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Abstract In this paper we analyze the effects of introducing the fractional-in-space
operator into a Lotka-Volterra competitive model describing population super-
diffusion. First, we study how cross super-diffusion influences the formation of spatial
patterns: a linear stability analysis is carried out, showing that cross super-diffusion
triggers Turing instabilities, whereas classical (self) super-diffusion does not. In addi-
tion we perform aweakly nonlinear analysis yielding a system of amplitude equations,
whose study shows the stability of Turing steady states. A second goal of this contribu-
tion is to propose a fully adaptive multiresolution finite volume method that employs
shifted Grünwald gradient approximations, and which is tailored for a larger class
of systems involving fractional diffusion operators. The scheme is aimed at efficient
dynamic mesh adaptation and substantial savings in computational burden. A numeri-
cal simulation of the model was performed near the instability boundaries, confirming
the behavior predicted by our analysis.
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1 Introduction and formulation of the model

In population dynamics, a spatially homogeneous competitive system can bemodelled
with the so-called Lotka-Volterra system of differential equations written in the form

du

dt
= u(a1 − b11u − b12v),

dv

dt
= v(a2 − b21u − b22v).

In this model, u and v represent the population densities of two competitors, ai are
the birth (or generation) rates of the i−th population, the coefficients bii measure the
intra-population competitive effect of the two competitors, i = 1, 2, and b12, b21 stand
for a factor representing the inter-population competitive effects of u on v, and of v

on u, respectively.
As usual, the system variables are rescaled, giving

ū = b11
a1

u, v̄ = b22
a1

v, t̄ = a1t, a = a2
a1

, b = b21
b11

, c = b12
b22

,

and after dropping the bars, we find that the interaction of u and v is governed by the
following system of ordinary differential equations

du

dt
= u(1 − u − cv),

dv

dt
= v(a − bu − v).

The population densities within a spatially heterogeneous environment imply the
introduction of normal diffusive terms into the evolution system (see e.g. Okubo and
Levin 2002). At molecular level, classical diffusion arises as the result of standard
Brownian motion, and it is typically characterized by the dependence of the mean
square displacement of a randomly walking particle on time 〈(Δx)2〉 ∼ t . Apart from
classical (or normal) diffusion, molecules may undergo anomalous diffusion effects
(as discussed in e.g. Bouchard and Georges 1990; Metzler and Klafter 2000, 2004;
Sokolov et al. 2002; Golovin et al. 2008; Gambino et al. 2013). These phenomena (in
contrast to normal diffusion) are rather characterized by the more general dependence

〈
(Δx)2

〉
= 2dKαt

α,

where d is the (embedding) spatial dimension, Kα is a generalized diffusion constant,
and the exponent α is not necessarily an integer. For α = 1, anomalous diffusion
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reduces to normal diffusion, with the classical diffusion coefficient set to K1. For
α < 1(α > 1), the diffusion process is slower (faster) than normal diffusion, in
which case it is called sub-diffusive (resp., super-diffusive). An important limiting
case of super-diffusion corresponds to Lévy flights (Metzler and Klafter 2004), which
is a phenomenon occurring in systems where there are long jumps of particles, i.e.,
with a jump size distribution having infinite moments. In the context of population
dynamics, super-diffusion (rather than classical diffusion) has been employed as a
more appropriate way to describe the motion of animals under certain circumstances
(Viswanathan et al. 1996; Schmitt and Seuront 2001; Toner et al. 2005).

In this context, the present model is motivated by recent studies showing that the
front dynamics of the complex movement of populations (humans or animals), may
be driven by fractional Lévy flights (c.f. Buchanan 2008). Notice that Lévy flights are
super-diffusive, that is, they represent faster dispersion than purely Gaussian random-
walk. Patterns associated to Lévy flights have been observed in the movement of
different species ranging from albatrosses (Viswanathan et al. 1996), marine predators
(Sims et al. 2008), monkeys (Ramos-Fernandez et al. 2004), or mussels (Jager et al.
2011). In addition, some recent studies suggest that modern diseases (such as SARS
or avian influenza) cannot be represented by the classical reaction-diffusion systems
(where a Gaussian dispersion process is typically assumed). These models are only
applicable when each class of the population (e.g. the infective and susceptible) travels
short distances as compared to geographical scales. The aforementioned diseases can
spread around the world quickly (in a few weeks) and seem to follow Lévy-flight
mobility patterns (for an application, see Hufnagel et al. 2004).

Here the population density is assumed to solve a fractional-order diffusion equa-
tion.We also refer to Brockmann et al. (2006), where the authors show that the density
of bank notes originating from a given city is a solution of a particular fractional equa-
tion. They suggest that an epidemic spread could be modelled employing a similar
equation. Moreover, Brockmann (2009) proposes a SIR model that includes a frac-
tional diffusion.

To take into account the movement of populations with Lévy flight type, we are led
to the following fractional reaction diffusion system:

∂t u = d11∇γ u + d12∇γ v + u(1 − u − cv),

∂tv = d22∇γ v + v(a − bu − v).
(1.1)

Here d11 and d22 are the self super-diffusive coefficients, and d12 is the cross super-
diffusive coefficient. The so-called Weyl fractional operator ∇γ (1 < γ ≤ 2)
represents the super-diffusion, whose Fourier transform is ̂∇γ u(k) = −|k|γ û(k).
In one dimension, the Weyl operator is equivalent to the Riesz operator

∇γ u = − 1

2 cos(πγ /2)

(
Dγ

+u + Dγ
−u

)
,

Dγ
+u = 1

Γ (2 − γ )

d2

dx2

∫ x

−∞
u(ξ, t)

(x − ξ)γ−1 dξ,
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Dγ
−u = 1

Γ (2 − γ )

d2

dx2

∫ ∞

x

u(ξ, t)

(ξ − x)γ−1 dξ,

where Γ (·) stands for the Gamma function. In higher dimensions, the Weyl opera-
tor can be represented by the fractional Laplacian operator ∇γ = −(−Δ)γ/2, and
consequently system (1.1) can be written as

∂t u + d11(−Δ)γ/2u + d12(−Δ)γ/2v = u(1 − u − cv),

∂tv + d22(−Δ)γ/2v = v(a − bu − v).
(1.2)

In our model (1.2), the spatial dynamics are represented by a nonlocal differential
operator denoted (−Δ)α with α = 2/γ . We recall that Lévy flights spread proportion-
ally to time as t1/γ , whereas Gaussian motion spreads proportional to time in the form
t1/2. Hence the mean square displacement undergoing Lévy flights would grow faster
than Gaussian motion, at a rate of t2/γ . It is also noted that Lévy flights do not pos-
sess a finite mean squared displacement, whose physical significance is questioned as
particles with a finite mass should not execute long jumps instantaneously. However,
in some cases such as those outlined above, their description in terms of Lévy flights
do correspond to physically-based principles (see also Metzler and Klafter 2000).

