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Abstract Evolutionary processes based on two-player games such as the Prisoner’s
Dilemma or Snowdrift Game are abundant in evolutionary game theory. These
processes, including those based on games with more than two strategies, have been
studied extensively under the assumption that selection is weak. However, games
involving more than two players have not received the same level of attention. To
address this issue, and to relate two-player games to multiplayer games, we intro-
duce a notion of reducibility for multiplayer games that captures what it means to
break down a multiplayer game into a sequence of interactions with fewer players.
We discuss the role of reducibility in structured populations, and we give examples of
games that are irreducible in any population structure. Since the known conditions for
strategy selection, otherwise known as σ -rules, have been established only for two-
player games with multiple strategies and for multiplayer games with two strategies,
we extend these rules to multiplayer games with many strategies to account for irre-
ducible games that cannot be reduced to those simpler types of games. In particular,
we show that the number of structure coefficients required for a symmetric game with
d-player interactions and n strategies grows in d like dn−1. Our results also cover
a type of ecologically asymmetric game based on payoff values that are derived not
only from the strategies of the players, but also from their spatial positions within the
population.
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1 Introduction

Over the past several years, population structure has become an integral part of the
foundations of evolutionary game theory (Nowak et al. 2009). Among the popular
settings for evolutionary processes in finite populations are networks (Lieberman et al.
2005; Ohtsuki et al. 2006; Szabó and Fáth 2007; Taylor et al. 2007; Lehmann et al.
2007), sets (Tarnita et al. 2009a), and demes (Taylor et al. 2001;Wakeley andTakahashi
2004; Rousset 2004; Ohtsuki 2010; Hauert and Imhof 2012). A commonway in which
to study such a process is to use it to define an ergodic Markov chain and then examine
the equilibrium distribution of this chain. One could take a birth–death or imitation
process on a network, for example, and incorporate a small strategy mutation rate,
μ, that eliminates the monomorphic absorbing states (Fudenberg and Imhof 2006).
This Markov chain will have a unique stationary distribution, λ, which is a probability
distribution over the set of all strategy configurations on the network. This set of
all possible configurations—the state space of the Markov chain—is quite large and
difficult to treat directly; one seeks a way in which to use this distribution to determine
which strategies are more successful than others.

A prototypical process in evolutionary game theory is the (frequency-dependent)
Moran process. Classically, this process takes place in a well-mixed population and
proceeds as follows: at each discrete time step, a player is selected for reproduction
with probability proportional to fitness. Amember of the population is then chosen for
death uniformly at random and is replaced by the offspring of the individual chosen for
reproduction (Moran 1958). The fitness of a player is calculated from a combination
of (i) the outcome of a sequence of two-player games and (ii) the intensity of selection
(Nowak et al. 2004; Taylor et al. 2004). For example, in the donation game, each
player in the population is either a cooperator (strategy C) or a defector (strategy D).
A cooperator provides a benefit b to the opponent at a cost of c, whereas a defector
provides no benefit and incurs no cost (Ohtsuki et al. 2006; Sigmund 2010). The payoff
matrix for this game is

( C D

C b − c −c
D b 0

)
. (1)

A player adds the payoffs from the two-player interactions with his or her neighbors
to arrive at a total payoff value, π . If β � 0 represents the intensity of selection, then
the total payoff value is converted to fitness via f := exp {βπ} (Traulsen et al. 2008;
Maciejewski et al. 2014). For our purposes, we will assume that β � 1, i.e., that
selection is weak. This assumption is necessary here for technical reasons, but it turns
out to be quite sensible for many applications of game theory to biology since most
organisms possess multiple traits and no single trait (strategy) is expected to have a
particularly strong influence on fitness (Tarnita et al. 2011; Wu et al. 2013a). This
frequency-dependent Moran process has two absorbing states: all C and all D. If
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ε > 0 is a small mutation rate, one may define a modified process by insisting that
the offspring inherit the strategy of the parent with probability 1 − ε and take on a
novel strategywith probability ε. The small mutation rate eliminates themonomorphic
absorbing states of the process, resulting in a Markov chain with a unique stationary
distribution. This setup is readily extended to structured populations and is precisely
the type of process we wish to study here.

Rather than looking at the long-run stationary distribution of the Markov chain
itself, one may instead consider just the proportion of each strategy in this equilib-
rium. This approach ignores particular strategy configurations and suggests a natural
metric for strategy success: when does selection increase the abundance, on aver-
age, of a particular strategy? Such conditions are determined by a multitude of
factors: game type, payoff values, update rule, selection strength, mutation rates,
population structure, etc. In the limit of weak selection, these conditions are the
so-called “σ -rules” or selection conditions, which are given in terms of linear com-
binations of the payoff values of the game, with coefficients independent of these
values (Tarnita et al. 2009b, 2011; Van Cleve and Lehmann 2013). The coefficients
appearing in these linear combinations are often referred to as “structure coefficients”
to indicate their dependence on the structure of the evolutionary process. What is
remarkable about these σ -rules is that they can be stated with very few assumptions
on the underlying evolutionary process and do not change when the payoff values are
varied.

Tarnita et al. (2011) state a selection condition for games with n strategies and
payoff values that are determined by an n × n matrix. This rule is extremely simple
and is stated as a sum of pairwise payoff comparisons, weighted by three structure
coefficients. Implicit in this setup is the assumption that the aggregate payoff to each
player is determined by the individual payoffs from his or her pairwise interactions. In
many cases, this assumption is reasonable: The Prisoner’s Dilemma, Snowdrift Game,
Hawk–Dove Game, etc. are defined using pairwise interactions, and a focal player’s
total payoff is simply defined to be the sum of the pairwise payoffs. This method of
accounting for payoffs essentially defines amultiplayer game from smaller games, and
this property of the multiplayer game produces a simple selection condition regardless
of the number of strategies.

Multiplayer games that are not defined using pairwise interactions have also been
studied in evolutionary dynamics (Broom et al. 1997; Broom 2003; Kurokawa and
Ihara 2009; Ohtsuki 2014; Peña et al. 2014). One of the most prominent multiplayer
games arising in the study of social dilemmas is the public goods game. In the public
goods game, each player chooses an amount to contribute to a common pool and
incurs a cost for doing so; the pool (“public good”) is then distributed equally among
the players. In the linear public goods game, this common pool is enhanced by a
factor r > 1 and distributed evenly among the players: if players 1, . . . , d contribute
x1, . . . , xd ∈ [0,∞), respectively, then the payoff to player i is

ui (x1, . . . , xd) = r

(
x1 + · · · + xd

d

)
︸ ︷︷ ︸

player i’s share of the public good

− xi︸︷︷︸
player i’s contribution

(2)
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(Archetti and Scheuring 2012). In well-mixed populations, the linear dependence
of these distributions on the individual contributions allows one to break down the
multiplayer payoff into a sum of payoffs from pairwise interactions, one for each
opponent faced by a focal player (Hauert and Szabó 2003). Thus, in this setting, the
linear public goods game is equivalent to a two-player matrix game and the study
of its dynamics does not require a theory of multiplayer games. We will see that
this phenomenon is fortuitous and does not hold for general multiplayer games in
structured populations. In particular, a theory of two-player matrix games suffices to
describe only a subset of the possible evolutionary games.

Wu et al. (2013b) generalize the rule of Tarnita et al. (2011) and establish a σ -rule
for multiplayer games with two strategies. The number of coefficients needed to define
this σ -rule grows linearly with the number of players required for each interaction.
The strategy space for the linear public goods game could be chosen to be {0, x} for
some x > 0, indicating that each player has the choice to (i) contribute nothing or
(ii) contribute a nonzero amount, x , to the public good. The rule of Wu et al. (2013b)
applies to this situation, and the number of coefficients appearing in the selection
condition is a linear function of the number of players in the interaction. On the other
hand, knowing that the linear public goods game can be reduced to a sequence of
pairwise games allows one to apply the rule of Tarnita et al. (2011), giving a selection
condition with three structure coefficients regardless of the number of players required
for each public goods interaction. Thus, knowing that a game can be reduced in this
way can lead to a simpler selection condition.

Assuming that payoff values can be determined by a single payoff function, such
as the function defined by a 2 × 2 payoff matrix, is somewhat restrictive. Typically, a
game is played by a fixed number of players, say d, and there is a function associated to
this game that sends each strategy profile of the group to a collection of payoff values,
one for each player. For degree-homogeneous population structures, i.e., structures in
which every player has k neighbors for some k � 1, one can define a d-player game
for d � k + 1 and insist that each player derives a total payoff value by participating
in a collection of d-player interactions with neighbors. On the other hand, if degree-
heterogeneous structures are considered instead, then some players may have many
neighbors while others have few. Rather than fixing d first, one can often define a
family of payoff functions, parametrized by d. For example, suppose that the number
of players involved in an interaction varies, and that each player chooses a strategy from
some finite subset S of [0,∞). For a group of size d and strategy profile (x1, . . . , xd) ∈
[0,∞)⊕d , define the payoff function for player i to be

ud
i (x1, . . . , xi , . . . , xd) := r (x1 . . . xd)

1
d − xi , (3)

where r > 1. This payoff function may be thought of as defining a nonlinear version
of the public goods game, but for the moment the interpretation is not important.
We will later see that these payoff functions cannot be reduced in the same way that
those of the linear public goods game can, regardless of the population structure. This
property suggests that each function in this familymust be considered separately in the
setting of evolutionary game theory. If player i has ki neighbors, then each player may
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Fig. 1 Each player initiates an interaction with all of his or her neighbors, and the players in this group

receive a payoff according to the family of payoff functions
{

ud
}

d�2
, where ui (x1, . . . xi , . . . , xd ) =

r (x1 . . . xd )
1
d − xi . The total payoff value to a particular player is calculated as the sum of the payoffs from

each interaction in which he or she is involved. These total payoff values are indicated in the diagram. For
this network, the functions u2, u3, and u4 are needed to calculate the total payoffs

initiate a (ki + 1)-player game with all of his or her neighbors and receive a payoff
according to uki +1

i . Thus, a family of payoff functions like this one is relevant for
studying evolutionary games in degree-heterogeneous structured populations since
one function from this collection is needed for each distinct integer appearing as a
degree in the population structure (see Fig. 1). It follows that a general evolutionary
game could potentially involve many distinct payoff functions.

