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Abstract We are interested in the impact of natural selection in a prey-predator com-
munity. We introduce an individual-based model of the community that takes into
account both prey and predator phenotypes. Our aim is to understand the pheno-
typic coevolution of prey and predators. The community evolves as a multi-type birth
and death process with mutations. We first consider the infinite particle approxima-
tion of the process without mutation. In this limit, the process can be approximated
by a system of differential equations. We prove the existence of a unique globally
asymptotically stable equilibrium under specific conditions on the interaction among
prey individuals. When mutations are rare, the community evolves on the mutational
scale according to a Markovian jump process. This process describes the successive
equilibria of the prey-predator community and extends the polymorphic evolutionary
sequence to a coevolutionary framework. We then assume that mutations have a small
impact on phenotypes and consider the evolution of monomorphic prey and predator
populations. The limit of small mutation steps leads to a system of two differential
equations which is a version of the canonical equation of adaptive dynamics for the
prey-predator coevolution.We illustrate these different limits with an example of prey-
predator community that takes into account different prey defense mechanisms. We
observe through simulations how these various prey strategies impact the community.
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1 Introduction

The evolution of a population establishes a link between selected individual character-
istics and the environment in which the population lives. Quantifying how the impact
of the environment varies along evolutionary trajectories is an important question.
Here, we aim at considering how other species interact with the population of interest.
These different species compose an ecological community in which each population
has a specific role: parasites, predators, resources, etc... The evolution of the different
species then modifies the complete interaction network, continuously redefining the
selective environment acting on the considered population. The coevolution of dif-
ferent species therefore allows us to consider the feedback loop that links phenotype
distributions to environmental variations (Ferrière et al. 2004).

In the present paper, we focus on the case of prey-predator communities evolving
on similar time scales. As far as ecological dynamics are concerned, there exists an
important literature on such predator-prey interactions. In the 1920’s, Lotka (1926)
and Volterra (1926) independently proposed a dynamical system for the ecological
dynamics of prey and predators which was then extensively studied (see Takeuchi and
Adachi 1983; Hofbauer and Sigmund 1998; Murray 2002). More recently Dieckmann
et al. (1995), Marrow et al. (1992, 1996) tackled the question of how natural selec-
tion affected the dynamics of such interactions. In the adaptive dynamics framework
introduced by Metz et al. (1992), Dieckmann and Law (1996), these authors devel-
oped heuristic tools to study the phenotypic coevolution of monomorphic prey and
predator populations and its impact on the network. The survival of prey and predators
is strongly conditioned on their respective abilities to defend and hunt. As a result,
the understanding of the variety of defense traits and of behavioral and morphologi-
cal adaptation of predators to these defensive mechanisms has become an important
focus for evolutionary ecology (see among others Strauss et al. 2002; Müller-Schärer
et al. 2004; Lind et al. 2013; Courtois et al. 2012). Considering such coevolutionary
dynamics brings up new questions regarding the structure of ecological networks,
their stability and the consequences of evolution on their emergent properties (e.g.
Loeuille 2010; Dercole et al. 2006). For instance, it has been shown that predator-
prey coevolution may yield food-web architectures that resemble the ones observed in
empirical datasets (Loeuille and Loreau 2005; Rossberg et al. 2006; Caldarelli et al.
1998; Drossel et al. 2001). Coevolution of predator-prey interactions may also erode
the regulating role of predation (Loeuille and Loreau 2004) and change the overall
distribution of energy within the community (Loeuille and Loreau 2006). Further
models suggest that evolution can select ecological dynamics that are inherently less
stable (Loeuille 2010; Ferriere and Gatto 1993; Doebeli and Koella 1995) or more
stable (Abrams 2000; Abrams and Matsuda 1997) than initial systems. It is important
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to note that the importance of coevolution for ecological network dynamics is not
restricted to the realm of mathematical models. Indeed, some of the implications of
defense evolution in prey for the stability of ecological dynamics have been repro-
duced experimentally (Yoshida et al. 2003;Meyer et al. 2006). Evolutionary dynamics
have also been experimentally reproduced in plant-herbivore systems (Agrawal et al.
2012). Because the importance of eco-evolutionary dynamics of predator-prey inter-
actions now relies on a strong theoretical background and complementary empirical
observations or experimental works, evolution is nowadays largely used in terms of
applications. To give just an example, the implications of plant-enemy coevolution for
the management of agricultural production has been stressed by many (Denison et al.
2003; Thrall et al. 2011; Loeuille et al. 2013).

In a mathematical setting, Durrett and Mayberry (2010) looked into a specific
prey-predator community and considered the phenotypic evolution of prey in a fixed
community of predators and vice versa under the assumptions of adaptive dynamics
(large population, rare and smallmutations). They consider a probabilisticmicroscopic
model of the community, following the rigourous approch developed by Champagnat
(2006), Champagnat et al. (2006), Champagnat and Méléard (2011) for the eco-
evolutionary dynamics of a population with logistic competition.

In this article, we present a stochastic individual-based model for the predator-
prey community that evolves as a multi-type birth and death process. The phenotype
of an individual is transmitted to its offspring after a potential mutation. The prey
phenotypes constrain their defense abilities and influence their reproduction, mortality
rate and competition ability. We also consider the evolution of predator phenotypes
and model its impact on the predation intensity. We give an example of prey and
predator phenotypes in Sect. 2.2 and we illustrate our results with exact simulations
of the individual-based process.

We study the stochastic prey-predator community process in different scalings cor-
responding to the assumptions of adaptive dynamics: large population, rare mutations
andmutations of small impact. Since we assume that mutations are rare, it is important
to understand the behavior of the community between two mutations. Therefore we
study the evolution of a prey-predator community composed of d prey sub-populations
and m predator sub-populations (Sect. 2). The main question is the composition of
this community in a long time scale corresponding to the scale where mutations occur.
In the large population limit, the dynamics of the prey-predator community is well
approximated by a system of differential equations. In Sect. 3, we study the long time
behavior of this deterministic system. In particular, we introduce conditions for the
existence and uniqueness of a globally asymptotically stable equilibrium. These con-
ditions rely on specific matrices for the interaction between the species. We improve
here a result of Goh, Takeuchi and Adachi (see Goh 1978; Takeuchi and Adachi 1983)
in our specific setting. The existence of globally stable equilibria is related to opti-
mization problems called Linear complementarity problems. We consider a class of
these problems related to the augmented problems (see Cottle et al. 1992) and extend
existing results to our framework.

Thenwe prove in Sect. 4 that the individual-based stochastic process also converges
to this equilibrium in finite time and remains close to this equilibrium on a long time
scale. In particular we give a result on the exit time of an attractive domain which

123



576 M. Costa et al.

remains true even for a perturbed process. Our result is obtained using the properties
of the Lyapunov function associated with the deterministic system as in the work
of Champagnat et al. (2014). The interest is to highlight the time scale separation
between competition phases and mutation occurences. Between two mutations, we
can thus characterize the resident prey-predator community.

In Sect. 5, we study the impact of rare mutations on the community. The rare muta-
tion framework was first formalized by Champagnat (2006) for the phenotypic evolu-
tion of a population with logistic competition. At each reproduction event, the pheno-
type of the newborn can be altered by amutation.We consider the successive invasions
ofmutants and characterize the survival probability of amutant trait in a given commu-
nity. In the mutation scale, we prove that the process jumps from a deterministic equi-
librium to another one according to the successivemutant invasions. This jump process
extends the polymorphic evolutionary sequence to a co-evolutionary framework.

Finally, we consider the case where mutations have a small impact on phenotypes.
Combining these three assumptions (large population, rare mutations and small muta-
tion jumps),we derive a couple of canonical equations describing the coevolution of the
prey and predator traits (Champagnat and Méléard 2011; Marrow et al. 1992, 1996).

2 The model

2.1 The microscopic model

We consider an asexual prey-predator community in which each individual is charac-
terized by its phenotypic traits. At each reproduction event the trait of the parent is
transmitted to its offspring.

The interest of this work is the coevolution of prey and predator traits that affects
the predation. The phenotype x ∈ X of a prey individual describes its ability to
defend itself against predation. We assume that this trait has an effect on the predation
intensity that the prey individual undergoes, but also on its reproduction rate, intrinsic
death rate, and ability to compete with other prey individuals. Such costs may emerge
because the energy allocated to defense is diverted fromother functions such as growth,
maintenance or reproduction (e.g. Herms andMattson 1992; Agrawal et al. 2012; Lind
et al. 2013). The phenotype y ∈ Y of a predator characterizes its prey consumption
rate. This trait affects the predation exerted on prey but also the death rate of the
predator. Again, such costs may be explained by differential allocation among life-
history traits, but also by behavioral constraints. For instance, increased consumption
rate requiring a larger time investment in resource acquisition, it may decrease the
vigilance of the predator against its own enemies, creating a mortality cost (see Illius
and Fitzgibbon 1994; Trussell et al. 2006). The trait spacesX and Y are assumed to
be compact subsets of Rp and R

P respectively.
The community is composed of d prey types x1, . . . , xd and m predator types

y1, . . . , ym . The state of the community is described by the vector of the sub-
population sizes.We introduce a parameter K scaling these sub-population sizes (as in
Fournier and Méléard 2004; Champagnat et al. 2006). To ease the distinction between
prey and predator populations we denote by NK

i the number of prey individuals with
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trait xi , for 1 ≤ i ≤ d, and by HK
l the number of predators with trait yl , for 1 ≤ l ≤ m.

Finally the community is represented by the vector

ZK = 1

K

(
NK
1 , . . . , NK

d , HK
1 , . . . , HK

m

)
, (1)

of the rescaled numbers of individuals holding the different traits.
The dynamics of the community follows a continuous time multi-type birth and

death process. We first describe the behavior of the prey population. Each prey indi-
vidual with trait x gives birth to an offspring at rate b(x). The newborn holds the same
trait as its parent. The death rate of a prey individual holding trait x is given by

λ(x, ZK ) = d(x) +
d∑

i=1

c(x, xi )

K
NK
i +

m∑

l=1

B(x, yl)

K
HK
l ,

where d(x) is the intrinsic death rate of a prey individual with trait x , c(x, x ′) the
competition exerted by a prey individual with trait x ′ on the prey individual with trait
x and B(x, y) the intensity of the predation exerted by a predator holding trait y on the
prey individual with trait x . In the absence of predators, the prey population evolves
as a birth and death process with logistic competition whose behavior was extensively
studied by Champagnat (2006), Champagnat et al. (2006), Champagnat and Méléard
(2011).

For the predator population, each predator holding trait y gives birth to a new
predator at rate

r
d∑

i=1

B(xi , y)

K
NK
i ,

proportional to the predation pressure it exerts on the prey population. The parameter
r can be seen as the conversion efficiency of prey biomass into predator biomass. We
assume in the following that r < 1. In the absence of prey, the predators are unable
to reproduce and their population will become extinct rapidly. Each predator holding
trait y dies at rate D(y). The competition between different predators is taken into
account through the prey consumption.

The interaction between prey and predators affects the prey death rate and the
predator birth rate. This interaction benefits predators but penalizes prey. It creates
an asymmetry in the community process and makes it difficult to study: comparisons
between two processes whose rates are close, are not possible on a long time scale.
We will see in the following how to circumvent this difficulty.

2.2 An example introducing two types of defenses

The diversity of defense strategies observed in nature is overwhelming and the main-
tenance of such a diversity of strategies is an important focus of evolutionary ecology
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(Ehrlich and Raven 1964). Just focusing on one type of consumption interaction,
namely plant-herbivore interactions, strategies of defense are morphological (e.g.,
through spines or trichomes/hair Zhang et al. 2012), chemical (e.g., the productions
of phenols and tannins Becerra et al. 2009) or through the attraction of enemies of
herbivores (“crying for help” Kessler and Baldwin 2001). Even when focusing on
one defense mechanism, e.g. chemical, the diversity of compounds that are used for
defense is very high, not only in total, but even within species (Poelman et al. 2008).
Modelling such a diversity is challenging and a broad categorization is necessary.
Here, based on previous empirical or experimental works (see Strauss et al. 2002;
Müller-Schärer et al. 2004), we propose to consider two major classes of defenses,
based on their action mode and on the costs they incur: quantitative defenses and
qualitative defenses.

Quantitative defenses correspond to phenotypes that are efficient against a vast
number of enemies, but that incur a direct cost in terms of growth or reproduction
(Müller-Schärer et al. 2004). Typical examples include structural defenses such as
increased toughness (Poorter and Jong 1999), production of morphological defenses
(trichomes, spines) (e.g. Agren and Schemske 1994; Mauricio and Rausher 1997) or
production of digestibility reducing compounds (Baldwin 1998). In the present work,
we assume that the cost of quantitative defenses affects reproduction (cf. Müller-
Schärer et al. 2004; Strauss et al. 2002; Lind et al. 2013).

Conversely, qualitative defenses correspond to phenotypes that alleviate consump-
tion by some of the enemies, but incur a cost through another ecological interaction (eg,
increased consumption by other enemies or reduced benefits from mutualists Müller-
Schärer et al. 2004 ; “ecological costs” sensu Strauss et al. 2002). For instance, alkaloid
defenses in plants are efficient against generalist herbivores, but may attract special-
ists that have evolved to tolerate them or even to use them against their own predators
(Müller-Schärer et al. 2004). Other chemical defenses (eg, nicotine) affect the quality
of nectar, reducing pollination opportunities (Adler et al. 2012). Floral traits such as
color or corolla size may reduce the attraction of herbivores, but at the expense of
pollinator visitation (Strauss 1997). In the present work, qualitative defenses allow
a reduction in the effect of one predator, but increase the vulnerability to another
predator. Because such defense strategies largely impact the similarity of prey niches
regarding their enemies (Robinson et al. 2012), we here make the hypothesis that indi-
viduals that are closer in terms of qualitative defenses x have a stronger interference
competition. Such an hypothesis is justified by experimental observations (Agrawal
et al. 2012), and coherent with the fact that closely related or trait-similar species
usually compete more strongly (see Abrams 1983; Burns and Strauss 2011).

We take these two types of defenses into account by associating each prey with
a two-dimensional trait x = (qn, qa) where qn ∈ R+ is the quantity of quantitative
defense produced by the prey and qa ∈ R represents its qualitative defense. The alloca-
tive trade-off induced by the quantitative defense qn is represented by an exponential
decrease of both the prey birth rate and the predation intensity, at speed αn and βn

respectively. In simulations, we chose a weak allocative trade-off with αn = 1/10 and
βn = 2: prey can increase their production of defenses without being too penalized.

