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Abstract Mechanical interactions between cells and the fibrous extracellular matrix
(ECM) in which they reside play a key role in tissue development. Mechanical cues
from the environment (such as stress, strain and fibre orientation) regulate a range of
cell behaviours, including proliferation, differentiation and motility. In turn, the ECM
structure is affected by cells exerting forces on the matrix which result in deformation
andfibre realignment. In this paperwedevelop amathematicalmodel to investigate this
mechanical feedback between cells and the ECM. We consider a three-phase mixture

R. J. Dyson and J. E. F. Green are joint first authors.

Electronic supplementary material The online version of this article (doi:10.1007/s00285-015-0927-7)
contains supplementary material, which is available to authorized users.

B J. E. F. Green
edward.green@adelaide.edu.au

R. J. Dyson
R.J.Dyson@bham.ac.uk

J. P. Whiteley
Jonathan.Whiteley@cs.ox.ac.uk

H. M. Byrne
Helen.Byrne@maths.ox.ac.uk

1 School of Mathematics, University of Birmingham, The Watson Building, Edgbaston,
Birmingham B15 2TT, UK

2 School of Mathematical Sciences, University of Adelaide, Adelaide, SA 5005, Australia

3 Department of Computer Science, University of Oxford, Wolfson Building, Parks Road, Oxford
OX1 3QD, UK

4 Mathematical Institute, University of Oxford, Andrew Wiles Building, Radcliffe Observatory
Quarter Woodstock Road, Oxford OX2 6GG, UK

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00285-015-0927-7&domain=pdf
http://dx.doi.org/10.1007/s00285-015-0927-7


1776 R. J. Dyson et al.

of collagen, culture medium and cells, and formulate a system of partial differential
equations which represents conservation of mass and momentum for each phase. This
modelling framework takes into account the anisotropic mechanical properties of the
collagen gel arising from its fibrous microstructure. We also propose a cell–collagen
interaction force which depends upon fibre orientation and collagen density. We use
a combination of numerical and analytical techniques to study the influence of cell–
ECM interactions on pattern formation in tissues. Our results illustrate the wide range
of structures which may be formed, and how those that emerge depend upon the
importance of cell–ECM interactions.

Keywords Multiphase model · Collagen fibres · Cell aggregation · Mechanics

Mathematics Subject Classification 92C10 · 92C15 · 92C17 · 76T30 · 76Z99 ·
35Q92

1 Introduction

Understanding how tissues growhas long been an important goal of biological research
(Thompson 1942). The normal development, growth and regeneration of biological
tissues all require the coordination of cell behaviours such as proliferation, differen-
tiation and migration, dysregulation of these processes being associated with disease
states, see e.g. Ingber (2008), Jaalouk and Lammerding (2009), Kumar and Weaver
(2009) and Soto and Sonnenschein (2004). In the late nineteenth century, embry-
ologists often focused on the role of mechanics in developmental events (see e.g.
Thompson 1942), but the rapid progress in biochemistry and molecular biology in the
latter half of the twentieth century shifted the emphasis towards understanding patterns
of gene expression, and how these might be affected by soluble growth factors and
signalling molecules (Ingber 2006; Soto and Sonnenschein 2004). Recently there has
been renewed interest in tissue mechanics, as experimental results have revealed that
mechanical interactions between cells and the extracellular matrix (ECM) in which
they reside play an important role in regulating processes such as morphogenesis,
tissue regeneration and tumour development (Cukierman and Bassi 2010; Lopez et al.
2008; Nelson and Bissell 2006; Strand et al. 2010).

The ECM is a complex material, composed of collagens, elastins, proteoglycans
andmany other components, its precise composition and organisation varying between
tissues (Cukierman and Bassi 2010; Martins-Green and Bissell 1995). It provides a
scaffoldwhich supports cell adhesion andmigration, and thus plays an important role in
determining tissue architecture (Bissell andRadisky 2001;Nelson andBissell 2006). It
is not, however, a passive structural framework; it influences cell behaviour, sometimes
in striking ways. In some cases, specific matrix components may be required to elicit
a particular cell response e.g. collagen regulates migration of the neural crest cells
and normal formation of the neural tube, and also appears to play an important role in
angiogenesis (Martins-Green and Bissell 1995). More generic features of the ECM,
including mechanical factors such as its stiffness, the level of stress or strain, or
the orientation of fibres within it, can also affect behaviours such as proliferation,
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differentiation, motility, formation of stress fibres and, in the case of stem cells, their
commitment fate (Byfield et al. 2009; Engler et al. 2006; Ingber 2006; Lopez et al.
2008; Peyton et al. 2007). Furthermore, theECMcan exert its effects on cells indirectly,
through interactions with diffusible chemical signals—e.g. by binding or altering the
transport of growth factors (Wipff et al. 2007). We note that cell–ECM interactions
are often reciprocal. The cells can secrete (or degrade) ECM constituent molecules,
and cross-link or re-orient its fibres by exerting forces upon them. Thus the ECMmay
evolve over time, due to remodelling during development, regeneration following
injury, or as a result of disease processes (Cukierman and Bassi 2010; Martins-Green
and Bissell 1995).

The importance of cell–ECM interactions in tissue development has received par-
ticular attention in the context of the mammary gland (both normal development and
tumourigenesis) (Kumar andWeaver 2009; Martins-Green and Bissell 1995; Ronnov-
Jessen and Bissell 2008; Weigelt and Bissell 2008), vasculogenesis and angiogenesis
(Kirkpatrick et al. 2007; Korff and Augustin 1999; Manoussaki et al. 1996). For the
mammary gland, it has been observed that normal and malignant breast cells are mor-
phologically indistinguishable when grown as monolayers in vitro, but when cultured
in a three-dimensional, laminin-rich ECM, normal cells stop proliferating and form
polarised acinar (spherical) structures, whilst cancer cells continue to proliferate and
form disorganised, tumour-like structures (Petersen et al. 1992; Weigelt and Bissell
2008). In order to study the key physical processes that regulate mammary epithe-
lial cell organisation and behaviour, in vitro tissue organogenesis models have been
developed which attempt to mimic the three-dimensional in vivo matrix environment
more closely. In the particular setup used by Dhimolea et al. (2010) and Krause et al.
(2008), the breast epithelial cells are seeded into a gel consisting of variable quantities
of collagen together with Matrigel and culture medium consisting of nutrient solution
and water. The cells organise themselves into small aggregates, forming either acini
(spherical structures) or ducts (elongated cylindrical structures). The proportions in
which these structures form can be controlled by varying the ECM composition (i.e.
the relative proportions of collagen, Matrigel and water). The in vitro angiogenesis
experiments described in Korff and Augustin (1999) and Kirkpatrick et al. (2007) are
similar, in that endothelial cell aggregates or microvessel fragments respectively, are
seeded within a collagen gel. Over a period of days, sprouts form from these initial
cell clusters, with the cells appearing to align along the fibres of the collagen matrix.
However, mechanical feedback is also observed, whereby forces exerted by the cells
realign the fibres.

The examples mentioned above show the potentially significant influences of
mechanical interactions between cells and the fibrous ECM on pattern formation in
vitro. The aim of the current study is to develop a mathematical model that can be
used to explore how such interactions might affect tissue architecture. The model pre-
sented here investigates the idea that patterns exhibited by the arrangement of cells
within the tissue can be generated through mechanical interactions, as a result of cells
exerting forces which deform the ECM and thereby alter the fibre alignment. The
fibre orientation, in turn, guides cell migration and, hence, affects the spatial distrib-
ution of forces exerted on the ECM. A simple schematic illustrating these concepts
is shown in Fig. 1. In the absence of a complete set of data on cell-generated forces
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Fig. 1 A schematic diagram illustrating the principles underlying our mathematical model

and ECM mechanical properties, our aim here is to explore qualitative behaviour in a
generic setting, rather than seek quantitative agreement with particular experiments.
However, our modelling framework is suitable for specialisation to experiments such
as those described in Dhimolea et al. (2010) and Korff and Augustin (1999) when the
appropriate data become available.