Even for games in which the payoff values for pairwise interactions are determined
by a 2× 2matrix, the overall payoff valuesmaybe calculated in a nonlinear fashion due
to synergy and discounting of accumulated benefits in group interactions (Hauert et al.
2006), and this nonlinearity can complicate conditions for one strategy to outperform
another (Li et al. 2014). For example, if π1, . . . , πd−1 are the payoff values from
d − 1 pairwise interactions between a focal player and his or her neighbors, then the
total payoff to the focal player might be

∑d−1
k=1 δk−1πk , where δ is some discounting

factor satisfying 0 < δ < 1. It might also be the case that δ > 1, in which case δ is
not a discounting factor but rather a synergistic enhancement of the contributions. In
each of these situations, the overall payoff is not simply the sum of the payoffs from
all pairwise interactions. This observation, combined with the example of the linear
public goods game, raises an important question: when is a multiplayer game truly a
multiplayer game, andnot a gamewhosepayoffs are derived fromsimpler interactions?
To address this question, we introduce the notion of reducibility of payoff functions.
Roughly speaking, a payoff function is reducible if it is the sum of payoff functions for
games involving fewer players. Our focus is on games that are irreducible, ie. games
that cannot be broken down in amanner similar to that of the linear public goods game.
We give several examples of irreducible games, including perturbations of the linear
public goods game that are irreducible for any number of players. The existence of
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such perturbations illustrates that one can find irreducible games that are “close” to
reducible games, and indeed one can define irreducible games from straightforward
modifications of reducible games.

In the absence of reductions to smaller games, new σ -rules are needed in order
to determine the success of chosen strategies. For games with many strategies and
multiplayer interactions, these rules turn out to be quite complicated. We show how
many structure coefficients appear in the selection condition for these games and
give several examples of explicit σ -rules. In particular, for d-player interactions with
n strategies, we show that the number of structure coefficients appearing in these
rules grows like a polynomial of degree n − 1 in d. If d = 2 or n = 2, these
rules recover the results of Tarnita et al. (2011) and Wu et al. (2013b), respectively.
Although the selection conditions are concise for pairwise interactions with many
strategies and for multiplayer interactions with two strategies, explicit calculations of
structure coefficients can be difficult even for simple population structures (Gokhale
and Traulsen 2011; vanVeelen andNowak 2012;Wu et al. 2013b;Du et al. 2014). Here
we do not treat the issue of calculating structure coefficients (although we do some
calculations for special cases), but instead focus on extending theσ -rules to account for
more complicated games. More complicated games generally require more structure
coefficients, and we quantify precisely the nature of this relationship.

2 Reducible games

We begin by looking at multiplayer interactions in the simplest type of population.

2.1 Well-mixed populations

In a finite, well-mixed population, each player is a neighbor of every other player.
In the language of evolutionary graph theory, the interaction matrix of a well-mixed
population is simply a complete graph, and edges between nodes indicatewho interacts
with whom. Suppose that the population size is N = d, and let ui : Sd → R be the
payoff function for player i in a d-player game, ie. reflecting interactions with all other
members of the population. Although the population is well-mixed, it may still be the
case that the payoff to player i depends on i . If this d-player game can be “reduced,”
it should ideally be composed of several games with fewer players, and it should be
possible to derive the payoffs from interactions in smaller groups. For example, if
payoff values from pairwise interactions are determined by the matrix

( A B

A a b
B c d

)
, (4)

then the payoff to a focal player using A against j opponents using A (and d − 1− j
opponents using B) is

a j = ja + (d − 1 − j) b. (5)
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In this setting, the payoff to a focal individual depends on only (i) his or her strategy
and (ii) the number of opponents playing each strategy, so the function u defines a
d-player game. By construction, this d-player payoff function was formed by adding
together d −1 payoff values from 2×2 games, so it can be “reduced” into a sequence
of pairwise interactions. Of course, this type of reducibility is stronger than one can
hope for in general since it requires all interactions in the smaller games to involve only
two players. Starting with an d-player payoff function, a natural question to consider
is whether or not the d-player interaction can be reduced into a sequence of smaller
(but not necessarily two-player) games. The following definition of reducibility in
well-mixed populations captures this idea:

Definition 1 (k-reducibility) u is k-reducible if (i) there exists a collection of payoff
functions for groups of size m � k,

{{
v{i1,...,im } : Sm → R

m
}

{i1,...,im }⊆{1,...,d}

}k

m=2
, (6)

such that for each i = 1, . . . , d and (s1, . . . , sd) ∈ Sd ,

ui (s1, . . . , sd) =
k∑

m=2

∑
{i1,...,im−1}⊆{1,...,d}−{i}

v
{i,i1,...,im−1}
i

(
si , si1 , . . . , sim−1

)
, (7)

and (ii) k is the smallest positive integer for which (i) holds.

The reducibility condition of Definition 1 says that the d-player game may be
broken down into a collection of subgames, each with at most k players, but that it
cannot be broken down any further. The sum

∑
{i1,...,im−1}⊆{1,...,d}−{i} appearing in this

definition simply means that we sample all subsets of size m − 1 from the neighbors
of the focal player. The order in which these players are sampled is irrelevant; we
care only about each subset as a whole. The quantity v

{i,i1,...,im−1}
i

(
si , si1 , . . . , sim−1

)
is the payoff to player i in the m-player subgame when he or she plays si and player
i j plays si j , where i j is the j th interaction partner of player i . These smaller games
are well-defined since the population is well-mixed: each player can participate in a
multiplayer interaction with any subset of the population.We say that a game is simply
reducible if it is k-reducible for some k < d, and irreducible otherwise.

Although Definition 1 is stated for arbitrary payoff functions, we will mainly work
with symmetric payoff functions:

Definition 2 (Symmetric payoff function) A payoff function u for an d-player game
is symmetric if, for each i ∈ {1, . . . , d},

ui (s1, . . . , sd) = uπ−1(i)

(
sπ(1), . . . , sπ(d)

)
. (8)

whenever (s1, . . . , sd) ∈ Sd and π ∈ Sd , where Sd is the group of permutations on
d letters. π−1 is just the inverse permutation of π , and π−1 (i) is the player using
strategy si after rearrangement according to π .
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In other words, a game is symmetric if the payoffs depend on only the strategies
being played and not on identities, types, or locations of the players. Intuitively, if
a symmetric game is reducible into a sequence of smaller games, then these smaller
games should also be symmetric. Indeed, if u is symmetric and reducible, then the
functions v{i,i1,...,im−1} need not themselves be symmetric, but they can be replaced by
symmetric functions:

Proposition 1 If u is reducible and symmetric, then the functions v{i1,...,im−1} may be
chosen so that they are symmetric and depend only on m (as opposed to the particular
choice of opponents). That is, the overall d-player game may be broken down into a
sequence of smaller symmetric games, one for each number of opponents.

A proof of Proposition 1may be found in Appendix A. The basic idea behind the proof
is that one may exploit the symmetry of u to average over the asymmetric functions
v{i1,...,im−1} and thus obtain “symmetrized” versions of these functions.

Remark 1 Proposition 1 simplifies the process of showing that a game is reducible.
It is often easier to first write down a reduction via smaller asymmetric games rather
than directly establishing a reduction via symmetric games. One may simply establish
the existence of the asymmetric subgames of Definition 1, and then the reducibility
to symmetric subgames follows from the proposition. In the proof of Proposition 1,
we give explicit symmetrizations of the payoff functions v

{i,i1,...,im−1}
i , which can be

quite complicated in general.

Ohtsuki (2014) defines the notion of degree for symmetric multiplayer games with
two strategies: Suppose that S = {a, b}, and let a j (resp. b j ) denote the payoff to an
a-player (resp. b-player) against j opponents using a and d −1− j opponents using b.
There are unique polynomials p ( j) andq ( j) in j of degree atmostd−1 such thata j =
p ( j) and b j = q ( j), and the degree of the game is defined to be max {deg p, deg q}.
This concept of degree is closely related to our notion of reducibility:

Proposition 2 If n = 2, then a game is k-reducible if and only if its degree is k − 1.

The proof of Proposition 2 may be found in Appendix A.
What is particularly noteworthy about this equivalence is that while degree is

defined only for symmetric games with two strategies, k-reducibility is defined for
multiplayer—even asymmetric—games with any number of strategies. Therefore, we
can use Proposition 2 to extend the notion of degree to much more general games:

Definition 3 (Degree of game) The degree of a game is the value k for which the game
is (k + 1)-reducible.

One could easily generalize the definition of reducibility to allow for the aggregate
payoff values to be nonlinear functions of the constituent payoffs, but this general-
ization is somewhat unnatural in evolutionary game theory. Typically, the total payoff
to a player who is involved in multiple interactions is calculated by either accumulat-
ing or averaging the payoffs from individual interactions. On spatially-homogeneous
structures, the evolutionary dynamics of these two methods are the same; the dif-
ference amounts to a scaling of the intensity of selection (Maciejewski et al. 2014).
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Moreover, Maciejewski et al. (2014) show that the method of averaging on a het-
erogeneous network results in an asymmetry in the games being played: players at
locations with different numbers of neighbors are effectively playing different games.
This asymmetry is not present if payoff values are accumulated, suggesting that for
general population structures the latter method is more natural. Using the method of
accumulated payoffs, the total payoff to a player is calculated as the sum of all of the
payoffs from the multiplayer games in which he or she is a participant. If these multi-
player games can be reduced, then the total payoff should retain this property of being
the sum of the payoffs from smaller games, giving the (linear) notion of reducibility.