The predator ability to consume the different qualitative defenses of prey individuals
is characterized by two parameters: their preferred qualitative defense ρ, and their
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degree of generalism σ . Specialists predators have a small range σ and exert an
important predation pressure on the prey populations holding traits close to their
preference, while generalist predators (σ large) consume a large range of qualitative
defenses but with less efficiency. Each predator is then represented by the couple
y = (ρ, σ ) ∈ R×]0,+∞[. The predation intensity decreases with the difference
|ρ − qa | between the preference of predators and the prey qualitative defense. Note
that higher generalism incurs a cost in terms of interaction efficiency, as the maximal
predation rate is of order 1/σ .

In the simulations, we used the following rate functions: for (qn, qa) ∈ [0,+∞[×R

and (ρ, σ ) ∈ R×]0,+∞[:

b(qn, qa) = b0 exp(−αnqn), d(qa, qn) = d0,

c(qn, qa, q
′
n, q

′
a) = c0 exp

(
− (qa − q ′

a)
2

2

)
,

B(qn, qa, ρ, σ ) = exp(−βnqn)
1

σ
exp

(
− (qa − ρ)2

2σ 2

)
,

D(ρ, σ ) = D.

(2)

We illustrate this example with exact simulations of the birth and death process intro-
duced above. We are interested in the impact of predators on a prey population using
two different qualitative defenses and no quantitative defense: the different prey traits
are x1 = (0, 0.8) and x2 = (0, 1.7). We represent on Fig. 1, the evolution through
time of the respective sizes of the prey sub-populations with trait x1 (in green ×), x2
(in red +) and of the predator population holding a trait (ρ, 0.6) for different choices
of ρ (in blue ∗).

When the predator preference differs too much from the prey defense, their popu-
lation dies out and the two prey populations coexist. In the sequel, we are interested in
the cases where the predator population survives. We observe three different behav-
iors. In Fig. 1a, the preference of predators is ρ = 0.2. The three populations coexist
on a long time scale. The prey population holding trait x2 has more individuals than
the prey population with trait x1 since predation is less important on x2. In Fig. 1b,

(a) (b) (c)

Fig. 1 We represent the evolution through time of the respective sizes of the prey sub-populations with
trait x1 = (0, 0.8) (×), x2 = (0, 1.7) (+) and of the predator population with trait (ρ, 0.6) for different
choices of ρ (∗). Other parameters are K = 500, b0 = 2.5, d0 = 0, c0 = 1.5, D = 0.5, r = 0.8, αn = 0.1,
βn = 2 (color figure online)
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the preference of predators is ρ = 0.7: predators are well adapted to the trait x1. The
predation intensity is so strong on prey holding trait x1 that their population die out.
However both populations of predators and prey with trait x2 survive. In Fig. 1c, the
preference of predators is ρ = 1.26: they consume both prey populations similarly.
We observe that the three populations coexist and that both prey sub-populations have
similar small size.

As the parameter ρ increases further, we first observe the extinction of the prey
population holding trait x2. This is the symmetrical case to (b). Then, we observe
similarly to case (a) that the three populations coexist.

2.3 Existence of the process and uniform bounds of the community size

The prey-predator community process ZK = 1
K (NK

1 , . . . , NK
d , HK

1 , . . . , HK
d ) intro-

duced above is a Markov process on (N/K )d+m . Its transition rates (or jump rates) are
given by the birth and death rates of individuals.

A trajectory of the prey-predator community process can be constructed as solution
of a stochastic differential equation driven by Poisson point measures (see Fournier
andMéléard 2004; Champagnat et al. 2006). This construction is given inAppendixA.

The community process is well defined up to the explosion of the number of individ-
uals. We denote by NK = ∑d

i=1 N
K
i the total prey number and by HK = ∑m

l=1 H
K
l

the total number of predators. The prey population size NK jumps of +1 each time
a prey individual is born and of −1 each time a prey individual dies; the predator
population size evolves similarly.

In the sequel we make the following assumptions:

Assumption A The rate functions b, d, c, B and D are continuous, positive and
bounded respectively by �b, �d, �c, �B and �D. Moreover the functions c, B and D are
bounded below by positive real numbers c, B and D.

Assumption B The initial condition satisfies supK E

((
NK (0)
K

)3+
(
HK (0)

K

)3)
<∞.

The next proposition gives moment properties of the community process and states
that the expected population size remains bounded uniformly in K and t .

Proposition 2.1 Under Assumptions A and B

(i) For every T > 0,

sup
K

E

(

sup
t∈[0,T ]

(
NK (t)

K

)3

+
(
HK (t)

K

)3)

< ∞.

(ii) Moreover

sup
K

sup
t≥0

E

((
NK (t)

K
+ HK (t)

K

)2
)

< ∞.
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Point (i) justifies the existence of the process ZK for all times and point (ii) will be
used to justify convergence results on long time scales. The proof of the Proposition
is given in Appendix B.

2.4 Limit in large population

In this section we study the behavior of the community in a large population limit
(K → ∞). We use the same scaling for both populations and establish that the
stochastic process ZK can be approximated by the solution of a deterministic system
of differential equations.

Forx = (x1, . . . , xd) ∈ X d andy = (y1, . . . , ym) ∈ Y m wedenote by LV P(x, y)

the differential system
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dni (t)

dt
= ni (t)

⎛

⎝b(xi ) − d(xi ) −
d∑

j=1

c(xi , x j )n j (t) −
m∑

l=1

B(xi , yl )hl(t)

⎞

⎠ , ∀ 1 ≤ i ≤ d,

dhl(t)

dt
= hl(t)

(

r
d∑

i=1

B(xi , yl )ni (t) − D(yl )

)

, ∀ 1 ≤ l ≤ m.

(3)
A solution of this system is a vector z = (n1, . . . , nd , h1, . . . , hm).

Proposition 2.2 UnderAssumptionsAandBandassuming that the sequenceof initial
conditions (ZK (0))K converges in probability toward a deterministic vector z(0) ∈
[0,∞)d+m, then for every T > 0 the sequence of processes (ZK (t), t ∈ [0, T ])K
converges in law in the Skorohod space D([0, T ], (R+)d+m) toward the unique func-
tion (z(t), t ∈ [0, T ]) solution of the system LV P(x, y) with initial condition z0 and
satisfying supt∈[0,T ] ||z(t)|| < ∞.

The proof follows a classical compactness-uniqueness method developed by Fournier
and Méléard (2004, Theorem 5.3). First we prove using Proposition 2.1(i) that the
sequence (ZK (t), t ∈ [0, T ])K is tight. Then we identify the limit as the unique
solution of the system of differential equations LV P(x, y).

Remark 1 The extinction of the predator population is not possible in finite time for
the solutions of the differential system LV P(x, y). Indeed, if there exists 1 ≤ l ≤ m
such that hl(0) > 0, then for every t ≥ 0,

d

dt
hl(t) ≥ −D(yl)hl(t).

Thus hl(t) ≥ hl(0) exp(−D(yl)t) > 0.
Conversely, if there is no predator at time t = 0, i.e. z(0) = (n(0), 0), then the

stochastic process ZK converges toward the solution of a competitive Lotka-Volterra
system (denoted by LVC(x)) given by:

dni (t)

dt
= ni (t)

⎛

⎝b(xi ) − d(xi ) −
d∑

j=1

c(xi , x j )n j (t)

⎞

⎠ , ∀ 1 ≤ i ≤ d. (4)
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3 Long time behavior of the solutions of the deterministic system LV P

In this section we study the long time behavior of the solutions to the LV P(x, y)

system for fixed x = (x1, . . . , xd) ∈ X d and y = (y1, . . . , ym) ∈ Y m . To simplify
notation, we forget the dependence on traits for the parameters and only use subscripts:
for example Bil = B(xi , yl).

We are interested in the equilibria of the dynamical system (3).Hofbauer et Sigmund
proved (Section 5.4, p. 47 Hofbauer and Sigmund 1998) that the LV P(x, y) systems
satisfy the competitive exclusion principle. This ecological principle states that m
different species cannot survive on fewer than m different resources (or in less than m
different niches) (see Armstrong and McGehee 1980). An important consequence is
that every asymptotically stable equilibrium z∗ of the LV P(x, y) system contains no
fewer prey sub-populations than of predators:

#{1 ≤ i ≤ d, n∗
i > 0} ≥ #{1 ≤ l ≤ m, h∗

l > 0}.

Therefore the diversity among predators is limited by the diversity among prey.
In Sect. 3.1, we introduce conditions for an equilibrium to be globally asymptoti-

cally stable, (i.e. every solution of the system with positive initial condition converges
when t goes to ∞ toward this equilibrium). This strong notion of stability entails that
such an equilibrium is unique. Numerous authors, notably Goh (1978), Takeuchi and
Adachi (1983) have already studied this question.Wedevelop here a different approach
by improving the Lyapunov function introduced by these authors. The interest of this
approach is to obtain quantitative information on the behavior of the stochastic process
close to the deterministic equilibrium (see Sect. 4). Then in Sect. 3.2, we study the
existence of globally asymptotically stable equilibria. This question is related to the
existence of solutions to Linear Complementarity Problems. Combining these two
results, we derive conditions that ensure the existence of a unique globally asymptot-
ically stable equilibrium for the LV P systems.

3.1 Condition for global asymptotic stability

We assume the existence of a non-negative equilibrium z∗ = (n∗
1, . . . n

∗
d , h

∗
1, . . . , h

∗
m)

of the LV P(x, y) system defined in (3). We seek conditions on this equilibrium to
be globally asymptotically stable. The global stability relies on the properties of the
interaction matrix of the system LV P:

I =
(
C B
−r BT 0

)
, (5)

where C = (ci j )1≤i, j≤d and B = (Bil)1≤i≤d,1≤l≤m . We introduce two assumptions
on the differential system:

Assumption C C1 For every d ∈ N and almost every (x1, . . . , xd) ∈ X d , the
matrix of the competition among prey C(x) = (c(xi , x j ))1≤i, j≤d satisfies that
C(x) + C(x)T is positive definite.
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C2 Let d,m ∈ N, x = (x1, . . . , xd) ∈ X d , and y = (y1, . . . , ym) ∈ Y m. Every
subsystem of the system LV P(x, y) is non degenerate.

Assumption C1 allows us to define a Lyapunov function for the system LV P . As
an example, Assumption C1 is satisfied for matrices C = (ci j ) symmetric and strictly
diagonally dominant ( |cii | >

∑
j �=i |ci j |). Remark that the competitionmatrix is sym-

metric when the competition among preys only depends on the distance between their
phenotypes. This is often the case when individuals pay a cost in phenotype match-
ing (Yoder and Nuismer 2010; Burns and Strauss 2011). Strictly diagonally dominant
matrices arise when the competition within the sub-populations is more important than
the competition with the other sub-populations. This assumption reflects the impact
of the similarity of niches of individuals with close phenotypes (Robinson et al. 2012;
Burns and Strauss 2011).

Assumption C2 allows to characterize the different equilibria of the LV P(x, y)

system with their null and positive components. This assumption reflects that every
sub-population plays a different role in the prey-predator community (and in any
sub-commnity).

We associate with the equilibrium z∗ two subsets containing the subscripts of
the traits that disappear in the equilibrium for the prey and predator populations
respectively:

P = {1 ≤ i ≤ d, n∗
i = 0} and Q = {1 ≤ l ≤ m, h∗

l = 0}. (6)

The following proposition states conditions for the global asymptotic stability of an
equilibrium.

Proposition 3.1 Let us assume Assumption C and the existence of an equilibrium z∗
of the system LV P(x, y) such that

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∀i ∈ P, bi − di −
d∑

j=1

ci j n
∗
j −

m∑

l=1

Bilh
∗
l < 0,

∀l ∈ Q, r
d∑

i=1

Biln
∗
i − Dl < 0,

(7)

then this equilibrium is globally asymptotically stable. Moreover such an equilibrium
is unique.

Conditions (7) ensure that the equilibrium z∗ is asymptotically stable. This can be
easily obtained by computing the eigenvalues of the Jacobian matrix of the system.

Proof We define the function

V (z) =
d∑

i=1

r(ni − n∗
i log(ni )) +

m∑

l=1

(hl − h∗
l log(hl)). (8)

Using the fact that z∗ is an equilibrium of the system LV P(x, y), the derivative of V
along a solution equals
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d

dt
V (z(t)) = − r

2
(n − n∗)T (C + CT )(n − n∗)

+ r
∑

i∈P

ni (bi − di −
d∑

j=1

ci j n
∗
j −

m∑

l=1

Bilh
∗
l ) +

∑

l∈Q
hl

⎛

⎝
d∑

j=1

r B jln
∗
j − Dl

⎞

⎠.

(9)
Since z∗ satisfies (7) and by C1, the derivative d

dt V (z(t) is nonpositive, and vanishes
at points z̄ = (n̄1, · · · , n̄d , h̄1, · · · ¯hm) such that

n̄i = n∗
i , ∀ 1 ≤ i ≤ d,

hl = 0 = h∗
l , ∀ l ∈ Q.

(10)

Thus the derivative vanishes not only at point z∗. In the following we search for a
function W and γ > 0 such that

L(z) = V (z) + γW (z) (11)

is a Lyapunov function for the system: for every solution (z(t); t ≥ 0), the function
L(z(t)) decreases with time and reaches its only minimum at z∗. We set

W (z) =
m∑

l=1

(hl − h∗
l )

d∑

i=1

Bil(ni − n∗
i ). (12)

Its derivative along a solution is given by:

d

dt
W (z(t)) =

m∑

l=1

hlr

(
d∑

i=1

Bil(ni − n∗
i )

)2

+
∑

l∈Q
hl

(

r
d∑

i=1

Biln
∗
i − Dl

)⎛

⎝
d∑

j=1

Bjl(n j − n∗
j )

⎞

⎠

−
d∑

i=1

ni

(
m∑

l=1

Bil(hl − h∗
l )

)2

+
∑

i∈P

ni

⎛

⎝bi − di −
d∑

j=1

ci j n
∗
j −

m∑

l=1

Bilh
∗
l

⎞

⎠

(
m∑

k=1

Bik(hk − h∗
k)

)

−
d∑

i=1

ni

d∑

j=1

ci j (n j − n∗
j )

(
m∑

l=1

Bil(hl − h∗
l )

)

.