A number of previous mathematical models of processes such as morphogenesis,
vasculogenesis and wound healing have included the effects cell–ECM interactions
(Manoussaki et al. 1996;Murray 1993; Namy et al. 2004; Oster et al. 1983; Tosin et al.
2006; Tranquillo and Murray 1993). The earliest of these were the mechanochemical
models of Murray and coworkers e.g. Oster et al. (1983) and Tranquillo and Murray
(1993). They proposed that cells move by a combination of diffusion and advection
with the ECM, with the cell flux being prescribed in terms of the cell density and
ECM velocity, whilst the ECM flux is derived from a force balance applied to the
whole system. In later models (e.g. Tosin et al. 2006), a more detailed approach was
employed using mixture theory (Drew 1983), in which mass and momentum balances
are derived for each constituent species. An advantage of this framework is that it is
easily extended to include additional cell populations, ECM components, and other
species (such as culture medium) (Lemon et al. 2006). Multiphase models require
the introduction of constitutive relations to describe the mechanical properties of the
different phases. Most models treat the ECM as an isotropic elastic or viscoelastic
material, such as a Kelvin–Voigt viscoelastic solid, or Maxwell fluid (Barocas et al.
1995; Tranquillo and Murray 1993). However, the ECM is often anisotropic (e.g. due
to the presence of collagen, as described above), and this can have an important effect
on cell behaviour.

Themechanical behaviour of fibrousmaterials is complex, and the subject of intense
research (see e.g. Petrie 1999 and references therein), motivated by both biological
and industrial applications. The mechanics of textile fibres (felt, or tufts of fibres,
undergoing elongation or the carding process) have been studied, both experimentally
and theoretically by Kabla and Mahadevan (2007) and Lee and Ockendon (2005).
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Similar experimental (Vader et al. 2009), and theoretical (Green and Friedman 2008),
studies of collagen gels have also been undertaken. In biological contexts, however,
the focus is frequently on how properties such as fibre alignment or ECM deformation
affect cell behaviour. One of the best-studied models to incorporate the feedback
between fibre direction and cell migration is the so-called anisotropic biphasic theory
(Barocas and Tranquillo 1997). Here a fibre orientation tensor is introduced, which
evolves with the deformation of the ECM and influences cell migration, but does
not affect the transmission of stresses through the matrix. Other models account for
ECM deposition or degradation, and allow fibre orientation to bias cell movement
(e.g. Chauviere et al. 2007; Hillen 2006; Olsen et al. 1999; Painter 2009), but assume
the forces exerted by the cells do not affect fibre orientation.

A more complete theory for cell–ECM interactions, including the mechanics of
fibrous ECM was presented by Cook (1995), and applied to the healing of dermal
wounds. He considered factors including the nonlinear viscoelastic behaviour of the
ECM, and introduced a probability distribution function for the fibre direction, which
evolves with the deformation of the material. Similar approaches have been used to
understand the rheology of a suspension of fibres in a Newtonian fluid, often moti-
vated by industrial applications (Hinch and Leal 1975, 1976; Petrie 1999). However,
these models are generally too complicated to be analytically tractable. More recently,
simpler anisotropic models have been formulated to describe the behaviour of biolog-
ical materials such as collagen gels, plant cell walls or suspensions of biomolecules,
by treating them as transversely isotropic fluids (Dyson and Jensen 2010; Green and
Friedman 2008; Holloway et al. 2015). In these models, the stress in the material
depends both on the rate of strain and the fibre direction, which is uniquely specified
at each point by a unit vector. The fibre alignment can change in space and time due
to advection with the flow, but this approach avoids the complication of an evolv-
ing probability distribution for the fibre direction. However, until now these models
have not been used to study the interplay between anisotropic matrix mechanics and
cell-derived forces, and their effect on cell behaviour.

This paper is organised as follows. In Sect. 2 we formulate a multiphase model
for in vitro cells within a fibrous gel such as collagen. In Sect. 3, we highlight the
effect of matrix anisotropy on cell behaviour by presenting a linearised analysis of a
simplified version of the model (assuming that the cells are sparsely-seeded). We then
use numerical simulations in Sect. 4 to investigate the behaviour of the model when
these simplifying assumptions are relaxed. We illustrate the range of qualitatively
different patterns which can arise as model parameters are varied. We conclude in
Sect. 5 with a summary of our main results, and a discussion of possible avenues for
future work.

2 Model formulation

We adopt a multiphase modelling framework (Drew 1983), and consider a three phase
mixture, comprising cells, collagen gel andmedium (nutrient solution, and/or extracel-
lular water), which occupies a region,R∗. The volume fractions of the cells, collagen
and medium are denoted by φn(x, t), φc(x, t) and φm(x, t), respectively (where x is
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a Cartesian position vector and t denotes time). We assume there are no voids, so that

φn + φc + φn = 1. (1)

For simplicity, we assume that cell proliferation and death are negligible and, simi-
larly, that collagen is neither produced nor degraded. Cells, collagen and medium are
assumed to have constant density and we can thus cancel this factor from the mass bal-
ance equations. Denoting the velocities of the cells, collagen and medium by vn(x, t),
vc(x, t) and vm(x, t), respectively, conservation of mass then gives

∂φn

∂t
+ ∇ · (φnvn) = 0, (2a)

∂φc

∂t
+ ∇ · (φcvc) = 0, (2b)

∂φm

∂t
+ ∇ · (φmvm) = 0. (2c)

We denote by σ n , σ c and σm the stress tensors for the cells, collagen and medium.
Neglecting inertial effects, the momentum balance in each phase is given by:

∇ · (φnσ n) + kcn · (vc − vn) − kmn(vn − vm) − Fc + p∇φn = 0, (3a)

∇ · (φcσ c) − kcn · (vc − vn) − kcm · (vc − vm) + Fc + p∇φc = 0, (3b)

∇ · (φmσm) + kcm · (vc − vm) + kmn(vn − vm) + p∇φm = 0, (3c)

where p is a pressure common to all phases, and kcn , kcm and kmn are the interphase
drag coefficients. We allow kcn and kcm to be rank two tensors, as we assume the
drag between the collagen and other phases may depend upon the fibre orientation.
In Eqs. (3a)–(3b), we denote by Fc the force that the cells exert on the ECM as they
adhere to and pull upon it. For simplicity, we assume that these cell-derived forces are
transmitted to the fibrous collagen network and, thus, neglect forces exerted by cells
on the medium.

We also require an equation for the evolution of the fibre direction, which we denote
by a unit vector, a(x, t). We assume fibres are advected with the flow of the collagen,
so

∂a
∂t

+ (vc · ∇)a + a · [(a · ∇)vc] a = (a · ∇)vc, (4)

(see Dyson and Jensen 2010; Green and Friedman 2008; Holloway et al. 2015 for a
derivation). Here the first terms represent the advection of fibres, the final term on
the left hand side allows for stretching of the fibres and the term on the right hand
side represents reorientation by the flow. Equation (4) is a special case of an equation
derived by Ericksen (1960), and is appropriate for fibres for which the ratio of their
thickness to their length tends to zero.

Our model thus consists of Eqs. (1)–(4) for the volume fractions and velocities of
the cells, collagen and medium, and the alignment of the collagen fibres. We remark
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that in mixture theory all field variables are either volume-averaged (e.g. velocities)
or functions of averaged quantities (e.g. stresses). This applies to the fibre alignment
vector, a, which should be viewed as an averaged quantity. In order to close the model,
in the next section we introduce constitutive relations which specify the functional
forms of the stress tensors, drag coefficients and the cell–collagen interaction force,
before giving appropriate initial and boundary conditions in Sect. 2.2.