Recall that in classical reaction-diffusion systems the density of populations follows
a Gaussian diffusive process (the distribution of random displacements has a finite
variance), as a consequence of the Central Limit Theorem. In our study, we actually
assume that the displacement of populations does not necessarily have a finite variance
and so the standard version of thementioned theorem cannot be applied. In this case the
density of populations tends towards a stable Lévy flight with exponent α (seeMetzler
and Klafter 2000; Hanert et al. 2011 for more details). Based on e.g. thermodynamic
considerations, it is possible to assume dependence of the model coefficients (and in
particular, the cross-diffusion term) on the concentration of u. After performing the
Taylor expansion of the physical cross-diffusion around the positive equilibrium, we
end up with the cross-diffusive term d12∇γ v as a linear term. In this context, since
our main objective is to consider the dynamical behavior of the system around the
stationary state, we postulate that looking only at the linear cross-diffusion d12∇γ v in
Eq. (1.1) will suffice.

Pattern formation in reaction diffusion systems with anomalous diffusion has
recently received considerable attention (Gafiychuk and Datsko 2006; Henry et al.
2005; Henry and Wearne 2002; Langlands et al. 2007; Weiss 2003; Golovin et al.
2008; Gambino et al. 2013). For instance, it was shown that sub-diffusion suppresses
the formation of Turing patterns (Weiss 2003). In Yadav and Horsthemke (2006),
Yadav et al. (2008), Nec and Nepomnyashchy (2007) and Nec and Nepomnyashchy
(2008) the authors consider sub-diffusive reaction-diffusion systems and rigorously
derive the conditions for Turing instabilities. It was also found in one dimensional
systems that anomalous heat conduction can happen as a consequence of the anom-
alous diffusion (Li and Wang 2003). Additionally, in systems with Lévy flights, the
emergence of spiral waves and chemical turbulence from the nonlinear dynamics of
oscillating reaction diffusion patternswas investigated inNec et al. (2008). The authors
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in Golovin et al. (2008) explored the effects of super-diffusion on pattern formation
and pattern selection in the substrate-depleted Brusselator model, and found that Tur-
ing instability can occur even when diffusion of the inhibitor is slower than that of the
activator. However, results on the nonlinear dynamics and Turing pattern selection in
reaction diffusion systems with cross super-diffusion remain limited.

The effect of pattern formation of theLotka-Volterra competitivemodelwith normal
diffusion and cross diffusion has been extensively investigated (see Horstmann 2007;
Jüngel 2010 for some reviews). In Lou and Ni (1996) and Lou et al. (2001), the authors
show that the Lotka-Volterra competitive system only with normal diffusion does not
meet the conditions for a Turing instability to occur, whereas cross-diffusion drives the
onset of Turing instability. In contrast, here we consider the effect of cross Lévy flights
and super-diffusion on Turing patterns, and focus on the mode of pattern formation
and the stability of the emerging patterns.

The remainder of this paper has been structured in the following way. In Sect. 2
we develop a linear stability analysis of the steady state of the system, which in turn
provide the Turing parameter space that identifies regions where Turing bifurcations
are expected. Section 3 is devoted to the derivation of a set of coupled amplitude
equations, obtainedbyaweaklynonlinear analysis.Next, an analysis of these equations
yields sufficient conditions to ensure so-called super-critical bifurcations. We also
show how the stability of the Turing steady states is affected by these conditions. A
fully adaptive finite volume –multiresolution method for the space-time discretization
of (1.2) is proposed and discussed in Sect. 4. A simple numerical example is performed
to confirm the results of the analysis. The weak solvability analysis of system (1.2)
is also analyzed, and condensed in the appendix of the manuscript. We use the well-
known Faedo-Galerkin strategy and the Kruzhkov compactness result to establish the
existence of weak solutions. Our paper closes with a brief discussion in Sect. 5.

2 Linear stability analysis

In this section, we provide essential conditions to drive the Turing bifurcation by
analyzing the linear stability of the uniform equilibrium state of (1.1). Notice that
system (1.1) has a unique positive equilibrium (u∗, v∗) = ( 1−ac

1−bc ,
a−b
1−bc ) if and only if

b < a <
1

c
. (2.1)

Moreover, one can readily verify that (2.1) ensures that the positive equilibrium
(u∗, v∗) is stable under any spatially homogeneous perturbation.

In order to carry out the linear stability analysis of (1.1), we set ū = u − u∗,
v̄ = v − v∗, and substitute them in the system (1.1). By dropping the bars, we write
the Taylor expansion form of the system (1.1) at the positive equilibrium as follows:

∂t u = d11∇γ u + d12∇γ v − u∗u − cu∗v − u2 − cuv,

∂tv = d22∇γ v − bv∗u − v∗v − buv − v2.
(2.2)
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Let us further assume that the perturbation of (1.1) is periodic with respect to time.
Hence the conditions of the classical Fourier theorem are met, and we seek the general
solution

(
u
v

)
=
(
c1
c2

)
exp(σ t + ik · x) (2.3)

to the linearization of the problem (2.2) as a superposition of normal modes. Here
σ is the growth rate of the perturbation in time t , i denotes the imaginary unit, with
i2 = −1, and k is its wave vector. Suggested by the definition of the Weyl fractional
operator ∇γ , we focus on the time integration in Fourier space. Substituting (2.3) into
the linearization of Eq. (2.2), we obtain the following matrix equation

(
σ + u∗ + d11kγ cu∗ + d12kγ

bv∗ σ + v∗ + d22kγ

)(
c1
c2

)
=
(
0
0

)
,

where the Euclidean norm k = |k| is the wavenumber of the perturbation. Therefore,
we are left to the dispersion relation

σ 2 + g(k)σ + h(k) = 0,

where

g(k) := u∗ + v∗ + (d11 + d22)k
γ ,

h(k) := d11d22k
2γ + (

d11v
∗ + d22u

∗ − d12bv
∗) kγ + (1 − bc)u∗v∗.

Westress that the corresponding equilibriumcan lose its stability via Turing bifurca-
tion if and only if h(k) ≤ 0.Moreover, note that in the absence of cross super-diffusion
one has h(k) > 0, which implies that in this particular case, only the cross super-
diffusion effect can induce Turing bifurcation. Notice that h(k) has a single minimum
(kc, dc12), which is attained whenever

dc12 = d11v∗ + d22u∗ + 2
√

(1 − bc)d11d22u∗v∗
bv∗ ,

kc =
(√

(1 − bc)u∗v∗
√
d11d22

) 1
γ

.

