Plaques and thrombi reduce blood flow, and
may lead to blood clots and to partial or complete occlusions of vessels firstly locally.
However torn-off material of ruptured plaques may cause closures in the down-stream
vessel system and lead to ischemic brain or myocardial infarctions. Blocking blood
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supply is blocking oxygen supply. Hypoxia is causing a chain of processes, leading
to damages of the tissue and vessel system, which might become irreparable. In fact,
the following question, posed by neurologists involved with prevention and treatment
of brain infarctions, inspired the investigation presented in this paper: Is it possible to
develop and simulate a mathematical model for plaque formation and to compute the
stresses in the plaque region, providing information on an impending rupture?

The network of biochemical, biophysical and biomechanical processes taking place
is huge and complex. Depending on the questions to be answered, reduced mathemat-
ical models have to be developed VanEpps and Vorp (2007). Whereas there has been
substantial progress in modelling and simulation of pure fluid-structure interaction for
blood flow in vessels with prescribed mechanics of deformable vessel walls, research
including process dependent changes of the shape and the properties of the vessel wall
is only at its initial stages. Models based on the fluid-structure interaction between
blood flow and vessel wall without plaques are given e.g. in Formaggia et al. (2007),
Janela et al. (2010),Wick (2011), Hron andMadlik (2007), Turek et al. (2010). In Tang
et al. (2004, 2009) fluid-structure interaction models are considered, where the consti-
tutive equations describing material properties of the vessel wall include information
on plaque components. The stress distributions obtained by the simulation of these
models are used for possible plaque rupture predictions. On the other hand, mathe-
matical models have been devised to study the role of the biochemical processes in
the formation of plaques. They are based on partial or ordinary differential equations,
describing the reactions between immune cells (primarilymacrophages), smoothmus-
cle cells, chemo-attractant and low-density lipoproteins, see e.g. Khatib et al. (2007),
Ibragimov et al. (2005), Ougrinovskaia et al. (2010). In Zohdi et al. (2004), a phe-
nomenological model, which accounts for the intimal thickening due to adhesion of
monocytes to the intima surface is developed.

Themain purpose of this paper is to derive a reducedmodel describing the evolution
from healthy tissue to a mature plaque, which may rupture. The crucial contribution
of this investigation is modeling the growth of the vessel wall due to accumulation
of foam cells. It has to be considered as a first step, leading to the features of plaque
formation as observed in reality. Themodel integrates the fluid dynamical, mechanical
and chemical interactions of blood, cells, tissues and chemical substances important for
signaling. The formation of a liquid core and fibrous cap is not explicitly modelled.
The activities of monocytes, macrophages and foam cells are in the focus of this
investigation.

The mathematical model consists of two main parts. For the description of the
biomechanical interaction between the blood flow and the vessel wall, we use the
fluid-structure interaction problem with the Navier-Stokes equations for fluids and
the elastic structure equations for solids. To describe the dynamics and biochemical
reactions of monocytes, macrophages and foam cells we use the transport equations.
These two problems are coupledwith growthmodelling. The equation for themetric of
growth is related to the growth and reaction functions in solids, and the stress tensor in
the elastic structure equations is obtained by this metric and the constitutive equations.
Moreover, the model assumes that the increase of the concentration of foam cells not
only lets the volume of solid phase grow, but also changes its mechanical properties.
The main results of the paper can be summarized as follows:
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– The simulation of themodel equations demonstrate numerically that under realistic
assumptions on the system parameters, the resulting formation of plaques is in
good agreement with the observations, as far as the dynamics and the shape of the
plaques are concerned.

– Numerical methods were developed to compute relevant information, in particular
the dynamics of monocytes, foam cells and stresses in the deforming vessel walls.

Our investigation has shown that the reduced model is able to capture main features of
the plaque formation. However, they also suggest to refine the model in several direc-
tions, integrating the continually increasing information on the underlying processes.
So far simulations were performed only in 2 dimensions. The step into 3d is just in
preparation. The developed numerical methods will be published in an independent
paper, see [41]. They are based on an ALE reformulation, reducing a free boundary
problem for a system of nonlinear partial differential equations to a system in fixed
domains. The full mathematical analysis of the resulting system remains to be done
in future research. The paper is structured as follows. Section 2 explains step by step
the detailed modeling procedure and provides the final model. Section 3 introduces
the Arbitrary Lagrangian-Eulerian (ALE) framework, lists the numerical methods to
simulate the model and presents the numerical results. Section 4 concludes the paper
and provides an outlook for future development.