In the limit of weak selection, it can also be argued that more general notions
of reducibility are equivalent to our definition of reducibility: to simplify notation,
suppose that some payoff value Π may be written as a function, f , of a collec-
tion of payoff values, π1, . . . , πm , from smaller games. In evolutionary dynamics,
it is not unreasonable to assume that attenuating (or enhancing) the effect of Π by
a factor of β � 0 is the same as multiplying each of π1, . . . , πm by β. That is,
βΠ = β f (π1, . . . , πm) = f (βπ1, . . . , βπm) for each β � 0. If f is also assumed
to be continuously differentiable at 0, then f must necessarily be a linear function of
π1, . . . , πm . Thus, if β is interpreted as the intensity of selection, then, in the limit of
weak selection, any such function f must be linear, which implies that more general
notions of reducibility involving such an f are captured by Definition 1.Wewill see in
the next section that selection conditions require similar assumptions that make these
two requirements on f necessary in order to derive a σ -rule for the reduced game.

With a definition of reducibility in place, we now focus on specific examples of
multiplayer games. Among the simplest multiplayer games is the public goods game.
In a public goods game, each player chooses an investment level from the interval
[0,∞) and contributes this amount to a common pool. (In general, the strategy space
for each player in the public goods game is S = [0, K ], where K is a maximum
investment level.) In the linear public goods game, the total contibution to this pool is
enhanced by a factor of r > 1 and distributed equally among the players. Thus, if x j

denotes player j’s contribution to the public good, then the payoff function for player
i is given by Eq. 2. The linearity of this payoff function allows the game to be broken
down into a sequence of pairwise interactions:

Example 1 (Linear public goods) The function v : S2 → R
2 defined by

vi
(
xi , x j

) := 2r

d

⎛
⎝
(

1
d−1

)
xi + x j

2

⎞
⎠−

(
1

d − 1

)
xi (9)

satisfies u1
i (x1, . . . , xd) = ∑

j �=i vi
(
xi , x j

)
for each i = 1, . . . , d (see Fig. 2). There-

fore, this (symmetric) linear public goods game is reducible to a sequence of pairwise
(symmetric) games (Hauert and Szabó 2003).

As the next example shows, the introductionof nonlinearity into the payoff functions
does not guarantee that the resulting game is irreducible:
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Fig. 2 The reducibility of the linear public goods game (for the central player) is illustrated here with four
players. The central player (red) invests x , while the players at the periphery (blue) invest y, z, and w,
respectively. The payoff to the central player for this interaction is a sum of pairwise payoffs, one for each
neighbor. Each of these two-player games is a public goods game with multiplicative factor r/2, and in
each of the smaller games the central player contributes one third of his or her total contribution, x (color
figure online)

Example 2 (Nonlinear public goods) A natural way to introduce nonlinearity into the
linear public goods game is to raise the average contribution, (x1 + · · · + xd) /d, to
some power, say k. However, if k is an integer and 2 � k � d − 2, then the payoff
function

ui (x1, . . . , xd) := r

(
x1 + · · · + xd

d

)k

− xi (10)

is reducible (see Appendix A for details).

Another convenientway inwhich to introduce nonlinearity into the payoff functions
of the public goods game is to replace the average, (x1 + · · · + xd)/d, by the Hölder
(or “generalized”) average

(
x p
1 + · · · + x p

d

d

) 1
p

(11)

for some p ∈ [−∞,+∞]. In the limiting cases,

lim
p→−∞

(
x p
1 + · · · + x p

d

d

) 1
p

= min {x1, . . . , xd} ; (12a)

lim
p→0

(
x p
1 + · · · + x p

d

d

) 1
p

= (x1 . . . xd)
1
d ; (12b)

lim
p→+∞

(
x p
1 + · · · + x p

d

d

) 1
p

= max {x1, . . . , xd} (12c)

(see Bullen 2003).

Remark 2 Several special cases of theHölder public goods game have been previously
considered in the literature. For p = 1, this game is simply the linear public goods
game (seeEq. 2),which has an extensive history in the economics literature.Hirshleifer
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(1983) refers to the cases p = −∞ and p = +∞ as the “weakest-link” and “best-
shot” public goods games, respectively. Theweakest-link game can be used to describe
collaborative dike building, in which the collective benefit is determined by the player
who contributes the least to the public good (see Hirshleifer 1983, p. 371). The search
for a cure to the disease could bemodeled as a “best-shot” game sincemany institutions
may invest in finding this cure, but the public good (the cure) is provided by the
first institution to succeed. The Hölder public goods game provides a continuous
interpolation between these two extreme scenarios.

The Hölder average gives an alternative way to take the mean of players’ contribu-
tions and, for almost every p, leads to a public goods game that is irreducible for any
number of players:

Example 3 (Nonlinear public goods) For p ∈ [−∞,+∞], consider the payoff func-
tions

u p
i (x1, . . . , xd) := r

(
x p
1 + · · · + x p

d

d

) 1
p

︸ ︷︷ ︸
Hölder average of x1,...,xd

−xi , (13)

where r is some positive constant. We refer to the game defined by these payoff
functions as the Hölder public goods game. The payoff functions of Example 1 are
simply u1

i . If p, q ∈ [−∞,+∞] and q < p, then, by Hölder’s inequality,

uq
i (x1, . . . , xd) � u p

i (x1, . . . , xd) (14)

with equality if and only if x1 = x2 = · · · = xd . It is shown in Appendix A that
these public goods games are irreducible if and only if 1

p /∈ {1, 2, . . . , d − 2}. In
particular, if 1

p /∈ {1, 2, . . .}, then u p
i is irreducible for each d. This example exhibits

the (reducible) linear public goods game as a limit of irreducible public goods games
in the sense that limp→1 u p

i = u1
i (see Fig. 3).

Example 4 (Nonlinear public goods) Rather than modifying the average contribution,
one could also add a term to the payoff from the linear public goods game to obtain an
irreducible game. For example, suppose that in addition to the payoff received from
the linear public goods game, each player receives an added bonus if and only if every
player contributes a nonzero amount to the public good. If ε > 0, this bonus term
could be defined as ε

∏d
j=1 x j so that the payoff function for the game is

ui (x1, . . . , xd) := u1
i (x1, . . . , xd) + ε

d∏
j=1

x j . (15)

In fact, this payoff function is irreducible for all ε ∈ R − {0}. The details may be
found in Appendix A, but the intuition is simple: a function that requires simultane-
ous information about each player (the cross-term x1 . . . xd ) should not be able to be
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Fig. 3 u p (x, 1, 1, 1) versus x for r = 1.5 and seven values of p. In each of these four-player public goods
games, the investment levels of the opponents are 1 unit. The payoff functions for the nonlinear public goods
games (p �= 1) are slight perturbations of the payoff function for the linear public goods game (p = 1) as
long as p is close to 1

broken down into a collection of functions that account for only subsets of the popu-
lation. Letting ε → 0, we view the linear public goods game once again as a limit of
irreducible games.

2.2 Structured populations

A fundamental difficulty in extending Definition 1 to structured populations arises
from the fact that it may not even be possible to define an m-player interaction from an
d-player interaction if m < d. The square lattice is a simple example of a structured
population that is not well-mixed. The lattice is homogeneous in the sense that it is
vertex-transitive, meaning roughly that the network looks the same from every node
(Taylor et al. 2007). The square lattice has infinitely many nodes, but this property
will not be important for our discussion of reducibility. Suppose that each player in the
population chooses an investment level from [0, K ], where K > 0 is the maximum
amount that can be invested by a single player in the public good.With this investment
level as a strategy, every player in the population initiates a public goods game with
each of his or her four neighbors. For each game, the five players involved receive a
payoff, and a focal player’s total payoff is defined to be the sum of the payoffs from
each of the five games in which he or she is a participant: one initiated by the focal
player, and four initiated by the neighbors of this player.

The total payoff to a fixed focal player depends not only on that focal player’s
neighbors, but also on the neighbors of the focal player’s neighbors. In other words,
the payoff to the focal player is determined by those playerswho arewithin two links of
the focal player on the lattice. However, for each of the five public goods interactions
that contribute to the overall payoff value, the only strategies that matter are those

123



Structure coefficients and strategy selection... 215

Fig. 4 The total payoff to the focal player (purple) depends on his or her immediate neighbors (blue) and
the players who are two links away (turquoise). Each of the four-leaf star networks indicates an interaction
initiated by the central player. The total payoff to player 0 is then calculated as the sum of the payoffs from
these five interactions (color figure online)

of five players: a central player, who initiates the interaction, and the four neighbors
of this central player. These interactions should be examined separately to determine
the reducibility of the game; intuitively, this public goods game is “reducible” if each
player initiating an interaction can instead initiate a sequence of smaller games that
collectively preserve the payoffs to each player involved. For each of these interactions,
the interacting group appears to be arranged on a star network, ie. a network with a
central node and four leaves connected to the central node, and with no links between
the leaves (see Fig. 4). Therefore, although the square lattice is homogeneous, an
analysis of the star network—a highly heterogeneous structure—is required in order
to consider reducibility in this type of population.

Example 5 (Linear public goods game on a star network) A star network consists of
a central node, 0, connected by an undirected link to 	 leaf nodes 1, . . . , 	 (Lieberman
et al. 2005; Hadjichrysathou et al. 2011). There are no other links in the network.
Suppose that player i in this network uses strategy xi ∈ S ⊆ [0,∞). Each player
initiates a linear public goods game that is played by the initiator and all of his or her
neighbors. Thus, the player at the central node is involved in d = 	 + 1 interactions,
while each player at a leaf node is involved in two interactions. A focal player’s payoff
is calculated by adding up the payoffs from each interaction in which he or she is
involved. From the perspective of the player at the central node, the interaction he or
she initiates is reducible to a sequence of pairwise interactions byExample 1.However,
on a star network no two leaf nodes share a link, and thus players at these nodes cannot
interact directly with one another; any interaction between two players at leaf nodes
must be mediated by the player at the central node.

