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Abstract We present four predator–prey models with component Allee effect for
predator reproduction. Using numerical simulation results for our models, we describe
how the customary definitions of component and demographic Allee effects, which
work well for single species models, can be extended to predators in predator–prey
models by assuming that the prey population is held fixed. We also find that when
the prey population is not held fixed, then these customary definitions may lead to
conceptual problems. After this discussion of definitions, we explore our four models,
analytically and numerically. Each of our models has a fixed point that represents
predator extinction, which is always locally stable. We prove that the predator will
always die out either if the initial predator population is sufficiently small or if the
initial prey population is sufficiently small. Throughnumerical simulations,we explore
co-existence fixed points. In addition, we demonstrate, by simulation, the existence
of a stable limit cycle in one of our models. Finally, we derive analytical conditions
for a co-existence trapping region in three of our models, and show that the fourth
model cannot possess a particular kind of co-existence trapping region. We punctuate
our results with comments on their real-world implications; in particular, we mention
the possibility of prey resurgence from mortality events, and the possibility of failure
in a biological pest control program.
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1326 A. J. Terry

1 Introduction

We can think of the fitness of an individual organism in terms of its chances of survival
and of reproducing successfully. Thus, the smaller the risk of death (in the immediate
future), or the greater the chance of reproducing successfully, the greater the fitness
of the organism. The average fitness of the individuals in a population can be defined
as the per capita growth rate of the population (p. 9, Courchamp et al. 2008).

The concept of fitness is central to the study of Allee effects. In particular, a demo-
graphic Allee effect refers to a positive correlation between the size or density of a
population and the average fitness of the individuals in it (p. 10, Courchamp et al.
2008). In other words, the greater the size or density of the population, the greater
the average fitness. Alternatively, the lower the size or density of the population, the
lower the average fitness.

If a population is subject to a demographic Allee effect, then this will only occur
if the population is small in some sense. To be specific, if a population has a suffi-
ciently high density over a sufficiently large range, then competition for food and other
resources will be so fierce that further increases to the population will only intensify
this competition and thereby reduce individual fitness. Thus, a demographic Allee
effect does not hold for a population with sufficiently high density over a sufficiently
large range.

There are a number of ways in which a small population may be subject to a
demographic Allee effect. We give two examples. First, an increase in the size or
density of a population may increase the chance of its members deriving benefits from
group protection or co-operation (Courchamp et al. 1999; Boukal and Berec 2002).
Second, if a population reproduces sexually, then an increase in its size or density will
allow individuals to find a mate more easily and will reduce the risk of inbreeding
(Courchamp et al. 1999; McCarthy 1997). Of course, competition over access to a
mate or to optimal breeding sites may also be increased, but such competition may
not be significant at low population size or density.

Consider a population subject to a demographic Allee effect at all sufficiently small
levels (sizes or densities), and suppose it is at such a level. Suppose further that, for
the particular level of the population, the average fitness of individuals in it is such
that, on average, individuals cannot replace themselves (by reproduction) faster than
they die. Then the per capita growth rate of the population (that is, the average fitness)
will be negative, and the population will decrease. This decrease in the population
will reduce average fitness, since the population is subject to a demographic Allee
effect. Hence the population will continue to decrease, and in fact it will inevitably
die out. Given this link between Allee effects and population extinction, Allee effects
have been studied in the context of conservation biology (Burgman et al. 1993; Dennis
1989; Dobson and Lyles 1989).

Note that demographic Allee effects are one of two main types of Allee effect. The
other is called a component Allee effect, which refers to a positive correlation between
population size or density and any measurable component of individual fitness, such
as juvenile survival or adult reproduction (p. 9, Courchamp et al. 2008). Component
Allee effects may result in demographic Allee effects (p. 9, Courchamp et al. 2008).
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Predator–prey models with Allee effect 1327

A collection of definitions of various terms relating to Allee effects may be found in
chapter 1 in Courchamp et al. (2008).

The literature on the mathematical modelling of Allee effects has expanded signifi-
cantly in recent years (Courchamp et al. 2008;Wang et al. 2011b; Zu andMimura 2010;
vanVoorn et al. 2007; Zu et al. 2010; Terry 2009, 2010a, b, 2011). The field is currently
very fertile andmany interesting questions have yet to be fully addressed. In particular,
although there have been a number of studies of predator–prey models in which the
predator population is subject to a component Allee effect for reproduction [for exam-
ple, see (Bazykin 1998; Zhou et al. 2005; Verdy 2010; Lai et al. 2010;Wang et al. 2013;
Terry 2013)], there remains considerable scope for exploring this area. Therefore, our
objective in this paper will be to investigate four new predator–prey models with com-
ponent Allee effect for predator reproduction. We will see that this type of component
Allee effect may also give rise to a demographic Allee effect for the predator.