(2.4)

Summarizing, we have obtained a Turing instability threshold dc12, and we have
identified the critical value of the wave number kc. It is noticed that the behavior
of the supper-diffusive system is qualitatively the same as that of the system with
normal diffusion. Relation (2.4) represents the bifurcations occurring in the parameter
region spanned by the parameters a, c and d12. These regimes are also depicted in
Fig. 1. All Turing patterns are driven by parameters chosen in this region. In addition,
Fig. 2 displays the real part of the eigenvalue corresponding to three different sets of
parameters, as a function of thewavenumber, andwenotice that the activewavenumber
changes with the order of the fractional diffusion γ .
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Fig. 1 Turing instability boundaries in the (a, d12) and (c, d12) planes. The instability region Tinst lies
above the curves. The other parameters are b = 1.5, d11 = 1, d22 = 1

Fig. 2 Dispersion relation of
the system (1.1) for three
different γ = 1, 1.5, 2. The
other parameters are a = 2.5,
b = 1.5, c = 0.2, d11 = 1,
d22 = 1, and d12 = 1.8
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3 Diamond planform weakly nonlinear stability analysis

In order to study the dynamics of Turing patterns, we perform here a weakly nonlinear
analysis of system (2.2) near the Turing instability threshold. In particular, we aim
at analyzing the pattern selection mechanisms associated to diamonds and stripes.
Let us consider system (2.2) defined in the whole two-dimensional space R2. Weakly
nonlinear analyses are typically based on the fact that Turing bifurcations are able to
destabilize the homogeneous equilibrium, but only in case of perturbations with wave
numbers close to the critical value kc. In regimes near to the Turing onset d12 = dc12,
the solutions can be described by a system of three active resonant pairs of modes
(kj,−kj), for j = 1, 2, 3. Each pair of modes form angles of 2π/3 and |kj| = kc.
This fact implies that solutions of system (2.2) can be expanded as

(
u
v

)
=

3∑
j=1

[
Aj exp

(
ikj · x) + Āj exp

(−ikj · x)] , (3.1)
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where Aj and its conjugate Āj stand, respectively, for the amplitudes associated with
the modes kj and −kj, and Aj ≡ (Au

j , A
v
j )
T .

We introduce a scaled slow time variable T = ε2t , and expand both fields u and v,
as well as the bifurcation parameter d12, in the form

(
u
v

)
= ε

(
u1
v1

)
+ ε2

(
u2
v2

)
+ ε3

(
u3
v3

)
+ · · · ,

d12 − dc12 = μ2ε
2 + O

(
ε3
)

.

(3.2)

Since the amplitude A is a variable that undergoes slow changes, it follows that

∂tA = ε2
∂A
∂T

+ O
(
ε3
)

.

Substituting Eq. (3.2) into the system (2.2), we have

ε3
∂

∂T

(
u1
v1

)
= εLc

(
u1
v1

)
+ ε2Lc

(
u2
v2

)
+ ε3Lc

(
u3
v3

)
− ε3μ2k

γ
c M

(
u1
v1

)

−ε2
(
u21 + cu1v1
bu1v1 + v21

)
− ε3

(
2u1u2 + cu1v2 + cu2v1
bu1v2 + bu2v1 + 2v1v2

)
,

where the involved matrices are defined as

Lc =
(−u∗ + d11∇γ −cu∗ + dc12∇γ

−bv∗ −v∗ + d22∇γ

)
, M =

(
0 1
0 0

)
.

After collecting like powers of ε, we obtain the following systems, arranged according
to the orders ε j , j = 1, 2, 3

O(ε) : Lc

(
u1
v1

)
= 0,

O(ε2) : Lc

(
u2
v2

)
=
(
u21 + cu1v1
bu1v1 + v21

)
,

O(ε3) : Lc

(
u3
v3

)
= ∂

∂T

(
u1
v1

)
+ μ2k

γ
c M

(
u1
v1

)

+
(
2u1u2 + cu1v2 + cu2v1
bu1v2 + bu2v1 + 2v1v2

)
.

(3.3)

Our next goal is to describe the appearance of both diamonds and stripped spatial
distributions as well as their spatio-temporal interactions. Since Lc is the linear opera-
tor of the system at the Turing instability threshold, it holds that (u1, v1)T is the linear
combination of the eigenvectors corresponding to the null eigenvalue. Therefore, at
O(ε) the solution of the system exhibits the following structure
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(
u1
v1

)
=
(−K1

1

) 3∑
j=1

Wj exp(ikj · x) + c.c.,

where

K1 = v∗ + √
(1 − bc)u∗v∗d22/d11

bv∗ ,

and Wj is the amplitude of the mode exp(ikj · x) when the system is under the first-
order perturbation. Its form is determined by the perturbation term of highest order.
The addition of the complex conjugate c.c. allows (u1, v1)T to be real.

Next, we turn to the term of O(ε2). Since the right-hand side does not exhibit
resonance-related terms, the solution is given simply by

(
u2
v2

)
=
(
U0
V0

)
+
(
Uj

Vj

) 3∑
j=1

exp
(
ikj · x) + c.c.

On the other hand, substitution of the above equation into the second equation of
problem (3.3) yields

Lc

(
U0

V0

)
+

3∑
j=1

exp
(
ikj · x)Lc

(
Uj

Vj

)
+

3∑
j=1

exp
(−ikj · x)Lc

(
Ū j

V̄ j

)

= (|W1|2 + |W2|2 + |W3|2
) ( 2K 2

1 − 2cK1

2 − 2bK1

)
+

3∑
j=1

O(exp(2ikj · x))

+ O(exp(i(k1 − k2) · x)) + O(exp(i(k2 − k3) · x)) + O(exp(i(k3 − k1) · x)) + c.c.,

and after collecting terms of orders O(1) and O(exp(ikjx)), we obtain

(
U0
V0

)
=
(
|W1|2 + |W2|2 + |W3|2

)(−K2
1

)
,

K2 = v∗2 + (v∗ − 2)
√

(1 − bc)u∗v∗d22/d11
bv∗2 , Uj = −K1Vj .

We now turn to the term of O(ε3). According to the Fredholm solvability condition,
the vector function of the right-hand side must be orthogonal with the zero eigenvalues
of the operator L+

c in order to ensure the existence of a nontrivial solution to this
equation, where L+

c is the adjoint operator of Lc. The nontrivial kernel of the operator
L+
c is

(
1

−K3

)
exp

(−ikjx
)
, K3 = u∗ + √

(1 − bc)u∗v∗d11/d22
bv∗ .