2.1 Constitutive relations

2.1.1 The stress tensors (σ n, σ c and σm)

Following O’Dea et al. (2008), the cells are modelled as an incompressible viscous
fluid, with

σni j = −pnδi j + 2μ∗
neni j +

(
κ∗
n − 2

3
μ∗
n

)
enkk δi j , (5)

where pn is the cell pressure, μ∗
n and κ∗

n are the shear and bulk viscosities of the cells,
and eni j is their rate of strain tensor, given by

eni j = 1

2

(
∂vni

∂x j
+ ∂vn j

∂xi

)
.

The cell pressure, pn , is assumed to comprise the pressure, p, which is common to
all phases (see Eq. (3)), and an additional, prescribed, intraphase pressure, Σn(φn),
caused by cell–cell interactions, so that

pn = p + Σn(φn). (6)

We anticipate cell–cell attraction when the cell density is low and cell–cell repulsion
due to overcrowding when it is high. Thus, following Breward et al. (2002) and Green
et al. (2009), we set

Σn(φn) = Γ ∗ φn − Φ

(1 − φn)2
, (7)

where the tension constantΓ ∗ describes the cells’ affinity for the close-packingdensity,
Φ (where 0 < Φ < 1). In practice the function Σn(φn) enters Eq. (3a) via the
combination φnΣn , and a graph of this function is plotted in Fig. 2 (for the case
Γ ∗ = 1, Φ = 0.8). Its only turning point occurs at φn = φ∗

n = Φ/(2 − Φ): for
φn < φ∗

n , cells are driven up gradients of cell density (corresponding to cell–cell
attraction), whilst for φn > φ∗

n the effect is repulsive.
The structure of collagen gels is complex, which makes modelling their mechanical

properties difficult. However, experimental studies suggest that they can be treated as
isotropic, upper-convected Maxwell fluids (Barocas et al. 1995; Knapp et al. 1997;
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Fig. 2 A plot of the function
φnΣn(φn) (see Eq. (7)) for
Γ ∗ = 1 and Φ = 0.8 (so that
φ∗
n = 2/3). This demonstrates

the functional dependence of
(3a) on Σm
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Schreiber et al. 2003). Inwhat follows, we treat the gel as a viscous fluid, justifying this
simplifying assumption by estimating its Deborah number to be small (the Deborah
number is the ratio of the stress relaxation timescale to the experimental timescale).
Schreiber et al. (2003) report values of the shear modulus (G∗) and viscosity (μ∗) of
collagen gels to be G∗ = 1.185× 104 dyne cm−2 and μ∗ = 1.24× 108 dyne s cm−2.
Given a timescale T ∗ for pattern formation of several days (105−106 s), we estimate
of the Deborah number to be D = μ∗/G∗T ∗ ∼ 0.01−0.1. We conclude that it is
reasonable to treat the gel as a viscous fluid. We note, however, that gel preparation
methods vary between groups, and so it is possible that elastic effects may contribute
to experimental results such as those of Dhimolea et al. (2010) and Korff and Augustin
(1999). We postpone consideration of such effects to later work.

While the studies of collagen gel mechanics cited above neglect fibre orientation
and assume the gel is isotropic, we assume that the collagen’s fibrous microstructure
plays an important role in determining tissue architecture. FollowingDyson and Jensen
(2010), Green and Friedman (2008) and Holloway et al. (2015), we view the collagen
as an incompressible, transversely isotropic viscous fluid, having a single preferred
direction defined by the fibre alignment at each point in the material. Accordingly, we
assume that

σci j = −pδi j + 2μ∗
ceci j +

(
κ∗
c − 2

3
μ∗
c

)
eckk δi j + μ∗

1aia j + μ∗
2aia jakaleckl

+ 2μ∗
3(aialec jl + a jamecmi ) + μ∗

4(aia j eckk + δi j alameclm ) (8)

where a(x, t) = (ai ) is the fibre direction, and eci j is the rate-of-strain for the colla-
gen. In Eq. (8),μ∗

c is the isotropic component of the viscosity (i.e. the matrix viscosity
modified for the presence of the fibres; see Dyson and Jensen 2010; Holloway et al.
2015 for details). Similarly, κ∗

c is the isotropic component of the bulk viscosity. The
constant μ∗

1 represents tension in the fibre direction, so that there is a stress in the
fibre direction even when the strain rate is zero. The constant μ∗

2 is related to the
extensional viscosity in the fibre direction, such that μ∗

2 + 4μ∗
3 gives the enhanced

resistance to stretching the material in the fibre direction as opposed to perpendicular
to the fibres. The constant μ∗

3 is related to the shear viscosity in the fibre direction,
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such that μ∗
3 gives the enhanced resistance to shearing the material in the fibre direc-

tion rather than perpendicular to the fibres. Finally, μ∗
4 is the anisotropic component

of the bulk viscosity. We note that, compared to the constitutive relations presented
in Dyson and Jensen (2010), Ericksen (1960), Green and Friedman (2008) and Hol-
loway et al. (2015), Eq. (8) contains additional terms involving eckk ; such terms are
needed because the volume fraction of collagen may vary in time, and hence the
velocity field, vc, is not solenoidal. A similar functional form, omitting the pres-
sure term, was used in a model of fibre carding (Lee 2001; Lee and Ockendon
2005).

To the best of our knowledge, there are no experimental data on typical values of the
μ∗
i (i = 1, 2, 3, 4) for gels commonly used in cell culture. However, it is well known

fromstudies of fibre suspensions that their response to shear and extension is influenced
by the fibre orientation (e.g. Petrie 1999), suggesting that the terms involving μ∗

2 and
μ∗
3 are likely to be important. Similarly, other experimental studies (e.g. Takakuda

and Miyairi 1996) have suggested that the collagen fibres may experience tension in
particular experimental setups, an effect represented by the term involving μ∗

1 in our
model.

We model the medium as an isotropic incompressible viscous fluid, with shear and
bulk viscosities μ∗

m and κ∗
m respectively, so that

σmi j = −pδi j + 2μ∗
memi j +

(
κ∗
m − 2

3
μ∗
m

)
emkk δi j (9)

where emi j is the rate-of-strain tensor for the medium.

2.1.2 The interphase drag terms (kmn, kcn and kcm)

When prescribing the interphase drag terms we assume that there is no drag if either
of the interacting species is absent. Therefore the drag is proportional to the product
of the relevant volume fractions. In the case of cell-medium drag, since both phases
are isotropic, we follow Breward et al. (2002) and set

kmn = D∗
mnφnφm, (10a)

for some constant D∗
mn ≥ 0.

We assume that themagnitude of cell–collagen andmedium–collagen drag depends
on the direction of relative motion compared to the fibre orientation. For example, if
relative motion between cells and collagen occurs along the fibre direction, a, the
effective drag coefficient is assumed to be φcφnD∗

cn . However, relative motion normal
to the fibre direction is assumed to encounter greater resistance, with the effective drag
coefficient being φcφn(D∗

cn + d∗
cn). We make similar assumptions for the collagen-

medium drag. Hence, the drag tensors kcn and kcm are given by

kcni j = φcφn[(D∗
cn + d∗

cn)δi j − d∗
cnaia j ], (10b)

kcmi j = φcφm[(D∗
cm + d∗

cm)δi j − d∗
cmaia j ], (10c)
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where D∗
cn ≥ 0 and D∗

cm ≥ 0 represent the strengths of the drag in the direction
parallel to the fibres, and d∗

cn ≥ 0 and d∗
cm ≥ 0 the additional drag contributions in the

direction normal to the fibres.