There is an additional motivation for this work. Specifically, we seek to redress
an imbalance in the modelling literature. The literature on predator–prey models with
Allee effect for the prey appears, at themoment, to bemore extensive than the literature
on predator–preymodels withAllee effect for the predator.We see this as an imbalance
because, in the real world, we might expect predator populations to be more prone to
Allee effects than their prey, since populations are more prone to experience an Allee
effect when they are smaller, and predator populations are typically much smaller than
prey populations. A selection of studies of predator–prey models with Allee effect for
the prey is given here (Zhou et al. 2005; Wang et al. 2011b; Zu and Mimura 2010; van
Voorn et al. 2007; Zu et al. 2010; Gonzalez-Olivares et al. 2011a; Zu 2013; Gonzalez-
Olivares and Rojas-Palma 2011; Aguirre et al. 2009; Gonzalez-Olivares et al. 2011b;
Sen et al. 2012).

We outline the format for the rest of this paper. In Sect. 2, we describe our four new
models. Using numerical simulation results for our models, we discuss, in Sect. 3, how
the customary definitions of demographic and component Allee effects, which work
well for single species models, can be extended to predators in predator–prey models
by assuming that the prey population is held fixed. Then, in Sect. 4, we investigate
the fixed points of our models. In particular, we establish that each of our models
has a fixed point that represents predator extinction, and this is always locally stable.
Through numerical exploration, we also find that our models can possess multiple
co-existence fixed points, and we discover a stable limit cycle in one of our models.
Finally, in Sect. 5, we list a few options for extending this work. Additional results
are included in a Supporting Information file—specifically, we derive conditions for
a co-existence trapping region in three of our models, and show that the fourth model
cannot possess a particular kind of co-existence trapping region.

2 The models

In this section, we describe four new predator–prey models with Allee effect for
the predator. In each model, the predator is assumed to reproduce sexually. Letting
N = N (t) and P = P(t) denote, respectively, the sizes of the prey and predator
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1328 A. J. Terry

populations at time t ≥ 0, the first model is:

dN

dt
= r N

(
1 − N

K

)
− PF(N ),

dP

dt
= P

[
cF(N )

(
P

h + P

)
− D(F(N ))

]
,

N (0) ≥ 0, P(0) ≥ 0,

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(1)

where r, K , c, and h are positive constants, and where:

F(N ) = aN

1 + bN
(a and b are positive constants), (2)

D(F(N )) = D(F) is a continuously differentiable function of F ≥ 0; also,
for F ≥ 0, we have dD/dF ≤ 0, and 0 < d1 ≤ D(F) ≤ d2 where d1, d2
are constants.

⎫⎬
⎭
(3)

This model is based on the following assumptions:

(A1) The prey population grows logistically in the absence of predation, that is, when
P = 0.

(A2) The average prey consumption rate per predator, namely F(N ), also called the
functional response of the predator or predator functional response, adopts the
Holling type II form in (2).

(A3) The average predator reproduction rate, per predator, is equal to cF(N )
(

P
h+P

)
,

a justification for which is given below.
(A4) The average per predator death rate, namely D(F(N )), is defined in (3) in such

a way as to capture these ideas: (i) it is decreasing in the predator functional
response F(N ) because, if a predator eats more, it will be less likely to die from
starvation or from the consequences of weakness brought on by hunger; and (ii)
it is positive for any value of F(N ) ≥ 0, because a predator is highly unlikely
to live forever.

Assumptions (A1) and (A2) are quite typical of predator–prey models (Turchin
2003; Skalski and Gilliam 2001; Terry 2014a; Britton 2003; Brauer and Castillo-
Chávez 2001). Assumption (A4) is not typical of predator–prey models. Rather, it is
common to assume in suchmodels that the per predator death rate is equal to a positive
constant (Turchin 2003; Abrams and Ginzburg 2000), which represents an assumption
that predators die off exponentially in the absence of prey (p. 55, Britton 2003). Whilst
it is certainly sensible for the per predator death rate to be treated as strictly positive,
it is debatable as to whether it should be treated as a constant, as noted in Terry (2013,
2014a) and Deng et al. (2007). The life processes of a predator are fuelled by prey
consumption, and this includes, most fundamentally, staying alive. Hence it seems
reasonable to choose a form for the per predator death rate that has the capacity to
reflect this, such as in our choice for it in (3). For generality, however, we allow the
possibility that the per predator death rate is constant in (3).

