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Abstract The interplay between local dynamics and dispersal rates in discrete
metapopulation models for homogeneous landscapes is studied. We introduce an
approach based on scalar dynamics to study global attraction of equilibria and peri-
odic orbits. This approach applies for any number of patches, dispersal rates, or
landscape structure. The existence of chaos in metapopulation models is also dis-
cussed. We analyze issues such as sensitive dependence on the initial conditions or
short/intermediate/long term behaviours of chaotic orbits.
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1 Introduction

The impact of spatial structure in the study of biological populations has been studied
from theoretical, empirical, and applied perspectives (Franco and Ruiz-Herrera 2015;
Hanski and Gilpin 1997; Tilman and Kareiva 1997). The habitat of most species is
usually fragmented due to environmental factors such as climate, light, predation risk
or resource availability, and, in some situations, due to some human activities such as
harvesting, culling, or the creation ofmarine protected areas. On the other hand, spatial
structure has deep implications in the conservation or extinction of endangered species
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(Earn et al. 2000; Earn and Levin 2006). Nowadays, understanding the precise impli-
cations of spatial fragmentation is a crucial topic in population dynamics. To approach
this problem, theoretical ecologists have proposed a broad variety of metapopulation
models, where a metapopulation is a collection of local subpopulations connected by
dispersal or migration. In the present paper, we analyze a couple map lattice model in
order to study several aspects of metapopulation dynamics, specifically, synchroniza-
tion, global stability, and chaotic dynamics. This model has been extensively studied
in the ecological literature (Cazelles et al. 2001; Gyllenberg et al. 1993; Hastings
1993; Kirkland et al. 2006; Wysham and Hastings 2008; Yakubu and Castillo-Chavez
2002), and in many other contexts with no biological significance (Anteneodo et al.
2003; Monte et al. 2004; Manrubia and Mikhailov 2000). In our analysis, transient
dynamical behaviors play an important role. As was emphasized in Hastings (2004),
transient dynamics, behaviors of a dynamical system that are not the final behavior, are
an essential aspect for understanding ecological phenomena since ecological exper-
iments are often on short times scales relative to asymptotic behaviors of the model
(Brown et al. 2001).

The rescue effect is the process for which emigrants from surrounding populations
decline the risk of local extinction (Gotelli 1995). It is broadly accepted (Cazelles
et al. 2001; Earn et al. 2000; Earn and Levin 2006) that a synchronized behavior, i.e all
subpopulations are asymptotically identical, may have a devastating effect on the pop-
ulation survival by reducing the impact of the mentioned rescue effect. If all local pop-
ulations synchronize at a low density level, any small unfavorable environmental fluc-
tuationwill have a strong effect on the population producing an increment of the global
extinction risk. On the contrary, a specieswith an asynchronous behavior is less vulner-
able to environmental changes since any patch with low density of population can be
recolonized by individuals from other patches with larger densities. The phenomenon
of asynchronization/synchronization has beenobserved in somebiological populations
of red squirrel (Ranta et al. 1997), snowshoe hare (Sinclair et al. 1993), or the Granville
fritillary on the Aland island (Hanski et al. 1995). Fatal consequences of synchronous
dynamics in nature has been observed in the extinction of a butterfly metapopulation
with a synchronous behavior in response to climatic fluctuations (Thomas et al. 1996).

The paper is organized as follows. In Sect. 2, we give some biological details for
the derivation of the model. In Sect. 3 we establish how synchronization relates to the
local dynamics within each subpopulation. In particular, the presence of an equilib-
rium being a global attractor in the local dynamics characterizes the global attraction of
an equilibrium independently of the dispersal rates. Nevertheless, we show in Sect. 4
that, under oscillatory behaviours or chaotic dynamics, asynchronous patterns appear
for small or large dispersal rate. In particular, invoking to the rescue effect, the pres-
ence of an oscillatory behavior in the local dynamics considerably contributes in the
conservation of the whole population. We close the paper with a discussion.