123



1450 M. Bendahmane et al.

Substituting the solution (u1, v1)T and (u2, v2)T into the problem containing the
O(ε3) term, and applying Fredholm solvability condition, we can assert that

−(K1 + K3)
∂W1

∂T
= − μ2k

γ
c W1 − [2K1(K1 − c) − 2K3(1 − bK1)]

(
W̄2V̄3 + V̄2W̄3

)

− [2K1K2 − cK1 − cK2 − K3(2 − bK1 − bK2)]W1
(|W1|2

+ |W2|2 + |W3|2
)
.

(3.4)

In view of (3.1) and (3.2), the amplitude Av
j can be expanded as

Av
j = εWj + ε2Vj + O

(
ε3
)

, j = 1, 2, 3,

∂t A
v
j = ε3

∂Wj

∂T
+ O

(
ε4
)

.

Multiplying (3.4) by −ε3, we get

(K1 + K3)∂t A
v
1 = ε2μ2k

γ
c A

v
1 + [2K1(K1 − c) − 2K3(1 − bK1)] Ā

v
2 Ā

v
3

−[
cK1 + cK2 + K3(2 − bK1 − bK2)

−2K1K2
]
Av
1

(∣∣Av
1

∣∣2 + ∣∣Av
2

∣∣2 + ∣∣Av
3

∣∣2) . (3.5)

In addition, multiplying (3.5) by 1
kγ
c d

c
12
, we have the following amplitude equation

τ0∂t A
v
1 = μAv

1 + h Āv
2 Ā

v
3 −

[
g1

∣∣Av
1

∣∣2 + g2
(∣∣Av

2

∣∣2 + ∣∣Av
3

∣∣2)] Av
1, (3.6)

where μ = d12−dc12
dc12

is a normalized distance to the Turing instability threshold, and

τ0 = K1+K3
kγ
c d

c
12

is a typical relaxation time. Moreover,

h = 2K1(K1 − c) − 2K3(1 − bK1)

kγ
c dc12

,

g1 = g2 = cK1 + cK2 + K3(2 − bK1 − bK2) − 2K1K2

kγ
c dc12

. (3.7)

The remaining equations for Av
2 and Av

3 can be obtained analogously, through trans-
formation of the subscript of Av .

In order to study the pattern selection, we need to analyze further the amplitude
Eq. (3.6), where each amplitude can be decomposed into a mode ρ j = |Av

j | and a
corresponding phase angleϕ j .We proceed to rewrite (3.6) and the other two associated
amplitude equations for Av

j = ρ j exp(iϕ j ) in the following form:

τ0∂tΦ = −h
ρ2
1ρ

2
2 + ρ2

1ρ
2
3 + ρ2

2ρ
2
3

ρ1ρ2ρ3
sinΦ, (3.8)
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τ0∂tρ1 = μρ1 + hρ2ρ3 cosΦ − g1ρ3 − g2
(
ρ2
2 + ρ2

3

)
ρ1,

τ0∂tρ2 = μρ2 + hρ1ρ3 cosΦ − g1ρ2 − g2
(
ρ2
1 + ρ2

3

)
ρ2,

τ0∂tρ3 = μρ3 + hρ1ρ2 cosΦ − g1ρ3 − g2
(
ρ2
1 + ρ2

2

)
ρ3,

whereΦ = φ1+φ2+φ3. The above equations imply that when the system is at steady
state, the sum of the amplitude-phases only attains two values Φ = 0 and Φ = π .
The fact that ρ j > 0 for j = 1, 2, 3, implies that in the case Φ = 0, the solutions of
Eq. (3.8) are stable when h > 0; whereas for Φ = π , the solutions of Eq. (3.8) are
stable when h < 0. If we consider only the stable solutions of Eq. (3.8), then the mode
equations can be recast in the form:

τ0
dρ1
dt

= μρ1 + |h|ρ2ρ3 − g1ρ
3
1 − g2

(
ρ2
2 + ρ2

3

)
ρ1, (3.9)

τ0
dρ2
dt

= μρ2 + |h|ρ1ρ3 − g1ρ
3
2 − g2

(
ρ2
1 + ρ2

3

)
ρ2, (3.10)

τ0
dρ3
dt

= μρ3 + |h|ρ1ρ2 − g1ρ
3
3 − g2

(
ρ2
1 + ρ2

2

)
ρ3. (3.11)

Notice that the quadratic terms in (3.9)–(3.11) are positive, which is the main cause of
instability in the linear term. In order to ensure that mode equations possess a steady
state solution, the coefficients of cubic terms must be positive, which translates in
imposing the following conditions

cK1 + cK2 + K3(2 − bK1 − bK2) > 2K1K2,

that in turn yield super-critical Turing bifurcations in system (1.1). Otherwise, the
weakly nonlinear analysis requires to be extended by expanding the Taylor series in
(3.3) up to the fifth order so that the instability is covered [that is, (3.8) holds]. The
latter case corresponds to the so-called sub-critical Turing bifurcation, which we do
not consider in the present paper. Figure 3 displays the Turing bifurcation diagram in
the (b, a) plane.

In order to assess the stability of the mode equations, we add a perturbation
(δρ1, δρ2, δρ3) to the steady state (ρ1, ρ2, ρ3) and substitute it into Eqs. (3.9)–(3.11).
Retaining the linear terms, we end up with the linear perturbation equations:

τ0
d

dt

⎛
⎝

δρ1
δρ2
δρ3

⎞
⎠ = J

⎛
⎝

δρ1
δρ2
δρ3

⎞
⎠ ,

where J =
(

μ − 3g1ρ
2
1 − g2(ρ

2
2 + ρ23 ) |h|ρ3 − 2g2ρ1ρ2 |h|ρ2 − 2g2ρ1ρ3

|h|ρ3 − 2g2ρ1ρ2 μ − 3g1ρ
2
2 − g2(ρ

2
1 + ρ23 ) |h|ρ1 − 2g2ρ2ρ3

|h|ρ2 − 2g2ρ1ρ3 |h|ρ1 − 2g2ρ2ρ3 μ − 3g1ρ
2
3 − g2(ρ

2
1 + ρ22 )

)
.