123



Predator–prey models with Allee effect 1329

Assumption (A3) requires justification, and we give this here. As mentioned at the
start of this section, the predator is assumed to reproduce sexually. Ignoring delays
due to gestation or egg hatching, this allows us to write:

total rate of predator reproduction at time t

= (number of sexually mature females able to find a suitable mate at time t)

×(average reproduction rate per sexually mature female

that is able to find a suitable mate at time t). (4)

We make two assumptions: (B1) the proportion of the predator population composed
of sexuallymature females is sufficiently constant over time that we can approximate it
by a positive constant γ1; and (B2) the proportion of the predator population composed
of sexually mature males is sufficiently constant over time that we can approximate it
by a positive constant γ2. These assumptions will hold if the predator population has
a stable sex distribution and stable age distribution. In view of assumptions (B1) and
(B2), the numbers of sexually mature female and sexually mature male predators at
time t are, respectively, γ1P and γ2P .

Now the number of sexually mature females able to find a suitable mate at time t
will be the total number of sexually mature females at time t , which is γ1P , multiplied
by the proportion of such females that can find a suitable mate at time t . It seems
reasonable to suppose that, the more sexually mature males there are, the more likely
it is that a sexually mature female will be able to find one of them. Therefore, we shall
suppose that the proportion of sexually mature females able to find a mate at time t is
an increasing function of the number of sexually mature males γ2P , which we write
as H(γ2P). Since H(γ2P) represents a proportion, we must have 0 ≤ H(γ2P) ≤ 1.
Clearly, if there are no sexually mature males, then a sexually mature female will
have zero chance of finding a suitable mate, so we must have H(0) = 0. However, if
there are a large number of sexually mature males, then it is arguably true that every
sexually mature female will stand an excellent chance of finding a mate. Therefore,
an obvious choice for H(γ2P) is (γ2P)/(δ + γ2P) where δ is a positive constant, and
we do make this choice.

Finally, we consider the rate of offspring production for a sexually mature female
that has found a mate. We shall suppose that this rate of offspring production is an
increasing function J (F(N )) of the predator functional response (prey consumption
rate) F(N ), based on the following ideas: (i) a sexually mature female that has found
a mate will be more successful in producing offspring when it has a higher rate of
prey consumption in the recent past, because the production of offspring is fuelled by
the consumption of prey; (ii) the rate of prey consumption in the recent past prior to a
particular time can, for simplicity, be represented by the prey consumption rate at that
particular time. It seems reasonable to assume that J (0) = 0 to reflect the idea that
a female will not successfully produce offspring if its prey consumption rate is zero.
Arguably the simplest form for J (F(N )) is a linear one, and indeed there is empirical
evidence, for some arthropod predator species, that there can be a linear relationship
between the birth rate per adult female (egg-laying rate) and the prey consumption
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1330 A. J. Terry

rate per predator [figures 10 and 13(c), Beddington et al. 1976]. Therefore, we shall
suppose that J (F(N )) = γ3F(N ) for a positive constant γ3.

Combining our observations from the three previous paragraphs, and in particular
using (4), we find:

total rate of predator reproduction = (γ1P)H(γ2P)J (F(N ))

= P (γ1γ3F(N ))

(
γ2P

δ + γ2P

)
. (5)

Since the total rate of predator reproduction is equal to the predator population P
multiplied by the per predator reproduction rate, we must have from (5) that the per

predator reproduction rate is cF(N )
(

P
h+P

)
,where c = γ1γ3 andh = δ/γ2 are positive

constants. In other words, we have established that the per predator reproduction
rate (average predator reproduction rate, per predator) takes the form mentioned in
assumption (A3), as required.

We have nowdefined and justified our firstmodel. For ease of reference,we describe
it in a single equation environment:

the model defined by (1) to (3). (6)

Our second, third, and fourth models are all simple adaptations of our first model.
For our second model, we include an additional term for self-limitation in the differ-
ential equation for the predator. To be specific, we replace (1) by:

dN

dt
= r N

(
1 − N

K

)
− PF(N ),

dP

dt
= P

[
cF(N )

(
P

h + P

)
− D(F(N )) − mP

]
,

N (0) ≥ 0, P(0) ≥ 0,

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(7)

where r, K , c, h, andm are positive constants. In the additional term, one interpretation
of the parameter m is “aggression” (box 1, Abrams and Ginzburg 2000). Various
other authors have considered predator–prey models with a self-limitation term for
the predator (Bazykin et al. 1981; Hainzl 1988, 1992; Gourley and Kuang 2004). We
may summarise our second model as follows:

the model defined by (7), (2), and (3). (8)