A natural question one can ask in this context is the following: can the d-player
game initiated by the central player be broken down into a sequence of symmetric
m-player interactions (with m < d), all involving the central player, in such a way
that if player i adds all of the payoffs from the interactions in which he or she is
involved, the result will be ui (x0, x1, . . . , x	)? That is, can the central player initiate a
sequence of strictly smaller interactions fromwhich, collectively, each player receives
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the payoff from the d-player linear public goods game? The answer, as it turns out, is
that this d-player game can be broken down into a combination of a two-player game
and a three-player game, ie. it is 3-reducible: For i ∈ {0, 1, . . . , 	}, let

αi
(
xi , x j

) := − r

d
(d − 3)

[(
1

d − 1

)
xi + x j

]
+
(

d − 3

d − 1

)
xi ; (16a)

βi
(
xi , x j , xk

) := r

d

[(
2

d − 1

)
xi + x j + xk

]
−
(

2

d − 1

)
xi . (16b)

αi is the payoff function for a two-player game, βi is the payoff function for a three-
player game, and both of these games are symmetric. If the player at the central node
(using strategy x0) initiates a two-player game with every neighbor according to the
function α and a three-player game with every pair of neighbors according to the
function β, then the total payoff to the central player for these interactions is

	∑
i=1

α0 (x0, xi ) +
∑

1�i< j�	

β0
(
x0, xi , x j

) = u1
0 (x0, x1, . . . , x	). (17)

Each leaf player is involved in one of the two-player interactions and d − 2 of the
three-player interactions initiated by the player at the central node. The payoff to leaf
player i ∈ {1, . . . , 	} for playing strategy xi in these interactions is

αi (xi , x0) +
∑

1� j�	
j �=i

βi
(
xi , x0, x j

) = u1
i (x0, x1, . . . , x	). (18)

In fact, αi and βi are the unique symmetric two- and three-player payoff functions sat-
isfying Eqs. (17) and (18). Thus, the d-player linear public goods interaction initiated
by the player at the central node can be reduced to a sequence of symmetric two- and
three-player games that preserves the payoffs for each player in the population.

It follows from Example 5 that the reducibility of a game is sensitive to population
structure. The star network is a very simple example, but it already illustrates that the
way in which a game is reduced can be complicated by removing opportunities for
players to interact in smaller groups. The linear public goods game can be reduced to a
two-player game in well-mixed populations (it is 2-reducible), but the same reduction
does not hold on a star network. The best that can be done for this game on the star
is a reduction to a combination of a two-player game and a three-player game. From
Fig. 4 and our previous discussion of the lattice, we see that this reduction is also the
best that can be done on the square lattice. In particular, it is not possible to reduce the
linear public goods game to a two-player game on the square lattice.

What is perhaps more useful in the present context is the fact that a game that is
irreducible in a well-mixed population remains irreducible in structured populations.
Indeed, as we observed, any player initiating an interaction can choose to interact
with any subset of his opponents, so from the perspective of this focal player the
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population might as well be well-mixed. With Examples 3 and 4 in mind, we now turn
our attention to the dynamics of multiplayer games in structured populations.

3 Selection conditions

Let S = {A1, . . . , An} be the finite strategy set available to each player. Consider an
evolutionary process that updates the strategies played by the population based on the
total payoff each player receives for playing his or her current strategy, and let β � 0
denote the intensity of selection. Assuming that all payoff values may be calculated
using an n × n payoff matrix

(
ai j
)
, there is the following selection condition:

Theorem 1 (Tarnita et al. 2011) Consider a population structure and an update rule
such that (i) the transition probabilities are infinitely differentiable at β = 0 and (ii)
the update rule is symmetric for the n strategies. Let

a∗∗ = 1

n

n∑
s=1

ass; ar∗ = 1

n

n∑
s=1

ars; a∗r = 1

n

n∑
s=1

asr ; a = 1

n2

n∑
s,t=1

ast . (19)

(a∗∗ is the expected payoff to a strategic type against an opponent using the same
strategy, ar∗ is the expected payoff to strategic type r when paired with a random
opponent, a∗r is the expected payoff to a random opponent facing strategic type r , and
a is the expected payoff to a random player facing a random opponent.) In the limit
of weak selection, the condition that strategy r is selected for is

σ1 (arr − a∗∗) + σ2 (ar∗ − a∗r ) + σ3 (ar∗ − a) > 0, (20)

where σ1, σ2, and σ3 depend on the model and the dynamics, but not on the entries of
the payoff matrix,

(
ai j
)
. Moreover, the parameters σ1, σ2, and σ3 do not depend on

the number of strategies as long as n � 3.

The statement of this theorem is slightly different from the version appearing in
Tarnita et al. (2011), due to the fact that one further simplification may be made by
eliminating a nonzero structure coefficient. We do not treat this simplification here
since (i) the resulting condition depends on which coefficient is nonzero and (ii) only
a single coefficient may be eliminated in this way, which will not be a significant
simplification when we consider more general games. This theorem generalizes the
main result of Tarnita et al. (2009b) for n = 2 strategies, which is a two-parameter
condition (or one-parameter if one coefficient is assumed to be nonzero).

For d-player games with n = 2 strategies, we also have:

Theorem 2 (Wu et al. 2013b) Consider an evolutionary process with the same
assumptions on the population structure and update rule as in Theorem 1. For a
game with two strategies, A and B, let a j and b j be the payoff values to a focal
player using A (resp. B) against j players using A. In the limit of weak selection, the
condition that strategy A is selected for is
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d−1∑
j=0

σ j
(
a j − bd−1− j

)
> 0 (21)

for some structure coefficients σ0, σ1, . . . , σd−1.

It is clear from these results that for n = 2, the extension of the selection conditions
from two-player games to multiplayer games comes at the cost of additional structure
coefficients. Our goal is to extend the selection conditions to multiplayer games with
n � 3 strategies and quantify the cost of doing so (in terms of the number of structure
coefficients required by the σ -rules).

3.1 Symmetric games

Examples 3 and 4 show that a single game in a structured population can require
multiple payoff functions, even if the game is symmetric: in a degree-heterogeneous
structure, there may be some players with two neighbors, some with three neighbors,
etc. If each player is required to play an irreducible Hölder public goods game with
all of his or her neighbors, then we need a d-player payoff function u p for each d
appearing as the number of neighbors of some player in the population. With this
example in mind, suppose that⋃

j∈J

{
u j : Sd( j) −→ R

}
(22)

is the collection of all distinct, symmetric payoff functions needed to determine the
payoff values to the players, where J is some finite indexing set and d ( j) is the
number of participants in the interaction defined by u j . The main result of this section
requires the transition probabilities of the process to be smooth at β = 0 when viewed
as functions of the selection intensity, β. This smoothness requirement is explained
in Appendix B. We also assume that the update rule is symmetric with respect to
the strategies. These requirements are the same as those of Tarnita et al. (2011), and
they are satisfied by the most salient evolutionary processes (birth–death, death–birth,
imitation, pairwise comparison, Wright–Fisher, etc.).

Theorem 3 In the limit of weak selection, the σ -rule for a chosen strategy involves

∑
j∈J

⎛
⎝d ( j) +

d( j)−1∑
m=1

(
d ( j) − m

)
q (m, n − 2)

⎞
⎠ (23)

structure coefficients, where q (m, k) denotes the number of partitions of m with at
most k parts.

The proof of Theorem 3 is based on a condition that guarantees the average abun-
dance of the chosen strategy increases with β as long as β is small. Several symmetries
common to evolutionary processes and symmetric games are then used to simplify this
condition. The details may be found in Appendix B.
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As a special case of this general setup, suppose the population is finite, structured,
and that each player initiates an interaction with every (d − 1)-player subset of his or
her neighbors. That is, there is only one payoff function and every interaction requires
d players. (Implicitly, it is assumed that the population is structured in such a way that
each player has at least d − 1 neighbors.) A player may be involved in more games
than he or she initiates; for example, a focal player’s neighbor may initiate a d-player
interaction, and the focal player will receive a payoff from this interaction despite the
possibility of not being neighbors with each participant. The payoffs from each of
these games are added together to form this player’s total payoff. In this case, we have
the following result:

Corollary 1 If only a single payoff function is required, u : Sd → R, then the selection
condition involves

d +
d−1∑
m=1

(d − m) q (m, n − 2) (24)

structure coefficients.

Since the notation is somewhat cumbersome, we relegate the explicit description
of the rule of Theorem 3 to Appendix B (Eq. 96). Here, we give examples illustrating
some special cases of this rule:

Example 6 For a symmetric game with pairwise interactions and two strategies,

2 +
2−1∑
m=1

(2 − m) q (m, 2 − 2) = 2 + 0 = 2 (25)

structure coefficients are needed, recovering the main result of Tarnita et al. (2009b).

Example 7 For a symmetric game with pairwise interactions and n � 3 strategies,

2 +
2−1∑
m=1

(2 − m) q (m, n − 2) = 2 +
2−1∑
m=1

(2 − m) q (m, 1) = 2 + 1 = 3 (26)

structure coefficients are needed, which is the result of Tarnita et al. (2011).

Example 8 For a symmetric game with d-player interactions and two strategies,

d +
d−1∑
m=1

(d − m) q (m, 2 − 2) = d + 0 = d (27)

structure coefficients are needed, which gives Theorem 2 of Wu et al. (2013b).

Strictly speaking, the number of structure coefficients we obtain in each of these
specializations is one greater than the known result. This discrepancy is due only to
an assumption that one of the coefficients is nonzero, which allows a coefficient to be
eliminated by division (Tarnita et al. 2009b; Wu et al. 2013b).
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Example 9 Suppose that each player is involved in a series of two-player interactions
with payoff values

(
ai j
)
and a series of three-player interactions with payoff values(

bi jk
)
. Let a∗∗, ar∗, a∗r , and a be as theywere in the statement of Theorem1. Similarly,

we let

b∗∗∗ := 1

n

n∑
s=1

bsss; br∗• := 1

n2

n∑
s,t=1

brst ; b := 1

n3

n∑
s,t,u=1

bstu, (28)

and so on. (b∗∗∗ is the expected payoff to a strategic type against opponents of the
same strategic type, br∗• is the expected payoff to strategic type r when paired with a
random pair of opponents, b is the expected payoff to a random player facing a random
pair of opponents, etc.) The selection condition for strategy r is then

σ1 (arr − a∗∗) + σ2 (ar∗ − a∗r ) + σ3 (ar∗ − a)

+ σ4
(
brrr − b∗∗∗

)+ σ5
(
brr∗ − b∗∗r

)+ σ6
(
br∗∗ − b∗rr

)+ σ7
(
brr∗ − b∗∗•

)
+ σ8

(
br∗• − b∗r•

)+ σ9
(
br∗∗ − b∗••

)+ σ10
(
br∗• − b

)
> 0, (29)

where {σi }10i=1 is the set of structure coefficients for the process.