2 Model formulation

We study the dynamics of a population inhabiting in a homogeneous landscape con-
sisting of s patches connected by dispersal or migration. Let
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Analysis of dispersal effects in metapopulation models 685

x(N ) = (x1(N ), . . . , xs(N )) ∈ Rs+ := [0,∞)s (1)

denote the vector of population density after N -periods with xi (N ) the population
density of the i-th patch. The local dynamics in each subpopulation in the absence of
dispersal is given by

xi (N + 1) = f (xi (N )) := xi (N )g(xi (N )), N = 0, 1, . . . (2)

where g : [0,∞) −→ [0,∞) denotes the per-capita growth rate of the population. In
our model, we employ a strategy of proportional dispersal independent of the time.
Specifically, di j indicates the fraction of the populationmigrating from patch j to i and
in case of equal indices, dii represents the proportion of the population inhabiting in
the i-th patch which does not disperse. For simplicity, we also impose that the timings
of reproduction and migration are the same for all patches. Thus, if we assume that
reproduction occurs first, then dispersal, and finally census; we arrive at

xi (N + 1) =
s∑

j=1

di j f (x j (N )), N = 0, 1, . . . (3)

for 1 ≤ i ≤ s. By the definition of di j , assuming no cost to dispersal,

s∑

j=1

di j = 1, f or all 1 ≤ j ≤ s. (4)

An advantage of our model is its simplicity which enables us to deduce biological
implications in metapopulation from the study of the involved parameters.

3 Global attraction in (3)

The aim of this section is to study the short/long term behaviour of a metapopulation
when an individual moves from patch j to i with the same probability as from patch
i to j and the local dynamics within each patch is simple.

We say that an equilibrium K ≥ 0 of

y(N + 1) = h(y(N )) N = 0, 1, . . .

is a global attractor with h : Rn+ −→ Rn+ a function of type (2) if all solutions
starting at a positive initial condition tend to K . Throughout this paper, {x(N )}N∈N
with x(N ) = (x1(N ), . . . , xs(N )) denotes the solution of (3) with initial condition
x(0) ∈ Rs+.

Theorem 1 Consider system (3) satisfying (4) and the symmetric condition

(S) di j = d ji for all i, j = 1, . . . , s.

If x∗ ≥ 0 is a global attractor of

y(N + 1) = f (y(N )) (5)

123



686 A. Ruiz-Herrera

then (x∗, . . . , x∗) ∈ Rs+ is a global attractor of (3) i.e.

lim
N−→∞ xi (N ) = x∗ f or all 1 ≤ i ≤ s

and for all x(0) ∈ I nt (Rs+).

The previous theorem sheds some consequences of biological interest on the long
term behavior of (3). Receivingmigrants from other patches never mitigates the global
extinction in the metapopulation when the isolated local population can not persist in
the absence of dispersal. On the other hand, independent of number of patches, struc-
ture of the landscape, dispersal rates and type of convergence, i.e. overcompensatory
or compensatory, we have that:

– All subpopulations are asymptotically identical.
– The size of the total population is constant.

These biological consequences imply that control strategies like conservation corri-
dors (Cushman et al. 2013) which increase the connectivity between patches may not
produce any benefit in the long term behavior of species inhabiting in homogeneous
landscapes with simple local dynamics.

Condition (S) is essential for the validity of Theorem 1, see Example 2 in Appen-
dix 1. Another aspect is that we characterize the global attraction in system (3)
independent of number of patches and dispersal fraction. Specifically, if x∗ > 0 is
not a global attractor of (5) then, by classical results (Coppel 1995), (5) has a positive
two cycle {y1, y2}, possibly y1 = y2, with y1 �= x∗ and y2 �= x∗. Hence, for s = 2,
(3) has at least two equilibria in I nt (R2+) taking either d12 = d21 = 1, if {y1, y2} is a
proper two cycle, or d12 = d21 = 0, otherwise.