For our third model, we replace the Holling type II functional response in model (6)
by another commonly used form for the functional response, namely the Beddington–
DeAngelis form (Terry 2013; Turchin 2003; Skalski and Gilliam 2001; Zhang et al.
2008). Thus, our third model is:
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Predator–prey models with Allee effect 1331

dN

dt
= r N

(
1 − N

K

)
− PF(N , P),

dP

dt
= P

[
cF(N , P)

(
P

h + P

)
− D(F(N , P))

]
,

N (0) ≥ 0, P(0) ≥ 0,

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(9)

where r, K , c, and h are positive constants, and where:

F(N , P) = aN

1 + bN + qP
(a, b, and q are positive constants), (10)

D(F(N , P)) = D(F) is a continuously differentiable function of F ≥ 0; also,
for F ≥ 0, we have dD/dF ≤ 0, and 0 < d1 ≤ D(F) ≤ d2 where d1, d2
are constants.

⎫⎬
⎭

(11)

We may concisely summarise our third model as follows:

the model defined by (9) to (11). (12)

Our fourth and final model involves simply combining the changes introduced in
our second and third models. Thus, for our fourth model, we adapt the first model in
(6) by including a self-limitation term for the predator and by replacing the functional
response with a Beddington–DeAngelis form as in (10). Specifically, then, our fourth
model is:

dN

dt
= r N

(
1 − N

K

)
− PF(N , P),

dP

dt
= P

[
cF(N , P)

(
P

h + P

)
− D(F(N , P)) − mP

]
,

N (0) ≥ 0, P(0) ≥ 0,

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(13)

where r, K , c, h, and m are positive constants, and where F(N , P) satisfies (10), and
D(F(N , P)) satisfies (11). We summarise our fourth model as follows:

the model defined by (13), (10), and (11). (14)

We have now defined our four models, specifically in (6), (8), (12), and (14). All of
these models contain a component Allee effect for the predator birth rate, in the sense
that the per capita birth rate of the predator population P is increasing in P when P
is sufficiently small and N is constant (the issue of how best to define Allee effects
for predators is addressed in Sect. 3 below). In all of our models, the expression
for the per capita birth rate of the predator population is justified by an argument
that involves this assumption: the proportions of sexually mature female and sexually
mature male predators can be approximated as constants. Such an assumption may be
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1332 A. J. Terry

plausible in many real-world populations, but note that stochastic effects may cause
bigger fluctuations in sex ratios at lower population levels (Courchamp et al. 1999).
Stochastic fluctuations in sex ratio could, in principle, either cause a component Allee
effect for adult reproduction if one does not already exist, or exacerbate such an Allee
effect if it is already present. Stochastic modelling studies of Allee effects have been
carried out, for example, in Liebhold and Bascompte (2003), Allen et al. (2005) and
Rao (2013).

Note that the parameter d1 can be interpreted in the same way in all four of our
models, specifically as the minimal per predator death rate.

2.1 Our models in the context of previous studies

A predator–preymodel, possessing a componentAllee effect for predator reproduction
but otherwise possessing some fairly general properties, has previously been proposed
by us in Sect. 2 in Terry (2013). Our four models in (6), (8), (12), and (14) are all
special cases of the general model in Terry (2013), although they have not specifically
been studied before and can therefore be considered as new.

Verdy proposed, and numerically investigated the bifurcation structure of, two
predator–prey models with Allee effect for predator reproduction in Verdy (2010).
One of these models, defined by equations (33) and (36) in Verdy (2010), is gener-
alised by our first model in (6). To be precise, by setting the death function D(F(N ))

in (3) equal to a constant, then model (6) reduces to the model defined by equations
(33) and (36) in Verdy (2010). The model given by equations (33) and (36) in Verdy
(2010) itself builds on models with Allee effect for predator reproduction that were
proposed by Zhou et al. (2005) and Bazykin (1998). Finally, a hybrid predator–prey
model, with component Allee effect for predator reproduction, was recently investi-
gated numerically in the context of biological pest control in Terry (2014b).

2.2 Basic properties of solutions

Using the results in section 3 in Terry (2013), we see that, for each of our models in
(6), (8), (12), and (14), the following is true:

(C1) A unique solution exists for t ≥ 0.
(C2) The solution satisfies positivity, that is, N (t) ≥ 0 and P(t) ≥ 0 for t ≥ 0.
(C3) The solution satisfies strict positivity, that is, if both N (0) > 0 and P(0) > 0,

then N (t) > 0 and P(t) > 0 for t ≥ 0. Moreover, if N (0) > 0, then N (t) > 0
for t ≥ 0, and if P(0) > 0, then P(t) > 0 for t ≥ 0.