(3.12)

We now focus on the stability of Turing patterns, for which we separate the discussion
into two cases depending on the shape of the spatial distributions.
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Fig. 3 Turing bifurcation
diagram. The shaded region
represents the super-critical
states, whereas the white region
is sub-critical zone. The
remaining parameters are
c = 0.2, d11 = 1, and d22 = 1

b
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0.5
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Subcritical

Supercritical

Case (I) Striped patterns correspond to

(ρ1, ρ2, ρ3) = (ρ, 0, 0),where ρ = √
μ/g1. (3.13)

Substituting (3.13) into the perturbation Eq. (3.12), we have

τ0
d

dt

⎛
⎝

δρ1
δρ2
δρ3

⎞
⎠ =

⎛
⎝

−2μ 0 0
0 μ(1 − g2/g1) |h|√μ/g1
0 |h|√μ/g1 μ(1 − g2/g1)

⎞
⎠
⎛
⎝

δρ1
δρ2
δρ3

⎞
⎠ . (3.14)

In view of g1 = g2 defined in (3.7), we have that the three eigenvalues of system
(3.14) are

λ1 = −2μ < 0, λ2 = −|h|√μ/g1 < 0, λ3 = |h|√μ/g1 > 0,

and therefore striped patterns are not stable andwill eventually vanish in the long term.
Case (II) Diamond-shaped patterns correspond to

(ρ1, ρ2, ρ3) = (ρ, ρ, ρ),where ρ = |h| ± √
h2 + 4(g1 + 2g2)μ

2(g1 + 2g2)
. (3.15)

Substituting (3.15) into the perturbation Eq. (3.12), we have

τ0
d

dt

⎛
⎝

δρ1
δρ2
δρ3

⎞
⎠ =

⎛
⎝

α β β

β α β

β β α

⎞
⎠
⎛
⎝

δρ1
δρ2
δρ3

⎞
⎠ , (3.16)

where α = μ − 5g1ρ2, β = |h|ρ − 2g1ρ2. The characteristic equation of (3.16) is

(λ − α)3 − 3β2(λ − α) − 2β3 = 0,
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and so the three eigenvalues of system (3.14) are

λ1 = λ2 = μ − |h|ρ − 3g1ρ
2, λ3 = μ + 2|h|ρ − 9g1ρ

2. (3.17)

Substituting ρ = |h|±
√

h2+4(g1+2g2)μ
2(g1+2g2)

and g1 = g2 into (3.17), we have

λ1 = λ2 = − h2

3g1
< 0, λ3 = −12g1μ + h2 ± |h|√h2 + 12g1μ

6g1
< 0.

Therefore, diamond-shaped patterns are stable whenever μ > − h2
12g1

.

4 Numerical examples and finite volume method and
multiresolution-based adaptivity

4.1 Preliminaries and admissible meshes

Let us consider a discretization of the time interval (0, T ) by setting tn := nΔt for
n ∈ {0, . . . , N }, where N is the smallest integer such that NΔt ≥ T . By an admissible
mesh for Ω we will refer to a family T of control volumes of maximum diameter h
and a family of points (xK )K∈T satisfying the following properties (cf. Eymard et al.
2000, Def. 5.1). For a given finite volume K ∈ T , xK is its center and N (K ) the
set of its neighbors (control volumes sharing a common edge with K ). We denote
by E(K ) the set of edges of K , Eint(K ) is the restriction to those in the interior of
Ω and Eext(K ) = E(K )\Eint(K ) is the set of edges of K lying on ∂Ω . For every
L ∈ N (K ), by σ = K |L (σ = K |∂Ω , respectively) we denote the interface between
K and L (between K and ∂Ω , respectively). By nK ,σ we denote the unit normal
vector to σ = K |L (σ ∈ Eext(K ), respectively) pointing from K to L (from K to ∂Ω ,
respectively). Moreover, |K | stands for the two-dimensional measure of K and |σ | for
the one-dimensional measure of σ ∈ E . It is also assumed that

The segment xK xL is orthogonal to σK ,L for every K , L ∈ T . (4.1)

4.2 Multiresolution setting

We now introduce a hierarchy of nested admissible meshes T 0 ⊂ · · · ⊂ T H forming
a graded tree Λ, in which each grid T l is a compound of control volumes Kl of the
level l, l = 0, . . . , H , where l = 0 corresponds to the coarsest and l = H to the
finest level of the tree Λ. In order to define a multiresolution framework (Berres and
Ruiz-Baier 2011), for a given control volume Kl we define a refinement set by

RKl := {
Ll+1
i

}
i ,
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where Ll+1
i denotes a control volume at the resolution level l + 1, Ll+1

i ⊂ Kl . By
definition of the nested hierarchy, it holds that

Kl :=
#RKl⋃
i=1

Ll+1
i .

For x ∈ Kl the scale box function is defined as ϕKl (x) := |Kl |−1χKl (x) (where χ is
the characteristic function), and therefore the average of any function w(t) ∈ L1(Ω)

over Kl can be recast as wKl (t) = 〈
w(t), ϕKl

〉
L1(Ω)

.
To move between resolution levels, certain transfer operators are needed. With the

help of these maps, one can determine an invertible transformation between finite
volumes on level l = H , and the set formed by finite volumes on the level l = 0 and
a sequence of wavelet coefficients. To switch from fine to coarser levels, a projection
operator for cell averages and box functions is defined by

w(t)Kl =
∑

Ll+1
i ∈RKl

|Ll+1
i |

|Kl | w(t)Ll+1
i

, ϕKl =
∑

Ll+1
i ∈RKl

|Ll+1
i |

|Kl | ϕLl+1
i

,

whereas to move from coarse to fine levels we define a polynomial interpolation

w̃(t)Kl+1 =
∑

T l∈Sl
K

glK ,Tw(t)T l .

The setSl
K is a stencil of interpolation (of order s), and glK ,T are prediction coefficients.

Further details on the precise definition of these coefficients and stencils are given in
e.g. Bendahmane et al. (2009). For x ∈ Kl+1, and depending on the choice of the
predictor map, the wavelet function is defined as

ψKl , j = ϕLl+1
i

−
s∑

m=−s

γ̃i+mϕLli+m
for j = 1, . . . , #RKl ,

where Ll+1
i ∈ RKl , and the value of each γ̃i+m depends on the coefficients glK ,T of the

prediction operator. The difference between the cell average and the predicted value
for the scalar w(t) is called wavelet coefficient and is defined by

dw
Kl := ∣∣w(t)Kl − w̃(t)Kl

∣∣= ∣∣〈w(t), ψKl 〉∣∣.

Data compression is achieved by discarding all information of control volumes where
the local wavelet coefficient is lower than a level-dependent tolerance, i.e.,

dw
Kl < εl , l = 0, . . . , H. (4.2)
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These level-dependent tolerances can be defined so that the error due to thresholding
is of the same order as the discretization error induced by the baseline finite volume
formulation, therefore preserving the order of the base scheme (Berres and Ruiz-Baier
2011).