The method of proof employed in the preceding theorem enables us to deduce that
given an initial condition x(0) = (x1(0), . . . , xs(0)) with

m = min{x j (0) : 1 ≤ j ≤ s},
M = max{x j (0) : 1 ≤ j ≤ s},

then |x j (N ) − xi (N )| ≤ max{| f N (x) − f N (y)| : x, y ∈ [m, M]}. This property
generates some dynamical implications different from the global attraction to an equi-
librium. As a first instance, we can use this idea to study global attraction of periodic
points: If {p1, . . . , pl} is a l-periodic point of (5) and I is a compact interval in the
basis of attraction of p1 for equation

y(N + 1) = f l(y(N )) N = 0, 1, 2, . . .

then, given any initial condition in I × I · · ·× I , the ω-limit set of any orbit is the syn-
chronous periodic point {(p1, . . . , p1), (p2, ..., p2), ..., (pl , ...pl)}, (see Appendix 1
for the proof and a simple application of this property for the Ricker equation with a
stable two cycle). As a second instance, we estimate the velocity of convergence to an
equilibrium or periodic point from the iteration of a scalar function. The study of this
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Fig. 1 Evolution of |x1(N ) − x2(N )| for system (3) with s = 2, di j = d, and local dynamics given by

f1(x) = xe1.6−x (A) and f2(x) = xe0.8−x (B). For each value d ∈ (0, 1), we produce 6 iterations with
random initial condition in [0.1, 3.1] × [0.1, 3.1] (darker points represent iterations of higher orders, for
instance, 6th iteration is the darkest point). Note that the velocity of attraction to the synchronous manifold
Δ is much higher for intermediate dispersal than for large/small ones

rate of convergence has practical implications since it can help explain intermediate
time scales and some cases of synchrony in nature.

In contrast with the long term behavior, dispersal plays a crucial role in the transient
behavior of (3). Specifically, note that by Theorem 1, the synchronous manifold

Δ = {(x1, . . . , xs) ∈ Rs+ : xi = x j f or all i, j}

is a global attractor independent of the dispersal fraction. However, the velocity of
attraction considerably depends on it. In Fig. 1 we have plotted the evolution of the
first generations of the metapopulation to illustrate this phenomenon.

Biologically, we observe that the population is less vulnerable to environmental
stochasticity when the dispersal rate is large or small.

4 Large/small dispersal creates new dynamical behaviors when the local
dynamics are chaotic

In this section we study the impact on the metapopulation when the local dynamics in
all patches are chaotic. The “new” term refers to the dynamical patterns non-presented
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for intermediate dispersal rates (di j ≈ 0.5). To approach this issue and avoid cumber-
some computations, we consider model (3) with two patches, specifically

{
x1(N + 1) = (1 − d1) f (x1(N )) + d2 f (x2(N ))

x2(N + 1) = d1 f (x1(N )) + (1 − d2) f (x2(N ))
(6)

By the implicit function theorem, small/large dispersal typically creates new asym-
metric patterns when the local dynamics present a two cycle (see Lemma 1 in
Appendix 2). Next we show that small/large dispersal is a good mechanism to gener-
ate infinitely many asynchronous patterns under local chaotic dynamics. This claim
is not true for any dispersal rate. For instance, there is global synchronization for
d = 0.5 [see Cazelles et al. (2001), Earn et al. (2000), Earn and Levin (2006), Faure
and Schreiber (2014), for subtler results of synchronization in (6)].

To state our main result, we introduce some basic notions on chaotic dynamics
taken from Liz and Ruiz-Herrera (2012), see also Liz and Ruiz-Herrera (2012b). A
map F : Rs+ −→ Rs+ has chaotic dynamics on n-symbols if there exist n disjoint com-
pact sets K0,K1, . . . ,Kn−1 ⊂ Rs+ such that, for each two-sided sequence (si )i∈Z ∈
{0, 1, . . . , n − 1}Z, there exists a corresponding sequence (ωi )i∈Z ∈ (∪n−1

i=0Ki )
Z such

that

ωi ∈ Ksi and ωi+1 = F(ωi ) f or all i ∈ Z (7)

and, whenever (si )i∈Z is a k-periodic sequence (that is, si+k = si , ∀i ∈ Z) for some
k ≥ 1, there exists a k-periodic sequence (ωi )i∈Z ∈ (∪n−1

i=0Ki )
Z satisfying (7). As

mentioned in Liz and Ruiz-Herrera (2012), our definition of chaotic dynamics has the
classical properties of complex dynamics such as sensitive dependence on the initial
conditions or the presence of an invariant set semiconjugate to the Bernoulli shift.
Chaos according to our definition implies chaos in the sense of coin-tossing and in the
sense of Block–Coppel (Aulbach and Kieninger 2001).