(C4) The solution is bounded above, that is, there exist positive constants, N̂ and P̂ ,
such that N (t) ≤ N̂ and P(t) ≤ P̂ for t ≥ 0.

Property (C4) mentions upper bounds for N and P without giving explicit expres-
sions. We use properties (C1) and (C2) to find explicit upper bounds in the following
lemma:

Lemma 1 Suppose that one of the following models holds: model (6), model (8),
model (12), or model (14). Then, for t ≥ 0, we have N (t) ≤ N̂ := max{N (0), K }.
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Predator–prey models with Allee effect 1333

Furthermore, if we define d1 according to whichever model is assumed to hold, and
let η = crK

4 + cN̂d1, then, for t ≥ 0, we have P(t) ≤ P̂ := max{cN (0) + P(0), η
d1

}.
Proof First we prove the lemma for model (14). Note by properties (C1) and (C2)
above that a unique solution exists for t ≥ 0, where this solution satisfies positivity.

We begin by establishing that N̂ := max{N (0), K } is an upper bound for N (t).
From positivity and the equation for dN/dt in model (14), we have, for t ≥ 0, that
dN
dt ≤ r N (1 − N

K ). But then, by a standard comparison argument (for example, see
theorem 1.1, p. 78, Smith 1995), we have N (t) ≤ N1(t) for t ≥ 0, where N1(0) =
N (0) ≥ 0 andwhere, for t ≥ 0,we have dN1

dt = r N1(1− N1
K ). Either by solving directly

for N1(t) or by a standard phase portrait argument, N1(t) ≡ 0 for t ≥ 0 if N1(0) =
N (0) = 0, whilst N1(t) tends monotonically to K as t → ∞ if N1(0) = N (0) > 0.
Hence N1(t) ≤ max{N (0), K } = N̂ for t ≥ 0. Therefore, N (t) ≤ N1(t) ≤ N̂ for
t ≥ 0, as required.

Now we bound P(t) above. Using the equations for dN/dt and dP/dt in model
(14), we have, for t ≥ 0,

d

dt
(cN + P) = c

dN

dt
+ dP

dt

= cr N

(
1 − N

K

)
+ cPF(N , P)

[(
P

h + P

)
− 1

]

−D(F(N , P))P − mP2. (15)

Observe that cr N (1 − N
K ) is a quadratic in N and is easily seen to have a global

maximum, namely crK
4 . Also, by positivity, we have, for t ≥ 0, that P ≥ 0 and

F(N , P) ≥ 0 and
(

P
h+P

)
− 1 ≤ 0. Hence cPF(N , P)

[(
P

h+P

)
− 1

]
≤ 0 for t ≥ 0.

By positivity and the assumptions on F(N , P) and D(F(N , P)) in model (14), we
have −D(F(N , P))P − mP2 ≤ −d1P for t ≥ 0, where d1 is a positive constant.
Combining these observations with (15), we have, for t ≥ 0,

d

dt
(cN + P) ≤ cr K

4
− d1P = cr K

4
+ d1cN − d1(cN + P)

≤ cr K

4
+ d1cN̂ − d1(cN + P). (16)

where, on the last step, we use the fact that we have already shown that N (t) is bounded
above by N̂ .

Using the definition of η in the statement of the lemma, it follows from (16) that
cN (t) + P(t) ≤ Z(t) for t ≥ 0, where Z(0) = cN (0) + P(0) ≥ 0 and where,
for t ≥ 0, we have dZ/dt = η − d1Z . But trivially Z(t) ≤ max{Z(0), η

d1
} =

max{cN (0) + P(0), η
d1

} = P̂ . Hence cN (t) + P(t) is bounded above by P̂ . Hence,

since N satisfies positivity, it must be that P is itself bounded above by P̂ , as required.
Thus, we have proved the lemma for model (14). Setting q = 0 or m = 0 in our

argument gives a proof of the lemma for, respectively, model (8) or model (12). Setting
both q = 0 and m = 0 gives a proof for model (6). ��
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1334 A. J. Terry

3 Defining an Allee effect for a predator

In this section, we use numerical simulation results to discuss how the customary
definitions of demographic and component Allee effects, which work well for single-
species models, can be extended to predators in predator–prey models. All of the
simulation results in this work were created using MATLAB (http://www.mathworks.
co.uk/products/matlab/). In simulating our models in (6), (8), (12), and (14), we used
the inbuilt solver for systems of ordinary differential equations called “ode23t”. In
creating each figure, we chose parameter values with the goal of demonstrating the
qualitative behaviours of our models. We have not fitted our models to real-world data
but this could be done in future work.