2.1.3 The cell force function (Fc)

We suppose that the force, Fc, that the cells exert on the collagen at a point x is the
sum of the forces exerted by cells at surrounding points x′ (where x is within the
‘sphere of influence’ Ω of the cell at x′ of radius η). The force acts in the direction
(x′ − x), and is weighted by distance so that nearby cells have a greater effect. We
further assume that the force depends upon the direction of the fibre, with forces being
transmitted more effectively along the fibres than through the surrounding material.
We hence assume that Fc have has functional form

Fc(x) =
∫

Ω

φn
(
x′)G

(
φc(x′)a

(
x′) · (

x − x′)
|x − x′|

)
F

(∣∣x − x′∣∣
η

) (
x′ − x

)
dN x ′,

(11)

where N is the dimension of Ω . In Eq. (11), the function F describes how the force
depends upon the distance between the point x and a cell at position x′. The functionG
represents the extent to which forces are transmitted more effectively along fibres than
through non-fibrous matrix material and, therefore, depends upon the volume fraction
of collagen fibres, φc, at the cell’s location, as well as the fibre direction. When the
unit vector in the direction of the force exerted by the cell ([x′ −x]/|x′ −x|) is aligned
with the fibre direction at the cell’s location (a(x′)), we assume that the magnitude of
the force is maximised. By contrast, setting G ≡ 1 would imply that the fibres are no
more effective than the surrounding material at transmitting the force. Henceforth, we
fix

G = (φc(x′))2
[
a(x′) · (x − x′)

|x − x′|
]2

, (12)

any constant factors being absorbed into F . This quadratic form is chosen as it is the
simplest non-trivial function which is invariant under the transformation a → −a.

Additional assumptions are needed to specify the function F in Eq. (11). Micro-
scopic analysis of cells in compacting collagen gels suggests that cells exert forces
mainly on the small region of gel surrounding them (Stevenson et al. 2010).We assume
that the cells exert forces on the collagen in a small ‘N -sphere’ (i.e. a circle in two
dimensions, or sphere in three dimensions) of radius η 	 1 around them.We can then
simplify the integrand in Eq. (13) by extending the method introduced in (Green et al.
2013). If we write

x′ = x + ηξ ,
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then |ξ | = 1 defines the boundary of the sphere of influence centred at x, and (11)
becomes

Fc(x) = ηN+1
∫

Ω

(φc(x′))2
(
a

(
x′) · ξ

|ξ |

)2

F (|ξ |) φn
(
x′) ξ dN ξ. (13)

We exploit the assumption that η 	 1 by expanding φn(x′), φc(x′) and a(x′) as power
series in η, substituting the expansions into Eq. (13), and integrating term by term (for
details of this calculation see Appendix A). In this way we find that the cell force is
given by

Fc(x) = 2λ

[
(a · ∇)(φnφ

2
c a) + φnφ

2
c a(∇ · a) + 1

2
∇(φ2

cφn)

]
+ O(η), (14)

where

λ = ηN+2

N (N + 2)

∫
Ω

F(|ξ |)|ξ |2 dN ξ,

and we assume λ = O(1).

2.2 Initial and boundary conditions

Our model comprises Eqs. (1)–(4), together with the constitutive relations (5)–(10)
and (14), which must be solved subject to suitable initial and boundary conditions. We
consider a two-dimensional rectangular region, 0 ≤ x ≤ L∗

x , 0 ≤ y ≤ L∗
y , as this is

the simplest in which the effects of anisotropy can become manifest. It is important to
note that this is distinct from a 2D biological monolayer culture; here the cells grow
in a 3D gel but are constrained to move in one plane only.

We prescribe the initial distributions of cells, collagen and medium,

φn(x, 0) = φn0(x), φc(x, 0) = φc0(x),

φm(x, 0) = φm0(x) = (1 − φn0(x) − φc0(x)) (15a)

(subject to the constraint (1)). We also specify the initial orientation of the fibres

a(x, 0) = a0(x). (15b)

We assume that the domain is periodic in both x and y. Hence, the boundary conditions
are

φα(0, y, t) = φα(L∗
x , y, t), φα(x, 0, t) = φα(x, L∗

y, t), (16a)

vα(0, y, t) = vα(L∗
x , y, t), vα(x, 0, t) = vα(x, L∗

y, t), (16b)

for α = n, c, m.
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1786 R. J. Dyson et al.

2.3 Dimensionless equations

The governing equations are nondimensionalised as follows (where tildes indicate
dimensionless quantities):

(x, y) = L∗
x (x̃, ỹ), t = T ∗ t̃, p = μ∗

c

T ∗ p̃, (vn, vm, vc) = L∗
x

T ∗ (ṽn, ṽm, ṽc),

(σ n, σ c, σm) = 1

T ∗ (μ∗
c σ̃ n, μ

∗
c σ̃ c, μ

∗
c σ̃m), Fc = μ∗

c

L∗
x T

∗ F̃c,

where the timescale T ∗ remains to be determined.
The formofEqs. (1), (2) and (4) is unchangedby this transformation.On substituting

for the drag terms, the momentum equations transform to give

∂

∂x j
(φnσni j ) + φcφn[(Dcn + dcn)δi j − dcnaia j ](vc j − vn j )

−Dmnφnφm(vn j − vm j ) − Fci + p
∂φn

∂xi
= 0, (17a)

∂

∂x j
(φcσci j ) − φcφn[(Dcn + dcn)δi j − dcnaia j ](vc j − vn j )

−φcφn[(Dcm + dcm)δi j − dcmaia j ](vc j − vm j ) + Fci + p
∂φc

∂xi
= 0, (17b)

∂

∂x j
(φmσmi j ) + φcφn[(Dcm + dcm)δi j − dcmaia j ](vc j − vm j )

+Dmnφnφm(vn j − vm j ) + p
∂φn

∂xi
= 0, (17c)

where we have introduced the dimensionless drag coefficients

Dcn = D∗
cn L

∗2
x

μ∗
c

, dcn = d∗
cn L

∗2
x

μ∗
c

, Dcm = D∗
cm L

∗2
x

μ∗
c

, dcm = d∗
cm L

∗2
x

μ∗
c

,

Dmn = D∗
mnL

∗2
x

μ∗
c

.

Note that in Eq. (17), and henceforth, the summation convention is used and tildes are
omitted for notational convenience.
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The dimensionless forms of the stress tensors and force term are given by

σni j = −
(
p + Γ

φn − Φ

(1 − φn)2

)
δi j + 2βneni j +

(
κn − 2

3
βn

)
enkk , (18a)

σci j = −pδi j + 2eci j +
(

κc − 2

3

)
eckk δi j + μ1aia j + μ2aia jakaleckl

+ 2μ3(aiale
c
jl + a jamecmi ) + μ4(aia j eckk + δi j alameclm ), (18b)

σmi j = −pδi j + 2βmemi j +
(

κm − 2

3
βm

)
emkk δi j , (18c)

Fci = 2Λ

(
a j

∂

∂x j
(φnφ

2
c ai ) + φnφ

2
c ai

∂a j

∂x j
+ 1

2

∂

∂xi
(φ2

cφn)

)
, (18d)

where we have introduced the dimensionless parameters

Γ = Γ ∗T ∗

μ∗
c

, κn = κ∗
n

μ∗
c
, κc = κ∗

c

μ∗
c
, κm = κ∗

m

μ∗
c
, βn = μ∗

n

μ∗
c
, βm = μ∗

m

μ∗
c
,

Λ = λT ∗

μ∗
c

, μ1 = μ∗
1T

∗

μ∗
c

, μ2 = μ∗
2

μ∗
c
, μ3 = μ∗

3

μ∗
c
, μ4 = μ∗

4

μ∗
c
,

The parameters κα (where, again, α = n, c, m) are the ratios of the bulk viscosi-
ties of the three phases to the isotropic component of viscosity for the collagen
phase, whilst the μα are the ratios of the anisotropic terms to the isotropic com-
ponent of viscosity for the collagen. Similarly, βn and βm are, respectively, the
ratios of the cell and medium viscosities to the isotropic component of the col-
lagen viscosity. Natural choices for the timescale of interest are either μ∗

c/Γ
∗,

the timescale for the cell’s self-induced movement (and thus Γ = 1), or μ∗
c/λ,

the timescale over which the force exerted by the cell is transmitted to the
collagen (and thus Λ = 1). Without loss of generality, we make the latter
choice.