The second, third and forth terms are bounded because the solutions of the system are
bounded as well. The last term can be bounded by :
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d∑

i=1

ni

d∑

j=1

ci j (n j − n∗
j )

m∑

l=1

Bil(hl − h∗
l ) ≤

d∑

i=1

ni

⎛

⎜
⎝

(∑d
j=1 ci j (n j − n∗

j )
)2

Γ

+Γ

(
m∑

l=1

Bil(hl − h∗
l )

)2
⎞

⎠ ,

where Γ will be chosen afterwards. Together with Eq. (9) we can upper bound the
derivative of L:

d

dt
L(z(t)) ≤ −(n − n∗)T (U +UT )(n − n∗) − γ (1 − Γ )

d∑

i=1

ni

(
m∑

k=1

Bik(hk − h∗
k )

)2

,

+
∑

i∈P

ni

⎛

⎝bi − di −
d∑

j=1

ci j n
∗
j −

m∑

l=1

Bilh
∗
l

⎞

⎠

(

1 + γ

m∑

k=1

Bik(hk − h∗
k )

)

+
∑

l∈Q
hk

⎛

⎝
d∑

j=1

r B jln
∗
j − Dl

⎞

⎠
(

1 + γ

d∑

i=1

Bil(ni − n∗
i )

)

(13)
where U = (ci j + γ

Γ
ci j

∑d
u=1 nu + γ

∑m
l=1 hl Bil B jl)1≤i, j≤d .

It remains to choose Γ and γ . We set Γ < 1. Since the solution z is bounded, it is
possible to choose the constant γ such that the matrixU +UT is positive definite and

1 + γ

d∑

i=1

Bik(ni − n∗
i ) > 0, ∀1 ≤ k ≤ m, and

1 + γ

m∑

k=1

Bik(hk − h∗
k) > 0, ∀ 1 ≤ i ≤ d,

The derivative of L(z(t)) is then non positive and null for the vectors (u1, . . . , ud ,
v1, . . . , vm) such that:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∀i ∈ {1, . . . , d}, ui = n∗
i ,

∀l ∈ Q, vl = h∗
l = 0,

∀i ∈ {1, . . . , d},
m∑

l=1
Bil(vl − h∗

l ) = 0.

Since z∗ is an equilibrium, these conditions are equivalent to
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∀i ∈ {1, . . . , d}, ui = n∗
i ,

∀l ∈ Q, vl = h∗
l = 0,

∀i /∈ P, bi − di −
d∑

j=1
ci j n∗

j −
m∑

l=1
Bilvl = 0,

123



586 M. Costa et al.

The vector (u, v) is then an equilibrium LV P having the same null components as
z∗. Assumption C2 ensures that (u, v) = z∗.

3.2 Existence of globally asymptotically stable equilibria for the system LV P

The existence of equilibria of the system LV P(x, y) satisfying (7) is related to the
existence of solutions to specific optimization problems called linear complementarity
problems (LCP) (see Takeuchi and Adachi 1982).

Definition 1 (Cottle et al. 1992) Given M ∈ R
u×u and q ∈ R

u , the linear comple-
mentarity problem associated with (M, q) (denoted by LCP(M, q)) seeks a vector
z ∈ R

u satisfying

∀1 ≤ j ≤ u, z j ≥ 0 and (Mz + q) j ≥ 0,

(Mz + q)T · z = 0.
(14)

Note that the last condition can be written (Mz + q) j z j = 0, ∀1 ≤ j ≤ u.
Let us remark that every equilibrium z∗ ∈ (R+)d+m of the system LV P(x, y)

satisfying (7) is a solution of LCP(I, R) where u = d + m, I is the interaction
matrix introduced in (5) and R = (−(b1 − d1), · · · ,−(bd − dd), D1, . . . , Dm))T is
the vector of the growth rates of the sub-populations. Actually, an equilibrium of the
system LV P(x, y) satisfying (7) is also a solution to LCP( Ĩ , R̃) where

Ĩ =
(

M B
−BT 0

)
, R̃ =

(
−(b1 − d1), · · · ,−(bd − dd),

D1

r
, . . . ,

Dm

r

)T

. (15)

We therefore consider a specific range of LCP related to the shape of the interaction
matrix Ĩ which presents a null sub-matrix. The following result derives easily from
existing results (see Cottle et al. 1992). We detail the proof in Appendix C.

Theorem 3.2 Let M ∈ R
d×d and q ∈ R

d . For every matrix B ∈ (R+)d×m and every
non-negative vector D ∈ R

m we define

M̃ =
(

M B
−BT 0

)
and q̃ =

(
q

D

)

. (16)

The problem LCP(M̃, q̃) admits a solution.

Note that a solution (n, h) of LCP( Ĩ , R̃) is an equilibrium of the LV P system such
that

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∀1 ≤ i ≤ d, if ni = 0 then bi − di −
d∑

j=1
ci j n j −

m∑

l=1
Bilhl ≤ 0,

∀1 ≤ l ≤ m, if hl = 0 then r
d∑

i=1
Bilni − Dl ≤ 0.

(17)
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These conditions are similar to conditions (7) for the global asymptotic stability of
an equilibrium, but contain large inequalities. Therefore to obtain the existence of
globally asymptotically stable equilibria of the LV P systems we introduce an addi-
tional assumption that prevents the quantities involved in conditions (7) and (17) from
vanishing. These quantities correspond to the growth rates of prey individuals holding
trait xi and of predators holding trait yl in a community described by the vector z∗.
In ecology these quantities are referred to as invasion fitness. We denote the invasion
fitness of a prey individual holding trait x in a community z∗ by

s(x; z∗) = b(x) − d(x) −
d∑

i=1

c(x, xi )n
∗
i −

m∑

k=1

B(x, yk)h
∗
k , ∀ x ∈ X , (18)

and invasion fitness of a predator holding trait y in a community z∗ by

F(y; z∗) =
d∑

j=1

r B(x j , y)n
∗
j − D(y), ∀ y ∈ Yc. (19)

Assumption D For every (x, y) ∈ X d × Y m, and every vector (n, h) solution of
LCP(I, R), the sets {x ′ ∈ X , s(x ′; (n, h)) = 0} and {y′ ∈ Y , F(y′; (n, h)) = 0}
have null Lebesgue measure.

In the following we prove that conditions for survival of a small population can be
expressed thanks to the fitness functions s and F (we will be interested in the survival
of a mutant population). More precisely if a population has a non positive fitness,
then it becomes extinct quickly. Otherwise, the population has a chance to invade the
resident community. Therefore these fitness functions measure the selective advantage
of a trait value in a given community. Assumption D is equivalent to assume that every
possible trait has either an advantage or a disadvantage in every stable equilibria of
the LV P system.

Combining Proposition 3.1 and Theorem 3.2 we establish that

Theorem 3.3 Under AssumptionsC andD, for almost every (x, y) ∈ X d×Y m there
exists a unique globally asymptotically stable LV P(x, y). Moreover this equilibrium
satisfies (7).

In the sequel we denote by z∗(x, y) = (n∗(x, y), h∗(x, y)) the unique globally asymp-
totically stable equilibrium of the LV P(x, y) system. Under the same assumptions we
can also establish the existence of a unique globally asymptotically stable equilibrium
of the LVC system introduced in (4). We denote by�n(x) this equilibrium.

4 Consequence for the long time behavior of the stochastic process

Let us fix x ∈ X d and y ∈ Y m and denote by z∗ = z∗(x, y) the unique globally
asymptotically stable equilibrium of the system LV P(x, y). In this section we study
the long time behavior of the prey-predator community process ZK defined in (1).
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In Proposition 2.2, we compare the stochastic process with its deterministic approxi-
mation on a finite time interval [0, T ], however, on longer time scales the stochastic
process may exit the neighbourhood of this approximation. We first prove that ZK

enters in finite time in a neighbourhood of z∗. Then, using a probabilistic argument of
large deviation, we prove that the trajectory remains in a neighbourhood of z∗ during
a time of order exp(KV ) for V > 0. Finally we study the extinction time of small
populations which are not adapted in the community.

For every ε > 0, we denote by Bε the Rd+m sphere of radius ε centred in z∗.
Proposition 4.1 Let us assume Assumptions A and B and that the sequence of initial
conditions ZK (0) converges in probability toward a deterministic vector z(0), then
for every ε > 0, there exists tε > 0 such that

lim
K→∞P(ZK

tε ∈ Bε) = 1.

Proof To prove this result we use classical techniques developed in Ethier and Kurtz
(1986, Chapter 11, Theorem 2.1) to obtain the convergence in probability uniformly
on a time interval of the process ZK : ∀T > 0, ∀ε > 0

lim
K→∞P

(

sup
t∈[0,T ]

||ZK (t) − z(t)|| < ε

)

= 1,

where z(t) is the solution of LV P(x, y). The difficulty relies in the fact that the birth
and death rates are only locally Lipschitz functions of the state of the process.However,
as the limit function z(t) takes values in a compact set of Rd+m , we overcome this
difficulty by regularizing the birth and death rates outside a sufficient large compact set.

Moreover there exists a compact set C containing the sequence of initial condi-
tions (ZK (0))K≥0 with probability converging to 1. We set for every initial condition
z0 ∈ C the last time tε(z0) where the deterministic solution z(t) entersBε. This time
is finite according to Theorem 3.3. Since the solutions of the LV P(x, y) system are
continuous with respect to their initial condition, the time tε = supz0∈C tε(z0) is finite
and satisfies that ∀t > tε, sup{z0∈C} ||z(t) − z∗|| < ε. Combining these two results,
we conclude the proof of Proposition 4.1.

We then study the time spent by ZK in the neighbourhood of z∗. The estimate of
the exit time of an attractive neighbourhood gives a good scaling for the introduction
of rare mutations in the next section. This result relies usually on the large deviation
theory. However, classical techniques cannot be applied in our setting since the birth
and death rates of ZK are not bounded uniformly away from zero. We introduce here a
different method which allows to extend the result to perturbations of the process ZK .
In particular, we aim at considering small mutant populations that interact with the
process ZK or at modifying the birth and death rates introduced in Sect. 2. Another
interest in considering perturbations of the process is the study of the stability or
resilience of this prey-predator network (see the seminalwork ofMay 2001 or Thébault
and Fontaine 2010; Ives and Carpenter 2007 for more recent references).

We define a perturbation Z K = (N K
1 , . . . ,N K

d ,H K
1 , . . . ,H K

m ) of the process
ZK by 2 families of d + m real-valued random processes (uKi )1≤i≤d+m and

123



Stochastic eco-evolutionary model of a prey-predator community 589

(vK
i )1≤i≤d+m predictable with respect to the filtration Ft generated by the sequence

of processes ZK . The sequence (uKi )1≤i≤d+m describes the modifications of the birth
rates of the prey and the predator populations while the sequence (vK

i )1≤i≤d+m gives
the modifications of the death rates. The modified process evolves as follows:

– For 1 ≤ i ≤ d, the perturbed prey population N K
i evolves as a birth and

death process with individual birth rate b(xi ) + uKi (t) and individual death rate
λ(xi ,Z K (t)) + vK

i (t) at time t .
– For 1 ≤ l ≤ m, the perturbed predator populationH K

l evolves as a birth and death

process with individual birth rate r
∑d

i=1 B(xi , yl)N K
i + uKd+l(t) and individual

death rate D(yl) + vK
d+l(t) at time t .

In the case where uKi = vK
i = 0 for all 1 ≤ i ≤ d + m the process Z K is the

prey-predator community process ZK .
We assume that the processes (uKi )1≤i≤d+m and (vK

i )1≤i≤d+m are uniformly
bounded by κ .

Theorem 4.2 For every ε small enough, there exist a constant Vε > 0 and ε′′ < ε

such that if κ is small enough andZ K (0) ∈ Bε′′ , then the probability that the process
(Z K (t); t ≥ 0) exits the neighbourhood Bε after a time eVεK converges to 1 as
K → ∞.

The results is obtained using the method developed by Champagnat et al. (2014,
Proposition 4.2). We detail the proof in Appendix D and give hereby the main ideas
in the non perturbed setting.

Proof (Ideas of the proof) We recall the definition of P and Q in (6) and set

||z − z∗||PQ =
∑

i /∈P

|ni − n∗
i |2 +

∑

i∈P

|ni | +
∑

l /∈Q
|hl − h∗

l | +
∑

l∈Q
|hl |.

The Lyapunov function L for the system (3) defined by (11) with an appropriate
choice of γ is smooth in the neighbourhood of z∗. In particular we can define three
non negative constants C , C ′ and C ′′ such that

||z − z∗||2 ≤ ||z − z∗||PQ ≤ C
(
L(z) − L(z∗)

) ≤ CC ′||z − z∗||PQ, (20)

and
d

dt
L(z(t)) ≤ −C ′′||z − z∗||2, (21)

We introduce the stopping time τ K
ε = inf{t ≥ 0, ZK /∈ Bε}. Let T be a positive time

to be chosen afterwards. Thanks to the semi-martingale decomposition of the process
L(ZK (t)) we can prove that for every K large enough, there exists C ′′′ > 0 such that
for all t ≤ T ∧ τ K

ε :
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||ZK (t) − z∗||2 ≤ C

[

C ′||ZK (0) − z∗||PQ + sup
[0,T ]

|MK
t |

−C ′′
∫ t

0
||ZK (s) − z∗||2 − C ′′′ 1

K
ds

]
, (22)

where MK
t is a local martingale with zero mean which can be written explicitly using

compensated Poisson point measures (see Appendix D).
We define for every κ > 1/K , Sκ = inf{t ≥ 0, ||ZK (t) − z∗||2 ≤ 2C ′′′κ} and

introduce

Tκ = C ′(||ZK (0) − z∗||PQ) + sup[0,T ] |MK (t)|
C ′′C ′′′κ

, (23)

which represents the maximal time that the process ||ZK − z∗||2 can spend above
the threshold 2C ′′′κ before the time T ∧ τ K

ε . The inequality (22) becomes for all
t ≤ Sκ ∧ T ∧ τ K

ε

||ZK (t) − z∗||2 ≤ CC ′′C ′′′κTκ .

This equation connects the time spent by the process outside a ball, with the values
taken by ||ZK −z∗||2 during this time interval. Therefore if we bound the values of Tκ ,
we control the process ||ZK − z∗||2 and consequently the exit time τ K

ε . To estimate
Tκ we need to control exponentially the values of the martingale MK

t uniformly on a
time interval. To this aim, we use the following lemma.