Demographic and component Allee effects have been discussed in the Introduction.
In particular, the average fitness of the individuals in a population X was defined as
the per capita growth rate of X , and a demographic Allee effect holds if average fitness
increases with X for some range of values for X . Also, a component Allee effect holds
for the population X if a measurable component of individual fitness increases with X
for some range of values for X . These definitions are sensible if average fitness, or the
component being measured, are single-valued functions of X . Conceptual problems
may arise, however, when this is not the case. For instance, suppose, across some range
of values for X , say X ∈ [X1, X2], that the average fitness takes two different sets
of values, where one set contains values that increase with X and the other contains
values that decrease with X . Does a demographic Allee effect hold for X ∈ [X1, X2]?
Yes and no—it depends on which set of values for average fitness that we consider.
Conceptual problems of this kind do not arise in autonomous single-species models
of the form

dX

dt
= Xφ(X), (17)

where φ(X) is some smooth single-valued function of X that represents the per capita
growth rate of X (and therefore also represents the average fitness), and where any
measurable component of individual fitness of interest to us is, additionally, a single-
valued function of X . Examples of such models can be found in table 3.1 on page 68
of Courchamp et al. (2008).

In autonomous single-species models, as in (17), the per capita growth rate of the
population changes only with the population itself. Environmental factors, including
the abundance of food, influence the per capita growth rate only through constant para-
meter values. What would be an analogous assumption for the predator population in
a predator–prey model? In order for environmental factors, including the abundance
of food, to influence the per capita growth rate of the predator population only through
constant parameter values, we would have to assume that the food source of the preda-
tor is constant. But this means that we would have to assume that the prey population
is constant, because the food source of the predator is the prey population. Our dis-
cussion leads naturally to the following definitions for demographic and component
Allee effects for predators in predator–prey models, which extend the corresponding
definitions for populations governed by single-species models as in (17):
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Predator–prey models with Allee effect 1335

Definition 1 Suppose we are given a predator–prey model and a positive constant
N1. Then the predator possesses, or is subject to, a demographic Allee effect at prey
level N1, if there exist constants P1, P2, with 0 ≤ P1 < P2, such that the per capita
growth rate of the predator population P is a strictly increasing function of P for
P ∈ [P1, P2], when the prey population N is held fixed at N1.

Definition 2 Suppose we are given a predator–prey model and a positive constant N1.
Suppose the predator population has a measurable component of individual fitness,
which is equal to ψ(N , P) when the predator population is P and the prey population
is N . Then the predator possesses, or is subject to, a component Allee effect at prey level
N1, for the component ψ(N , P), if there exist constants P1, P2, with 0 ≤ P1 < P2,
such that ψ(N , P) is a strictly increasing function of P for P ∈ [P1, P2], when the
prey population N is held fixed at N1.

From Definition 2, it is easy to see, for our four models in (6), (8), (12), and (14),
that the predator population P possesses a component Allee effect, at any prey level
N1 > 0, for per capita reproduction. After all, for any fixed prey level N1 > 0, per
predator reproduction is zero when P = 0 and positive for P > 0. Hence, for any
fixed prey level N1 > 0, per predator reproduction must be increasing for P ∈ [0, α]
where α > 0 is sufficiently small.

Can ourmodels possess, byDefinition 1, a demographicAllee effect for the predator
at some positive prey level N1? To help answer this, we first make two observations
on the behaviour of model (6): (i) for any fixed prey level N1 > 0, per predator
reproduction is necessarily increasing for P ∈ [0, α] where α > 0 is sufficiently
small; (ii) for any fixed prey level N1 > 0, the per predator death rate is constant.
It follows that, for model (6), the per predator growth rate will be increasing for
P ∈ [0, α] where α > 0 is sufficiently small, when the prey level is held fixed at
any N1 > 0. But then, for model (6), we may immediately deduce, from Definition
1, that the predator possesses a demographic Allee effect at prey level N1, for any
N1 > 0. We may deduce, in similar fashion, that models (8), (12), and (14) can
also possess a demographic Allee effect at prey level N1, for any N1 > 0, provided
that the per predator death rate in each model is sufficiently constant for P sufficiently
small. For model (8), this occurs when the parameterm is sufficiently small; for model
(12), it occurs when the death function D(F(N , P)) takes values on an interval that
is sufficiently narrow; and for model (14), it occurs when both the parameter m is
sufficiently small and the death function D(F(N , P)) takes values on an interval that
is sufficiently narrow.