We may also extend the result of Wu et al. (2013b) to games with more than two
strategies:

Example 10 For a symmetric game with d-player interactions and three strategies,

d +
d−1∑
m=1

(d − m) q (m, 3 − 2) = d (d + 1)

2
(30)

structure coefficients appear in the selection condition. In fact, we can write down this
condition explicitly without much work: Suppose that S = {a, b, c} and let ai, j , bi, j ,
and ci, j be the payoff to a focal playing a, b, and c, respectively, when i opponents
are playing a, j opponents are playing b, and d − 1− i − j opponents are playing c.
Strategy a is favored in the limit of weak selection if and only if

∑
0�i+ j�d−1

σ (i, j)
((

ad−1−i,i − bi,d−1−i
)+ (

a j,d−1− j − bd−1− j, j
)

+ (
a j,i − bi, j

)+ (
ad−1−i,0 − cd−1− j,0

)
+ (

a j,d−1−i− j − ci,d−1−i− j
)+ (

a j,0 − ci,0
))

> 0 (31)

for some collection of d (d + 1) /2 structure coefficients, {σ (i, j)}0�i+ j�d−1.

Let ϕn (d) be the number of structure coefficients needed for the condition in Corol-
lary 1. The following result generalizes what was observed in Example 10 and by Wu
et al. (2013b):
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Proposition 3 For fixed n � 2, ϕn (d) grows in d like dn−1. That is, there exist
constants c1, c2 > 0 such that

c1 � lim
d→∞

ϕn (d)

dn−1 � c2. (32)

Proof We establish the result by induction on n. We know that the result holds for
n = 2 (Wu et al. 2013b). Suppose that n � 3 and that the result holds for n − 1. As
a result of the recursion q (m, k) = q (m, k − 1) + q (m − k, k) for q, we see that
ϕn (d) = ϕn−1 (d) + ϕn (d − (n − 2)) − d. Thus,

ϕn (d) =

⌊
d

n−2

⌋
−1∑

k=0

ϕn−1 (d − k (n − 2)) + ϕn

(
d −

⌊
d

n − 2

⌋
(n − 2)

)
−
⌊

d

n − 2

⌋
d,

(33)

and it follows from the inductive hypothesis that the result also holds for n. 
�
Wu et al. (2013b) give examples of selection conditions illustrating the linear growth
predicted for n = 2. For n = 3 and n = 4, we give in Fig. 5 the number of dis-
tinct structure coefficients for an irreducible d-player game in a population of size
d for the pairwise comparison process (see Szabó and Tőke 1998; Traulsen et al.
2007). Although the number of distinct coefficients is slightly less than the number
predicted by Corollary 1 in these examples, their growth (in the number of players)
coincides with Proposition 3. That is, growth in the number of structure coefficients is
quadratic for three-strategy games and cubic for four-strategy games. Even for these

2 4 6 8 10 12 14
0

50

100

150

200

250

300

350

number of players in the game, d

nu
m

be
r 

of
 d

is
tin

ct
 s

tr
uc

tu
re

 c
oe

ffi
ci

en
ts

number of distinct structure coefficients vs. d for n=3

predicted
actual

(a)

2 4 6 8 10 12 14
0

50

100

150

200

250

300

350

number of players in the game, d

nu
m

be
r 

of
 d

is
tin

ct
 s

tr
uc

tu
re

 c
oe

ffi
ci

en
ts

number of distinct structure coefficients vs. d for n=4

predicted
actual

(b)

Fig. 5 The number of distinct structure coefficients vs. the number of players, d, in an irreducible d-player
interaction in a population of size N = d. By Proposition 3, the blue circles grow like d2 and d3 in a
(n = 3) and b (n = 4), respectively. In both of these figures, the process under consideration is a pairwise
comparison process. The actual results, whose calculations are described in Appendix C, closely resemble
the predicted results, suggesting that in general, one cannot expect fewer than ≈dn−1 distinct structure
coefficients in a d-player game with n strategies (color figure online)
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small population sizes, one can already see that the selection conditions become quite
complicated. The details of these calculations may be found in Appendix C.

3.2 Asymmetric games

As a final step in increasing the complexity of multiplayer interactions, we consider
payoff functions that do not necessarily satisfy the symmetry condition of Definition 2.
One way to introduce such an asymmetry into evolutionary game theory is to insist
that payoffs depend not only on the strategic types of the players, but also on the spatial
locations of the participants in an interaction. For example, in a two-strategy game,
the payoff matrix for a row player at location i against a column player at location j is

( A B

A ai j , a ji bi j , c ji

B ci j , b ji di j , d ji

)
. (34)

This payoff matrix defines two payoff functions: one for the player at location i , and
one for the player at location j . More generally, for each fixed group of size d involved
in an interaction, there are d different payoff functions required to describe the payoffs
resulting from this d-player interaction. For example, if players at locations i1, . . . , id

are involved in a d-player game, then it is not necessarily the case that ui j = uik if
j �= k; for general asymmetric games, each of the payoff functions ui1 , . . . , uid is
required. Suppose that J is a finite set that indexes the distinct groups involved in
interactions. For each j ∈ J , this interaction involves d ( j) players, which requires
d ( j) distinct payoff functions. Thus, there is a collection of functions

⋃
j∈J

{
u j

i : Sd( j) −→ R

}d( j)

i=1
(35)

that describes all possible payoff values in the population, where u j
i denotes the payoff

function for the i th player of the j th group involved in an interaction.
Let S (−,−) denote the Stirling number of the second kind, i.e.,

S (m, k) =

⎧⎪⎪⎨
⎪⎪⎩

1

k!
k∑

j=0

(−1)k− j
(

k

j

)
jm 0 � k � m,

0 k > m.

(36)

In words, S (m, k) is the number of ways in which to partition a set of size m into
exactly k parts. Therefore, the sum

∑m
k=0 S (m, k) is the total number of partitions of

a set of size m, which is denoted by Bm and referred to as the mth Bell number (see
Stanley 2009).

Theorem 4 Assuming the transition probabilities are smooth at β = 0 and that
the update rule is symmetric with respect to the strategies, the number of structure
coefficients in the selection condition for a chosen strategy is
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∑
j∈J

d ( j)
n∑

k=0

(
S (1 + d ( j) , k) − S (d ( j) , k)

)
. (37)

Theproof ofTheorem4maybe found inAppendixB, alongwith an explicit description
of the condition (Eq. 91). Note that if the number of strategies, n, satisfies n �
1 + max j∈J d ( j), then

n∑
k=0

S (1 + d ( j) , k) = B1+d( j); (38a)

n∑
k=0

S (d ( j) , k) = Bd( j). (38b)

From these equations, (37) reduces to∑
j∈J

d ( j)
(

B1+d( j) − Bd( j)

)
. (39)

Therefore, for a fixed set of interaction sizes {d ( j)} j∈J , the number of structure
coefficients grows with the number of strategies, n, until n = 1 + max j∈J d ( j);
after this point, the number of structure coefficients is independent of the number of
strategies.

Interestingly, the selection condition for asymmetric games gives some insight into
the nature of the structure coefficients for symmetric games:

Example 11 Suppose that the population structure is an undirected network without
self-loops (Ohtsuki et al. 2006), and let

(
wi j

)
be the adjacency matrix of this network.

If the interactions are pairwise and the payoffs depend on the vertices occupied by the
players, then for n � 3 strategies there are

B2+1 − B1+1 = 5 − 2 = 3 (40)

structure coefficients needed for each ordered pair of neighbors in the network. Sup-
pose that

Mi j :=

⎛
⎜⎜⎜⎝

A1 A2 · · · An

A1 ai j
11, a ji

11 ai j
12, a ji

21 · · · ai j
1n, a ji

n1

A2 ai j
21, a ji

12 ai j
22, a ji

22 · · · ai j
2n, a ji

n2
...

...
...

. . .
...

An ai j
n1, a ji

1n ai j
n2, a ji

2n · · · ai j
nn, a ji

nn

⎞
⎟⎟⎟⎠ (41)

is the payoff matrix for a player at vertex i against a player at vertex j . If

ai j∗∗ = 1

n

n∑
s=1

ai j
ss; ai j

r∗ = 1

n

n∑
s=1

ai j
rs; ai j∗r = 1

n

n∑
s=1

ai j
sr ; ai j = 1

n2

n∑
s,t=1

ai j
st (42)
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are the “localized” versions of the strategy averages given in display (19), then strategy
r is favored in the limit of weak selection if and only if

N∑
i=1

∑
{ j : wi j =1}

(
σ

i j
1

(
ai j

rr − ai j∗∗
)

+ σ
i j
2

(
ai j

r∗ − ai j∗r

)
+ σ

i j
3

(
ai j

r∗ − ai j
))

> 0. (43)

Whereas there are three structure coefficients in this model if there is no payoff-
asymmetry, there are

3
N∑

i, j=1

wi j = 6 ×
(
# of links in the network

)
(44)

structure coefficients when the payoff matrices depend on the locations of the players.
Of course, if we remove the asymmetry from this result and takeMi j to be independent
of i and j (so that ai j

st = ast for each s, t, i, j), then the selection condition (43) takes
the form

σ1 (arr − a∗∗) + σ2 (ar∗ − a∗r ) + σ3 (ar∗ − a) > 0, (45)

where

σ1 =
N∑

i=1

∑
{ j : wi j =1}

σ
i j
1 ; (46a)

σ2 =
N∑

i=1

∑
{ j : wi j =1}

σ
i j
2 ; (46b)

σ3 =
N∑

i=1

∑
{ j : wi j =1}

σ
i j
3 . (46c)

In this way, the structure coefficients of Tarnita et al. (2011) are a sum of “local”
structure coefficients.