Lemma 1 (Graham and Méléard 1997, Proposition 4.1) For every α > 0 and T > 0
there exists a constant Vα,T satisfying that for all K large enough:

P

(

sup
[0,T∧τ K

ε ]
|MK

t | > α

)

≤ exp(−KVα,T )

With this result and (22) we study for ε′′ < ε′ < ε, the number of back and forth,
kε between the balls Bε′′ and Bε′ before the exit of Bε. With an appropriate choice
of the parameters ε′ and T , we establish that kε is smaller than a geometric random
variable with parameter exp(−KV ), thus

P(kε > exp(KV/2)) = 1 − (1 − exp(−KV ))exp(KV/2) −→
K→∞ 1

To conclude it remains to show, using (22) again, that these back and forth require a
time of order 1.

Finallywe study the behavior of the processwhile it remains close to the equilibrium
z∗. The equilibrium z∗ can have zero components and we establish that the associated
stochastic sub-populations become extinct in a time of order log K . We introduce the
stopping time

SKext = inf{t ≥ 0,∀i ∈ P, NK
i (t) = 0 and ∀ l ∈ Q, HK

l (t) = 0},

and set SKext = 0 if both P and Q are empty.
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Proposition 4.3 Let ε > ε′′ > 0 small enough. If the initial condition ZK (0) ∈
Bε′′ ,then there exists a > 0 such that

lim
k→∞P(SKext ≤ a log K ) = 1.

Proof Fix l ∈ Q. We prove the result for the predator population holding trait yl , and
the same reasoning can be applied to a prey population holding trait xi , for i ∈ P (see
Theorem 4 in Champagnat 2006).

Theorem 3.3 ensures that the fitness F(yl; z∗) is negative. We define the constant
Vε associated by Theorem 4.2 to the exit time τ K

ε of the ball Bε. For every t ≤ τ K
ε ,

the number of predators HK
l (t) is bounded from below by a continuous time birth and

death process H with birth rate λ = r
∑d

i=1 B(xi , yl)(n∗
i + ε), death rate μ = D(yl)

and initial condition HK
l (0) ≤ K ε′′. We choose ε small enough for the process H to

be sub-critical: ε < −F(yl , z∗)/(r
∑d

i=1 B(xi , yl)).
From classical results on branching processes (see Athreya and Ney 2004, p. 109),

we obtain that

P(H(t) = 0|H(0) = 1) = 1 − μ − λ

μ exp(−(λ − μ)t) + λ
.

Since ∀h0 ∈ N, P(H(t) > 0|H(0) = h0) = 1 − P(H(t) = 0|H(0) = 1)h0 , we
deduce that for every initial condition 0 ≤ h0 ≤ K ε′′,

P(H(t) > 0|H(0) = h0) ≤ 1 −
(
1 − μ − λ

μ exp(−(λ − μ)t) + λ

)K ε′′

.

We set 1 > δ > 0 and apply the previous inequality to the positive time t lK =
( δ−1
λ−μ

) log(K ). We obtain that ∀0 ≤ h0 ≤ K ε′′,

P(H(t lK ) > 0|H(0) = h0) ≤ 1 −
(
1 − μ − λ

μK 1−δ + λ

)K ε′′

−→
K→∞ 0.

We conclude the proof by choosing a log K as the maximal t lK for l ∈ Q ∪ P .

5 Evolution of the process in a rare mutation time scale

In this section, mutations happen during the prey and predator reproduction events.We
observe their impact on the dynamics of the community. The coevolution of the traits
depends on the occurrence of mutations and the invasion of the mutant population. We
seek conditions for the survival of a mutant population and study the consequences of
the fixation of a mutation for the prey-predator community.

The individual birth and death rates are defined as in Sect. 2. The mutation events
are added as follows
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– when a prey individual with trait x gives birth, the trait of its offspring is affected
by a mutation with probability uK p(x). The newborn holds a trait x + l where l is
distributed according to π(x, l)dl. Otherwise (with probability 1 − uK p(x)) the
newborn inherits its parent trait x .

– Similarly for each predator holding a trait y. At each reproduction event, with
probability uK P(y) the trait of the offspring is affected by a mutation: it holds the
trait y + l where l is distributed according to Π(y, l)dl. Otherwise the newborn
inherits its parent trait y.

The same parameter uK scales the mutation frequencies in both prey and predator
populations. This assumption is consistentwith the fact that the demographic dynamics
of both populations happens on the same time scale (Sect. 4). When the parameter uK
is small, the mutations are rare. We assume in the sequel that KuK → 0 as K → ∞.
This assumption measures the rarity of the mutations and is consistent with the theory
of adaptive dynamics (Metz et al. 1992; Dieckmann and Law 1996).

In Sect. 5.1 we illustrate the impact of mutations on the example introduced in Sect.
2.2. In Sect. 5.2 we consider the limit of the community process under the assumptions
of infinite population and rare mutations. We extend the results obtained by Cham-
pagnat (2006) to the prey-predator coevolution. Finally in Sect. 5.3 we consider a
limit when the mutation steps are small. We prove that the coevolution of the prey
and predator traits can be described by the deterministic coupled system of differen-
tial equations introduced by Marrow et al. (1996). This system extends the canonical
equation of adaptive dynamics to the coevolution of a prey-predator interaction.

5.1 Simulations

Let us consider again the example introduced in Sect. 2.2 in which prey individuals
are characterized by a trait x = (qn, qa) where qn is the quantity of quantitative
defenses they produce and qa the type of qualitative defense they use. The predators
are characterized by y = (ρ, σ ) where ρ reflects the qualitative value they prefer and
σ is their range. The mutations are distributed according to gaussian distributions,
centred in the trait of the parent with covariance matrices γ and Γ for prey and
predators respectively.

We illustrate in different cases the impact of mutations on the community. We will
observe the convergence on the rare mutation scale toward a pure jump process taking
values in the set of couples of finitemeasures on the trait spacesX andY respectively.

5.1.1 Co-evolution of the qualitative defense qA and the predator preference ρ

We first consider the coevolution of the prey trait qa and of the predator trait ρ.
Both traits are associated through the predation function B, and the defense trait qa
influences the competition among prey. In these simulations we assume that mutations
do not affect the prey trait qn and the predator trait σ . We consider three cases: first we
assume that no mutation occurs in the predator population (Fig. 2), then the opposite
case where mutations only occur in the predator population (Fig. 3), finally we study
the coevolution of the traits (Fig. 4).

123



Stochastic eco-evolutionary model of a prey-predator community 593

 0

 1

 2

 3

 4

 0  500  1000  1500  2000

pr
ey

 o
r p

re
ad

to
r t

ra
it

time

 0

 200

 400

 600

 800

 1000

 1200

 0  100  200  300  400  500  600  700  800

pr
ed

at
or

 n
um

be
r

time

 0

 200

 400

 600

 800

 1000

 1200

 0  100  200  300  400  500  600  700  800

pr
ey

 n
um

be
r

time

(a) (b) (c)

Fig. 2 a Represent the traits qa (+, +, +, +) and ρ (×) present in the community through time. b Gives
the dynamics of the number of predators on the time interval [0 : 800] and c gives the dynamics of size
of the prey populations holding trait (0.3, 0.4) in green, (0.3, 0.664) in blue and (0.3, 1.285) in pink (the
same colors are associated on a). The vertical line corresponds to the extinction time of predators. The
other parameters are K = 1000, uK = 5 × 10−5, p = 1, P = 0, π(qa , l) ∼ N (qa , 0.1) b0 = 2, d0 = 0,
c0 = 1.5, D = 0.5, r = 0.8, αn = 0.1, βn = 2 (color figure online)
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Fig. 3 a Represents the traits qa (+) and ρ (×,×, ×, ×) present in the community through time. b Gives
the dynamics of the rescaled number of predators holding trait (0.2, 0.6) in black, (0.339, 0.6) in green and
(0.531, 0.6) in pink and (0.597, 0.6) in blue. c Represents the rescaled size of the prey population through
time. The other parameters are K = 1000, uK = 1 · 10−4, p = 0, P = 1, Π(ρ, l) ∼ N (ρ, 0.01), b0 = 2,
d0 = 0, c0 = 1.5, D = 0.5, r = 0.8, αn = 0.1, βn = 2 (color figure online)
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Fig. 4 Both Figures represent the traits qa (+) and ρ (×) present in the community through time. The
mutation probabilities vary: on a p = P = 1, π(qa , ·) ∼ N (qa , 0.1), Π(ρ, ·) ∼ N (ρ, 0.1), and on b
P = 5, p = 1 π(qa , ·) ∼ N (qa , 0.01), Π(ρ, ·) ∼ N (ρ, 0.01). The other parameters are K = 1000,
uK = 10−4, b0 = 2, d0 = 0, c0 = 1.5, D = 0.5, r = 0.8, αn = 0.1, βn = 2 (color figure online)

In the first case we assume that no mutation occurs in the predator population:
P = 0. The initial community is composed of K prey individuals holding trait x =
(0.3, 0.4) and K predators holding trait y = (0.2, 0.6). The mutation probability
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uK = 5×10−5 is small. Figure 2a gives the different values of qa carried by prey and
of ρ carried by predators for all times. We observe that natural selection favours the
values of qa far from ρ. The predator population dies out when the defense qa gets to
far away from their preference. The extinction time is represented by a vertical line
on the three graphs. As long as predators are present in the community, we observe
that the prey traits are concentrated in a single value: the prey population remains
monomorphic.

In the other graphs, we focus on the demographic dynamics. Figure 2b gives the
dynamics of the number of predators through time. On Fig. 2c we represent the size
of the prey sub-populations with the following traits: the initial trait value (0.3, 0.4)
in green, (0.3, 0.664) in blue, and (0.3, 1.285) in pink (the same colors are used on
Fig. 2a). On these graphs we observe the impact of the mutations on the community.
The mutation (0.3, 0.664) is the first to invade the initial community and to replace
the resident prey holding trait (0.3, 0.4). We observe that before the appearance of
this mutation the respective numbers of predators and prey (0.3, 0.4) remain station-
ary. Some mutations have appeared but their population remained small (less than 10
individuals). This phenomenon illustrates the stationarity of the prey and predator pop-
ulation sizes near the deterministic equilibria of the LV P systemstated inTheorem4.2.

The invasion of the mutation (0.3, 0.664) is characterized by a fast extinction of
the resident prey population and a fast growth of the mutant population. Meanwhile,
the number of predators diminishes to another stationary value. The extinction speed
of the resident population is given by Proposition 4.3.

The invasion of a mutant prey holding trait (0.3, 1.285) in the resident community
composed of prey holding trait (0.3, 0.664) and predators, drives the predators to
extinction. The extinction of predators is a direct consequence of the prey phenotypic
evolution: it is called an evolutionarymurder (seeDercole et al. 2006). Afterwards both
prey populations survive. Note that their respective population sizes are similar: they
have indeed the same natural birth and death rates and similar ability for competition.
In this simulation, the prey population remains dimorphic after the predator extinction
and both traits are driven apart by the competition.

This simulation is characteristic of the behavior of the process when the population
is large and mutations are rare. As introduced by Champagnat (2006) there exist two
phases: a long phase where the sizes of the sub-populations remain stable, close to
the equilibrium values of the deterministic system; a short phase corresponding to the
invasion of a mutant trait in the resident population. The successive mutant invasions
induce jumps in the traits present in the community as well as in respective sizes of
each sub-population. We describe this jump process in Sect. 5.2

We then consider the opposite case where mutations only affect the predator prefer-
ence ρ and not the prey population (see Fig. 3). As before, Fig. 3a represents the traits
qa and ρ in the population. Figure 3b corresponds to the rescaled number of predators
holding the traits (0.2, 0.6) in black, (0.339, 0.6) in green, (0.531, 0.6) in pink and
(0.597, 0.6) in blue (represented with the same colors on Fig. 3a). The rescaled size of
the prey population is drawn on Fig. 3c. The initial population is composed of K prey
individuals with trait (0.3, 0.6) and K predators with trait (0.2, 0.6). We recall that the
predator preference corresponds to the value of the qualitative defense that they can
avoid or the prey type that they are specifically able to consume (see Müller-Schärer
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et al. 2004; Courtois et al. 2012). Predators whose preference ρ is closer to the prey
qualitative defense qa = 0.6 have an advantage in terms of relative fitness.We observe
that the predator population remains monomorphic and that the trait jumps closer to
qa accordingly to the successive invasions of mutants. At each invasion, the sizes of
the prey and predator populations jump to the stable equilibrium of the associated
LV P system. The last invasion phase is very slow (see Fig. 3b). It is due to a very
slow convergence toward the equilibrium, of the solutions to the LV P system asso-
ciated with the traits x = (0.3, 0.6), y1 = (0.531, 0.6) and y2 = (0.597, 0.6). We
observe in a general manner that the invasion times of successive mutations increase
as ρ comes closer to qa . This reflects the flatenning of the fitness landscape for preda-
tors: through time, advantageous mutations become less beneficial with respect to the
resident population.

To observe coevolution, we introduce mutations in both the prey and the preda-
tor populations. The prey evolution is constrained by two forces: the intra-specific
competition that favours diversification and the predation pressure that drives prey
phenotypes away from the predator preferences. We investigate the effect of these two
forces on the community when the relative mutation speeds p and P vary. On Fig. 4,
we represent the traits qa (+) and ρ (×) present in the community through time. On
Fig. 4a p = P , we observe that the predator trait jumps close to the value of the defense
of the prey population. Afterwards, the prey population becomes polymorphic. This
diversity is due to the competition interaction. Finally, as predators do not adapt their
preference fast enough, their population dies out. In this case, the competitive force
has more impact than the predation pressure and induces a diversification of the prey
phenotypes (see Loeuille et al. 2002). On Fig. 4b, we raise the mutation probability
of predators: P = 5p and choose smaller mutations steps. We observe two phases: in
the first one (for t ∈ [0 : 4000]) the distance between the prey qualitative defense and
preference of predators decreases. After this time, both traits seem to evolve simulta-
neously. This phenomenon recalls the Red Queen or Arm races observed by biologists
(seeMarrow et al. 1992; Abrams 2000; Dercole et al. 2006; Becerra et al. 2009), which
corresponds to a parallel variation of the traits of partner species in time.