Remark 1 The key concept of the fully adaptive strategy of multiresolution consists
in defining an evolving set of leaves L(Λ) of the tree Λ, formed by all tree nodes
Kl that are not discarded by the thresholding defined in (4.2), and such that all cells
in RKl satisfy (4.2). Then, the underlying discrete scheme is first defined on L(Λ).
However, L(Λ) is not an admissible mesh in general, and therefore an auxiliary set of
nodes, called virtual leaves is required in order to fulfill (4.1).

The set of virtual leaves consists in cells of Λ\L(Λ) that for a given Kl ∈ L(Λ),
belong to N (Kl) ∩ T l . We will denote by L̃(Λ) the set formed by leaves and virtual
leaves. In addition, the setΛd of cells marked as deletable consists in all elements that
satisfy (4.2). Virtual leaves are needed to evaluate numerical fluxes on each leaf.

4.3 Multiresolution: finite volume formulation

The baseline finite volume discretization of (1.2) is based on the so-called shifted
Grünwald approximation of local gradients (see e.g. Meerschaert and Tadjeran 2006;
Yang et al. 2010). Irrespective of the specific form of the gradient approximation, the
property of local flux conservation yields the following expression for a first order
finite volume approximation of the fractional diffusion operator applied to a generic
scalar field w over the finest-level cell K H at time tn :

− ˜Δγ/2 := −Δγ/2wn
K H ≈ −

∑

Li∈H(K H )

gγ,Li

|σK H ,Li
|

dK H ,Li

(
wn

Li
− wn

K H

)
, (4.3)

where gγ,Li ,H are, respectively, particular weights and approximation stencil which
we will precisely defined in terms of Cartesian grids, for sake of clarity. Let us assume
a square domain Ω discretized into Nx × Ny equally sized boxes of area hxhy , and
notice that (4.3) can be written as

−˜Δγ/2wn
i j = − 1

hγ
x

i+1∑
k=0

gγ,kw
n
i−k+1, j − 1

hγ
y

j+1∑
l=0

gγ,lw
n
i, j−l+1,

where gγ,m := (−1)m
(

γ

m

)
, (see also Concezzi and Spigler 2012). These considera-

tions imply that the fully explicit Euler FV discrete analogue of (1.2) defined on the
finest mesh reads: Starting from a L2−average of the initial data

u0K H = 1

|K H |
∫

K H
u0(x) dx, v0K H = 1

|K H |
∫

K H
v0(x) dx, ∀K H ∈ T H ,
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and for every n = 0, . . ., recursively find un+1
K H , vn+1

K H such that

|K H |u
n+1
K H − un

K H

Δt
− d11˜Δγ/2unK H − d12˜Δγ/2vnK H = |K |Fn

K H ,

|K H |v
n+1
K H − vn

K H

Δt
− d22˜Δγ/2vnK H = |K |Gn

K H ,

(4.4)

where Fn
K H ,Gn

K H are explicit approximations of the reaction terms over each control
volume

1

|K H |
∫

K
F
(
u(x, tn), v(x, tn)

)
dx,

1

|K H |
∫

K
G
(
u(x, tn), v(x, tn)

)
dx,

and are given by

Fn
K H = F

(
unK H

+
, vnK H

+)
, Gn

K H = G
(
unK H

+
, vnK H

+)
.

We stress that if Kl is a leaf, then the unknowns are computed from theMRFVmethod
(4.4), whereas if Kl is a virtual leaf, the values of each species concentration are simply
obtained by the MR transform of their values at lower refinement levels.

4.4 Numerical examples

For numerically studying the pattern formation of system (1.1), it suffices to consider
the dynamics induced by small-amplitude perturbations to the homogeneous steady
state. The domain is confined to the square Ω = [0, 10]× [0, 10], and it is discretized
using a Cartesian mesh consisting of 262, 144 cells in the highest resolution level
H = 9, and the time step is Δt = 0.0025. As in Sect. 2, the model parameters are set
to γ = 1, a = 2.5, b = 1.5, c = 0.2, d11 = d22 = 1, d12 = 1.8, and the reference
tolerance required for the thresholding algorithm is fixed to εR = 0.0001. The initial
data is taken as

u(x, 0) = u∗ + η1(x), v(x, 0) = v∗ + η2(x), (4.5)

where η1 ∈ [−0.05, 0.05] and η2 ∈ [−0.025, 0.025] are uniformly distributed random
perturbations and (u∗, v∗) is the equilibrium state. No-flux boundary conditions are
applied for each problem, representing that the species do not leave the domain. The
time evolution (snapshots at early, moderate, and advanced times) of the perturbed
initial state (4.5) is displayed in Fig. 4, where we can observe convergence to diamond-
shaped spatial patterns.Note that in the case of normal diffusion, the system is expected
to exhibit a regime of self-replicating spots, as discussed in e.g. Pearson (1993). We
also depict sketches of the meshes generated by the multiresolution strategy (see the
bottom row of Fig. 4), which after successive local refinement and coarsening clearly
identify the zones of high solution gradients. The multiresolution method also allows
substantial reduction in computational burden due to the fastMR transform and graded
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Fig. 4 Snapshots at t = 10, 200, 1500 (left, center, right, respectively) of the Turing pattern formation
for species u, v (top and middle, respectively) in the case where the order of Weyl fractional operator is
γ = 1. The employed parameters are a = 2.5, b = 1.5, c = 0.2, d11 = d22 = 1, d12 = 1.8. The bottom
panels exhibit snapshots of the mass center of leaves in the adaptively refined meshes generated with the
multiresolution algorithm with a global threshold of εR = 0.0001

tree structure (Bendahmane et al. 2009). We also present an analogous test where we
have onlymodified the order of the fractional diffusion to γ = 1.5, andwe can observe
some differences in terms of spatial distribution of patterns. The approximate solutions
along with fully adaptive meshes are presented in Fig. 5. In particular we observe a
faster arrangement of spatial structures than those shown in Fig. 4.