4 Discussion

We have introduced a notion of reducibility in well-mixed populations that captures
the typical way inwhichmultiplayer games defined using a 2 × 2 payoffmatrix “break
down” into a sequence of pairwise games. Based on the usual methods of calculating
total payoff values (through accumulation or averaging), a game should be irreducible
if it cannot be broken down linearly into a sequence of smaller games. An irreducible
game in a well-mixed population will remain irreducible in a structured population
because population structure effectively restricts possibilities for interactions among
the players. Although reducible games in well-mixed populations need not remain
reducible when played in structured populations, the existence of irreducible games
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shows that, in general, one need not assume that a game may be broken down into a
sequence of simpler interactions, regardless of the population structure. This observa-
tion is not unexpected, but many of the classical games studied in evolutionary game
theory are of the reducible variety.

As we observed with the linear public goods game, there are reducible games that
may be perturbed slightly into irreducible games. For example, the “Hölder public
goods” games demonstrate that it is possible to obtain irreducible games quite readily
from reducible games. However, one must use caution: In the Hölder public goods
game, the irreducibility of u p depends on the number of players if 1

p ∈ {1, 2, . . .}. For
such a value of p, interactions with sufficiently many participants may be simplified
if the population is well-mixed. Therefore, perturbing a linear public goods game to
obtain a nonlinear public goods game does not necessarily guarantee that the result will
be irreducible for every type of population. The deformations we introduced turn out to
be irreducible for almost every p, however, so one need not look hard for multiplayer
public goods games that cannot be broken down.

Ohtsuki (2014) defines the notion of degree of a multiplayer games with two strate-
gies. For this type of game, reducibility and degree are closely related in the sense that
a game is k-reducible if and only if its degree is k − 1. Degree has been defined only
for symmetric multiplayer games with two strategies. On the other hand, reducibility
makes sense for any multiplayer game, even asymmetric games with many strategies.
As a result, we have extended the concept of degree to much more general games: the
degree of a game is defined to be the value k for which the game is (k + 1)-reducible.
Thus, the d-player irreducible games are precisely those whose degree is d − 1; those
built from pairwise interactions only are the games of degree 1.

We derived selection conditions, also known as σ -rules, for multiplayer games
with any number of strategies. In the limit of weak selection, the coefficients of these
conditions are independent of payoff values. However, they are sensitive to the types
of interactions needed to determine these payoff values. By fixing a d-player game
and insisting that each player plays this game with every (d − 1)-player subset of his
or her neighbors, we arrive at a straightforward generalization of the known selection
conditions of Tarnita et al. (2011) and Wu et al. (2013b). Of particular significance
is the fact that the number of structure coefficients in a game with n strategies grows
in d like dn−1. Implicit in this setup is the assumption that each player has at least
d − 1 neighbors, which may or may not be the case. To account for a more general
case in which each player simply plays a game with all of his or her neighbors, it is
useful to know that one may define games that are always irreducible, independent
of the number of players. There are corresponding selection conditions in this setting
formed as a sum of selection conditions, one for each distinct group size of interacting
players in the population. For each of these cases, we give a formula for the number of
structure coefficients required by the selection condition; this number grows quickly
with the number of players required for each game.

The payoff functions of the game are not always independent of the population
structure. If 1

p /∈ {1, 2, . . .}, then the public goods game with payoff functions u p
i

is irreducible for any number of players. If the population structure is a degree-
heterogeneous network, and if each player initiates this public goods game with all of
his or her neighbors, then there is an irreducible k-player game for each k appearing
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as a degree of a node in the network. We established that the number of σ -coefficients
depends on the number of players in each game, so in this example the number of
coefficients depends on the structure of the population as well. This result contrasts
the known result for two-player games in which the values of the structure coefficients
may depend on the network, but the number of structure coefficients is independent
of the network structure.

Our focus has been on the rules for evolutionary success for a general game and not
on the explicit calculation of the structure coefficients (although calculations for small
populations aremanageable—seeAppendixC).We extended these rules to account for
more complicated types of interactions in evolutionary game theory. These selection
conditions are determined by the signs of linear combinations of the payoff values,
weighted by structure coefficients that are independent of these payoff values. Our
general rules quantify precisely the price that is paid—in terms of additional structure
coefficients—for relaxing the assumptions on the types of games played within a
population. Based on the number of structure conditions required for the selection
conditions, Theorems 3 and 4 seem to be in contravention of the tenet that these rules
should be simple. Indeed, the simplicity of the selection condition of Tarnita et al.
(2011) appears to be something of an anomaly in evolutionary game theory given the
vast expanse of evolutionary games one could consider. This observation was made
by Wu et al. (2013b) using a special case of the setup considered here, but our results
show that σ -rules can be even more complicated in general. The simplicity of the
rule of Tarnita et al. (2011), however, is due to the number of structure coefficients
required, not necessarily the structure coefficients themselves. In theory, these structure
coefficients can be calculated by looking at any particular game. In practice, even for
pairwise interactions, these parameters have proven themselves difficult to calculate
explicitly.Due to the difficulties in determining structure coefficients, the fact that there
are more of them for multiplayer games may not actually be much of a disadvantage.
With an efficient method for calculating these values, the general σ -rules derived here
allow one to explicitly relate strategy success to payoff values in the limit of weak
selection for a wide variety of evolutionary games.

Acknowledgments A. M. and C. H. acknowledge financial support from the Natural Sciences and Engi-
neering Research Council of Canada (NSERC) and C. H. from the Foundational Questions in Evolutionary
Biology Fund (FQEB), Grant RFP-12-10.

Appendix A: Reducibility in well-mixed populations

Proof of Proposition 1 If u is reducible, then we can find{{
v{i1,...,im } : Sm → R

m
}

{i1,...,im }⊆{1,...,d}

}d−1

m=2
(47)

such that, for each i = 1, . . . , d and (s1, . . . , sd) ∈ Sd ,

ui (s1, . . . , sd) =
d−1∑
m=2

∑
{i1,...,im−1}⊆{1,...,d}−{i}

v
{i,i1,...,im−1}
i

(
si , si1 , . . . , sim−1

)
. (48)
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Suppose that u is also symmetric. We will show that the right-hand side of Eq. 48 can
be “symmetrized” in a way that preserves the left-hand side of the equation. If Sd

denotes the symmetric group on N letters, then

ui (s1, . . . , sd)

= 1

(d − 1)!
∑

π∈Sd
π(i)=i

ui
(
sπ(1), . . . , sπ(d)

)

= 1

(d − 1)!
∑

π∈Sd
π(i)=i

⎛
⎝d−1∑

m=2

∑
{i1,...,im−1}⊆{1,...,d}−{i}

v
{i,i1,...,im−1}
i

(
si , sπ(i1), . . . , sπ(im−1)

)⎞⎠

=
d−1∑
m=2

∑
{i1,...,im−1}⊆{1,...,d}−{i}

⎛
⎜⎜⎝ 1

(d − 1)!
∑

π∈Sd
π(i)=i

v
{i,i1,...,im−1}
i

(
si , sπ(i1), . . . , sπ(im−1)

)
⎞
⎟⎟⎠ .

(49)

Since
∑

π∈Sd
π(i)=i

v
{i,i1,...,im−1}
i

(
si , sπ(i1), . . . , sπ(im−1)

)

= (d − m)!
∑

{ j1,..., jm−1}⊆{1,...,d}−{i}

∑
τ∈Sm−1

v
{i,i1,...,im−1}
i

(
si , s jτ (1) , . . . , s jτ (m−1)

)
,

(50)

it follows that

ui (s1, . . . , sd) =
d−1∑
m=2

∑
{i1,...,im−1}⊆{1,...,d}−{i}

wm
i

(
si ; si1 , . . . , sim−1

)
, (51)

where

wm
i

(
si ; si1 , . . . , sim−1

)
:= (d − m)!

(d − 1)!
∑

{ j1,..., jm−1}⊆{1,...,d}−{i}

∑
τ∈Sm−1

v
{i, j1,..., jm−1}
i

(
si , siτ (1) , . . . , siτ (m−1)

)
.

(52)

(The semicolon inwm
i

(
si ; si1 , . . . , sim−1

)
is used to distinguish the strategy of the focal

player from the strategies of the opponents.) If π is a transposition of i and j , then the
symmetry of u implies that

ui
(
s1, . . . , si , . . . , s j , . . . , sd

) = u j
(
s1, . . . , s j , . . . , si , . . . , sd

)
. (53)
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Therefore, with vm := 1
d

∑d
i=1 wm

i for each m, we see that

ui (s1, . . . , sd) =
d−1∑
m=2

∑
{i1,...,im−1}⊆{1,...,d}−{i}

vm (si ; si1 , . . . , sim−1

)
. (54)

The payoff functions vm are clearly symmetric, so we have the desired result.
We now compare the notion of “degree” of a game (Ohtsuki 2014) to reducibility.