Next we introduce the notion of δ-strictly turbulent function taken from Liz and
Ruiz-Herrera (2012). This definition is more restrictive than the usual notion of turbu-
lence and, as is well known, a turbulent function always has chaotic dynamics (Block
and Coppel 1992).

Definition 1 Let I be a real interval and consider g : I −→ I a continuous function.
We say that g is δ-strictly turbulent if there exist four constants β0 < β1 < γ0 < γ1,
and δ > 0 so that

g(β0) < β0 − δ < γ1 + δ < g(β1),

g(γ1) < β0 − δ < γ1 + δ < g(γ0).

The following theorem is the main result of this section, (see Appendix 2 for the
proof). For convenience, F : R2+ −→ R2+ denotes themap associatedwith (6), namely

F(x1, x2) = ((1 − d1) f (x1) + d2 f (x2), d1 f (x1) + (1 − d2) f (x2)).
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Analysis of dispersal effects in metapopulation models 689

Theorem 2 Consider system (6)with f a δ-strictly turbulent functionwith parameters

β0 < β1 < γ0 < γ1.

Then, there exists d∗ > 0 so that F has chaotic dynamics on four symbols relative to

K0 = [β0, β1] × [β0, β1],K1 = [γ0, γ1] × [γ0, γ1],
K2 = [γ0, γ1] × [β0, β1],K3 = [β0, β1] × [γ0, γ1]

provided d1, d2 ≤ d∗. In addition, if f 2 is δ-strictly turbulent with parameters

β0 < β1 < γ0 < γ1,

then there exists d∗ > 0 so that F2 = F ◦ F has chaotic dynamics on four symbols
relative to

K0 = [β0, β1] × [β0, β1],K1 = [γ0, γ1] × [γ0, γ1],
K2 = [γ0, γ1] × [β0, β1],K3 = [β0, β1] × [γ0, γ1]

provided (1 − d1), (1 − d2) ≤ d∗.

Remark 1 If some iteration f m is δ-strictly turbulent then the first part of Theorem 2
holds replacing F by Fm .

In Theorem 2, as

(K2 ∪ K3) ∩ {(x1, x2) : x1 = x2} = ∅

each sequence in {2, 3}Z produces an asynchronous orbit in (6). Biologically, this
property highlights the strong connection between chaos in the local dynamics and
the conservation of the whole species.

In practical examples, one can estimate d∗ and d∗. To do this we have just to check
conditions (8)–(11) and (12)–(15) of Appendix 2. On the other hand, Theorem 2
provides us further implications than the existence of chaos in a metapopulation.
Specifically, we can describe short/intermediate/long behaviour of infinitely many
orbits; regions where the chaotic behaviour occurs, i.e. K0,K2,K1,K3; or the sta-
bility of our results under small perturbations or noise, see Remark 2 in Appendix 2.
Moreover, we can estimate the sensitive dependence on the initial conditions using our
approach and the following adapted version of Proposition 3.1 in Liz and Ruiz-Herrera
(2012):

Proposition 1 Take two different indices i, j ∈ {0, 1, 2, 3} and assume that G : D ⊂
Rn −→ Rn has chaotic dynamics on four symbols relative to K0,K1,K2,K3, and
denote d = dist (Ki ,K j ) > 0. For ε > 0, we define

Sε = max{n ∈ N : K j contains n dis joint balls o f diameter ε},

123



690 A. Ruiz-Herrera

and

N∗ = 1 +
⌈ ln Sε

ln 4

⌉
,

where, �·� denotes the ceiling of x, that is, the smallest integer not less than x. Then,
there are two points x0, y0 satisfying that

– x0, y0 ∈ K j ,
– ‖x0 − y0‖ < ε,

– max0≤r≤N∗{‖Gr (x0) − Gr (y0)‖} > d.