The initial conditions are mapped to the transformed domain 0 ≤ x ≤ 1, 0 ≤ y ≤
L , where L = L∗

y/L
∗
x . Under this transformation the periodic boundary conditions

become, for α = c,m, n,

φα(0, y, t) = φα(1, y, t), φα(x, 0, t) = φα(x, L , t), (19a)

vα(0, y, t) = vα(1, y, t), vα(x, 0, t) = vα(x, L , t). (19b)

3 Linearised analysis for sparsely-seeded cells

Our model comprises a system of coupled nonlinear PDEs which must be solved in
at least two dimensions to account for the effects of anisotropy. In this section we
simplify the model by assuming that the cells are seeded sparsely in the matrix so that,
at least for short times, the cell volume fraction will be small. We introduce a small
parameter, ε 	 1, which represents a typical value of the (small) cell volume fraction.
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In addition, we neglect cell viscosity (so βn = 0) and the anisotropic components of
the drag coefficients, so that dcn = dcm = 0 in Eq. (10). We expand all dependent
variables as regular power series in ε so that

φn = φ(0)
n + εφ(1)

n + · · · , etc.

Under these assumptions, it is straightforward to show that the leading-order solution
to the system described in Sect. 2.3 is

φ(0)
n = 0, φ(0)

c = φc0(x), φ(0)
m = φm0(x) = 1 − φc0(x), (20)

v(0)
m = 0, v(0)

c = 0, p(0) = 0, (21)

a(0) = a0(x), σ (0)
c = 0, σ (0)

m = 0. (22)

Equations for φ
(1)
n and v

(0)
n are obtained by balancing O(ε) terms in the mass and

momentum equations for the cells:

∂φ
(1)
n

∂t
+ ∇ · (φ(1)

n v(0)
n ) = 0, (23)

Γ Φ∇φ(1)
n − (Dcnφ

(0)
c + Dmnφ

(0)
m )φ(1)

n v(0)
n − F(1)

c = 0, (24)

where

F(1)
c = (2(a(0) · ∇)(φ(1)

n (φ(0)
c )2a(0))+2φ(1)

n (φ(0)
c )2a(0)(∇ · a(0))+∇((φ(0)

c )2φ(1)
n )).

(25)

Combining Eqs. (23) and (24) gives

∂φ
(1)
n

∂t
= ∇ · (D · ∇φ(1)

n ) + 2∇ ·
[

φ
(1)
n

Dcnφ
(0)
c + Dmnφ

(0)
m

(a(0) · ∇)(a(0)(φ(0)
c )2)

+ φ
(1)
n (φ

(0)
c )2

Dcnφ
(0)
c + Dmnφ

(0)
m

(∇ · a(0))a(0) + φ
(1)
n φ

(0)
c

Dcnφ
(0)
c + Dmnφ

(0)
m

∇φ(0)
c

]
,

(26a)

where the cell dispersion tensor D has components

Di j = 1

Dcnφ
(0)
c + Dmnφ

(0)
m

{−Γ Φδi j + (φ(0)
c )2δi j + 2(φc

(0))2ai
(0)a j

(0)}. (26b)

Thus, in the case of sparsely seeded cells, our model reduces to an advection-
diffusion equation for cell movement. A novel feature of Eq. (26a), compared to
classical mechanochemical models of tissue development (e.g. Murray 1993), is that
the diffusion is both anisotropic (depending upon the fibre orientations) and nonlinear
(depending upon the cell and collagen volume fractions). We further note there is
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a nonlinear haptotactic term (the final term in square brackets in Eq. (26a)), which
drives cells down, rather than up, gradients of collagen density. This is because Fc,
the force acting on the collagen, is assumed to act in the direction of increasing cell
and collagen density (see Eq. (14)). Consequently, the equal and opposite force acting
on the cells will tend to drive them in the opposite direction.

These analytical results provide a useful check on our numerical code for the cases
in which the relevant assumptions hold (see Sect. 4). It should be noted that for certain
parameter values the term involving Φ in Di j may lead to an ill-posed backward heat

equation for φ
(1)
n (see Eq. (26)), when, as here, cell viscosity is neglected. In such

cases, the inclusion of cell viscosity renders the model well posed (Breward et al.
2002; Byrne and Preziosi 2003; Byrne et al. 2003).

We remark that the evolution ofφn = εφ
(1)
n depends on a(0) only, i.e. the initial fibre

configuration. We would need to continue to higher-order terms to determine how the
cells influence the fibre orientation. Since the analysis at higher order is involved and
the resulting equations not analytically tractable, we choose not to pursue this here.

4 Numerical simulations

In this section we present results generated from numerical simulations of Eqs. (2),
(17)–(19). The dimensionless model contains many parameters, and so only a limited
investigation is undertaken here, to illustrate the effect that variation of certain para-
meters has on the system dynamics and the range of qualitative behaviours that the
model exhibits.

4.1 Numerical methods

The velocity of each phase and the pressure are calculated by using the finite element
method described by (Osborne and Whiteley 2010). The hyperbolic equations (2)
governing mass conservation of each phase are solved by the finite volume method,
which is equivalent to a discontinuous Galerkin method with piecewise constant solu-
tion on each element (see, for example, Cockburn and Shu 1998). Equation (4),
governing the fibre direction, is solved using the continuous Galerkin finite element
method (see, for example, Eriksson et al. 1996). In all simulations, the domain was
partitioned into a regular mesh of 80 × 80 equally sized elements. The code was
validated by comparison with the linearised theory presented in Sect. 3 (results not
shown).

Numerical solutionswere computed until either a specified end timewas reached, or
one of the volume fractions first became zero. In the latter case, our problem becomes
a free boundary problem, the boundary delineating the region in which two, rather
than three, phases are present. Its solution requires the development of a sophisti-
cated numerical method that can introduce, track, and potentially remove multiple
free boundaries. We postpone its development to future work.

We note that if no collagen (φc ≡ 0) is present, and the viscosity of the medium
is negligible then only cells and medium are present and our model reduces to that of
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(Green et al. 2009). In this case non-trivial steady states are possible for which regions
containing cells at densityφn = Φ alternatewith regions inwhichφn = 0 (we note that
for such cell distributions, the function φnΣn ≡ 0 and, hence, the pressure gradients
vanish). When all three phases are present, this non-trivial steady state is not observed.
For some of the results presented in Sect. 4.2, whilst the numerical simulations appear
to reach a state for which the macroscopic features of the solution (e.g. size, shape
and volume fraction of cell aggregates) do not change, or only change slowly, small-
lengthscale fluctuations in the volume fractions appear at later times. We consider
these fluctuations to be artifacts of the numerical method, and present results only for
times before these effects become apparent. Unfortunately, these artefacts prevent us
from making general statements about the existence of steady state solutions of the
model.

Whilst it would be desirable to overcome these limitations, we believe our method
is sufficiently accurate to illustrate the different types of behaviour our model exhibits.
Additionally, for very long times, the effects of cell proliferation and death, ignored
here, are likely to become significant.

4.2 Numerical results

Rather than a detailed parameter survey (which is beyond the scope of this paper),
we aim to demonstrate the variety of configurations which can be achieved using this
model by first considering each effect separately and then in combination. Through
appropriate choice of parameter values we will present a variety of qualitatively dif-
ferent cellular patterns including oriented clusters, stripes and networks. We will also
demonstrate the impact of feedback from fibres to cells, from cells to fibres and in
both directions.