5.1.2 Evolution of the quantitative defense

We now model the variations in the quantity qn of quantitative defense. Unlike the
qualitative defenses considered above, quantitative defenses impact the prey birth rate
and not their competitive ability. In these simulations the mutations do not affect the
prey trait qa and the mutation probability of predators is null again. The initial com-
munity is composed of K prey individuals holding trait (0, 0.6) and of K predators
holding trait (0.2, 0.6). Figure 5a represents the traits qn borne by prey through time.
Figure 5b gives the dynamics of the rescaled sizes of the prey sub-populations asso-
ciated with the initial trait (0, 0.6) in red, (0.189, 0.6) in green, (0.311, 0.6) in blue,
(0.703, 0.6) in pink and (0.260, 0.6) in light blue. These traits are represented using
the same colors on Fig. 5a. The remaining traits, in black on Fig. 5a, correspond to
mutations which did not invade the community. The dynamics of the rescaled number
of predators is given on Fig. 5c. The vertical line corresponds to the predator extinction.
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Fig. 5 a Gives the values of qn borne by prey through time. On b we draw the rescaled sizes of the prey
population holding trait (0, 0.6) in red, (0.189, 0.6) in green, (0.311, 0.6) in blue, (0.703, 0.6) in pink and
(0.260, 0.6) in light blue. The dynamics of the rescaled number of predators is given on c. Other parameters
are given by K = 1000, uK = 10−4, p = 1, P = 0, π(qn , l) ∼ N (qn , 0.1) b0 = 2, d0 = 0, c0 = 1.5,
D = 0.5, r = 0.8, αn = 0.1, βn = 2 (color figure online)

Note that the quantity of defense produced by prey increases in the presence of
predators and that the number of predators decreaseswhen prey increase their defenses.
When prey holding trait (0.311, 0.6) and (0.703, 0.6) coexist, the number of predators
decreases quickly. We observe long time oscillations that correspond to the behavior
of the dynamical systems associated to these three populations. As the competition
is constant in the prey population, these simulations do not enter the mathematical
framework we described (Assumption C1). These oscillations illustrate that evolu-
tion can induce instability in the interaction networks (e.g. Loeuille 2010). After the
extinction of predators, prey producing many defenses are penalized because their
reproduction is weaker. The direction of natural selection changes with the extinction
of the predators.We observe here what is called apparent competition: the coexistence
of two prey traits with predators relies on the fact that the predation pressure is stronger
on the most competitive prey population (see Armstrong and McGehee 1980).

This change in the direction of evolution illustrates a new difficulty induced by
coevolution: the same mutation will not have the same impact on the community
depending on the presence or the absence of predators. It is thus necessary to consider
the coevolution of both populations.

5.2 Limit in the rare mutation time scale and jump process

We consider the limit of the community process in a large population scaling with
rare mutations. The number of traits present in the community varies when muta-
tions appear in the community. We represent the community by a couple of empirical
measures (νK (t), ηK (t)):

νK (t) = 1

K

NK (t)∑

i=1

δxi , ηK (t) = 1

K

HK (t)∑

l=1

δyl ,

where δx is theDiracmeasure at point x . This process takes values in the setMF (X )×
MF (Y ) of couples of finite measures onX and Y respectively.
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We recall that themutation frequencies in both populations are scaled by a parameter
uK such that KuK → 0. This assumption is consistent with the adaptive dynamics
framework in which mutations occur when the resident population is at equilibrium
(Metz et al. 1992; Dieckmann and Law 1996). Further assumptions will be given in
Theorem 5.1 on the exact scaling of the mutation frequency.

The fact that the mutation frequency decreases with the population size is not
unexpected, considering population genetics arguments. Indeed, the genetic variation
among a population increases with respect to the number of individuals. However,
assuming that mutant effects are distributed around 0 with a given variance, large
numbers of mutations in large populations eventually produce very similar mutants.
Due to this redundancy, the amount of variation produced by the mutation process
saturates in large populations (see Frankham 1996; Soulé 1976; Leimu et al. 2006).
This saturation can be interpreted as a decrease of the outcome of new mutants.

The next proposition states that mutations cannot occur in a bounded time interval.

Lemma 2 Let us assume Assumptions A, B and that the mutation densities satisfy:

∀x ∈ X ,∀u ∈ R
p, π(x, u) ≤ �m(u),

∫

Rp
�m(u)du < ∞,

∀y ∈ Y ,∀v ∈ R
P , Π(y, v) ≤ �M(v),

∫

RP

�M(v)dv < ∞,

(24)

then for every δ > 0, there exists ε > 0 such that for all t > 0,

lim sup
K→∞

P

(
a mutation occurs in

[
t

KuK
,
t + ε

KuK

])
≤ δ.

The proof of this Lemma can be easily adapted from the proof of Corollary 2.2 in
Champagnat et al. (2014). It is based on a coupling of the community process before
the first mutation time with a multi-type birth and death process whose birth and death
rates depend on uK . This process is independent of the mutation events occurring in
(νK , ηK ). As these mutations occur at a rate proportional to KuK , the probability to
observe a mutation in a time interval of length ε/KuK is negligible.

We state the main result of this section. It describes the convergence of the commu-
nity process in the mutational scale toward a pure jump process. This process extends
the polymorphic evolutionary sequence introduced by Champagnat and Méléard
(2011) to a prey-predator network.

As we have seen in the simulations, the limiting process takes values in the set
of the stable equilibria (n∗(x, y), h∗(x, y)) of the deterministic system LV P(x, y)

(introduced in (3) for x ∈ X d and y ∈ Y m) as long as predators survive. Remark that
after the extinction of predators, the behavior of the prey population is well known
(see Champagnat 2006; Champagnat andMéléard 2011) and the limiting process takes
values in the set of equilibria�n(x) of the LVC(x) system defined in (4).

The process describing the successive states of the community is aMarkovian jump
process Λ = (Λ1,Λ2) taking values in E :
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E =
{(

d∑

i=1

niδxi ,
m∑

l=1

hlδyl

)

; x ∈ X d , y ∈ Y m,

(n, h) ∈ {
(n∗(x, y), h∗(x, y)), (�n(x), 0)

}
}

.

The dynamics of Λ depends on the arrivals of mutations in the prey and the predator
populations. A successful mutant invasion modifies both the prey and the predator
populations (see Figs. 2, 3, 5). From any state (

∑d
i=1 n

∗
i (x, y)δxi ,

∑m
l=1 h

∗
k(x, y)δyl )

where predators are alive

– for every j ∈ {1, . . . , d} the process jumps to the equilibrium associated with the
modified vector of traits ((x, x j + u), y) at infinitesimal rate:

p(x j )n
∗
j (x, y)b(x j )

[s(x j + u; (n∗(x, y), h∗(x, y))]+
b(x j + u)

π(x j , u)du.

This corresponds to the invasion of a mutant prey population with trait x j + u in
the community.

– for every k ∈ {1, . . . ,m} the process jumps to the equilibrium associated with the
modified vector of traits (x, (y, yk + v)) at infinitesimal rate:

P(yk)h
∗
k(x, y)

(
d∑

i=1

r B(xi , yk)n
∗
i (x, y)

)

×[F(yk + v; (n∗(x, y), h∗(x, y))]+
∑d

i=1 r B(xi , yk + v)n∗
i (x, y)

Π(yk, v)dv.

This corresponds to the invasion of a predator population holding the mutant trait
yk + v.

We recall that the fitness functions s and F are defined in (18) and (19) respectively.

Remark 2 As in Figs. 2 and 5, the community jump process Λ can reach a state
where the predator population dies out. Since the invasion ofmutant predators requires
the positivity of their invasion fitness (see Theorem 3.3), the predator extinction can
only result from the invasion of a mutant prey which diminishes the growth rate
of the resident predator. The behavior of the community after the predator extinc-
tion is described by the PES introduced in Theorem 2.7 Champagnat and Méléard
(2011). We recall that the infinitesimal jump rate from a state (

∑d
i=1�ni (x, y)δxi , 0) to

(
∑d

i=1�ni ((x, x j + u))δxi +�nd+1((x, x j + u))δx j+u), 0), is given by

p(x j )b(x j )�n j (x)
[s(x j + u; (�n(x), 0)]+

b(x j + u)
π(x j , u)du.

We now formulate the limiting theorem.
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Theorem 5.1 Fix x ∈ X d and y ∈ Y m. Let us assume Assumptions A, B, C, D, (24)
and that the initial condition (

∑d
i=1 n

K
i δxi ,

∑m
l=1 h

K
l δyl ) converges in probability

toward (
∑d

i=1 n
∗
i δxi ,

∑m
l=1 h

∗
l δyl ). If furthermore

log(K ) � 1

KuK
� exp(V K ), ∀ V > 0, (25)

then the process
(
νK ( t

KuK
), ηK ( t

KuK
)
)
t≥0 converges toward the pure jump process

Λ = ((Λ1
t ,Λ

2
t ); t ≥ 0) defined above and whose initial condition is given by

(
∑d

i=1 n
∗
i (x, y)δxi ,

∑m
l=1 h

∗
l (x, y)δyl ).

This convergence takes place in the sense of convergence of the finite dimen-
sional distributions for the topology on MF (X × Y ) induced by the total variation
norm.

Assumption (25), introduced by Champagnat (2006), reflects the separation between
the demographic and the mutational time scales (see Figs. 2b, c, 3b, c). The demo-
graphic time scale is of order log K . It corresponds to the evolution of the stochastic
process close to its deterministic approximation. The process ZK enters a neigh-
bourhood of the attractive deterministic equilibrium and the deleterious traits die out
(Propositions 4.1 and 4.3). The mean time between two mutations is of order 1/KuK ,
therefore the resident population is close to the equilibrium of the associated LV P
system when a mutant appears in the community (Theorem 4.2).

The proof derives from the proof of Theorem 1 in Champagnat (2006) and from the
results obtained in Sect. 4. Themain idea is to study the invasion of a mutant trait in the
community. Starting from an initial condition (

∑d
i=1 n

∗
i (x, y)δxi ,

∑m
l=1 h

∗
l (x, y)δyl )

at the deterministic equilibrium, the next mutation occurs after an exponential time of
parameter

E(x, y) =
d∑

i=1

p(xi )b(xi )n
∗
i (x, y) +

m∑

l=1

P(yl)h
∗
l (x, y)

(

r
d∑

i=1

B(xi , yl)n
∗
i (x, y)

)

.

The mutant individual then comes from the prey population with trait x j (1 ≤ j ≤ d)
with probability

p(x j )b(x j )n∗
j (x, y)

E(x, y)
,

or from the population of predators holding trait yk (1 ≤ k ≤ m) with probability

P(yk)h∗
k(x, y)

∑d
i=1 r B(xi , yk)n∗

i (x, y)

E(x, y)
.

In the sequel we consider a mutant trait yk + v where v is distributed according
to Π(yk, v)dv. While the number of individuals holding the mutant trait is small,
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we compare thanks to Theorem 4.2 the size of the mutant population with a con-
tinuous time birth and death process with birth rate r

∑d
i=1 B(xi , yk + v)n∗

i (x, y)

and death rate D(yk + v). Its growth rate is then given by the invasion fitness
F(yk + v; (n∗(x, y), h∗(x, y))) of the mutant trait in the resident population. If the
fitness is negative we prove that the mutant population goes extinct similarly as in
Lemma 4.3. Otherwise, the probability that the mutant population reaches a positive
density ε is close to the survival probability of the supercritical branching process
which is given by

F(yk + v; (n∗(x, y), h∗(x, y)))

r
∑d

i=1 B(xi , yk + v)n∗
i (x, y)

,

(see Athreya and Ney 2004, p. 102). Moreover this phase lasts a time of order log K
(see the proof of Lemma 3 in Champagnat 2006). Then using the large population
approximation on a finite time interval (Proposition 2.2), we establish that the process
Λ jumps to the equilibrium of the system LV P(x, (y, yk + v)).

5.3 Small mutations: a canonical equations system for coevolution

In this subsection we consider a different scaling for the jump process Λ where the
mutation steps of both populations are of order ε (see Champagnat and Méléard 2011;
Champagnat et al. 2014). We study the limit of the sequence Λε in a long time scale
t
ε2

to observe global evolutionary dynamics. We establish that the limiting behavior
of the prey and predator traits satisfies a coupled system of differential equations.
These equations were heuristically introduced by Marrow et al. (1996). They extend
the canonical equation of adaptive dynamics to the coevolution of a prey and predator
interaction.

In the sequel we assume that every couple of a prey and a predator trait can coexist
although two prey traits cannot coexist.

Assumption E (a) For every (x, y) ∈ X ×Y , predators survive in the equilibrium
of LV P(x, y):

b(x) − d(x)

c(x, x)
>

D(y)

r B(x, y)
. (26)

(b) Invasion implies fixation: For every (x, x ′) ∈ X 2 and y ∈ Y , we have

s(x ′; (n∗(x, y), h∗(x, y))) < 0,

or s(x ′; (n∗(x, y), h∗(x, y))) > 0 and s(x; (n∗(x ′, y), h∗(x ′, y))) < 0.

(c) Themutation densitiesπ andΠ areLipschitz continuous onX ×R
p andY ×R

P .
(d) The functions g and G defined for x, x ′ ∈ X and y, y′ ∈ Y by
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g(x ′; (x, y)) = p(x)n∗(x, y)b(x) s(x
′; (x, y))

b(x ′)
,

G(y′; (x, y)) = P(y)h∗(x, y)B(x, y)
F(y′; (x, y))

B(x, y′)
,

(27)

are continuous and C 1 with respect to their first variable.

Remark 3 Condition (26) compares the equilibrium sizes of the prey populations
evolving in the presence or the absence of predators. The predator survival requires
that the prey population size decreases in the presence of predators.

For every couple of traits (x, y), the equilibrium (n∗(x, y), h∗(x, y)) of the system
LV P(x, y) given by Theorem 3.3 equals

n∗(x, y)= D(y)

r B(x, y)
and h∗(x, y)= 1

B(x, y)

(
b(x) − d(x) − c(x, x)

D(y)

r B(x, y)

)
.

(28)
To ease notation, we denote in this section

s(x ′; (x, y)) = s(x ′; (n∗(x, y), h∗(x, y))),
F(y′; (x, y)) = F(y′; (n∗(x, y), h∗(x, y))).