2 Mathematical model

In this section, we formulate a mathematical model which describes the biochemical
and biomechanical processes leading to formation and growth of plaques in blood
vessels. We consider a domain Ω ⊂ R

2 which at every time t consists of two sub-
domains Ω t

f and Ω t
s , separated by an interface Γ t , see also Fig. 1. The fluid domain

Ω t
f represents the part occupied by the blood, and the solid domain Ω t

s represents the
part occupied by the vessel wall. The interface Γ t is given as Γ t = Γ t

1 ∪Γ t
2 . Here Γ t

1
represents the diseased part of the interface, and it is permeable for themonocytes. The
interface Γ t

2 represents the healthy part of the interface Γ t . There is another interface
between blood and vessel wall, denoted by Γ f,wall which is a subset of the boundary
∂Ω , see again Fig. 1. However, since this part is not diseased, we suppose that its
displacement is small compared to the displacement of Γ t

1 ∪ Γ t
2 (which is supposed

Fig. 1 Computational domain
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to move due to penetration of monocytes and accumulation of foam cells). Therefore
the boundary Γ f,wall is supposed to be fixed. The remaining parts of ∂Ω , namely
Γs,wall ∪ Γs,in ∪ Γs,out , Γ f,in , and Γ f,out denote the interface between the vessel wall
and the tissue surrounding the blood vessel, the inflow and the outflow boundary,
respectively. They are all assumed to be fixed.

2.1 Fluid-structure interaction

Let us start by formulating the balance equations of mass and momentum for fluid
dynamics as well as for structural mechanics. Hereby, the quantities defined on the
fluid domain aremarked by a lower index f , whereas those defined on the solid domain
are distinguished by a lower index s. Let the deformation x be a smooth, orientation
preserving and one-to-one mapping

x(·, t) : Ω0 → Ω t , X �→ x = x(X, t), t ∈ I = [0, T ],

and let its inverse be denoted by X (·, t). The couple (x, t) is called Eulerian variables,
and the couple (X, t) is called Lagrangian variables. A physical or chemical quantity
can be described either as a function φ(x, t) or φ̂(X, t). Quantities associated to fluids
are usually described with respect to Eulerian framework whereas quantities occurring
in solids are usually described with respect to Lagrangian framework.

We assume that the blood flow is an incompressible Newtonian fluid, assumption
which is generally valid in large vessels Quarteroni and Formaggia (2004). Thus, the
pressure p f and the velocity v f of the blood flow are described by the Navier-Stokes
equations

divv f = 0 in Ω t
f

ρ f
∂v f

∂t
+ ρ f v f · ∇v f = divσ f in Ω t

f .
(1)

Since the blood flow is assumed to be homogeneous, the density ρ f is constant. The
stress tensor σ f is defined as

σ f = −p f I + ρ f ν(∇v f + ∇vTf ) in Ω t
f , (2)

where ν is the kinematic viscosity. The fluid problem iswrittenwith respect to Eulerian
variables in the current configuration on the moving domain Ω t

f .

In contrast, elastic solids are usually described in the fixed reference system Ω0
s , in

the Lagrangian reference frame. We denote the displacement by

û(·, t) : Ω0 → Ω t , X �→ û(X, t) = x(X, t) − X, t ∈ I = [0, T ],

and the velocity by

v̂(X, t) = ∂

∂t
x(X, t) = ∂

∂t
û(X, t), X ∈ Ω0, t ∈ I.
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Finally, we denote by F̂ the deformation gradient

F̂ = ∂

∂X
x(X, t) = ∇̂x(X, t) = I + ∇̂û(X, t), X ∈ Ω0, t ∈ I,

where the symbol ∇̂ indicates the gradient with respect to the Lagrangian variable X .
Since the deformation is supposed to be smooth, injective and orientation preserving,
the deformation gradient F̂ is invertible and its determinant

Ĵ = detF̂ (3)

is everywhere strictly positive, see e.g. Ciarlet (1988).
The equations for structural mechanics, describing the displacement ûs and the

velocity v̂s of the vessel wall, are written with respect to Lagrangian variables as
follows

∂

∂t
( Ĵs ρ̂s) = Ĵs f̂

g
s in Ω0

s

Ĵs ρ̂s
∂ v̂s
∂t

= ̂div( Ĵs σ̂ s F̂−T
s ) in Ω0

s

∂ûs

∂t
= v̂s in Ω0

s .

(4)

The first equation is the mass balance equation. The function f̂ gs is called growth
function, and represents the rate of mass growth per unit reference volume due to
the formation of the plaque. We will describe this function in more details in the
next section dedicated to the biochemical processes, see (12). The second equation
is the balance equation of momentum. The Cauchy stress tensor σ̂ s depends on the
displacement ûs , and will be derived in Sect. 2.3. The conservation equation of energy
and the entropy inequality are neglected because both the blood flow and the vessel
wall are assumed to be isothermal.

The interaction between the blood flow and the vessel wall is modeled by trans-
mission conditions on the interface Γ t = Γ t

1 ∪Γ t
2 . We impose the natural conditions,

namely the continuity of velocity and the balance of forces:

v f = vs, σ f · n f + σ s · ns = 0, on Γ t . (5)

Here n f and ns are the unit outer normal vectors of the interface Γ t with respect to
Ω t

f and Ω t
s .