We begin by considering a ‘control’ simulation, against which subsequent simu-
lations will be compared. The parameter values and initial conditions used are given
in Table 1; unless otherwise stated these remain fixed. We present heat maps of the
volume fractions φn , φm and φc, and a plot of the fibre direction a, in Figs. 3 and 4

Table 1 The control parameters and initial conditions

Parameter Control value Initial condition Control form

Dmn , Dcn , Dcm 0.1 φc0 0.5 − 0.005 sin 2πx sin 2πy
L

dcn , dcm 0 φm0 0.25 − 0.005 sin 2πx sin 2πy
L

βm , βn 1 φn0 0.25 + 0.01 sin 2πx sin 2πy
L

μ1, μ2, μ3, μ4 0 a0 (1, 0)�
Λ 1

Γ 10

Φ 0.8

κc, κm , κn 0

L 1
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Fig. 3 The initial conditions for the control simulation (see Table 1): a fibre alignment, a(x, y, 0); b
cell volume fraction, φn(x, y, 0); c collagen volume fraction, φc(x, y, 0); d medium volume fraction,
φm (x, y, 0). Parameter values as given in Table 1. (Note that the colour scale here is exaggerated compared
to later figures for ease of visualisation) (colour figure online)

at times t = 0 and t = 4 respectively. We observe that for this control simulation
the cells aggregate, forming two roughly circular clusters, centred on the regions with
higher initial cell density. The formation of compact cell clusters, of approximately
uniform density with clearly defined edges is similar to the behaviour seen in a one-
dimensional multiphase model of cell aggregation (Green et al. 2009). The collagen
density evolves to a similar complementary pattern; with regions of high cell density
coinciding with regions of low collagen density. The distribution of the medium fol-
lows that of the collagen, both being displaced by cell movement in a similar way (this
is unsurprising since, for the control parameter values, both are treated as isotropic
fluids of equal viscosity). There is limited realignment of the collagen fibres by cell
migration; at long times they curve slightly outwards around the edges of the cell
aggregates.

We now investigate the effects of fibre alignment on the system’s evolution, by
setting the initial fibre angle to be π/4—i.e. :

a(x, 0) = a0 =
⎛
⎝

1√
2

1√
2

⎞
⎠ . (27)
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Fig. 4 The control simulation (Eqs. (2), (17)–(19)) at time t = 4: a fibre alignment, a; b cell volume
fraction, φn ; c medium volume fraction, φm ; d collagen volume fraction, φc . Parameter values and initial
conditions as given in Table 1 and shown in Fig. 3

By comparing Figs. 4 and 5 it is clear that this change produces a noticeable elongation
of the aggregates along the fibre direction. The result is suggestive of a transition from
discrete clusters to amore inter-connected structure. For this initial condition the fibres
point in the direction parallel to the line connecting the centres of the two regions with
initially higher cell density. The change in the initial fibre alignment is equivalent to
a variation in the initial volume fraction profiles if the axes were rotated so that the
fibre direction aligned with the x-axis.

The initial fibre alignment need not be spatially uniform to observe similar effects.
For example, if we adopt the following spatially-varying initial fibre distribution

a(x, 0) = a0 =
(√

1 − 0.25 sin2 (2πx)

0.5 sin (2πx)

)
, (28)

we observe that the aggregates become elongated in the y-direction (see Figs. 6, 7).
These case studies are similar to those studied using linearisation in Sect. 3, in that
the interphase forces and the mechanical properties of the collagen are isotropic;
the anisotropic fibre alignment enters the problem through the cell force term, Fc

123



An investigation of the influence of extracellular matrix anisotropy… 1793

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) a

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(b) φn

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(c) φm

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(d) φc

Fig. 5 Simulation results for time t = 4 with a diagonal initial fibre alignment (27): a fibre alignment,
a; b cell volume fraction, φn ; c medium volume fraction, φm ; d collagen volume fraction, φc . All other
parameter values and initial conditions as in Table 1

Fig. 6 Spatially varying initial
fibre direction, a0 defined by
Eq. (28)
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(Eq. (18d)).Although the cell volume fraction is nowO(1) (which violates the assump-
tion made in Sect. 3), the simulation results are consistent with those predicted by the
analysis, with cells moving preferentially along the fibre direction.

123



1794 R. J. Dyson et al.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

y

(a) a

x

y

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(b) φn

x

y

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(c) φm

x

y

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(d) φc

Fig. 7 Simulation results for time t = 3.2 with a spatially varying initial fibre alignment as in (28) (see
Fig. 6): a fibre alignment, a; b cell volume fraction, φn ; cmedium volume fraction, φm ; d collagen volume
fraction, φc . All other parameter values and initial conditions as in Table 1

We now consider the effects of varying the model parameters away from their
control values. We begin with Γ , the scaled affinity of the cells for the close-packing
density; reducingΓ magnifies the effect of the cell–ECM force term, Fc. The resulting
fibre direction and volume fractions, when Γ is decreased from Γ = 10 (Fig. 4)
to Γ = 0.1 are shown in Fig. 8. The most striking feature is the position of the
cell aggregates. In earlier simulations, when aggregates form, they do so in regions
where the initial cell density is highest (the bottom left and top right corners). Here,
the positioning is reversed. As we can see from the animation (see supplementary
material), the cells initially spread out, predominantly in the initial fibre direction,
due to the anisotropic cell–ECM force term. As the cells move, collagen is displaced
in the opposite direction, creating new regions depleted of collagen in which the
cells subsequently form aggregates. These aggregates are not circular, being slightly
compressed in the x-direction due to enhanced cell movement. The realignment of the
collagen fibres is particularly pronounced around the edge of the aggregates, while an
accumulation of medium is evident at the lateral (but not the upper and lower) edges
of the cell clusters.
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Fig. 8 Simulation results for time t = 65 with the scaled affinity of the cells for the close packing
density Γ = 0.1, and all other parameter values and initial conditions as in Table 1. a Fibre alignment,
a; b cell volume fraction, φn ; c medium volume fraction, φm ; d collagen volume fraction, φc . (See also
supplementary material for animations)

We now investigate how changing the anisotropic mechanical properties of the
collagen influences the system dynamics. Guided by similar multiphase models (see
e.g. O’Dea et al. 2008, 2010 and references therein) in which the bulk viscosities are
typically taken to be zero, here we set κn = κm = κc = 0. Similarly, we set μ4 = 0,
and in this way reduce the dimensions of the parameter space under investigation.
Returning to the initial conditions of the control simulation, we look at the effects of
varying the parameters μ1, μ2 and μ3 in turn. When the tension in the fibre direction
is large, μ1 = 10, aggregates that are elongated in the x-direction (i.e. the initial fibre
direction) form (see Fig. 9). Significant realignment of the fibres also takes place.
Whilst the collagen distribution is similar to that seen in earlier simulations, in this
case the medium seems to accumulate predominantly at the left- and right-hand edges
of the aggregates. To quantify the effect of this parameter on the morphology of the
aggregates, we define the anisotropy ratio as follows. We first identify the contour
φn = 0.3 in the distribution of cells. We then define the length in the x-direction,
sx , to be the length of the longest straight line parallel to the x-axis that fits inside
the contour. The length in the y-direction, sy , is defined in an analogous way, and
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Fig. 9 Simulation results at time t = 2.2 with high fibre tension (μ1 = 10): a fibre alignment, a; b cell
volume fraction, φn ; c medium volume fraction, φm ; d collagen volume fraction, φc . All other parameters
and initial conditions as in Table 1

Fig. 10 The anisotropy ratio of
the resulting distribution of cells
as μ1 is varied
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the anisotropy ratio is given by sy/sx . Figure 10 shows how the anisotropy ratio of
the resulting cell distribution changes as μ1 is varied. For small tension in the fibre
direction relative to the force exerted by the cells on the collagen, (μ1), we see that
the anisotropy ratio is slightly greater than unity, indicating a slight contraction in
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Fig. 11 Simulation results at time t = 4.7 with high extensional viscosity in the fibre direction (μ2 = 10):
a fibre alignment, a; b cell volume fraction, φn ; cmedium volume fraction, φm ; d collagen volume fraction,
φc . All other parameters and initial conditions as in Table 1

the x-direction. However as we increase the tension the anisotropy ratio decreases,
indicating elongation in the x-direction.