Next we discuss an example to illustrate the previous result.

Example 1 Consider system (6) with

f (x) = xe5−x .

It is easy to prove that f 2(x) is 3.3-strictly turbulent with parameters

4 < 6 < 9 < 13.

Then, by Theorem 2, F2 has chaotic dynamics on four symbols relative to

K0 = [4, 6] × [4, 6],K1 = [9, 13] × [9, 13],
K2 = [9, 13] × [4, 6],K3 = [4, 6] × [9, 13]

provided d1, d2 ≤ d∗ or (1 − d1), (1 − d2) ≤ d∗. We show in Appendix 2 that we
can take d∗ = d∗ = 3.3

2(e4+e8)
. It is worth mentioning some biological implications

of Theorem 2 in (6), specifically property (7). For instance, if we take the bi-infinite
sequence

(. . . , 2, 3, 2, 3, 3, 2, 3, 3, 3, 2, 3, 3, 3, 3, 2, . . .)

(assume that the first 2 has the zero position in the bi-infinite sequence), we find a
point z ∈ K2 so that

F2(z) ∈ K3, F
4(z) ∈ K2, F

6(z) ∈ K3, F
8(z) ∈ K3, F

10(z) ∈ K2 . . .

On the other hand, if we take the bi-infinite sequence

(. . . , 3, 2, 2, 3, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 3, . . .)

we can choose a point z∗ ∈ K3,

F2(z∗) ∈ K2, F
4(z∗) ∈ K2, F

6(z∗) ∈ K3, F
8(z) ∈ K2, F

10(z) ∈ K2 . . .
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Hence for each sequence in {2, 3}Z we are able to obtain a different asynchronous
pattern in (6).

Concerning the evaluation of the sensitive dependence on the initial conditions,
working with the max-norm, we easily have that for j = 2, i = 3 and any ε > 0,

Sε ≤ 8

ε2

and thus,

N∗ ≤ 1 +
⌈ ln 8

ε2

ln 4

⌉
.

Finally, by Proposition 1, there are two points z0, z1 ∈ K2 so that ‖z0 − z1‖ ≤ ε and
for some r ≤ N∗,

‖F2r (z0) − F2r (z1)‖ > 3.

5 Discussion

Themain purpose of this paperwas to understand the interplay between local dynamics
and dispersal in discrete-time metapopulation models for homogeneous landscapes.
Theorem 3.1 reflects that dispersal does not alter the simple long-term behavior of a
metapopulation when the dynamics in each patch is simple. In more detail, a global
attractor x∗ ≥ 0 in (5) always produces a global attractor (x∗, . . . , x∗) in (3). As
discussed in Sect. 3, the method of proof of that theorem is based on the dynamical
behavior of an equation in one dimension and can be used to describe regions of attrac-
tion of synchronous periodic orbits as well. On the other hand, Theorem 2 shows that
the dispersal rates seriously affect to the dynamical behavior of the whole population
when the dynamics inside each patch presents an oscillatory behavior. Specifically,
small/large dispersal creates new asynchronous chaotic orbits. This property stresses
that several patches connected by dispersal are by no means equivalent to one big
patch. Moreover, our analysis supports the numerical studies of Heino et al. (1997)
and Allen et al. (1993) where these authors prove numerically that a chaotic behaviour
in the local dynamics reduces the degree of synchrony.

This paper provided some biological properties concerning the transient dynamics
of (3). The study of short/intermediate times scales in ecological models is mainly
motivated by two reasons: the time scale of biological interest is mathematically short
and the asymptotic behavior of the system can be completely different from the behav-
ior in short/intermediate periods. For instance, as was reported with some examples
by Schreiber (2001) (see also Schreiber 2003 and Liz 2010), populations can persist
for hundreds of generations, and then, suddenly go to extinction without any change
in the parameters. In contrast with the long term scale, dispersal always affects to the
dynamical behaviour of (3), typically, from a synchronization perspective. Intermedi-
ate dispersal rates, i.e. di j ≈ 0.5 for all i, j , produces an automatic synchronization
after few iterations. If the dynamics in each patch is simple,
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692 A. Ruiz-Herrera