2.2 Biochemical processes

For the biochemical processes, in our model, we describe the dynamics of monocytes
(with concentration c f ) in the blood flow, and the dynamics of macrophages and foam
cells in the vessel wall. The concentrations of the latter are denoted by cs respectively
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c∗
s . Themotion ofmonocytes in the blood is due to convectionwith the velocity v f , and
diffusion with the diffusion coefficient D f . It is described by the following transport
equation:

∂c f

∂t
+ div(c f v f ) − D f 	c f = 0 in Ω t

f . (6)

The equation for the motion of macrophages in the vessel wall is given by a similar
transport equation. However, on the right hand side, we have a reaction term, denoted
by − f rs , describing the rate of transformation of macrophages into foam cells. Con-
cerning the foam cells, since they don’t diffuse inside the wall, their accumulation is
described by a balance equation involving a production rate equal to f rs .

∂cs
∂t

+ div(csvs) − div(Ds∇cs) = − f rs in Ω t
s (7)

∂c∗
s

∂t
+ div(c∗

s vs) = f rs in Ω t
s . (8)

Since thematerial properties of the plaque are different from those of the healthy vessel
wall, Ω t

s is not considered a homogeneous material, and thus Ds is not constant. In
particular, it depends on the concentration of foam cells c∗

s , and we assume

Ds = Ds,d + (Ds,h − Ds,d) f (c
∗
s ) in Ω t

s . (9)

Here, Ds,d denotes the diffusion coefficient in the diseased vessel wall occupied by
the plaque, and containing a high concentration of foam cells, and Ds,h denotes the
diffusion coefficient in the healthy vessel wall, where there are no foam cells. The
function f in (9) is a continuous monotonic function dependent on the concentration
of foam cells c∗

s . When c∗
s = 0, f should be equal to 1, and Ds = Ds,h . As c∗

s is
increasing, f should rapidly decrease to zero limit and Ds is getting very close to
Ds,d . For this purpose we define f as an exponential function and (9) can be written
as

Ds = Ds,d + (Ds,h − Ds,d)e
−a1c∗

s in Ω t
s . (10)

Here a1 > 0 is a constant. We remark that representations similar to (9) are also used
for shear-rate dependent viscosity in the modeling of non-Newtonian fluids, see e.g.
Boyd et al. (2007), Janela et al. (2010), Robertson et al. (2008).

Concerning the reaction function f rs , we assume a linear dependence on the con-
centration of macrophages cs :

f rs = βcs in Ω t
s . (11)

Hereby, we consider the coefficient β > 0 to be a constant. In general, it may depend
on the concentration of other chemical species (e.g. low-density lipoproteins), see e.g.
Fogelson (1992), Ibragimov et al. (2005). Since the accumulation of foam cells leads
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to plaque growth, the growth function f rs is also related to f gs . We assume a linear
relation given by

f gs = γ f rs in Ω t
s (12)

with a constant coefficient γ > 0.
Equations (7) and (8) can also be transformed to the Lagrangian framework as (4).

Taking into account the transformation formula for the gradients ∇φ = F̂−T ∇̂φ̂, for
a smooth scalar function φ = φ(x, t), and using again the Piola transformation, we
obtain

∂

∂t
( Ĵs ĉs) − ̂div( Ĵs F̂−1

s · D̂s F̂−T
s ∇̂ ĉs) = − Ĵs f̂

r
s in Ω0

s (13)

∂

∂t
( Ĵs ĉ

∗
s ) = Ĵs f̂

r
s in Ω0

s . (14)

The penetration of monocytes from the blood flow into the vessel wall is modeled by
transmission conditions for the concentration of monocytes c f and of macrophages
cs on the interface Γ t

D f ∇c f · n f + Ds∇cs · ns = 0, on Γ t

D f ∇c f · n f + ζ(c f − cs) = 0, on Γ t .
(15)

These conditions describe the continuity of the normal fluxes across Γ t . Moreover,
the flux is related to the difference of concentrations across the interface. Similar
transmission conditions can be found e.g. in Quarteroni et al. (2001). The coefficient ζ
describes the permeability of the interfaceΓ t with respect to themonocytes. Therefore
ζ = 0 on the healthy part Γ t

2 .

2.3 Stress tensor modeling

In this section, we derive the constitutive equations, which relate the stress tensor σ s to
the deformation gradient Fs . We consider the vessel wall to be modeled as an elastic
and homogeneous material, thus the Cauchy stress tensor σ s depends only on the
deformation gradient. However, since in our application the deformation is induced
both by growth and mechanics, only the deformation induced by elastic response
contributes to the stress loading of thematerial. Figure 2 is a simple thought experiment
to clarify this aspect. Let a force N be applied on the elastic rod. In mechanical
equilibrium N is proportional to the observed displacement of the rod 	L and can
be calculated by measuring 	L . However, if for some reason the same rod is able to
grow, there will be some new elements formed inside the rod when it is deformed by
a force N . Then the observed displacement 	L is not proportional to N anymore and
it is not appropriate for calculating N .