By comparison, settingμ2 = 10 (recall thatμ2 is related to the extensional viscosity
in the fibre direction) has a less pronounced effect (see Fig. 11): the aggregates elongate
in the x-direction, but to a lesser degree than in Fig. 9. The medium and collagen
distributions are also similar to those seen in the control simulation. Figure 12 reveals
that a more marked effect is seen when μ3 = 10 (related to the enhancement in shear
viscosity in the fibre direction), with the aggregates becoming ellipsoidal (rather than
the blunted shapes seen in Fig. 9). The collagen distribution is also markedly different,
accumulating in the regions vertically above and below the aggregates, and depleted
laterally. When all three of the anisotropic mechanical parameters are nonzero (see
e.g. Fig. 13 where μ1 = μ2 = μ3 = 10), the results most closely resemble the case
where only μ3 was nonzero, which suggests that (at least in this region of parameter
space) the contrast in shear viscosity between the direction parallel to the fibres, and
that perpendicular to them, has the greatest effect on themorphology of the aggregates.

The effects of initial fibre alignment and anisotropic collagen properties can com-
bine to change the patterns of cell organisation observed. For example, if we take the
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Fig. 12 Simulation results at time t = 5.5 with high shear viscosity in the fibre direction (μ3 = 10): a
fibre alignment, a; b cell volume fraction, φn ; c medium volume fraction, φm ; d collagen volume fraction,
φc . All other parameters and initial conditions as in Table 1

diagonal initial fibre alignment given by Eq. (27), and the parameter values used in
Fig. 13, the tendency of the two effects to produce elongation of the aggregates in the
fibre direction results in the inter-connection of the aggregates, producing a stripe-like
pattern (see Fig. 14).

The addition of anisotropic drag can also significantly influence the observed behav-
iour. Figures 15 and 16 show simulations taking the initial conditions

φc0 = 0.25 − 0.15 sin(2πx) sin(2πy), (29a)

φm0 = 0.5, (29b)

φn0 = 0.25 + 0.15 sin(2πx) sin(2πy), (29c)

a0 =
(√

1 − 0.04 sin2(2πx), 0.2 sin(2πx)

)T

, (29d)

with the parameter values

Dmn = Dcn = Dcm = 0.001, Φ = 0.5, Γ = 0.1 (30)

123



An investigation of the influence of extracellular matrix anisotropy… 1799

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

y

(a) a

x

y

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(b) φn

x

y

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(c) φm

x

y

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(d) φc

Fig. 13 Simulation results at time t = 5.5 with high fibre tension, extensional and shear viscosity in the
fibre direction (μ1 = μ2 = μ3 = 10): a fibre alignment, a; b cell volume fraction, φn ; c medium volume
fraction, φm ; d collagen volume fraction, φc . All other parameters and initial conditions as in Table 1

and dcn = 0 in Fig. 15 and dcn = 100 in Fig. 16. When anisotropic drag is included
in Fig. 16, the fibre reorientation by the cells is more pronounced, and we see the
formation of a connected network of cells rather than the clusters seen in Fig. 15. In
both cases the medium is concentrated between areas which are predominantly either
collagen or cells.

Similarly, combining the effects of large fibre tension (μ1 = 10) and anisotropic
drag (dcn = dcm = 1) with a spatially varying initial fibre direction as in Eq. (28) can
produce a pattern in which stripes of aggregated cells and collagen are aligned in the
y direction and separated by thin regions of medium (see Fig. 17).

By additionally varying μ2 and μ3, a new type of qualitative behaviour can be
produced. When the fibre tension is small (μ1 = 0.1), but extensional and shear
viscosity in the fibre direction are high (μ2 = μ3 = 10), elliptical cell clusters may
form, their major axes being aligned with the local fibre direction (see Fig. 18), which
undergoes minimal reorientation. In contrast, when the fibre tension is large (μ1 = 10;
Fig. 19), the cells form aggregates that are elongated in the y-direction and interspersed
with strips of medium, whilst the fibre direction significantly remodels to an almost
parallel state, aligned perpendicular to the aggregates. Comparing to the behaviour
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Fig. 14 Simulation results at time t = 5 with diagonal initial fibre alignment (given by 27) and high fibre
tension, extensional and shear viscosity in the fibre direction (μ1 = μ2 = μ3 = 10): a fibre alignment,
a; b cell volume fraction, φn ; c medium volume fraction, φm ; d collagen volume fraction, φc . All other
parameters and initial conditions as in Table 1

when μ2 = μ3 = 0 (Fig. 17), we observe that this configuration appears to represent
a transition between the cluster and stripe patterns.

Our numerical experiments suggest that, in this region of parameter space, varying
other model parameters individually (the isotropic drag coefficients Dcm , Dcn and
Dmn , and the cell and medium viscosities βn and βm) does not significantly alter
the long term distribution of cells (results not shown), although the time taken to
reach the final configuration may vary. In summary, our results show that a variety
of qualitatively different patterns can be formed, depending upon the initial cell and
collagen densities, the initial collagen fibre alignment, the anisotropic mechanical
properties of the collagen, and the relative affinity of the cells for their close packing
density, compared to the cell–ECM force. These patterns include ellipsoidal clusters
(e.g. Figs. 13, 18), where the ratios and alignments of the major and minor axes can
vary according to the parameter values (e.g. Fig. 10), stripes (e.g. Figs. 14, 17) and
networks (e.g. Fig. 16). We have also examined the feedback from the cells to the
collagen fibre orientation (e.g. Figs. 9, 17) and vice versa (e.g. Figs. 11, 12, 13, 14).
Although our model is generic, rather than focused on any particular experimental
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Fig. 15 Simulation results at time t = 21 with initial conditions and parameters as specified in (29, 30): a
fibre alignment, a; b cell volume fraction, φn ; c medium volume fraction, φm ; d collagen volume fraction,
φc . All other parameters and initial conditions as in Table 1

system, we note that similar patterns have been generated in in vitro experiments e.g.
(Dhimolea et al. 2010).

5 Discussion

We have developed a new multiphase modelling framework to explore the role of
matrix anisotropy in the development of pattern and form in tissues. Whilst some
recent models account for ECM fibres directing cell movement e.g. Hillen (2006) and
Painter (2009), they typically neglect the associatedmechanical changes, whilst others
account for both cell guidance by fibres, andmechanical interactions between theECM
and the cells, but they assume that the fibres have no effect on themechanical properties
of the matrix, which is treated as isotropic (e.g. Barocas and Tranquillo 1997; Häcker
2012). In contrast, our framework allows fibres embedded within the ECM to affect
both the collagen mechanics (through the transversely isotropic form of the stress
tensor) and cell–ECM interactions (though the anisotropic drag and cell–ECM force
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Fig. 16 Simulation results at time t = 22 with high anisotropic drag dcn = 100 and initial conditions
and parameters as specified in (29, 30): a fibre alignment, a; b cell volume fraction, φn ; c medium volume
fraction, φm ; d collagen volume fraction, φc . All other parameters and initial conditions as in Table 1

terms). The cell–ECM force is modelled via a convolution integral term, an approach
which is increasingly being used to represent cell–cell and cell–ECM interactions in
continuum models (Gerisch and Chaplain 2008; Green et al. 2010; Szymanska et al.
2009). For an isotropic ECM, recent work (Green et al. 2013) has shown that, if the
‘sphere of influence’ of each cell is small, the nonlocal term can be approximated by
the gradient of a function of cell and ECM density. This representation of the force
term is similar to that used in the mechanochemical theory developed by Murray and
coworkers (Murray 1993). Here, we have used a similar argument to show that when
the force depends on the fibre direction, it can be reduced to a form which includes
spatial gradients in the cell and collagen densities and the divergence of the fibre
director field.