Δ = {(x1, ..., xs) : xi = x j f or all i, j}

is always a global attractor but the velocity of attraction is low for small/large dis-
persal as stressed in Sect. 3. In case of local chaotic dynamics, such a manifold is
never a global attractor for small/large dispersal rates. Moreover, one can give a pre-
cise description of the itinerary of infinitely many chaotic orbits with asynchronous
dynamics.
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Appendix 1

Proof of Theorem 1. Given an initial condition

x(0) ∈ I nt (Rs+),

we define

m = min{x j (0) : 1 ≤ j ≤ s},
M = max{x j (0) : 1 ≤ j ≤ s}.

The key fact to prove Theorem 1 is that by (4) and the symmetry condition (S),

F([m, M]s) ⊂ ( f ([m, M]))s

where

F(x1, . . . , xs) =
⎛

⎝
s∑

j=1

d1 j f (x j (N )), . . . ,

s∑

j=1

ds j f (x j (N ))

⎞

⎠

denotes the map associated with system (3). Each component satisfies that, for all
i = 1, . . . , s

min{ f (x) : x ∈ [m, M]} ≤
s∑

j=1

di j f (x j (N )) ≤ max{ f (x) : x ∈ [m, M]}.

In these inequalitieswe use conditions (4) and (S). Therefore, by an inductive argument
and using that f ([m, M]) ⊂ R is an interval we obtain that

FN ([m, M]s) ⊂ ( f N ([m, M]))s

for all N ∈ N. Finally, by the global behavior of (5) and by Theorem 4.7, p. 182 in
Elaydi (2005), we deduce that
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Analysis of dispersal effects in metapopulation models 693

f N ([m, M]) −→ x∗,

(this attraction is understood under the Hausdorff distance). Consequently,

FN ([m, M]s) −→ (x∗, . . . , x∗).

��
Example 2 Consider

F(x, y) = ( f (x) + 0.5 f (y), 0.5 f (y))

with

f (x) =
⎧
⎨

⎩

xe0.9−x 0 ≤ x ≤ 1,
(2 − x)e−0.1 + 1.9(x − 1) 1 ≤ x ≤ 2,
1.9 2 ≤ x .

By a simple analysis we can see that F has three fixed points in I nt (R2+) what
excludes the global attraction of a unique equilibrium for the system associated with
F . However, by a simple analysis, 0.9 is a global attractor for

xn+1 = f (xn).

Attraction of periodic points and Ricker equation with a stable two cycle
To prove the global stability for periodic points, replace in the proof of Theorem 1 f
by f l and the conclusion follows. ��
Example 3 When r ∈ (2, 2.25), f (x) = xer−x satisfies that f 2 has three positive
equilibria, say p1 < r < p2 (a two cycle and an equilibrium) and f 2(1) > 1. Thus
any compact interval I = [a, b] contained in [1, r) (resp. (r, f (1)]) is in the basis of
attraction of p1 (resp. p2) for

xn+1 = f 2(xn).

Note that

f 2n([a, b]) = [ f 2n(a), f 2n(b)]

because f 2 is increasing in [a, b] and f 2n(a), f 2n(b) −→ p1. ��

Appendix 2

Proof of Theorem 2. To prove this theorem we have to argue as in the proof of The-
orem 4.2 in Liz and Ruiz-Herrera (2012). For convenience, we denote Fd1,d2 =
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694 A. Ruiz-Herrera

((Fd1,d2)1, (Fd1,d2)2) : R2+ −→ R2+ the map associated with system (6). It is clear
that when d1 = d2 = 0,

F0,0(x1, x2) = ( f1(x1), f2(x2)).