To overcome this problem, we decompose the deformation gradient F̂s into two
parts: the first one takes care of purely elastic response F̂e

s and the second one is
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Fig. 2 A thought experiment to show how growthmay falsify the usual way of quantifying the deformation.
From Doktorski (2007)

Fig. 3 Decomposition of deformation gradient

connected to the deformation due to growth Ĝs . In doing so, we follow the approach
of multiple natural configurations, see e.g. Ambrosi and Mollica (2002), Jones and
Chapman (2012), Rajagopal and Srinivasa (2004). Hereby a new configuration, called
natural configurationΩ

t,N
s , is introduced, see Fig. 3, such thatΩ0

s is deformed toΩ
t,N
s

at first with deformation gradient Ĝs , and then to Ω t
s with deformation gradient F̂e

s .
We suppose that Ĝs and F̂e

s are invertible and thus the whole deformation gradient F̂s

is decomposed as

F̂s = F̂e
sĜs in Ω0

s . (16)

Here

F̂e
s = F̂e

s(X, t) = F̄e
s(XN (X, t), t), X ∈ Ω0

s , t ∈ I,

and

F̄e
s = ∂

∂XN
x̃(XN , t), XN ∈ Ω t,N

s , t ∈ I,
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where the mapping x̃(·, t) is defined as

x̃(·, t) : Ω t,N
s → Ω t

s ,

XN = XN (X, t) �→ x̃(XN , t) = x(X, t), t ∈ I = [0, T ].

The tensor Ĝs is associated with the deformation induced by growth and can therefore
be called the growth tensor. The tensor F̂e

s describing the deformation from Ω
t,N
s to

Ω t
s is not related to growth, and is associated with the deformation induced by elas-

ticity. The stress tensor σ̂ s is dependent only on the component F̂e
s of the deformation

gradient:

σ̂ s = σ̂ s(F̂e
s) in Ω0

s .

Next, we will derive the expression of the growth tensor Ĝs . Let ρ̂0
s denote the density

at time t = 0, which is preserved during the deformation from Ω0
s to Ω

t,N
s , and let

ρs = ρs(t, x) denote the density inΩ t
s . For a subdomain V 0

s ⊂ Ω0
s which is deformed

to V t,N
s ⊂ Ω

t,N
s and to V t

s ⊂ Ω t
s , the mass corresponding to V t,N

s and V t
s are equal,

and thus we have

∫

V t
s

ρs(x, t)dx =
∫

V t,N
s

ρ̂0
s dXN .

Applying the transformation formula for integrals, and taking into account that from
V 0
s to V t,N

s the density ρ̂0
s is preserved, we obtain

∫

V 0
s

ρ̂s(X, t) Ĵs(X, t)dX =
∫

V t
s

ρs(x, t)dx

=
∫

V t,N
s

ρ̂0
s dXN =

∫

V 0
s

ρ̂0
s Ĵ

g
s (X, t)dX. (17)

Here Ĵ gs is the determinant of the growth tensor Ĝs . If we denote by Ĵ es the determinant
of the tensor F̂e

s , by (16) we have

Ĵs = Ĵ es Ĵ
g
s in Ω0

s . (18)

Then from (17), we have

ρ̂0
s = ρ̂s Ĵ

e
s in Ω0

s .

Differentiating the above formula with respect to time we have

∂

∂t
(ρ̂s Ĵ

e
s ) = 0 in Ω0

s . (19)
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Recalling (18) and combining (19) with the conservation equation of mass in (4), we
have

Ĵs f̂
g
s = ∂

∂t
(ρ̂s Ĵs) = ρ̂s Ĵ

e
s
∂ Ĵ gs
∂t

in Ω0
s , (20)

and (20) can be simplified as

∂ Ĵ gs
∂t

= f̂ gs
ρ̂s

Ĵ gs in Ω0
s . (21)

We assume that the growth of plaques in the vessel wall is isotropic, which means that
the plaque is growing equally in all directions. Then the growth tensor is written as

Ĝs = ĝs I in Ω0
s . (22)

The scalar function ĝs = ĝs(X, t) is called the metric of growth, and we have

Ĵ gs = detĜs = ĝ2,

where 2 represents the dimension of the space R
2. The formula dXN = Ĵ gs dX

describes how the metric of the reference configuration is changed during the growth
process. Now (21) is rewritten as

2
∂ ĝs
∂t

= f̂ gs
ρ̂s

ĝs in Ω0
s . (23)

Remark that the coefficient 2 in front of ∂ ĝs
∂t represents the dimension of the space.

In the three-dimensional setting, it has to be set to 3. In the Lagrangian framework
the metric of growth is given by Eq. (23), whereas in the Eulerian framework it is
transformed to

2
∂gs
∂t

+ 2vs · ∇gs = f gs
ρs

gs in Ω t
s . (24)

Using the metric of growth and (22), we are able to calculate the tensor F̂e
s used in the

constitutive equations of σ̂ s as follows:

F̂e
s = F̂sĜ−1

s = 1

ĝs
F̂s in Ω0

s . (25)

To provide the constitutive equations of σ̂ s , we assume that both the healthy vessel
wall and the plaque are hyperelastic, isotropic and incompressible Tang et al. (2004,
2008). In our model, we consider the incompressible neo-Hookean material. The
corresponding constitutive equations are then