The complexity of themodel equations, together with the fact that wemust consider
at least a two-dimensional geometry if the effects of anisotropy are to be investigated,
limit the analytical progress that can be made. However, a linearised analysis for
the case of sparsely seeded cells reduces our system of equations to an anisotropic,
nonlinear diffusion equation. This analysis reveals that fibre orientation influences
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Fig. 17 Simulation results at time t = 1.2 with anisotropic drag (dcn = dcm = 1), high fibre tension
(μ1 = 10) and a spatially varying initial fibre direction (28): a fibre alignment, a; b cell volume fraction, φn ;
cmedium volume fraction, φm ; d collagen volume fraction, φc . All other parameters and initial conditions
as in Table 1

cell distribution through enhanced cell diffusion in the fibre direction. The enhanced
diffusive effect is related to the increased strength of the forces exerted by the cells
on the fibres; it does not require the inclusion of anisotropic drag effects, and is
independent of the mechanical properties of the collagen.

For arbitrary cell seeding densities, however, the equations governing the model
must be solved numerically. Our results in Sect. 4 clearly demonstrate the importance
of the often-neglected mechanical interactions between cells and the ECM for pattern
formation in tissues. Changes to the initial fibre orientation in the collagen gel, the
relative importance of the cell force term versus the affinity for the close-packing
density, and the anisotropic mechanical properties of the collagen appear to have the
greatest influence (at least over the parameter ranges we studied), resulting in changes
to both the shape and orientation of the cell aggregates produced. The distribution of
the collagen and medium, and the orientation of the fibres were also strongly affected.
Thus the research presented here demonstrates the importance of these mechanisms in
pattern formation, serving as a “proof of principle” that behaviour qualitatively similar
to that seen in numerous biological systems can be generated in this way. However,
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Fig. 18 Simulation results at time t = 5.5 with anisotropic drag (dcn = dcm = 1), small fibre tension
(μ1 = 0.1), high extensional and shear viscosity in the fibre directionμ2 = μ3 = 10 and a spatially varying
initial fibre direction (28): a fibre alignment, a; b cell volume fraction, φn ; cmedium volume fraction, φm ;
d collagen volume fraction, φc . All other parameters and initial conditions as in Table 1

further experimental and theoretical work will need to be undertaken before our model
can be specialised to particular biological systems and used to make quantitative pre-
dictions. In particular, the mechanics of anisotropic materials such as collagen will
need to be much better understood. For the simple transversely isotropic viscous fluid
model used here, we need to know six parameters (μ∗

c , κ
∗
c and μ∗

i for i = 1, . . . , 4),
but at present an experimental protocol for measuring them has still to be developed.
In addition, for simplicity we have neglected the influence of cell proliferation and
chemical factors, although they play an important role in many tissue development
and regeneration processes. For example, in vasculogenesis and angiogenesis there is
evidence that endothelial cells respond chemotactically to vascular endothelial growth
factor, as outlined in Tosin et al. (2006). The interaction of chemical and mechanical
cues can therefore play a key role in tissue development and remodelling. Our mul-
tiphase modelling framework provides a solid basis for investigating these issues in
future work.
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Fig. 19 Simulation results at time t = 5.0 with anisotropic drag (dcn , dcm = 1), high fibre tension,
extensional and shear viscosity in the fibre direction μ1 = μ2 = μ3 = 10 and a spatially varying initial
fibre direction (28): a fibre alignment, a; b cell volume fraction, φn ; c medium volume fraction, φm ; d
collagen volume fraction, φc . All other parameters and initial conditions as in Table 1
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Appendix A: Approximation of the cell force, Fc

In this appendix, we give details of the calculation that leads to the leading-order
expression for the cell force given in Eq. (14). Note that we suppress time dependence
within this section for notational convenience.We begin by using the fact that x ′ = x+
ηξ , where η 	 1, to expand the terms in Eq. (13) which are evaluated at x′ as follows:

a
(
x′) = a(x) + η(ξ · ∇)a|x + O(η2), (31a)
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φn
(
x′) = φn (x) + η(ξ · ∇)φn|x + O(η2), (31b)

φc
(
x′) = φc (x) + η(ξ · ∇)φc|x + O(η2), (31c)

where the notation (ξ · ∇)a|x is intended to emphasise the fact that the directional
derivatives are evaluated at the point x.

On integration, the contribution of the leading-order terms in the integral is zero by
symmetry. Proceeding to next order, we find

Fc(x) = ηN+2
∫

Ω

F(|ξ |)ξ [φ2
c (2φn(a · ξ̂)[((ξ · ∇)a) · ξ̂ ]

+ (a · ξ̂)2(ξ · ∇)φn) + 2φnφc(a · ξ̂)2(ξ · ∇)φc] dN ξ, (32)

where ξ̂ = ξ/|ξ |, and φn , φc and a are evaluated at x (unless otherwise stated). In
component form we have

Fci = ηN+2
∫

Ω

F(|ξ |)ξi
[
φ2
c

(
2φnal ξ̂lξk

∂a j

∂xk
ξ̂ j + a j ξ̂ j al ξ̂lξk

∂φn

∂xk

)

+ 2φnφcal ξ̂la j ξ̂ jξk
∂φc

∂xk

]
dN ξ, (33)

or, equivalently

Fci = ηN+2
∫

Ω

F(|ξ |) 1

|ξ |2 ξiξ jξkξl Tjkl d
N ξ = Ai jkl(ξ)Tjkl(x), (34)

where Tjkl is independent of ξ , and is given by

Tjkl(x) =
(
a j

∂

∂xk
(φnφ

2
c ) + 2φnφ

2
c
∂a j

∂xk

)
al , (35)

and

Ai jkl =
∫

Ω

F(|ξ |) 1

|ξ |2 ξiξ jξkξl d
N ξ. (36)

Since Ai jkl is an isotropic integral, it must be of the form (Spain 1953)

Ai jkl = λ1δi jδkl + λ2δikδ jl + λ3δilδ jk . (37)

Furthermore, since Ai jkl = Aik jl = Ail jk , we deduce that

λ1 = λ2 = λ3 = λ∗. (38)

From Eqs. (36) and (37) we note that

Aiikl =
∫

Ω

F(|ξ |)ξkξl dN ξ = (N + 2) λ∗δkl , (39)
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and contracting over the remaining indices we obtain

N (N + 2)λ∗ =
∫

Ω

F(|ξ |)|ξ |2 dN ξ. (40)

Hence, on substituting Eq. (37) into Eq. (34), and on using the well-known properties
of the Kronecker delta and the fact |a| = 1, we find

Fc(x) = λ[2φnφ
2
c (a · ∇)a + aφ2

c (a · ∇)φn + φna((a · ∇)φ2
c )]

+ λ[φ2
c∇φn + φn∇(φ2

c )]
+ λ[2φnφ

2
c (∇ · a)a + φ2

c a(a · ∇)φn + φna(a · ∇φ2
c )], (41)

where we have assumed that λ = ηN+2λ∗ = O(1). A little algebra then yields

Fc(x) = 2λ

[
(a · ∇)(φnφ

2
c a) + φnφ

2
c a(∇ · a) + 1

2
∇(φ2

cφn)

]
. (42)
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