When, in models (8), (12), and (14), the per predator death rate is allowed to vary
significantly for small values of P , then we have found, from a simulation study
(results not shown), that these models may not possess a demographic Allee effect
for the predator at particular prey levels N1 > 0. A biological interpretation of this
finding is as follows. Although an increase in the predator population ensures that
female predators are more likely to find a mate and be able to reproduce, it can also
increase per predator mortality by either making it more likely that there will be
mortality-inducing aggressive encounters between predators [as in model (8)], or by
increasing competition for prey [as in model (12)], or both [as in model (14)]. When
per predator mortality is more sensitive to an increase in the predator population than

123



1336 A. J. Terry

0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

F

D(F)

Fig. 1 Plot of the death function D(F) defined in (18). The parameter choices are: θ1 = 5, θ2 = 15, d1 =
0.1, d2 = 0.3

per predator reproduction, then it can be possible for any increase in the predator
population to lead to a reduction in the per predator growth rate (average fitness of the
predators), so that a demographic Allee effect for the predator cannot hold.

In Fig. 2, we demonstrate, by simulation, how all four of our models can possess,
by Definitions 1 and 2, respectively, demographic and component Allee effects for the
predator. In each plot in Fig. 2, the form for the predator death function D(F) is as
follows:

D(F) =

⎧⎪⎨
⎪⎩

d2, 0 ≤ F ≤ θ1,

d1 + (d2 − d1) cos2
{(

π
2

) (
F−θ1
θ2−θ1

)}
, θ1 ≤ F ≤ θ2,

d1, F ≥ θ2,

(18)

where θ1 ≥ 0, θ2 > 0, d2 > 0, d1 > 0 are all constants, with θ1 < θ2 and d1 < d2.
The form for D(F) in (18) is consistent with the restrictions on it in all four of our
models, and has been used in a previous study of predator–prey models Terry (2014a).
A numerical example, showing the qualitative properties of D(F) in (18), is given in
Fig. 1. The plots in Fig. 2 show the per predator birth rate and per predator growth rate,
(1/P)dP/dt , for eachof our fourmodels, created by assuming that the prey population
is held constant at an initial value N (0), and by choosing values for parameters and
N (0) as follows:

c = 0.5, K = 50, a = 0.35, h = 0.2, θ1 = 5, θ2 = 15 (all models) (19)

b = 0.3, d1 = 0.1, d2 = 0.3, N (0) = 10 (model (6)) (20)

b = 0.2, d1 = 0.1, d2 = 0.3, m = 0.1, N (0) = 10 (model (8)) (21)

b = 0.3, q = 3, d1 = 0.1, d2 = 0.3, N (0) = 10 (model (12)) (22)

b = 0.1, q = 0.2, d1 = 0.03, d2 = 0.09, m = 0.1, N (0) = 1 (model (14)). (23)

From Fig. 2, and Definitions 1 and 2, we see that all four of our models possess a
demographicAllee effect for the predator at the prey level being used, and a component
Allee effect for per predator reproduction at the prey level being used. In particular, in
all fourmodels, the per predator birth rate and per predator growth rate are increasing in
P when P is sufficiently small. By comparison, standard predator–prey models, such
as the Lotka–Volterra model (p. 33, Turchin 2003), Rosenzweig–MacArthur model (p.
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Fig. 2 Plots of per predator birth rate and per predator growth rate, (1/P)dP/dt , versus predator population
P , where the prey population is held fixed at its initial value N (0). In each plot, the predator death function
D(F) has the form stated in (18). Choices for the parameters and N (0) are stated in (19)–(23)

95, Turchin 2003), Beddington–DeAngelis model (p. 2, Haque 2011), and Bazykin
model (p. 98, Turchin 2003), do not possess the types of Allee effect described in
Definitions 1 and 2, which is reassuring because we would not expect them to. Thus,
Definitions 1 and 2 are practical enough to identify the kinds of models that we would
expect to possess an Allee effect.

Nevertheless, Definitions 1 and 2 have a limitation. By requiring that the prey
population N is held constant, they ignore the dynamics of the model in question.
It seems somehow dissatisfying to claim that our models possess demographic and
component Allee effects based on definitions that ignore their dynamics. Moreover,
in real-world ecosystems, prey populations do not conveniently hold themselves fixed
when we want to study the possibility of Allee effects for their predators.