For m ∈ R and k ∈ Z�0, consider the (generalized) binomial coefficient

(
m

k

)
:= m (m − 1) · · · (m − k + 1)

k! . (55)

(We use this definition of the binomial coefficient so that we can make sense of
(m

k

)
if

m < k.) A symmetric d-player game with two strategies is k-reducible if and only if
there exist real numbers α	

i and β	
i for 	 = 1, . . . , k − 1 and i = 0, . . . , 	 such that

a j =
k−1∑
	=1

	∑
i=0

(
j

i

)(
d − 1 − j

	 − i

)
α	

i ; (56a)

b j =
k−1∑
	=1

	∑
i=0

(
j

i

)(
d − 1 − j

	 − i

)
β	

i . (56b)

	 denotes the number of opponents in a smaller game, and α	
i (resp. β	

i ) is the payoff
to an a-player (resp. b-player) against i players using a in an (	 + 1)-player game.
Ohtsuki (2014) notices that both a j and b j can be written uniquely as polynomials in
j of degree at most d − 1, and he defines the degree of the game to be the maximum
of the degrees of these two polynomials. In order to establish a formal relationship
between the reducibility of a game and its degree, we need the following lemma:

Lemma 1 If q ( j) is a polynomial in j of degree at most k � 1, then there exist
coefficients γ 	

i with 	 = 1, . . . , k and i = 0, . . . , 	 such that for each j = 0, . . . , d−1,

q ( j) =
k∑

	=1

	∑
i=0

(
j

i

)(
d − 1 − j

	 − i

)
γ 	

i . (57)

Proof If k = 1, then let q ( j) = c0 + c1 j . For any collection γ 	
i , we have

1∑
	=1

	∑
i=0

(
j

i

)(
d − 1 − j

	 − i

)
γ 	

i = (d − 1) γ 1
0 +

(
γ 1
1 − γ 1

0

)
j, (58)

so we can set γ 1
0 = c0/ (d − 1) and γ 1

1 = c0/ (d − 1) + c1 to get the result. Suppose
now that the lemma holds for polynomials of degree k − 1 for some k � 2, and let
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q ( j) = c0 + c1 j + · · · + ck jk (59)

with ck �= 0. If γ k
i = 0 for i = 0, . . . , k − 1 and γ k

k = k!ck , then

q ( j) −
k∑

i=0

(
j

i

)(
d − 1 − j

k − i

)
γ k

i (60)

is a polynomial in j of degree at most k − 1, and thus there exist coefficients γ 	
i with

q ( j) −
k∑

i=0

(
j

i

)(
d − 1 − j

k − i

)
γ k

i =
k−1∑
	=1

	∑
i=0

(
j

i

)(
d − 1 − j

	 − i

)
γ 	

i (61)

by the inductive hypothesis. The lemma for k follows, which completes the proof. 
�
We have the following equivalence for two-strategy games:

Proposition 2 If n = 2, then a game is k-reducible if and only if its degree is k − 1.

Proof If the game is k-reducible, then at least one of the polynomials

a j =
k−1∑
	=1

	∑
i=0

(
j

i

)(
d − 1 − j

	 − i

)
α	

i ; (62a)

b j =
k−1∑
	=1

	∑
i=0

(
j

i

)(
d − 1 − j

	 − i

)
β	

i (62b)

must have degree k − 1. Indeed, if they were both of degree at most k − 2, then, by
Lemma 1, one could find coefficients γ 	

i and δ	
i such that

a j =
k−2∑
	=1

	∑
i=0

(
j

i

)(
d − 1 − j

	 − i

)
γ 	

i ; (63a)

b j =
k−2∑
	=1

	∑
i=0

(
j

i

)(
d − 1 − j

	 − i

)
δ	

i , (63b)

which would mean that the game is not k-reducible. Therefore, the degree of the game
must be k −1. Conversely, if the degree of the game is k −1, then, again by Lemma 1,
one can find coefficients α	

i and β	
i satisfying (62a) and (62b). Since the polynomials

in (63a) and (63b) are of degree at most k − 2 in j , and at least one of a j and b j is of
degree k − 1, it follows that the game is not k′-reducible for any k < k′. In particular,
the game is k-reducible, which completes the proof. 
�

Note that we require n = 2 in Proposition 2 since “degree” is defined only for
games with two strategies. (However, k-reducibility makes sense for any game.)
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Proposition 4 If p ∈ [−∞,+∞] and S is a subset of [0,∞) that contains at least
two elements, then the Hölder public goods game with payoff functions

u p
i : Sd −→ R

: (x1, . . . , xd) �−→ r

(
x p
1 + · · · + x p

d

d

) 1
p

− xi , (64)

is irreducible if and only if 1
p /∈ {1, 2, . . . , d − 2}.

Proof Without a loss of generality, we may assume that S = {a, b} for some a, b ∈
[0,∞) with b > a. (If the game is irreducible when there are two strategies, then it is
certainly irreducible when there are many strategies.) Since

a j = r

(
( j + 1) a p + (d − 1 − j) bp

d

) 1
p − a, (65)

we see that for p �= 0,±∞,

dd−1a j

d jd−1 = r

(
( j + 1) a p + (d − 1 − j) bp

d

) 1
p −d+1 (a p − bp

d

)d−1 d−2∏
i=0

(
1

p
− i

)
,

(66)

which vanishes if and only if 1
p ∈ {1, 2, . . . , d − 2}. Thus, for p �= 0,±∞, the degree

of the Hölder public goods game is d − 1 if and only if 1
p /∈ {1, 2, . . . , d − 2}.

If p = 0 and a �= 0, then

dd−1b j

d jd−1 = rb
(a

b

) j
d
ln

((a

b

) 1
d
)d−1

�= 0. (67)

If p = 0 and a = 0, then

b j = rb

(
(1 − j) (2 − j) · · · ((d − 1) − j)

(d − 1)!
)

− b. (68)

Thus, for p = 0, the degree of the game is d − 1. If p = −∞, then

b j = r (b − a)

(
(1 − j) (2 − j) · · · ((d − 1) − j)

(d − 1)!
)

+ ra − b, (69)

and again the degree is d − 1. Similarly, if p = +∞, then

a j = r (a − b)

(
j ( j − 1) · · · ( j − (d − 2))

(d − 1)!
)

+ rb − a. (70)
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Since we have shown that the degree of the Hölder public goods game is d − 1 if and
only if 1

p /∈ {1, 2, . . . , d − 2}, the proof is complete by Proposition 2. 
�
Remark 3 The irreducibility of the games in Examples 2 and 4 follow from the same
type of argument used in the proof of Proposition 4.

Appendix B: Selection conditions

We generalize the proof of Theorem 1 of Tarnita et al. (2011) to account for more
complicated games:

Asymmetric games Consider an update rule that is symmetric with respect to the
strategies and has smooth transition probabilities at β = 0. Suppose that

⋃
j∈J

{
u j

i : Sd( j) −→ R

}d( j)

i=1
(71)

is the collection of all distinct, irreducible payoff functions needed to determine payoff
values to the players. The indexing set J is finite if the population is finite, and for our
purposeswedo not need any other information about J . In a gamewith n strategies, this

collection of payoff functions is determined by an element u ∈ R

∑
j∈J

∑d( j)
i=1 nd( j)

. The
assumptions on the process imply that the average abundanceof strategy r ∈ {1, . . . , n}
may be written as a function

Fr : R

∑
j∈J

∑d( j)
i=1 nd( j) −→ R. (72)

The coordinates of R

∑
j∈J

∑d( j)
i=1 nd( j)

will be denoted by a j
i

(
si ; si1 , . . . , sid( j)−1

)
, where

j ∈ J , i ∈ {1, . . . , d ( j)}, and si , si1 , . . . , sid( j)−1 ∈ {1, . . . , n}. (The semicolon is used
to separate the strategy of the focal player, i , from the strategies of the opponents.) By
the chain rule, the selection condition for strategy r has the form

0 <
d

dβ

∣∣∣∣
β=0

Fr (βu)

=
∑
j∈J

d( j)∑
i=1

n∑
si ;si1 ,...,sid( j)−1=1

∂ Fr

∂a j
i

(
si ; si1 , . . . , sid( j)−1

)
∣∣∣∣
a=0

u j
i

(
si ; si1 , . . . , sid( j)−1

)
.

(73)

Let αi j
r
(
si ; si1 , . . . , sid( j)−1

) := ∂ Fr

∂a j
i

(
si ; si1 , . . . , sid( j)−1

)
∣∣∣∣
a=0

. Since the update rule is

symmetric with respect to the strategies, it follows that

α
i j
r
(
si ; si1 , . . . , sid( j)−1

) = α
i j
π(r)

(
π (si ) ;π

(
si1

)
, . . . , π

(
sid( j)−1

))
(74)

for each π ∈ Sn . We now need the following lemma:
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Lemma 2 The group action of Sn on [n]⊕m defined by

π · (i1, . . . , im) = (π (i1) , . . . , π (im)) . (75)

partitions [n]⊕m into

∣∣[n]⊕m /Sn
∣∣ =

n∑
k=0

S (m, k) (76)

equivalence classes, where S (−,−) is the Stirling number of the second kind.

Proof Let P {1, . . . , m} be the set of partitions of {1, . . . , m} and consider the map

Φ : [n]⊕m −→ P {1, . . . , m}
: (i1, . . . , im) �−→ Φ (i1, . . . , im), (77)

where, for Δ j ∈ Φ (i1, . . . , im), we have s, t ∈ Δ j if and only if is = it . This map
satisfies

Φ (π · (i1, . . . , im)) = Φ (i1, . . . , im) (78)

for any π ∈ Sn , and the map Φ ′ : [n]⊕m /Sn → P {1, . . . , m} is injective. Thus,

∣∣[n]⊕m /Sn
∣∣ = |Im (Φ)| =

n∑
k=0

S (m, k) , (79)

which completes the proof. 
�
By the lemma, the number of equivalence classes of the relation induced by the group
action

ϕ : Sn × [n]1+d( j) −→ [n]1+d( j)

: (π,
(
r, si , si1 , . . . , sid( j)−1

)) �−→ (
π (r) , π (si ) , π

(
si1

)
, . . . , π

(
sid( j)−1

))
(80)

is
∑n

k=0 S (1 + d ( j) , k).
LetPn {−1, 0, 1, . . . , d ( j) − 1} be the set of partitions of {−1, 0, 1, . . . , d ( j) − 1}

with at most n parts. −1 is the index of the strategy in question (in this case, r ), 0 is
the index of the strategy of the focal player, and 1, . . . , d ( j)− 1 are the indices of the
strategies of the opponents. For Δ ∈ Pn {−1, 0, 1, . . . , d ( j) − 1}, we let u j

i (Δ, r)

denote the quantity obtained by averaging u j
i over the strategies, once for each equiv-

alence class induced by Δ that does not contain −1. Stated in this way, the definition
is perhaps difficult to digest, so we give a simple example to explain the notation: if
d ( j) is even and

Δ = {{−1, 0, 1} , {2, 3} , {4, 5} , . . . , {d ( j) − 2, d ( j) − 1}}, (81)
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then

u j
i (Δ, r) = n−d( j)/2+1

n∑
s1,...,sd( j)/2−1=1

u j
i

(
r; r, s1, s1, s2, s2, . . . , sd( j)/2−1, sd( j)/2−1

)
.