σ̂ s = − p̂s I + μ̂s(F̂e
s F̂

eT
s − I ) in Ω0

s , (26)
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where F̂e
s denotes the deformation of the vessel wall induced by elasticity and is given

by (25). For a homogeneous material the shear modulus μ̂s is constant. However,
the accumulation of foam cells leads to formation of plaques, which have different
mechanical properties from the healthy vessel wall Holzapfel et al. (2002), Tang et al.
(2004, 2009). Thus the μ̂s varies depending on the concentration of foam cells. Anal-
ogously to the diffusion coefficient D̂s defined in (10), Sect. 2.2, we define μ̂s by

μ̂s = μs,d + (μs,h − μs,d)e
−a2 ĉ∗

s in Ω0
s . (27)

Here a2 > 0 is a constant, μs,d denotes the shear modulus in the diseased vessel wall
whereas μs,h denotes the shear modulus in the healthy vessel wall.

Finally, we would like to mention that since we model the vessel wall by the
incompressible neo-Hookean material, the incompressibility yields

Ĵ es = 1 in Ω0
s .

and the system (4) can be further simplified. Since Ĵs = Ĵ es Ĵ
g
s , and Ĵ gs = ĝ2s , the

conservation equation of mass in (4) can be written as

ĝ2s f̂
g
s = Ĵ gs f̂ gs = Ĵs f̂

g
s = ∂

∂t
( Ĵs ρ̂s) = ∂

∂t
( Ĵ gs ρ̂s) = ∂

∂t
(ĝ2s ρ̂s) in Ω0

s .

Combining the upper formula with the equation for the metric of growth (23), we have

∂ρ̂s

∂t
= 0 in Ω0

s .

So in this case, the density of the vessel wall ρ̂s is independent on time and can be
considered as a constant coefficient. Thus, (4) can be simplified as

Ĵs ρ̂s
∂ v̂s
∂t

= ̂div( Ĵs σ̂ s F̂−T
s ) in Ω0

s

∂ûs

∂t
= v̂s in Ω0

s .

(28)

Combined with the constitutive equations (26), the equations for structural mechanics
of the vessel wall (28) are finally obtained. We mention that via (23) and (27) these
equations are also coupled with the concentrations ĉs and ĉ∗

s .

2.4 Final model

In this section we collect all equations and state the final mathematical model. It has
two main parts which are strongly coupled. The fluid-structure interaction problem
combines the Navier-Stokes equations (1) with the elastic structure equations (28):
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ρ f
∂v f

∂t
+ ρ f v f · ∇v f = divσ f in Ω t

f

divv f = 0 in Ω t
f

Ĵs ρ̂s
∂ v̂s
∂t

= ̂div( Ĵs σ̂ s F̂−T
s ) in Ω0

s

∂ûs

∂t
= v̂s in Ω0

s ,

(29)

and is used to describe thefluid dynamics of the bloodflowand the structuralmechanics
of the vessel wall. The transport equations for the biochemical species consist of the
equations (6), (7) and (8):

∂c f

∂t
+ v f · ∇c f − D f 	c f = 0 in Ω t

f

∂

∂t
( Ĵs ĉs) − ̂div( Ĵs F̂−1

s · D̂s F̂−T
s ∇̂ ĉs) = − Ĵs f̂

r
s in Ω0

s

∂

∂t
( Ĵs ĉ

∗
s ) = Ĵs f̂

r
s in Ω0

s .

(30)

They are used to describe the motion of monocytes, macrophages and foam cells. The
process how the accumulation of foam cells leads to plaque growth is described by
the equation for the metric of growth:

2
∂ ĝs
∂t

= f̂ gs
ρ̂s

ĝs in Ω0
s . (31)

Themetric of growth determines the constitutive equations for σ̂ s . The growth function
f̂ gs , the reaction function f̂ rs , and the stress tensors σ f and σ̂ s are given as

f̂ gs = γ f̂ rs , f̂ rs = β ĉs in Ω0
s

σ f = −p f I + ρ f ν(∇v f + ∇vTf ) in Ω t
f

σ̂ s = − p̂s I + μ̂s(F̂e
s F̂

eT
s − I ) in Ω0

s

F̂e
s = F̂sĜ−1

s = 1

ĝs
F̂s in Ω0

s .

(32)

The diffusion coefficients D̂s and the shear modulus μ̂s are given by

D̂s = Ds,d + (Ds,h − Ds,d)e
−a1ĉ∗

s in Ω0
s

μ̂s = μs,d + (μs,h − μs,d)e
−a2 ĉ∗

s in Ω0
s .

(33)

The model is closed by the initial and boundary conditions from Eqs. (29) and (30)
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v f |t=0 = v0f , c f |t=0 = c0f in Ω0
f

v f = vD
f , c f = cDf on Γ f,in

v f = 0, ∇c f · n f = 0 on Γ f,wall

ρ f ν∇v f · n f − p f n f = 0, ∇c f · n f = 0 on Γ f,out

ĝs |t=0 = 1 in Ω0
s

v̂s |t=0 = 0, ûs |t=0 = 0 in Ω0
s

ĉs |t=0 = 0, ĉ∗
s |t=0 = 0 in Ω0

s

v̂s = 0, ûs = 0 on Γs,in ∪ Γs,wall ∪ Γs,out

F̂−T
s ∇̂ ĉs F̂−T

s · Ns = 0 on Γs,in ∪ Γs,wall ∪ Γs,out ,

(34)

as well as the transmission conditions on the interface Γ t

v f = vs, σ f · n f + σ s · ns = 0

D f ∇c f · n f + Ds∇cs · ns = 0

D f ∇c f · n f + ζ(c f − cs) = 0.