Using the continuity of Fd1,d2 with respect to d1, d2, it is possible to find a constant
d∗ > 0 satisfying

|(Fd1,d2)1(βi , x2) − f (βi )| < δ f or i = 0, 1 (8)

|(Fd1,d2)1(γi , x2) − f (γi )| < δ f or i = 0, 1 (9)

|(Fd1,d2)2(x1, βi ) − f (βi )| < δ f or i = 0, 1 (10)

|(Fd1,d2)1(x1, γi ) − f (γi )| < δ f or i = 0, 1 (11)

provided d1, d2 ≤ d∗, and x1, x2 ∈ [β0, β1] × [γ0, γ1]. Next we consider the transla-
tions tv , tw, t̃v , tw̃ according to

v =
(

− β0 + β1

2
,−β0 + β1

2

)
,

w =
(

− γ0 + γ1

2
,−γ0 + γ1

2

)
,

ṽ =
(

− γ0 + γ1

2
,−β0 + β1

2

)
,

w̃ =
(

− β0 + β1

2
,−γ0 + γ1

2

)

and the maps h0, h1, h2, h3 defined by

h0(x1, x2) =
( 2

β1 − β0
x1,

2

β1 − β0
x2

)
,

h1(x1, x2) =
( 2

γ1 − γ0
x1,

2

γ1 − γ0
x2

)
,

h2(x1, x2) =
( 2

β1 − β0
x1,

2

γ1 − γ0
x2

)
,

h3(x1, x2) =
( 2

γ1 − γ0
x1,

2

β1 − β0
x2

)
.

Next, we note that the h-cubes (see Definition 3.2 in Liz and Ruiz-Herrera 2012)
K0,K1,K2,K3 with

– u(Ki ) = 2 and s(Ki ) = 0 for all i = 0, 1, 2, 3,
– cK0 = h0 ◦ tv , cK1 = hq ◦ tw, cK2 = h2 ◦ t̃v , cK3 = h3 ◦ tw̃

satisfy the convering relations (see Definition 3.3 in Liz and Ruiz-Herrera 2012)

Ki
Fd1d2�⇒ K j ,
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for every pair of indices i, j . The proof of

K0
Fd1d2�⇒ K j

for all j = 0, 1, 2, 3 is exactly the same as (4.5) in Liz and Ruiz-Herrera (2012)
replacing Fk

α in that paper by Fd1d2 . To prove

K1
Fd1d2�⇒ K j

for all j = 0, 1, 2, 3 we have to argue as before with the linear map A(x1, x2) =
(−2x1,−2x2) see the last part of proof of Theorem 4.2 in Liz and Ruiz-Herrera
(2012). To prove

K2
Fd1d2�⇒ K j

for all j = 0, 1, 2, 3 we have to argue as above with the linear map A(x1, x2) =
(−2x1, 2x2). Finally

K3
Fd1d2�⇒ K j

for all j = 0, 1, 2, 3 is deduced considering A(x1, x2) = (2x1,−2x2). Collecting
all the information, the proof of the first part of the theorem is completed by using
Theorem 3.4. in Liz and Ruiz-Herrera (2012). Note that this theorem works exactly
in the same way when there exists four disjoint h-sets K0, K1, K2, K3 with

Ki
Fd1d2�⇒ K j

for all i, j = 0, 1, 2, 3.
The proof of the second part of Theorem 2 is the same as the first part since

F2
1,1(x1, x2) = ( f 2(x1), f 2(x2))

where F2
d1d2

= Fd1d2 ◦ Fd1d2 . In this case we have to take d∗ satisfying that

|(F2
d1,d2)1(βi , x2) − f 2(βi )| < δ f or i = 0, 1 (12)

|(F2
d1,d2)1(γi , x2) − f 2(γi )| < δ f or i = 0, 1 (13)

|(F2
d1,d2)2(x1, βi ) − f 2(βi )| < δ f or i = 0, 1 (14)

|(F2
d1,d2)1(x1, γi ) − f 2(γi )| < δ f or i = 0, 1 (15)

provided (1 − d1), (1 − d2) ≤ d∗ and x1, x2 ∈ [β0, β1] × [γ0, γ1] ��
Remark 2 The proof of the previous theorem remains true for small perturbations of
Fd1d2 provided (8)–(11) and (12)–(15) hold.
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Computations of Example 1

First we observe that F2
d1d2

= ((F2
d1d2

)1, (F2
d1d2

)2) can be written as

(F2
d1d2)1(x1, x2) = (1 − d1) f

(
(1 − d1) f (x1) + d2 f (x2)

)

+ d2 f
(
d1 f (x1) + (1 − d2) f (x2)

)
,

(F2
d1d2)2(x1, x2) = (1 − d2) f

(
(1 − d2) f (x2) + d1 f (x1)

)

+d1 f
(
d1 f (x1) + (1 − d2) f (x2)

)
.