In addition, the amplitude of the modes in the two-dimensional k-space can be
observed employing the amplitude spectrum of the solution, computed as follows for
a generic scalar field wh :

S(wh) := log

{∣∣∣∣J0
(
Fh(wh)

)∣∣∣∣
}
,

where Fh denotes the two-dimensional discrete Fourier transform and J0 is a shift
operator that translates the zero frequency component to the center of the spectrum.
Figure 6 depicts these spectra for the solutions of both tests displayed in Figs. 4
and 5.
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Fig. 5 Snapshots at t = 10, 200, 1500 (left, center, right, respectively) of the Turing pattern formation for
species u, v (top andmiddle, respectively) in the case where the order ofWeyl fractional operator is γ = 1.5.
The remaining parameters are chosen as in the previous example. The bottom panels show snapshots of the
mass center of leaves in the adaptively refined meshes generated with the multiresolution algorithm with a
global threshold of εR = 0.0001

5 Concluding remarks

We have introduced the Lévy flights type of super-diffusion into a Lotka-Volterra
competitive model, which means that the species jump length has a heavy tailed
distribution. Even if pattern formation studies for the super-diffusive reaction diffusion
system are numerous (Viswanathan et al. 1996; Schmitt and Seuront 2001; Toner et al.
2005), up to the authors’ knowledge, the specific role of super cross-diffusion has not
been studied in detail. Our results show that without super cross-diffusion, the system
lacks of an inhomogeneous steady state. In contrast, the presence of super cross-
diffusion drives the onset of Turing instabilities. We have determined a threshold
value for the super cross-diffusion coefficient, in order to determine the stability of
Turing patterns. Comparing sub-diffusive with normal diffusive models, we conclude
that changes occur not only regarding the shapes of the obtained Turing patterns,
but also on the wavenumber: that of sub-diffusive models is less than the one in
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Fig. 6 Snapshots at t = 10, 200, 1500 (left, center, right, respectively) of the Fourier spectrum of species
u, v in the case where the order of Weyl fractional operator is γ = 1 (top figures) or γ = 1.5 (last two
rows)

normal diffusive models. An immediate application of these observations from the
viewpoint of biology, is that when the inter-population competition is larger than the
intra-population competition, the reached inhomogeneous steady state is stable.
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through the research Grant PP00P2_144922; and CT acknowledges partial support by the PRCGrant NSFC
11201406 and by theQinglan Project. Finally, we thank the helpful remarks by an anonymous referee, which
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Appendix

In this appendix we sketch an existence proof for the fractional reaction-diffusion
system (1.2). Note that in Baeumer et al. (2007), the authors study a fractional equation
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of type ∂t u = ∇γ u + f (u). They prove existence of so-called mild solutions (the
solution in the sense of semi-group theory) by assuming f Lipschitz continuous and
a more regular initial condition u0. In comparison to Baeumer et al. (2007), our proof
is based on introducing an approximation system to which we can apply the Faedo-
Galerkin scheme. To prove convergence toweak solutions of the approximate solutions
we utilize monotonicity and compactness methods.Moreover, since our weak solution
(u, v) is only bounded in L2 (because the initial datum (u0, v0) is only bounded in
L2), then the source terms are not Lipschitz continuous (they are nonlinear functions
in u and v).

LetΩ be a bounded open subset ofRd (d = 2, 3) with a smooth (sayC2) boundary
∂Ω . For 1 ≤ q < ∞ and X is a Banach space, then Lq(0, T ; X) denotes the space of
measurable function u : (0, T ) → X for which t �→ ‖u(t)‖X ∈ Lq(0, T ). Moreover,
C([0, T ]; X) denotes the space of continuous functions u : [0, T ] → X for which
‖u‖C([0,T ];X) := maxt∈(0,T ) ‖u(t)‖X is finite.

The Fourier transform û of a tempered distribution u(x) on Ω is defined by

û(k) = 1

(2π)d

∫

Ω

exp(−ik · x)u(x) dx .

Note that the fractional diffusion operator Λγ can be identified with the Fourier trans-
form

̂Λγ u(k) = |ik|γ û(k),

for γ ∈ R. We denote by Hγ (Ω) the non-homogeneous fractional Sobolev space of
functions u such that

‖u‖Hγ (Ω) =
⎛
⎝∑

k∈Zd

(
1 + |k|2

)γ ∣∣û(k)
∣∣2
⎞
⎠

1
2

< ∞.

The homogeneous fractional Sobolev space of functions u is denoted by H̃γ (Ω) given
by

‖u‖H̃γ (Ω)
=
⎛
⎝∑

k∈Zd

|k|2γ ∣∣û(k)
∣∣2
⎞
⎠

1
2

< ∞.

Next, we define −Δ : H1(Ω) → L2(Ω) with domain:

Dom(−Δ) =
{
u ∈ H1(Ω) such thatΔu ∈ L2(Ω)

}
.

Note that the operator A = −Δ is positive, unbounded, closed and its inverse is
compact. This implies

Aw� = λ� w�,
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for w� ∈ Dom(−Δ), where {w�}∞�=1. are the eigenfunctions (orthogonal basis of
H1(Ω)) with the corresponding eigenvalues {λ�}∞�=1.
With this spectral decomposition the fractional powers of the fractional Laplacian Λγ

(Λ = (−Δ)1/2, 1 < γ ≤ 2) can be defined for u ∈ C∞(Ω) by

(−Δ)γ/2u = Λγ u =
∞∑

�=1

u� λ
γ/2
� w�

where the coefficients u� are defined by u� = ∫
Ω
uw�.

Now we define what we mean by weak solutions of the system (1.2) completed
with Neumann boundary conditions and initial conditions on u, v:

Definition 5.1 A weak solution of (1.2) is a set of nonnegative functions (u, v) such
that,

(a) (u, v) ∈ L∞(0, T ; L2(Ω,Rd)) ∩ L2(0, T ; H̃γ /2(Ω,Rd)),
(b) F(u, v),G(u, v) ∈ L1((0, T ) × Ω), u(0, ·) = u0(·) and v(0, ·) = v0(·) a.e. in

Ω ,
(c) QT = Ω × [0, T ] and they satisfy

−
∫∫

QT

u∂tϕ1 dx dt + d11

∫∫

Ω

Λγ/2u · Λγ/2ϕ1 dx dt

+ d12

∫∫

Ω

Λγ/2v · Λγ/2ϕ1 dx dt

= −
∫

Ω

u0(x)ϕ1(0, x) dx +
∫∫

QT

F(u, v)ϕ1 dx dt,

−
∫∫

QT

v∂tϕ2 dx dt + d22

∫∫

Ω

Λγ/2v · Λγ/2ϕ2 dx dt

= −
∫

Ω

u0(x)ϕ1(0, x) dx +
∫∫

QT

G(u, v)ϕ2 dx dt,

for all ϕ1, ϕ2 ∈ D([0, T ) × Ω), where F(u, v) = u(1 − u − c v) and G(u, v) =
v(a − b u − v).

Theorem 1 If (u0, v0) ∈ L2(Ω,Rd), then problem (1.2) possesses a weak solution
in the sense of Definition 5.1.