Assumption E.b) and Theorem 3.3 entail that two prey types cannot coexist in the
equilibrium of the deterministic system LV P . Together with the competitive exclu-
sion principle introduced in Sect. 3, this ensures that two predator populations cannot
coexist either. Therefore each mutant invasion (prey or predator) leads to the replace-
ment of the resident trait. The community is then always composed of a monomorphic
prey population and a monomorphic predator population:

Λ1
ε(t) = n∗(Xε(t),Yε(t))δXε(t), Λ2

ε(t) = h∗(Xε(t),Yε(t))δYε(t). (29)

The trait process (Xε(t),Yε(t)) is a Markovian jump process taking values inX ×Y
whose infinitesimal generator is given for any measurable bounded function φ by

LεΦ(x, y) =
∫

X

(
Φ(x + εu, y) − Φ(x, y)

)
[g(x + εu; (x, y))]+π(x, u)du

+
∫

Y

(
Φ(x, y + εv) − Φ(x, y)

)
[G(y + εv; (x, y))]+Π(y, v)dv.

The following Theorem states the limiting behavior of the process (X (t/ε2),Y (t/ε2))
as ε goes to 0. The proof relies on a classical compactness-uniqueness argument that
can be immediately extended from Champagnat and Méléard (2011) (Appendix C).

Theorem 5.2 Let us assume Assumptions A, B, C, D and E and that the sequence
of initial conditions (Xε(0),Yε(0)) is bounded in L

2 and converges in law toward a
deterministic vector (x0, y0), then for every T > 0 the process (X (t/ε2),Y (t/ε2))
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converges in law in D([0, T ],X × Y ) toward a couple of deterministic functions
(x(t), y(t))t∈[0,T ] unique solution of the system of differential equations

⎧
⎪⎪⎨

⎪⎪⎩

d

dt
x(t) =

∫

Rp
u[u · ∇1g(x(t); (x(t), y(t)))]+π(x(t), u)du,

d

dt
y(t) =

∫

RP
v[v · ∇1G(y(t); (x(t), y(t)))]+Π(y(t), v)dv,

(30)

with initial condition (x0, y0).

This system is strongly coupled through the functions g and G.
In the specific case where the mutation measures π and Π are symmetrical, with

covariance matrices γ and Γ , the system (30) becomes

⎧
⎪⎨

⎪⎩

d

dt
x(t) = 1

2
p(x)γ (x)n∗(x, y)∇1s(x; (x, y)),

d

dt
y(t) = 1

2
P(y)Γ (y)h∗(x, y)∇1F(y; (x, y)).

Remark 4 In the large population limit with rare and small mutations, diversification
events of the population can be observed. These evolutionary branching are well
understood in the case of the evolution of a single population (see Champagnat and
Méléard 2011; Champagnat et al. 2014). They rely on the behavior of the jump process
Λ when coexistence of two traits occurs. The prey-predator coevolution make the
evolutionary branching properties of the trait processes complex to study. In particular,
if two prey traits coexist, the next mutation can lead to the coexistence of two predator
traits as well.

5.3.1 Application

We apply those results to the example introduced in Sect. 2.2 where prey individuals
hold a trait (qn, qa) ∈ R × R+ and predators a trait (ρ, σ ) ∈ R × R+. We recall that
the rate functions are given in (2) and that the mutation measures are gaussian with
respective variance γ and Γ .

Derivating the fitness functions with respect to the mutant trait, we obtain

∇1s((qn, qa); (qn, qa, ρ, σ )) =
⎛

⎝

(
−αnb0 exp(−αnqn) + βn

h∗(qn ,qa ,ρ,σ )
B(qn ,qa ,ρ,σ )

)
1qn>0

qa−ρ

σ 2
h∗(qn ,qa ,ρ,σ )
B(qn ,qa ,ρ,σ )

⎞

⎠ .

(31)
and

∇1F((ρ, σ ); (qn, qa, ρ, σ )) =
( qa−ρ

σ 2 D(
(qa−ρ)2

σ 3 − 1
σ

)
D1σ>0

)

(32)

In particular ∇1F((ρ, σ ); (qn, qa, ρ, σ )) = 0 if and only if ρ = qa and σ = |qa −ρ|.
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We first study the coevolution of the traits qa and ρ, the values of σ and qn being
fixed, as in Fig. 4. The system of differential equations governing the dynamics of qa
and ρ is then

d

dt
qa(t) = γπ(qa)

r
φ(qa, ρ)

d

dt
ρ(t) = Γ Π(ρ)φ(qa, ρ),

(33)

where

φ(qa, ρ) = D(qa − ρ)

σ 2 h∗(qa, ρ),

and the equilibrium h∗(qa, ρ) is given in (28). The function φ vanishes if qa = ρ or
if the predator population dies out (h∗(qa, ρ) = 0).

Wededuce from the specific formof the system that for all t ≥ 0, h∗(qa(t), qn(t)) >

0. Moreover there exist three cases depending on the respective values of the mutation
probabilities and variances and on the parameter r :

– If rΓ Π(ρ) > γπ(qa), the difference |qa(t) − ρ(t)| decreases with time. This
phenomena was observed on Fig. 4b on the first part of the graph.

– If rΓ Π(ρ) = γπ(qa), both derivatives are equal for all times. The evolution then
follows an arm race dynamics : both traits evolve continuously and |qa(t) − ρ(t)|
remains constant (see Marrow et al. 1992; Abrams 2000; Dercole et al. 2006).

– If rΓ Π(ρ) < γπ(qa), prey escape the predator influence as the distance between
qa and ρ increases. When t → ∞, the solution converges toward a vector (q∗

a , ρ∗)
that doesn’t satisfy (26). However the extinction of the predator population is not
possible in finite time unlike in the process Λ (see Fig. 4a)

Then we consider, as in Fig. 5, the prey strategies for the quantitative defense qn , when
the other traits are not affected by mutations:

d

dt
qn(t) = π(qn)γ

D

r B(qn)

(
(αn − βn)b0 exp(−αnqn) − βnc0

D

r B(qn)

)
1qn>0

In the case where αn ≥ βn , meaning that the allocative trade-off between producing a
large quantity of defense and having a good reproduction is important, the quantitative
defense qn(t) decreases to 0. If αn < βn , the derivative of qn vanishes at the point

q∗
n = −1

αn + βn
ln

(
βnc0D

r B(0)(βn − αn)b0

)
.

Then either q∗
n is negative and again qn(t) → 0 or q∗

n ≥ 0 and qn(t) converges to q∗
n

when t → ∞. With the parameters of Fig. 5, q∗
n ≈ 0.58. We observed first an increase

of qn and then the extinction of predators. Thus, an important question is whether or
not the predator population dies out as t → ∞. An easy calculation gives that

h∗(q∗
n ) > 0 ⇐⇒ βn

βn − αn
> 1,
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which is always true if 0 < αn < βn . We deduce that the evolution of the
quantitative defense does not drive the predators to extinction. This prediction con-
tradicts the extinction observed in Fig. 5. However, in this simulation Assumption
E.b is not satisfied and the predator extinction is due to the coexistence of two prey
types.

6 Discussion

We introduced three different objects to describe the prey-predator community: a
deterministic system LV P in (3), a stochastic jump process Λ in Sect. 5 and a couple
of two canonical equations in (30). These processes correspond to three different limits
of the individual based process introduced in Sect. 2.

The jump process Λ describes the dynamics of the community when mutations are
rare. It describes the successive equilibria of the community. In this sense, it justifies
a simulation method developped in Ecology to study the phenotypic evolution of
communities (see Loeuille and Loreau 2005; Loeuille and Leibold 2008; Brännström
et al. 2011). In these articles, the community evolves as the solution of a system of
differential equations. Each equation of the system describes the dynamics of a sub-
population. When a mutation occurs (at a very low rate), it increases the number of
sub-populations and thus a new equation is added to the system. Their method gives
the successive equilibria of the community similarly to the jump process Λ, however,
it does not take into account the demographic stochasticity as every mutant with a
positive fitness invades the community.

Our model highlights the implications of coevolutionary dynamics for the eco-
logical dynamics of the community and its maintenance in time (see Sect. 5.1).
Particularly, we show that such consequences depend on the trait under scrutinity
and on the costs that are associated to these traits. For instance, the two categories
of defenses have different implications in this regard. If the evolution of qualitative
defenses is fast enough, it can lead to the disappearance of the predators as in Figs.
2 and 4, a phenomenon called “evolutionary murders” (as the evolution of a species
in the community eventually kills another species). We note that such evolutionary
murders do not happen when one considers the evolution of quantitative defenses.
Likewise, the evolution of predators does not lead to the extinction of prey. There-
fore, our study highlights how evolutionary murder phenomenons, already known
in ecology (Brännström et al. 2012; Georgelin et al. 2015; Dercole et al. 2006)
depend on evolving species and on types of traits that evolve. Even in the absence
of species extinction, we note that the coevolution also modifies the strength of the
interactions between species and can thus lead to the reinforcement of an interac-
tion (see Fig. 3). Or as observed in Fig. 2, evolution can induce the disappearance
of an interaction (through diminishing the competition between two plants). Inter-
actions then progressively weaken and become “ghosts from the past”, as commonly
observed in phylogenetic or evolutionary studies (e.g. Tobias et al. 2013; Bennett et al.
2013).

Such variations in interaction strength can have important consequences for the
overall stability of the system. Indeed, in food webs, stability analyses suggest that
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distributions of interaction strengths including weak interactions have a stabilizing
effect on the dynamics of the community (McCann et al. 1998) with important impli-
cations for the conservation of species and for the delivery of ecosystem services. The
question of the links between evolution and stability of the network is therefore cru-
cial. As shown in Fig. 5, evolution can induce instability in the network so that small
perturbations of a population may lead to the extinction of one or several populations
(cf Loeuille 2010).

The jump process contains the various behaviors present in ecological communities
however we only have little predictive information on the composition of the commu-
nity at all times. Therefore it can be interesting to consider the canonical system (30).
This process represents the dynamics of the traits present in the community under
strong assumptions on the small size of the mutation steps and on the non-coexistence
of different traits of prey and predators. The strong influence of prey on predators and
vice versa can be well understood when we consider the equilibria of this system. We
only consider one-dimensional traits (p = P = 1). If we consider the specific case of
an equilibrium (x∗, y∗) such that

∂1s(x
∗; (x∗, y∗)) = 0 and ∂1F(y∗; (x∗, y∗)) = 0 (34)

This equilibrium corresponds to a two-dimensional version of the Evolutionary strate-
gies introduced in Metz et al. (1996) for the one-dimensional canonical equation. A
natural question about this equilibrium is a condition for its stability. The Jacobian
matrix at a point (x, y) is given by:

(
n∗(x, y)(∂11s(x; (x, y)) + ∂12s(x; (x, y))) n∗(x, y)(∂13s(x; (x, y))

h∗(x, y)∂12F(y; (x, y)) h∗(x, y)(∂11F(y; (x, y))) + ∂13F(y; (x, y)))

)

(35)
Note that the conditions

∂11s(x
∗; (x∗, y∗)) + ∂12s(x

∗; (x∗, y∗) < 0,

and

∂11F(y∗; (x∗, y∗))) + ∂13F(y∗; (x∗, y∗)) < 0,

are not sufficient nor necessary to ensure the stability of the equilibrium (x∗, y∗).
These two conditions correspond to the local stability of the equilibrium x∗ when we
consider the evolution of the prey trait in the presence of a fixed predator trait y∗ and
conversely for the evolution of the predator trait in the presence of prey individuals
holding the fixed trait x∗ (see Champagnat and Méléard 2011).

The branching properties of the community are complex to study. Indeed, they
rely on a precise study of the jump process Λ after the first coexistence of two traits.
As we have seen in the simulations, the coexistence in the prey population can lead
to extinction of predators (see Figs. 2, 5), or to the coexistence of different trait of
predators (see Fig. 4b).

Throughout this work we considered the same time scales for both prey and preda-
tors. Note that while this hypothesis of similar evolutionary time scales allows a
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first grasp on the effects of coevolution on the ecological dynamics of such inter-
actions, strong asymmetries actually occur in nature. Taking again the example of
plant-herbivore interactions, large asymmetries of demographic and evolutionary time
scales can arise when the two partners have large differences in terms of body size
and generation time (eg, tree-insect interactions such as Robinson et al. 2012 or, at the
other extreme, grass-large herbivore interactions Bakker et al. 2006). We will consider
such asymmetries of time scales in a future work.
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Appendix A: Construction of a trajectory of the prey-predator community
process

We construct a trajectory of the prey-predator community process as solution of a
systemstochastic differential equations drivenbyPoissonpointmeasures (seeFournier
andMéléard 2004; Champagnat et al. 2006).We introduce two families of independent
Poisson point measures on (R+)2 with intensity dsdθ : (R j )1≤ j≤d+m for the prey and
predators reproduction events and (Mj )1≤ j≤d+m for the death events. Then, ∀1 ≤ i ≤
d and ∀1 ≤ l ≤ m

NK
i (t) = NK

i (0) +
∫ t

0

∫

R+
1θ≤b(xi )NK

i (s−)Ri (ds, dθ)

−
∫ t

0

∫

R+
1θ≤λ(xi ,Z(s−))NK

i (s−)Mi (ds, dθ),

HK
l (t) = HK

l (0) +
∫ t

0

∫

R+
1
θ≤r HK

l (s−)
(∑d

i=1
B(xi ,yl )

K NK
i (s−)

)Rd+l(ds, dθ)

−
∫ t

0

∫

R+
1θ≤D(yl )HK

l (s−)Md+l(ds, dθ).

(36)

Let us explain briefly these equations. We focus on the prey population NK
i with

trait xi . A trajectory is constructed using two Poisson point measures Ri and Mi .
The measure Ri handles the reproduction events and Mi the death events. A Poisson
point measure R on (R+)2 with intensity dsdθ charges a countable set of points
Ω = {(su, θu), u ∈ N} (with mass 1 on each point) (e.g. Watanabe and Ikeda 1981
Chapter I.8 for a complete definition). Then

∫ t
0

∫
R+ 1θ≤b(xi )NK

i (s−)Ri (ds, dθ) only

counts the points (siu, θ
i
u)u∈N such that siu ≤ t and θ iu ≤ b(xi )NK

i (siu−). Thus, we
select the points of Ri which correspond to birth events of the prey population. The
other integrals have similar interpretations.

The existence of solutions of (36) is justified by Proposition 2.1(i). From this
construction, we deduce the expression of the prey and the predator population sizes:
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NK (t) = NK (0) +
d∑

i=1

[∫ t

0

∫

R+
1θ≤b(xi )NK

i (s−)Ri (ds, dθ)

−
∫ t

0

∫

R+
1θ≤λ(xi ,Z(s−))NK

i (s−)Mi (ds, dθ)

]
,

HK (t) = HK (0) +
m∑

l=1

[∫ t

0

∫

R+
1
θ≤r HK

l (s−)
(∑d

i=1
B(xi ,yl )

K NK
i (s−)

)Rd+l(ds, dθ)

−
∫ t

0

∫

R+
1θ≤D(yl )HK

l (s−)Md+l(ds, dθ)
]
.