(35)

Here Ns is the unit outer normal vector of Γs,in ∪ Γs,wall ∪ Γs,out with respect to
Ω0

s , and the last boundary condition in (34) is obtained from the boundary condition
∇cs · ns = 0 by using the transformation formula. Based on these equations, in the
next section numerical simulations are performed to investigate the formation and
evolution of plaques.

3 Numerical simulation

3.1 Numerical methods

For the numerical computation of the solution we choose a monolithic framework,
where the coupled equations in the fluid and solid domains are solved simultane-
ously. However, the equations in different domains are given in different frameworks,
making a common solution approach challenging. The equations in the fluid domain
are formulated in the Eulerian framework, where Ω t

f is changing in time due to the
movement of the interface Γ t . The equations in the solid domain are given in the
Lagrangian framework, where the domain Ω0

s is fixed. For numerical simulations this
means that different meshes are needed in different subdomains as well as in differ-
ent time steps. To avoid this difficulty, we employ the Arbitrary Lagrangian-Eulerian
(ALE) framework, in which the fluid domain is transformed to a fixed one by the ALE
mapping, and all the equations in the fluid domain are rewritten in the fixed domain
Ω0

f . To construct the ALE mapping, we define the artificial variable û f , which is the

harmonic extension of the displacement ûs toΩ0
f . In this way, both of the subdomains

Ω0
f and Ω0

s are fixed, and a common mesh can be used for the spatial discretization
in each time step. For a general introduction to the ALE method for fluid-structure
interaction problems, see e.g. Dunne et al. (2010).
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Based on the variational formulation in the ALE framework, numerical simulations
of our model are performed by using the finite element library Gascoigne, see Richter
(2011). Temporal discretization is achieved with finite difference schemes, more pre-
cisely, we choose the implicit backward Euler scheme, which is sufficiently stable and
accurate. Spatial discretization is based on the Galerkin finite element method, and
some stabilization techniques similar to those in Johnson (1987), Richter (2011) are
used to treat Stokes equations and convection-dominated problems. The discretized
problem is highly nonlinear, and it is linearized and solved by the Newton method.

Finally, we would like to emphasize that the formation and evolution of plaques
are long time processes, and we have to choose a large time step for the temporal
discretization. At this time scale the time differences of the quantities in the fluid
domain, such as the velocity v f and the concentration c f , can be neglected. Therefore,
we remove the terms containing the time derivatives of v f and c f in Eqs. (29) and
(30), and consider for the numerical calculations the reduced system:

ρ f v f · ∇v f = divσ f in Ω t
f

divv f = 0 in Ω t
f

Ĵs ρ̂s
∂ v̂s
∂t

= ̂div( Ĵs σ̂ s F̂−T
s ) in Ω0

s

∂ûs

∂t
= v̂s in Ω0

s

v f · ∇c f − D f 	c f = 0 in Ω t
f

∂

∂t
( Ĵs ĉs) − ̂div( Ĵs F̂−1

s · Ds F̂−T
s ∇̂ ĉs) = − Ĵs f̂

r
s in Ω0

s

∂

∂t
( Ĵs ĉ

∗
s ) = Ĵs f̂

r
s in Ω0

s

2
∂ ĝs
∂t

= f̂ gs
ρ̂s

ĝs in Ω0
s .

(36)

3.2 Parameters

In numerical simulations, we consider a computational domain in two-dimensional
space, see Fig. 4, the characteristics of which are given in Table 1. It consists of
two parts, the fluid domain Ω0

f and the solid domain Ω0
s . On the interface Γ 0

1 ∪
Γ 0
2 , the dashed part denotes the interface Γ 0

1 which is permeable for the monocytes.
Additionally, there is another dashed line in Ω0

s , and we consider the layer between
the interface and this dashed line as endothelial cells and smooth muscle cells which
are not affected a lot by plaque formation. In this transition layer, chemical reactions
rarely take place, so the monocytes will not be converted to foam cells. This fact is
confirmed by our medical partners.