The proof of Theorem1 (the existence ofweak solution) is based on Faedo-Galerkin
method. Although the existence proof for (1.2) will be the subject of a separate
contribution, we outline in what follows the main steps. We look for finite dimen-
sional approximate solution to the problem (1.2) [we complete the system (1.2) with
Neumann boundary conditions and initial conditions on u, v]: as sequences (un)n>1,
(vn)n>1 defined for t ≥ 0 and x ∈ Ω by

un(t, x) =
n∑

l=1

bn,l(t)wl(x), vn(t, x) =
n∑

l=1

cn,l(t)wl(x). (5.1)
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The next step is to determine the coefficients (bn,l(t))nl=1, (cn,l(t))nl=1 such that for
k = 1, . . . , n it holds

(∂t un, wk)L2(Ω) + d11

∫

Ω

Λγ/2un · Λγ/2wk dx + d12

∫

Ω

Λγ/2vn · Λγ/2wk dx

=
∫

Ω

F
(
u+
n , v+

n

)
wk dx, (∂tvn, wk)L2(Ω) + d22

∫

Ω

Λγ/2vn · Λγ/2wk dx

=
∫

Ω

G
(
u+
n , v+

n

)
wk dx, (5.2)

and regarding to the initial conditions,

un(0, x) = u0,n(x) :=
n∑

l=1

bn,l(0)wl(x), bn,l(0) := (u0, wl)L2(Ω),

vn(0, x) = v0,n(x) :=
n∑

l=1

cn,l(0)wl(x), cn,l(0) := (v0, wl)L2(Ω).

Herein

F
(
u+
n , v+

n

) = u+
n

(
1 − u+

n − c v+
n

)
andG

(
u+
n , v+

n

) = v+
n

(
a − b u+

n − v+
n

)
,

where w+ = max(0,−w) for w = u, v.
Observe that, since u0, v0 ∈ L2(Ω), it is clearly seen that as n → ∞, u0,n → u0

and v0,n → v0 in L2(Ω), respectively. Using the normality of the respective basis, we
can write (5.2) as a system of ordinary differential equations:

b′
n,k(t) + d11

∫

Ω

Λγ/2un · Λγ/2wk dx + d12

∫

Ω

Λγ/2vn · Λγ/2wk dx

=
∫

Ω

F
(
u+
n , v+

n

)
wk dx, c

′
n,k(t) + d22

∫

Ω

Λγ/2vn · Λγ/2wk dx

=
∫

Ω

G
(
u+
n , v+

n

)
wk dx .

Let F and G be functions defined as follow:

F(t, (bn,l(t))
n
l=1, (cn,l(t))

n
l=1) :=

∫

Ω

F
(
u+
n , v+

n

)
wk dx − d11

∫

Ω

Λγ/2un · Λγ/2wk dx

−d12

∫

Ω

Λγ/2vn · Λγ/2wk dx,

G (
t, (bn,l(t)

)n
l=1 ,

(
cn,l(t)

)n
l=1) :=

∫

Ω

G
(
u+
n , v+

n

)
wk dx − d22

∫

Ω

Λγ/2vn · Λγ/2wk dx .

Proceeding in an analogous way to the developments in Andreianov et al. (2011),
Bendahmane (2010) and Bendahmane and Karlsen (2006), we can prove that F and
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G are Carathéodory functions, and we can show an existence interval [0, t ′) for the
Faedo-Galerkin solutions un and vn defined by (5.1).

On the other hand, to prove global existence of the solutions we derive n-
independent a priori estimates bounding un, vn in various Banach spaces. Given some
continuous coefficients d1,n,l(t) and d2,n,l(t), we form the functions ϕ1,n(t, x) :=∑n

l=1 d1,n,l(t)wl(x) and ϕ2,n(t, x) := ∑n
l=1 d2,n,l(t)wl(x). Now our Faedo-Galerkin

solutions satisfy the following weak formulations:

∫

Ω

∂sunϕ1,n dx + d11

∫

Ω

Λγ/2un · Λγ/2ϕ1,n dx + d12

∫

Ω

Λγ/2vn · Λγ/2ϕ1,n dx

=
∫

Ω

F
(
u+
n , v+

n

)
ϕ1,n dx, (5.3)

∫

Ω

∂svnϕ2,n dx + d22

∫

Ω

Λγ/2vn · Λγ/2ϕ2,n dx =
∫

Ω

G
(
u+
n , v+

n

)
ϕ2,n dx . (5.4)

Next, we substitute ϕ1,n = un and ϕ1,n = un in (5.3) and (5.4), respectively. Then
integrating over (0, t) and usingYoung andGronwall inequalities, we get for t ∈ [0, t ′)

‖vn‖L∞(0,t;L2(Ω)) ≤ C,
∫ t

0

∫

Ω

∣∣∣Λγ/2un
∣∣∣
2
dx ds +

∫ t

0

∫

Ω

∣∣∣Λγ/2vn

∣∣∣
2
dx ds ≤ C,

for some constant C > 0 not depending on n.
The next step is to show that the local solution constructed above can be actually

extended to the whole time interval [0, T ) (independent of n). We stress that this can
be done as in Bendahmane and Karlsen (2006), so we omit the details.

Now, if we choose ϕ1,n = −u−
n , ϕ2,n = −v−

n in (5.3) and (5.4), respectively, then
after integration over (0, t) with 0 < t ≤ T , we readily obtain the non-negativity of
the solution (un, vn).

With the help of a compactness tool inspired byKruzhkov lemma (Kruzhkov 1969),
we justify that the solutions (un, vn) is relatively compact in L1(QT ). From this we
can extract subsequences, which we do not relabel and we can assume that there exist
limit functions u, v such that as n → ∞

⎧
⎨
⎩
un → u, vn → v strongly in L1(QT ) and a.e. in QT ,

un ⇀ u, vn ⇀ v weakly in L2(0, T ; H̃γ (Ω)),

F(un, vn) → F(u, v),G(un, vn) → G(u, v) in L1(QT ) a.e. in QT .

(5.5)

Keeping in mind (5.5) and using the following weak formulation:

−
∫ ∫

QT

un∂tϕ1 dx dt + d11

∫∫

Ω

Λγ/2un · Λγ/2ϕ1,n dx dt

+ d12

∫∫

Ω

Λγ/2vn · Λγ/2ϕ1,n dx dt
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= −
∫

Ω

u0(x)ϕ1(0, x) dx +
∫∫

QT

F(un, vn)ϕ1 dx dt,

−
∫ ∫

QT

vn∂tϕ2 dx dt + d22

∫∫

Ω

Λγ/2vn · Λγ/2ϕ2,n dx dt

= −
∫

Ω

u0(x)ϕ1(0, x) dx +
∫∫

QT

G(un, vn)ϕ2 dx dt,

for all ϕ1, ϕ2 ∈ D([0, T ) × Ω), we can let n → ∞ and obtain a weak solution.
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