(82)

Using this new notation, we can write

d

dβ

∣∣∣∣
β=0

Fr (βu)

=
∑
j∈J

d( j)∑
i=1

n∑
si ;si1 ,...,sid( j)−1=1

α
i j
r
(
si ; si1 , . . . , sid( j)−1

)
u j

i

(
si ; si1 , . . . , sid( j)−1

)

=
∑
j∈J

d( j)∑
i=1

∑
Δ∈Pn{−1,0,1,...,d( j)−1}

λ
i j
r (Δ) u j

i (Δ, r) , (83)

where each λ
i j
r (Δ) is a linear function of the coefficients α

i j
r
(
si ; si1 , . . . , sid( j)−1

)
(the

precise linear expression is unimportant). As a consequence of Eq. (74), we see that
λ

i j
r (Δ) = λ

i j
r ′ (Δ) for each r, r ′ ∈ {1, . . . , n}, so we may relabel these coefficients

using the notation λi j (Δ). Since
∑n

r=1 Fr (βu) = 1, it follows that

0 =
n∑

r=1

d

dβ

∣∣∣∣
β=0

Fr (βu) =
∑
j∈J

d( j)∑
i=1

∑
Δ∈Pn{−1,0,1,...,d( j)−1}

λi j (Δ)

n∑
r=1

u j
i (Δ, r) .

(84)

Let R j := {Δ ∈ Pn {−1, 0, 1, . . . , d ( j) − 1} : −1 ∼ 0} and write

∑
Δ∈Pn{−1,0,1,...,d( j)−1}

λi j (Δ)

n∑
r=1

u j
i (Δ, r)

=
∑

Δ∈R j

λi j (Δ)

n∑
r=1

u j
i (Δ, r) +

∑
Δ∈Rc

j

λi j (Δ)

n∑
r=1

u j
i (Δ, r) . (85)

For Δ ∈ Rc
j , let Δ−1 and Δ0 be the sets containing −1 and 0, respectively. Since

Δ ∈ Rc
j , we know that Δ−1 ∩ Δ0 = ∅. Now, let η (Δ) be the partition whose sets

are equal to those in Δ with the exception of Δ−1 and Δ0, which are replaced by
{−1} ∪ Δ0 and Δ−1 − {−1}, respectively. For example, if d ( j) = 5 and

Δ =
{

{−1, 2, 3}, {0, 1}, {4}
}
, (86)

then

η (Δ) =
{

{−1, 0, 1} , {2, 3} , {4}
}
. (87)
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This assignment defines a surjective map η : Rc
j → R j .

For fixed j and i , consider the equivalence relation on Pn {−1, 0, 1, . . . , d ( j) − 1}
defined by

Δ ∼ Δ′ ⇐⇒
n∑

r=1

u j
i (Δ, r) =

n∑
r=1

u j
i

(
Δ′, r

)
. (88)

The map η : Rc
j → R j satisfies Δ ∼ η (Δ) for Δ ∈ Rc

j . Therefore, it follows that

d

dβ

∣∣∣∣
β=0

Fr (βu) =
∑
j∈J

d( j)∑
i=1

∑
Δ∈Rc

j

λi j (Δ)
(

u j
i (Δ, r) − u j

i (η (Δ) , r)
)
, (89)

so the selection condition for strategy r is

∑
j∈J

d( j)∑
i=1

∑
Δ∈Rc

j

λi j (Δ)
(

u j
i (Δ, r) − u j

i (η (Δ) , r)
)

> 0, (90)

which, for each j and i , involves
∑n

k=0

(
S (1 + d ( j) , k) − S (d ( j) , k)

)
structure

coefficients. To be consistent with the existing literature on selection conditions, we
let σ i j := −λi j and write the selection condition as

∑
j∈J

d( j)∑
i=1

∑
Δ∈Rc

j

σ i j (Δ)
(

u j
i (η (Δ) , r) − u j

i (Δ, r)
)

> 0. (91)

As long as n � 1+max j∈J d ( j), then the number of structure coefficients in selection
condition (91) is independent of n. The same argument used in the proof of Theorem 1
of Tarnita et al. (2011) shows that each σ i j (Δ) may be chosen to be independent of
n for all games with at least 1 + max j∈J d ( j) strategies. One could calculate the
structure coefficients for a game with exactly 1 + max j∈J d ( j) strategies and still
obtain the selection condition for games with fewer strategies in exactly the same way
that Tarnita et al. (2011) deduce the result for n = 2 strategies from the result for
n � 3 strategies.

Symmetric games If we assume that the payoff functions of display (71) are all
symmetric, then for each j ∈ J the function u j

i is independent of i : the index j is used
to denote the particular group of players involved in the interaction (of size d ( j)), and
u j

i denotes the payoff function to the i th player in this group. If the game specified
by j is symmetric, then we need know only the payoff values to one of these players.
Therefore, we assume in this setting that the collection of all payoff functions needed
to determine payoff values is

⋃
j∈J

{
u j : Sd( j) −→ R

}
. (92)
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Condition (91) then takes the form

∑
j∈J

∑
Δ∈Rc

j

σ j (Δ)
(

u j (η (Δ) , r) − u j (Δ, r)
)

> 0. (93)

For fixed j and Δ ∈ Rc
j , we again let Δ−1 and Δ0 be the sets in Δ that contain −1

and 0, respectively. The collection Δ − {Δ−1,Δ0} defines a partition of the number
1 + d ( j) − |Δ−1| − |Δ0| whose parts are the sizes of the sets in the collection
Δ − {Δ−1,Δ0}. For example, if d ( j) = 12 and

Δ =
{

{−1, 2, 3}, {0, 1}, {4, 5}, {6, 7, 8}, {9, 10, 11}
}
, (94)

then Δ defines the partition 2 + 3 + 3 = 8 of the number 1 + 12 − 3 − 2 = 8. An
equivalence relation may then be defined on Rc

j by letting Δ ∼ Δ′ if and only if the
following three conditions hold:

(a) |Δ−1| = ∣∣Δ′−1

∣∣;
(b) |Δ0| = ∣∣Δ′

0

∣∣;
(c) the partitions of 1 + d ( j) − |Δ−1| − |Δ0| defined by Δ and Δ′ are the same.

The symmetry of u j implies that if Δ,Δ′ ∈ Rc
j and Δ ∼ Δ′, then

u j (Δ, r) = u j (Δ′, r
); (95a)

u j (η (Δ), r) = u j (η (Δ′), r
)
. (95b)

Therefore, condition (93) becomes

∑
j∈J

∑
Δ∈Rc

j /∼
σ j (Δ)

(
u j (η (Δ) , r) − u j (Δ, r)

)
> 0. (96)

For each j , the number of structure coefficients contributed to this condition by payoff
function u j is∣∣∣Rc

j/ ∼
∣∣∣ =

∑
c+k=d( j)−1

1 +
∑

0�c+k<d( j)−1

q
(

d ( j) − 1 − c − k, n − 2
)

= d ( j) +
d( j)−1∑

m=1

(
d ( j) − m

)
q (m, n − 2) , (97)

where q (m, k) denotes the number of partitions of m with at most k parts.

Appendix C: Explicit calculations

Let M be the transition matrix for an evolutionary process with mutations. The exis-
tence of nontrivial strategymutations ensures that this chain is irreducible, so there is a
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unique stationary distribution,μ, by the Perron–Frobenius theorem. LetM′ := M−I,
and letM′ (i, ν) be the matrix obtained by replacing the i th column ofM′ by ν. Press
and Dyson (2012) show that this stationary distribution satisfies

μ · ν = detM′ (i, ν)

detM′ (i, 1)
(98)

for any vector, ν. (1 is the vector of ones.) Therefore, if ψr is the vector indexed by S
with ψr (s) being the density of strategy r in state s, then the selection function (72)
may be written

Fr = μ · ψr = detM′ (i, ψr )

detM′ (i, 1)
. (99)

By the quotient rule and Jacobi’s formula for the derivative of a determinant,

d Fr

dβ

∣∣∣∣
β=0

= detM′ (i, ψr )

detM′ (i, 1)

∣∣∣∣
β=0

× tr

(
M′ (i, ψr ) |−1

β=0
d

dβ

∣∣∣
β=0

M′ (i, ψr ) − M′ (i, 1) |−1
β=0

d

dβ

∣∣∣
β=0

M′ (i, 1)
)

= 1

n
tr

(
M′ (i, ψr ) |−1

β=0
d

dβ

∣∣∣
β=0

M′ (i, ψr ) − M′ (i, 1) |−1
β=0

d

dβ

∣∣∣
β=0

M′ (i, 1)
)

= 1

n
tr

((
M′ (i, ψr ) |−1

β=0 − M′ (i, 1) |−1
β=0

) d

dβ

∣∣∣
β=0

M′ (i, 0)
)

(100)

since all strategies have equilibrium density 1/n when β = 0.
In general, the dimension of M is quite large, so this method is not feasible for

large structured populations. However, in well-mixed populations, one can greatly
reduce the size of the state space of the Markov chain by keeping track of only the
number of each strategy present in the population. If there are n strategies and N = d
players, then a state of the population may effectively be described by an n-tuple
(k1, . . . , kn), where kr is the number of players using strategy r for r = 1, . . . , n.
Clearly k1 + · · · + kn = d, so the total size of the state space is

(d+n−1
n−1

)
.

Using (100), we may explicitly calculate the selection conditions for well-mixed
populations as long as d and n are small. These selection conditions could be calculated
directly from (99), but (100) is more efficient on computer algebra systems. Each data
point in Fig. 5 in the main text was generated using a d-player game in a population
of size N = d, ie. every player in the population participates in every interaction. The
growth clearly supports the prediction of Proposition 3.
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