Appendix B: Proof of Proposition 2.1

(i) For the first part, we compare the prey population with a population evolving
in the absence of predators. Let us denote by (Ñ K

1 , . . . , Ñ K
d ) the sizes of the prey

sub-populations evolving without predators and set Ñ K = ∑d
i=1 Ñ

K
i . Using the

description given in Appendix A, we construct the processes NK and Ñ K on the
same probability space in such a way that ∀t ≥ 0, Ñ K (t) ≥ NK (t) almost surely.
Fournier and Méléard (2004,Theorem 5.3) and Champagnat et al. (2006, Lemma 1)
established that

sup
K

E

(

sup
t∈[0,T ]

(
Ñ K (t)

K

)3
)

< ∞ and E

(

sup
K

sup
t∈[0,T ]

(
Ñ K (t)

K

)3
)

< ∞. (37)

The process NK then satisfies the same moment properties. To study the number of
predators, we define τn = inf{t ≥ 0, HK (t) ≥ n}. By neglecting the death events, we
obtain that

E

(

sup
t∈[0,T∧τn ]

(
HK (t)

K

)3)

≤ E

((
HK (0)

K

)3)

+ 4E

(∫ T∧τn

0

(

1 +
(
HK (s)

K

)2)
HK (s)

K

NK (s)

K
r�Bds

)

,

where we used that (1 + x)3 − x3 ≤ 4(1 + x2), ∀x ≥ 0. Since the process Ñ K is
independent of the number HK of predators we get that

E

(

sup
t∈[0,T∧τn ]

(
HK (t)

K

)3)

≤ φ(T ) + 2r�B
∫ T

0
E

(

sup
t∈[0,s∧τn ]

(
HK (t)

K

)3)

E

(

sup
t∈[0,s]

Ñ K (t)

K

)

ds,
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where φ(T ) = E

((
HK (0)

K

)3)+ 2r�BTE
(
supt∈[0,T ]

Ñ K (t)
K

)
. By Gronwall’s Lemma

and (37), we obtain that

E

(

sup
t∈[0,T∧τn ]

(
HK (t)

K

)3)

≤ C(T ) (38)

which concludes point (i) and proves the existence of ZK for all times.
(ii) The second part is much more difficult since using such a coupling is not

possible: the constant C(T ) obtained in (38) goes to ∞ as T → ∞. In the sequel we

study the behavior of the time derivative of E
(( NK (t)+HK (t)

K

)2). We gather together

the terms related to predation and bound the other terms using Assumption A to obtain

d

dt
E

((
NK (t)

K
+ HK (t)

K

)2
)

≤ E
(
K�(ZK (t))

)
, (39)

where

�(ZK ) =
d∑

i=1

m∑

l=1

HK
l

K

NK
i

K
B(xi , yl)

×
[(

NK + HK − 1

K

)2

−
(
NK + HK

K

)2

+ r

(
NK + HK + 1

K

)2

− r

(
NK + HK

K

)2
]

+ NK

K
�b
[(

NK + HK + 1

K

)2

−
(
NK + HK

K

)2
]

+ c
(NK )2

K 2

[(
NK + HK − 1

K

)2

−
(
NK + HK

K

)2]

+ HK

K
D

[(
NK + HK − 1

K

)2

−
(
NK + HK

K

)2]

.

(40)

The function � is the sum of three terms that we handle separately. The first term
gathers together all the predation effects. The second term (sum of the second and
third terms) only depends on the prey population. The last term is related to the death
of predators. We start with the first term. To remove the dependence on the traits,
we search for conditions on the term between square brackets to be non positive.
This is equivalent to consider the sign of (1 − 1

n+h )2 − 1 + r(1 + 1
n+h )2 − r, for

(n, h) ∈ N
2\{(0, 0)}. It is non positive as soon as n + h ≥ (1+r)

2(1−r) = n1. Thus if

NK > n1,
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d∑

i=1

m∑

l=1

HK
l

K

NK
i

K
B(xi , yl)

(
NK + HK

K

)2

×
[(

1 − 1

NK + HK

)2

− 1 + r(1 + 1

NK + HK
)2 − r

]

≤ NK HK

K 2

(
NK + HK

K

)2

B

[(
1 − 1

NK + HK

)2

−1 + r

(
1 + 1

NK + HK

)2

− r

]

,

(41)

which is non positive.
For the second term, let us remark that if NK > K 2�b

c = Kn2, then

NK�b
((

1 + 1

NK + HK

)2

− 1

)

+ c

K
(NK )2

((
1 − 1

NK + HK

)2

− 1

)

≤ NK�b
[((

1 + 1

NK + HK

)2

− 1

)

+ 2

((
1 − 1

NK + HK

)2

− 1

)]

,

(42)

We set n0 = max(n1, n2). If NK ≥ Kn0, we obtain by combining (41) and (42) that:

�(ZK ) ≤ 1

K

(
NK + HK

K

)2
[

NK�b
[((

1 + 1

NK + HK

)2

− 1

)

+ 2

((
1 − 1

NK + HK

)2

− 1

)]

+ HK D

[(
1 − 1

NK + HK

)2

− 1

]]

.

(43)

Finally the term between square brackets in (43) is smaller than −min(�b, D), as soon
as NK ≥ Kn0 for n0 large enough. Thus ∀t ≥ 0,

d

dt
E

((
NK (t) + HK (t)

K

)2
)

≤ E

(

−min(�b, D)

(
NK (t) + HK (t)

K

)2

1{NK (t)>Kn0} + K�(ZK (t))1{NK≤Kn0}

)

.

We now consider the event {NK ≤ Kn0}. On this event we aim at bounding from
above the function � with
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�(ZK ) ≤ 1

K

(
NK + HK

K

)2

ΦK
(
NK

K
,
HK

K

)
. (44)

Since for (n, h) ∈ N
2\{(0, 0)},

(
1 − 1

n + h

)2

− 1 + r

(
1 + 1

n + h

)2

− r = −2(1 − r)
1

n + h
+ (1 + r)

1

(n + h)2
,

and Assumption 7, we set for every (u, v) ∈ (R+)2\{(0, 0)},

ΦK (u, v) = 2u

u + v
(�b − cu) − 2v

u + v
((1 − r)Bu + D)

+ u

K (u + v)2
(�b + cu + (1 + r)�Bv) + D

v

K (u + v)2
. (45)

We seek a condition on v to obtain that ΦK (u, v) ≤ −D, ∀K ≥ 0, ∀0 ≤ u ≤ n0.
This inequality can be written as a polynomial

v2α(u) + vβ(u, K ) + γ (u, K ) ≤ 0, (46)

where the coefficients are given by

⎧
⎪⎪⎨

⎪⎪⎩

α(u) = −2(1 − r)Bu − D,

β(u, K ) = 2u(�b − cu) − 2u2(1 − r)B + u
K (1 + r)�B + D

K ,

γ (u, K ) = u

K
(�b + cu + Du2 + 2u2(�b − cu)).

As α(u) < 0, this polynomial remains negative for every v greater than its largest real
root. If the polynomial (46) has real roots, then we can bound from above the largest
one with

|β(u, K )| + √
β(u, K )2 − 4α(u)γ (u, K )

−2α(u)
.

The coefficient β(u, K ) decreases with K , thus for every K ≥ 1 and 0 ≤ u ≤ n0,

2u(�b − cu) − 2u2(1 − r)B ≤ β(u, K ) ≤ 2u(�b − cu)

− 2u2(1 − r)B + u(1 + r)�B + D

− 2(1 + c)n20B ≤ β(u, K ) ≤ 2n0�b + n0(1 + r)B + D.

In the case where γ (u, K ) < 0, the discriminant �(u, K ) = β(u, K )2 −
4α(u)γ (u, K ) is bounded by |β(u, K )|. Otherwise � ≤ β(u, K )2 + 8((1 − r)Bu +
D)u(�b+ cu + Du2 + 2u2(u − cu)) which can be bounded uniformly for u ∈ [0, n0].
Thus there exists h0 independent on K such that
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∀n ≤ Kn0, ∀ h > Kh0, ΦK
(
n

K
,
h

K

)
≤ −D.

Finally

d

dt
E

((
NK (t) + HK (t)

K

)2
)

≤ E

(
K�(ZK (t))1{NK (t)≤Kn0,HK (t)≤Kh0}

)

+ E

(

−C

(
NK (t) + HK (t)

K

)2 (
1{NK (t)>Kn0} + 1{NK (t)≤Kn0,HK (t)>Kh0}

)
)

,

with C > 0. To conclude it remains to bound the expectation of � on the event
{NK ≤ Kn0 and HK ≤ Kh0}. Keeping only the positive terms we obtain that

E

(
K�(ZK (t)) = 1{NK (t)≤Kn0,HK (t)≤Kh0}

)
≤ E

(
1{NK (t)≤Kn0,HK (t)≤Kh0}

×
(
�bNK (t) + r�BNK (t)

HK (t)

K

)((
NK (t) + HK (t)

K
+ 1

K

)2

−
(
NK (t) + HK (t)

K

)2))

≤
Kn0∑

n=0

Kh0∑

h=0

(
n + h

K

)2 (
�bn + r�Bn h

K

)((
1 + 1

n + h

)2

− 1

)

≤
Kn0∑

n=0

Kh0∑

h=0

(
n + h

K

)2

3

(
�b + r�B h

K

)
,

where the last inequality derives from (1 + u)2 − 1 ≤ 3u, for all u ∈ [0, 1].
Combining all these results

d

dt
E

((
NK (t) + HK (t)

K

)2
)

≤ E

(
−C

(
NK (t) + HK (t)

K
)2
))

+
∫ n0

0

∫ h0

0

(
3(n + h)2(C + �b) + (n + h)3r B

)
dhdn

≤ C ′ − CE

((
NK (t) + HK (t)

K

)2)

,

with C ′ > 0. We solve this inequality to get that

E

((
NK (t) + HK (t)

K

)2
)

≤ C ′ +
(

E

((
NK (0) + HK (0)

K

)2
)

− C ′
)

e−Ct .

which gives the uniform bound.
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Appendix C: Proof of Theorem 3.2

The proof relies on the expression of Linear Complementarity Problems as variational
inequality problems.

Definition 2 The variational inequality problem associated with a function f : Ru →
R
u and a subset E ⊂ R

u seeks a vector z ∈ E such that

∀a ∈ E, (a − z)T f (z) ≥ 0. (47)

The existence of solutions is not true in a general setting but we are interested in a
specific framework where the subset E is compact and convex.

Theorem C1 Let E be a non empty compact convex ofRu and f continuous function,
then the variational inequality problem associated to ( f, E) admits a solution.

The proof of Theorem C1 is rather classical and requires to express a solution as a fix
point of a projection of the subset E (see Cottle et al. 1992,Theorem 3.7.1). With this
result we can prove the Theorem 3.2.

Proof (Proof of Theorem 3.2) Let us recall that a solution to the Linear com-
plementarity problem associated to the couple (M̃, q̃) defined in (16) is a vector
z = (n, h) ∈ R

d × R
m such that: for every 1 ≤ i ≤ d and 1 ≤ l ≤ m,

ni ≥ 0, (q + Mn + Bh)i ≥ 0, (n)T (q + Mn + Bh) = 0 (48)

and
hl ≥ 0, (D − BT n)l ≥ 0, (h)T (D − BT n) = 0 (49)

These conditions (48) entail that the vector n is a solution to LCP(M, q + Bh).
Note that if n ∈ R

d is solution to the restricted problem LCP(M, q) satisfying
moreover (−BT n + D)l ≥ 0 for all 1 ≤ l ≤ m, then the vector (n, 0) is solution to
LCP(M̃, q̃). Similarly we seek a suitable vector n and adjust it thanks to the vector
h.

We consider the variational inequality problem associated to the set

E = {n ∈ (R+)d , ∀1 ≤ l ≤ m (D − BT n)l ≥ 0},

and the continuous function f (n) = q + Mn.
Since D is non negative, the set E is not empty. Moreover E is convex, closed

and bounded thus compact. Theorem C1 ensures the existence of a solution n∗ to this
problem. Note that (47) can be written as
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∀a ∈ E, aT f (n∗) ≥ (n∗)T f (n∗).

Thus n∗ minimizes the function a → aT f (n∗) on E . Therefore

– either n∗ is in the interior of E and is therefore a global minimizer of the function
a → aT f (n∗) on R

d and (n∗, 0) is a solution to LCP(M̃, q̃).
– otherwise we can define the Lagrange multipliers for this problem. There exist
d + m non negative real h1, . . . , hd+m such that ∀1 ≤ i ≤ d, ∀1 ≤ l ≤ m,

(q + Mn∗)i = hi −
m∑

l=1

Bilhd+l , hin
∗
i = 0, and hd+l(−BT n∗ + D)k = 0.

The first condition entails that hi = (q + Mn∗)i + ∑m
l=1 Bilhd+l and therefore

the vector (n∗, hd+1, . . . , hd+m) is a solution to LCP(M̃, q̃).

Appendix D: Proof of Theorem 4.2

A perturbation Z K = (N K
1 , . . . ,N K

d ,H K
1 , . . . ,H K

m ) of the prey-predator com-
munity process is defined by 2 families of d + m real-valued random processes
(uKi )1≤i≤d+m and (vK

i )1≤i≤d+m which are predictable with respect to the filtration
Ft generated by the processes ZK . Both families are uniformly bounded by a para-
meter κ > 0.

The perturbation Z K is solution of the following system of stochastic differential
equations driven by the Poisson point measures Ri and Mi introduced in Appendix A.

Z K (t) = Z K (0) +
d∑

i=1

[∫ t

0

∫

R+

ei
K

1θ≤b(xi )N K
i (s−) + uKi (s)Ri (ds, dθ)

−
∫ t

0

∫

R+

ei
K

1θ≤N K
i (s−))λ(x,Z K (s−))+ vKi (s)Mi (ds, dθ)

]

+
m∑

l=1

[∫ t

0

∫

R+

ed+l

K
1
θ≤rH K

l (s−)
(∑d

i=1
B(xi ,yl )

K N K
i (s−)

)
+ uKd+l (s)

Rd+l(ds, dθ)

−
∫ t

0

∫

R+

ed+l

K
1θ≤D(yl )H K

l (s−)+ vKd+l (s)
Md+l(ds, dθ)

]
.