The parameters of the model and the initial conditions are listed in Table 2. They
are taken from the medical literature e.g. Barrett et al. (2010), Fung (1984), Li et al.
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Fig. 4 Configuration of the computational domain in the ALE framework

Table 1 Characteristics of the
computational domain Fluid domain Ω0

f Length 35.0 mm

Width 5.0 mm

Solid domain Ω0
s Length 35.0 mm

Width 0.5 mm

Part of interface permeable for monocytes Γ 0
1 Length 2.5 mm

Transition layer Width 0.0625 mm

Table 2 Parameter values and
initial conditions Density ρ f 0.0010 g/mm3

Kinematic viscosity ν 3.0 mm2/s

Diffusion coefficient D f 1.0 × 10−6 mm2/s

Density ρs 0.00106 g/mm3

Growth coefficient γ 1.0 × 10−6 g

Shear modulus μs μs,h = 1.0 × 105 g/mm s2

μs,d = 0.05 × μs,h

Diffusion coefficient Ds Ds,h = 1.0 × 10−7 mm2/s

Ds,d = 5.0 × Ds,h

Reaction coefficient β 1.0 × 10−7/s

Permeability of the interface ζ = 1.0 × 10−4 mm/s on Γ 0
1

ζ = 0 on Γ 0
2

Initial velocity v0f 48x(5 − x) mm/s

Initial concentration c0f 540.0/mm3

(2006), Quarteroni et al. (2001), Robertson et al. (2008), Tang et al. (2004), Zamir
(2005).

The shear modulusμs is defined by (27), and the diffusion coefficient Ds is defined
in (10). We remark that the elastic coefficient decreases and the diffusion coefficient
increases in the diseased vessel wall, because as the plaque is formed, the diseased
tissue becomes softer and easier for molecules to diffuse. Concerning the reaction
coefficient, we set a constant value β under the lower dashed line and choose a much
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smaller amount between the interface and the lower dashed line, so the reaction can be
neglected in this transition layer ofΩ0

s . Finally on the interface, we set a constant value
ζ on Γ 0

1 and 0 on Γ 0
2 . The corresponding initial and boundary conditions are given

as (34). Especially the initial velocity profile of the blood flow is a parabola Fung
(1984), and the initial value of the concentration of monocytes in Ω0

f is a positive
constant.

3.3 Numerical results

After performing numerical computations in the ALE framework, we use the software
Paraview to visualize the numerical results in the whole domainΩ t

f ∪Ω t
s , with respect

to the Eulerian framework, so that we can observe not only the evolution of the solu-
tion components (displacement, velocity, concentrations), but also the motion of the
domain when the plaque is formed. The maximal simulation time is t = 4.5 × 107s
(521 days). The motion of the interface and the x-component of the velocity are visu-
alized at the time points t = 0s, t = 3.0 × 107s (347 days), and t = 4.5 × 107s
(521 days). All other computed quantities are visualized at the time points t = 0s,
t = 3.0×107s (347 days), t = 3.75×107s (434 days), and t = 4.5×107s (521 days).
The results are obtained on a locally refined mesh, having 2 levels of local refinement
near the interface.

3.3.1 Evolution of velocity and displacement

Figure 5 shows the motion of the interface Γ t (indicated by the white line) and the
evolution of the x-component of the velocity in the domain Ω t

f ∪ Ω t
s . At initial time,

the interface is parallel to the upper and lower boundary of the domain Ω . When
time passes, the interface moves due to the formation and growth of the plaque in Ω t

s .
This motion is presented in Fig. 6, where the y-component of the displacement in the
solid domain Ω t

s is visualized. We can see that after 4.5 × 107 seconds Ω t
s has been

deformed to form a hump around the permeable interface Γ t
1 . The computations for

the x-component of the displacement led to negligibly small values.

3.3.2 Evolution of concentrations

Figures 7 and 8 show how plaque formation and growth are induced by the penetration
of monocytes and the accumulation of foam cells. Figure 7 presents the evolution of
concentration of monocytes c f in the fluid domain Ω t

f . When the plaque formation
starts, the concentration of monocytes decreases mainly downstream of the permeable
part of the interface, denoted by Γ t

1 . This demonstrates that the decrease in c f is due to
penetration of monocytes into the vessel wall. At the same time foam cells are formed
with a concentration c∗

s , see Fig. 8. We remark that the region with high c∗
s is separated

from the fluid domainΩ t
f by a thin layer, where the concentration of foam cells is low.

This is in agreement with observations communicated to us by our medical partner
M. Henerici (Neurologische Universitätsklinik Mannheim).
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t = 0, max vx = 300mm/s

t = 3.0× 107s, max vx = 315mm/s

t = 4.5× 107s, max vx = 334.5mm/s

Fig. 5 Motion of the interface and evolution of the x-component of the velocity in the domain Ω t
f ∪ Ω t

s .
Mesh refinement level = 2. The white line indicates the interface. Red color denotes high value, while blue
color denotes low value. The domain size at the initial time is [12.5 mm, 22.5 mm] × [−0.5 mm, 5 mm]
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t = 0, max us,y = 0mm

t = 3.0× 107s, max us,y = 0.493mm

t = 3.75× 107s, max us,y = 0.685mm

t = 4.5× 107s, max us,y = 0.915mm

Fig. 6 Evolution of the y-component of the displacement in the solid domain Ω t
s . Mesh refinement level

= 2. Red color denotes high value, while blue color denotes low value. The domain size at the initial time
is [12.5 mm, 22.5 mm] × [−0.5 mm, 0 mm]

t = 0 t = 3.0× 107s

t = 3.75× 107s t = 4.5× 107s

Fig. 7 Evolution of concentration of monocytes in the fluid domain Ω t
f . Mesh refinement level = 2.