Using that f (x) = xe5−x is bounded by e4 and Lipschitz continuous with Lipschitz
constant e5, we deduce that

|(F2
d1d2)1(x1, x2) − f 2(x1)| ≤ d2e

4+d1e
4 + e5|(1 − d1) f (x1) + d2 f (x2)− f (x1)|

≤ (d1 + d2)(e
4 + e8),

(F2
d1d2)2(x1, x2) − f 2(x2)| ≤ d2e

4+d1e
4 + e5|(1 − d2) f (x2) + d1 f (x1)− f (x2)|

≤ (d1 + d2)(e
4 + e8).

We use these inequalities to guarantee (8)–(11). Analogously, and using that d1,
d2 ≤ 1, we have that

|(F2
d1d2)1(x1, x2) − f 2(x1)| ≤ (1 − d1)e

4 + (1 − d2)e
4 + d2e

5|d1 f (x1)
+ (1−d2) f (x2) − f (x1)|

≤ (2 − (d1 + d2))(e
4+e8),

|(F2
d1d2)2(x1, x2) − f 2(x2)| ≤ (1 − d1)e

4 + (1 − d2)e
4 + e5|d2 f (x2)

+ (1 − d1) f (x1) − f (x2)|
≤ (2 − (d1 + d2))(e

4+e8)

We use these inequalities to guarantee (12)–(15).

Lemma 1 Consider system (6) with f of class C1. Assume that

y(N + 1) = f (y(N )) N = 0, 1, . . . (16)

has a two cycle {p1, p2} with p1 �= p2 and satisfying that

f ′(p1) f ′(p2) �= 1. (17)

Then, there exists d∗ > 0 so that if

d1, d2 ≤ d∗,
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system (6) has a two cycle {z1, z2} with zi = (r i1, r
i
2) and r

i
1 �= r i2. On the other hand,

there exists d∗ > 0 so that if

(1 − d1), (1 − d2) ≤ d∗,

system (6) has an equilibrium p∗ = (p∗
1, p

∗
2) with p∗

1 �= p∗
2 .

Proof Define

G(x1, x2, d1, d2) = (G1(x1, x2, d1, d2),G2(x1, x2, d1, d2)),

where

G1(x1, x2, d1, d2) = x1 − (1 − d1) f
(
(1 − d1) f (x1) + d2 f (x2)

)

− d2 f
(
(1 − d2) f (x2) + d1 f (x1)

)
,

G2(x1, x2, d1, d2) = x2 − d1 f
(
(1 − d1) f (x1) + d2 f (x2)

)

− (1 − d2) f
(
(1 − d2) f (x2) + d1 f (x1)

)
.

This map is of class C1, its zeros determine the two cycles of (6) and

G(p1, p2, 0, 0) = (0, 0)

with
( ∂G1(p1,p2,0,0)

∂x1
∂G1(p1,p2,0,0)

∂x2
∂G2(p1,p2,0,0)

∂x1
∂G2(p1,p2,0,0)

∂x2

)

equal to
(
1 − f ′(p1) f ′(p2) 0

0 1 − f ′(p1) f ′(p2)

)
.

Recall that {p1, p2} is the two cycle of (16). Then, by the implicit function theorem,
we directly deduce the first part of the lemma. For the second part of the lemma we
have to repeat the same argument for the map

F(x1, x2, d1, d2)=(x1 − (1 − d1) f (x1) − d2 f (x2), x2 − (1 − d2) f (x2) − d1 f (x1))

at (p1, p2, 1, 1). ��
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