(50)
where (e1, . . . , ed , ed+1, . . . , ed+m) is the canonical basis of Rd+m .

The proof relies on the study of the stochastic process L(Z K ) where L is the
Lyapunov function for the system LV P(x, y) introduced in (11) with an appropriate
choice of γ . The function L is the sum of two functions V and W . V defined in
(8) is linear in the coordinate ni , i ∈ P and hl , l ∈ Q and strictly convex in the
other coordinates. Moreover, its Hessian matrix at z∗ is diagonal. W defined (12) is a
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quadratic form in (z − z∗). This justifies the inequality (20):

||z − z∗||2 ≤
∑

i /∈P

|ni − n∗
i |2 +

∑

i∈P

|ni | +
∑

l /∈Q
|hl − h∗

l | +
∑

l∈Q
|hl |

≤ C
(
L(z) − L(z∗)

) ≤ CC ′

×
⎛

⎝
∑

i /∈P

|ni − n∗
i |2 +

∑

i∈P

|ni | +
∑

l /∈Q
|hl − h∗

l | +
∑

l∈Q
|hl |

⎞

⎠ ,

where P and Q have been defined in (6). We set in the following

||z − z∗||PQ =
∑

i /∈P

|ni − n∗
i |2 +

∑

i∈P

|ni | +
∑

l /∈Q
|hl − h∗

l | +
∑

l∈Q
|hl |

The derivative of L(z(t)) given in (13) can be bounded from above in the neighbour-
hood of z∗ by

d

dt
L(z(t)) ≤ −C1||n(t) − n∗||2 − C1

⎛

⎝
∑

i∈P

ni (t) +
∑

l∈Q
hl(t)

⎞

⎠

−C1

∑

i /∈P

⎛

⎝
∑

l /∈Q
Bil(hl(t) − h∗

l )

⎞

⎠

2

,

for a positive real number C1. If we set

C2 = inf

⎧
⎪⎨

⎪⎩

∑

i /∈P

⎛

⎝
∑

l /∈Q
Bil(hl − h∗

l )

⎞

⎠

2

, h ∈ (R+)m, ||h − h∗|| = 1

⎫
⎪⎬

⎪⎭
> 0,

then

d

dt
L(z(t)) ≤ −C1||n(t) − n∗||2 − C1

⎛

⎝
∑

i∈P

ni (t) +
∑

l∈Q
hl(t)

⎞

⎠

− C1C2

∑

l /∈Q
(hl(t) − h∗

l )
2.

We then obtain (21):
d

dt
L(z(t)) ≤ −C ′′||z − z∗||2.

We introduce τ K
ε = inf{t ≥ 0,Z K (t) /∈ Bε}. In the sequel we prove that there exist

ε′′ < ε and V > 0 such that if Z K (0) ∈ Bε′′ , then

lim
K→∞P

(
τ K
ε > eKV

)
= 1. (51)
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For every t ≤ τ K
ε ,

L(Z K (t)) = L(Z K (0)) + MK (t)

+
∫ t

0

d∑

i=1

(
L
(
Z K (s) + ei

K

)
− L

(
Z K (s)

)) (
N K

i (s)b(xi ) + uK
i (s)

)
ds

+
∫ t

0

d∑

i=1

(
L
(
Z K (s) − ei

K

)
− L

(
Z K (s)

)) (
N K

i (s)λ(xi ,Z
K (s)) + vK

i (s)
)
ds

+
∫ t

0

m∑

l=1

(
L
(
Z K (s) + ed+l

K

)
− L

(
Z K (s)

))

×
(

H K
l (s)

(

r
d∑

i=1

B(xi , ym)
N K

i (s)

K

)

+ uK
d+l

)

ds

+
∫ t

0

m∑

l=1

(
L
(
Z K (s) − ed+l

K

)
− L

(
Z K (s)

)) (
H K

l (s)D(yl) + vK
d+l

)
ds.

where MK
t is a local martingale which can be expressed with respect to the compen-

sated Poisson point measures (R̃i )1≤i≤d+m and (M̃i )1≤i≤d+m :

MK (t) =
d∑

i=1

[∫ t

0

∫ ∞

0

[
L

(
Z K (s−) + δei

K

)
− L

(
Z K (s−)

)]
1θ≤b(xi )N K

i (s−)+uKi (s) R̃i (ds, dθ)

+
∫ t

0

∫ ∞

0

[(
Z K (s−) − δei

K

)
− L

(
Z K (s−)

)]
1θ≤N K

i (s−)λ(xi ,Z K (s−))+vKi (s) M̃i (ds, dθ)
]

+
m∑

l=1

[∫ t

0

∫ ∞

0

[
L

(
Z K (s−) + δed+l

K

)

−L
(
Z K (s−)

) ]
1
θ≤H K

l (s−)

(
r
∑d

i=1
B(xi ,yl )

K N K
i (s−)

)
+uKd+l (s)

R̃d+l (ds, dθ)

+
∫ t

0

∫ ∞

0

[
L

(
Z K (s−) − δed+l

K

)
− L

(
Z K (s−)

)]
1θ≤D(yl )H K

l (s−)+vKd+l (s)
M̃d+l (ds, dθ)

]
.

(52)
For every t ≤ τ K

ε and 1 ≤ i ≤ d we give the second order expansion of the terms

L
(
Z K (t) + ei

K

)
− L(Z K (t)) = 1

K

∂

∂ei
L(Z K (t))

+1

2

∫ 1
K

0

(
N K

i (t)

K
+ 1

K
− u

)
∂2

∂e2i
L

(

Z K (t) −
(
N K

i (t)

K
− u

)

ei

)

du.

We obtain a similar equality for the derivative with respect to ed+l for 1 ≤ l ≤ m.
Let us remark that sup{ ∂2

∂e2j
L(u, v), (u, v) ∈ Bε} < ∞ for ε small enough, for all

1 ≤ j ≤ d + m. Therefore the integrated term is of order 1/K 2 for large K . The
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impact of the perturbed terms can be bounded similarly using the first derivative. Thus

L(Z K (t)) = L(Z K (0)) + MK (t)

+
∫ t

0

d∑

i=1

∂L(Z K (s))

∂ei

N K
i (s)

K

×
⎡

⎣b(xi ) − d(xi ) −
d∑

j=1

c(xi , x j )
N K

j (s)

K
−

m∑

l=1

H K
l (s)

K
B(xi , yl)

⎤

⎦ds

+
∫ t

0

m∑

l=1

∂L(Z K (s))

∂ed+l

H K
l (s)

K

[

r
d∑

i=1

B(xi )
N K

i (s)

K
− D(yl)

]

ds

+ O
( t

K

)
+ O

(
κt

)
.

Note that if z(t) is a solution of LV P(x, y) then:

∂L(z(t))
∂t

=
d∑

i=1

∂

∂ei
L(z(t))ni (t)

×
⎡

⎣b(xi ) − d(xi ) −
d∑

j=1

c(xi , x j )n j (t) −
m∑

k=1

B(xi , yk)hk(t)

⎤

⎦

+
m∑

l=1

∂

∂ed+l
L(z(t))hl(t)

[

r
d∑

i=1

B(xi , yl)ni (t) − D(yl)

]

.

We denote by ∂L(Z K (t))
∂t the derivative along the solution z such that z(t) = Z K (t).

Then for κ ≥ 1/K :

L(Z K (t)) =L(Z K (0)) + MK (t) +
∫ t

0

∂L(Z K (s))

∂t
ds + O

(
κt

)
.

Using inequalities (20) and (21) we obtain that there exists C ′′′ > 0, such that if
t ≤ T ∧ τ K

ε then

||Z K (t) − z∗||2 ≤ C

[

C ′ (||Z K (0) − z∗||PQ

)
+ sup

t∈[0,T ]
|MK (t)|

−C ′′
∫ t

0

(
||Z K (s) − z∗||2 − C ′′′κ

)
ds

]
.

(53)

This inequality is the main tool of the proof. It connects the time spent by the process
above a given threshold with the values it takes during this time interval.
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We define Sκ = inf{t ≥ 0, ||Z K (t) − z∗||2 ≤ 2C ′′′κ}. Then for every t ≤
Sκ ∧ T ∧ τ K

ε :

||Z K (t) − z∗||2 ≤ C

[

C ′ (||Z K (0) − z∗||PQ

)
+ sup

[0,T ]
|MK (t)| − C ′′C ′′′κt

)
]

.

As the l.h.s. is nonnegative we define

Tκ = C ′(||Z K (0) − z∗||PQ + sup[0,T ] |MK (t)|
C ′′C ′′′κ

≥ 0, (54)

which can be seen as the maximal time spent by the process ||ZK (t) − z∗||2 above
2C ′′′κ before the time T ∧ τ K

ε . Therefore for every t ≤ Sκ ∧ T ∧ τ K
ε :

||Z K (t) − z∗||2 ≤ CC ′′C ′′′κTκ .

To control the norm ||Z K (t) − z∗||2 it remains to control Tκ and thus the martingale
MK . To obtain the uniform bound, we use the exponential bound given by Lemma 1.
On the event {

Tκ ≤ T ∧ ε2

2CC ′′C ′′′κ

}
, (55)

then sup[0,Sκ ](||Z K (t) − z∗||2) ≤ ε2

2 , and in particular Sκ ≤ τ K
ε ∧ Tκ .

Moreover applying (53) on the same event we get

sup
[0,T∧τ K

ε ]
(||ZK (t) − z∗||2) ≤ CC ′′C ′′′κ(T + Tκ) ≤ ε2

2
+ CC ′′C ′′′κT . (56)

Thus if furthermore κ < ε2/(2CC ′′C ′′′T ) then τ K
ε > T .

These results lead to the Theorem. Let ε′ > 0 such that ε′′ < ε′/2 < ε′ < ε.
We introduce a sequence of stopping times that describes the back and forth of the

process Z K between the balls Bε′′ and Bε′/2 (see Fig. 6). Set τ0 = 0 and for every
k ≥ 1 such that τk < τ K

ε :

τ ′
k = inf

{
t ≥ τk−1 : Z K (t) /∈ Bε′/2

}
,

τk = inf
{
t ≥ τ ′

k : Z K (t) ∈ Bε′′ ou Z K (t) /∈ Bε

}
.

(57)

We denote by kε the number of back and forths before the exit:

kε = inf{k ∈ N, τk = τ K
ε }.

In the sequel we bound kε from below.
We consider an initial condition Z K (0) ∈ Bε′ . We set κ = (ε′′)2/2C ′′′ and apply

the previous results. The time τ1 corresponds to the first return in Bε′′ therefore it is
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Fig. 6 A trajectory of Z K in
the neighbourhood of z∗ for
d = m = 1

equal to the time Sκ introduced before. We deduce from the previous computations
that on the event (55)

P
(
τ1 < τ K

ε

) = P
(
sup
[0,τ1]

||Z K (t) − z∗||2 < ε2
) ≥ P

(
Tκ ≤ T ∧ ε2

2CC ′′C ′′′κ
)
.

We replace Tκ by its value (54) to get that

P
(
Tκ > T ∧ ε2

2CC ′′C ′′′κ
)

= P

(
sup
[0,T ]

|MK (t)| >
(
C ′′C ′′′κT ∧ ε2

2C

) − C ′(||Z K (0) − z∗||PQ)
)

≤ P

(
sup
[0,T ]

|MK (t)| >
(
C ′′C ′′′κT ∧ ε2

2C

) − C ′ε′),

where we used that Z K (0) ∈ Bε′ to obtain the last inequality.
If we choose T = 2C ′ε′/C ′′C ′′′κ and ε′ such that 2C ′ε′ < ε2

2C then the inequality
becomes

P
(
Tκ > T ∧ ε2

2CC ′′C ′′′κ
) ≤ P

(
sup
[0,T ]

|MK (t)| > C ′ε′).

We finally use Lemma 1 to obtain

P
(
Tκ > T ∧ ε2

2CC ′′C ′′′κ
) ≤ exp(−KV ),

where V > 0 only depends on ε′ and ε′′.
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Since this inequality remains true as long as the initial condition is in Bε′ we deduce
that

sup
Z K (0)∈Bε′

P

(
τ1 < τ K

ε

)
≥ 1 − exp(−KV ). (58)

Applying the strong Markov property at the stopping time τk for k ≥ 1

sup
Z K (0)∈Bε′

P

(
τk < τ K

ε |τk−1 < τ K
ε

)
≥ 1 − exp(−KV ).

therefore we can bound kε from below by a random variable distributed according to
a geometric law of parameter exp(−KV ). Then

lim
K→∞P(kε > exp(KV/2)) = 1. (59)

It remains to prove that these back and forths do not happen too fast. We establish that
the time intervals τk − τk−1 are of order 1 for k ≥ 2. To this aim we search for T ′
such that for every k ≥ 2, P(τ ′

k − τk−1 > T ′) > 0. Using the strong Markov property
again, it is sufficient to prove that infZ K (0)∈Bε′′ P(τ ′

1 > T ′) > 0:

inf
Z K (0)∈Bε′′

P(τ ′
1 > T ′) = inf

Z K (0)∈Bε′′
P

(

sup
[0,T ′∧τ ′

1]
||Z K (t) − z∗||2 <

ε′2

4

)

. (60)

We deduce from (56) with ε = ε′/2 that on the event {Tκ ≤ T ′ ∧ ε′2
8CC ′′C ′′′κ }:

sup
[0,T ′∧τ ′

1]

(
||Z K (t) − z∗||2

)2 ≤ CC ′′C ′′′κ(T ′ + Tκ) ≤ ε′2

8
+ CC ′′C ′′′κT ′.

Setting T ′ = 2C ′ε′′/C ′′C ′′′κ and ε′′ such that 2C ′ε′′ < ε′2/4C , we get that

sup
[0,T ′∧τ ′

1]
||Z K (t) − z∗||2 <

ε′2

4
,

and thus τ ′
1 > T ′.

Lemma 1 ensures again that for any initial condition in Bε′′ :

P

(
Tκ > T ′ ∧ ε′2

8CC ′′C ′′′κ

)
≤ P

(

sup
[0,T ′]

|MK (t)| > C ′ε′′
)

−→
K→∞ 0.

and thus
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inf
Z K (0)∈Bε′′

P

(

sup
[0,T ′∧τ ′

1]
||Z K (t) − z∗||2 <

ε′2

4

)

−→
K→∞ 1.

Finally (51) is deduced from (59).
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