Red color denotes high value, while blue color denotes low value. The domain size at the initial time is
[12.5 mm, 22.5 mm] × [0 mm, 5 mm]
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t = 0, max c∗
s = 0/mm3

t = 3.0× 107s, max c∗
s = 1090/mm3

t = 3.75× 107s, max c∗
s = 1250/mm3

t = 4.5× 107s, max c∗
s = 1390/mm3

Fig. 8 Evolution of concentration of foam cells in the solid domain Ω t
s . Mesh refinement level = 2.

Red color denotes high value, while blue color denotes low value. The domain size at the initial time is
[12.5 mm, 22.5 mm] × [−0.5 mm, 0 mm]

3.3.3 Evolution of principal stress

Figure 9 shows that, when the plaque is growing, the principal stress σ s,p, (given by
the largest eigenvalue of the stress tensor σ s) reaches its maximum value around the
hump of the interface.

3.3.4 Discussion

We remark that the simulation shows slow evolution of a plaque in the region where
the vessel wall allows the penetration of monocytes, the duration is of order of 521
days. This indicates that time and space scales are at an adequate level. However, we
have to emphasize that here the blood inflow is assumed to be constant in time. In an
improved model, a correction due to time oscillatory inflow will be necessary.

It is at first surprising, that for realistic parameters spatial oscillations (two humps)
appear in the form of the plaque, where one expects at first simple bell shapes. In
fact, bell shapes can be observed in other, less realistic parameter regimes. These
oscillations are no numerical artifacts, indeed such oscillations can be observed in real
plaques.

Our model is based on the assumption that accumulation of foam cells leads to
volume growth. Figure 9 shows that the concentration of foam cells is very high at the
place of large deformation, which is consistent with our modeling assumption. The
fact that the principal stress σ s,p reaches its maximal values around the hump of the
interface, indicates that these regions are very prone to plaque rupture. In contrast, σ s,p

is smaller inside the plaque, even though this part is also under a large deformation.
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t = 0, max σs,p = 0kPa

t = 3.0× 107s, max σs,p = 1.1kPa

t = 3.75× 107s, max σs,p = 1.73kPa

t = 4.5× 107s, max σs,p = 2.675kPa

Fig. 9 Evolution of principal stress in the solid domain Ω t
s . Mesh refinement level = 2. Red color denotes

high value, while blue color denotes low value. The maximum value is reached around the hump of the
interface. The domain size at the initial time is [12.5 mm, 22.5 mm] × [−0.5 mm, 0 mm]

Remark 1 The shear stress plays an important role for the dynamics of biological
cells. Similar to chemical or electrical signaling, shear stress may initiate and regulate
cellular processes. E.g. it may influence the permeability of the endothelial layer in
blood vessels. The wall shear stress in the region of the plague can be large. Therefore
we have to expect there an increased permeability of the vessel wall for the monocytes,
as we have assumed, without modelling this process explicitly. Taking into account
that the vessel wall in the region of the plaque develops humps, it can be expected that
wall shear stress is going to oscillate in direction of the flow, as it is seen in Fig. 10.

4 Concluding remarks

This paper can be considered as a feasibility study, demonstrating that it is possible,
to model and calculate the evolution of plaques in arteries. As a first step, a reduced
system is studied. It is an example for systems, modeling interaction of fluid flow
transporting material in a vessel with the flexible vessel wall, incorporating material
and changing its shape and mechanical behavior. The focus in this paper is on the
modeling part and on the presentation and discussion of the simulation results.

The results for the reduced model derived in this paper encourage to improve the
modelling and simulation by including

– Available further information on the dynamics of involved cell populations,
– The formation of lipid cores and fibrous caps,
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Fig. 10 Distribution of wall shear stress in Pa (black line) and displacement×50 in mm (red line) on the
interface between blood flow and vessel wall in the plaque region

– The rupture of the plaque. See alsoHahn and Schwartz (2009), Kalita and Schaefer
(2008), Quarteroni et al. (2000).

A challenge as well to mathematical analysis as to numerics poses the following fact.
Two processes of rather different time scale are interacting: the oscillation of the
blood flow on the scale of seconds, caused by the heart, pumping blood through its
vessel system, and the growth of plaques which is rather on the scale of months. An
approximation of the model has to be found to compute the evolution of plaque. A
completemathematical analysis of the developedmodel system is necessary for further
progress. It remains a major problem to estimate the necessary parameters from real
data. Close cooperation with experts in biomechanics, biophysics and biochemistry in
medicine is required, in particular to set up experiments providing appropriate data.
Developing a method to identify the moment, in which a rupture of a plaque might
happen, is still remaining an aim and not yet a result.

Processes considered in this paper are also arising as components in othermedically
relevant processes, e.g. in inflammation as a protective response of the immune system
to harmful stimuli. A large research area opens up for mathematical modelling and
simulation. Finally, we mention that the mathematics developed for plaque formation
is portable to other areas of research and applications, e.g. to material sciences.
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