Therefore, it is natural to ask what happens if we relax the condition, in Definitions
1 and 2, that N is held constant? More precisely, how do the per predator birth rate and
per predator growth rate change with P when the models are solved with given initial
conditions? We investigate this issue in Fig. 3. In the left and right plots of Fig. 3a, we
show, respectively, the per predator birth rate versus P and the per predator growth rate
versus P , when model (14) is solved for t ∈ [0, 1500], where parameters and initial
condition N (0) are chosen as in (19) and (23), and where r = 0.15 and P(0) = 0.1.
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Fig. 3 Plots of per predator birth rate and per predator growth rate, (1/P)dP/dt , versus predator population
P , created by simulating model (14). In all plots, model (14) is solved for t ∈ [0, 1500], where parameters
and initial condition N (0) are chosen as in (19) and (23), and where r = 0.15. In (a), the initial condition
for the predator population is P(0) = 0.1. In (b), we have P(0) = 0.03

Figure 3b was created in the same way as Fig. 3a, except that P(0) was reduced to
0.03. From Fig. 3a, we see that the per predator birth rate and per predator growth rate
do not behave like single-valued functions of P . For instance, for P ∈ [1.7, 2.2], the
per predator birth rate and per predator growth rate are both double-valued functions
of P , where the lower set of values is increasing in P and the upper set of values
is decreasing in P . Thus, we have encountered the conceptual problem described in
the second paragraph of this section. This problem is not encountered in Fig. 3b,
which differs from Fig. 3a only in the initial condition for P . In summary, although
it may seem reasonable to seek to improve Definitions 1 and 2 by accounting for the
dynamics of the model in question, this can lead to conceptual problems. Whether or
not Definitions 1 and 2 can be improved, or if they really need to be, is a matter that
we invite the modelling community to consider.

Note that the trajectory (N , P), in the case depicted in Fig. 3a, tends to a co-
existence fixed point (results not shown). This is despite the fact that the bottom right
plot of Fig. 2, which was created using the same model and parameters and initial
conditions, shows a negative per predator growth rate for all values of P . However,
there is no contradiction, because the plots in Figs. 2 and 3a use different assumptions
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for the prey population. For the case considered in Fig. 3b, the trajectory (N , P) tends
to the fixed point (K , 0), representing predator extinction (results not shown).

4 Fixed points

In models (6), (8), (12), and (14), fixed points are found from simultaneously solving
dN/dt = 0 and dP/dt = 0.We solve algebraically for N and P . Trivially we find that
(N , P) = (0, 0) and (N , P) = (K , 0) are fixed points in all fourmodels. Co-existence
fixed points, that is, fixed points such that (N , P) = (N∗, P∗) where N∗ > 0 and
P∗ > 0, can also be found, as we will see below in Sect. 4.3.

4.1 The fixed point (0, 0)

For each of the models in (6), (8), (12), and (14), the local stability of the fixed point
(N , P) = (0, 0) is determined by the following argument. Letting dN/dt = χ1(N , P)

and dP/dt = χ2(N , P) in whichever model is assumed to hold, we find by routine
computation that:

when (N , P) = (0, 0), then
∂χ1

∂N
= r,

∂χ1

∂P
= 0,

∂χ2

∂N
= 0,

∂χ2

∂P
= −D(0). (24)

Here D is the death function defined in either (3) or (11), according to whichever
model is assumed to hold. Whether D is defined by (3) or (11), we have D(0) > 0.
By (24), it is easy to see that the Jacobian matrix at the fixed point (N , P) = (0, 0)
has determinant −r D(0), which is negative since D(0) > 0. Hence (0, 0) is, locally,
a saddle point, and is therefore locally unstable.

4.2 The fixed point (K , 0)

Conditions for the stability of the fixed point (N , P) = (K , 0) are given in the two
theorems that follow.

Theorem 1 Suppose that one of the following models holds: model (6), model (8),
model (12), or model (14). Suppose also that N (0) > 0 and that caK

1+bK ≤ d1, where
d1 is defined according to whichever model is assumed to hold. Then (N (t), P(t)) →
(K , 0) as t → ∞.

Proof First we prove the theorem for model (14). Our proof will exploit positivity
[property (C2), Sect. 2.2]. We begin by bounding dP/dt above. To do this, we bound
the per predator death rate below and the per predator birth rate above. In view of
positivity, the per predator death rate [that is, the term D(F(N , P))+mP] is bounded
below by the parameter d1.

For model (14), the per predator birth rate is
(

caN
1+bN+qP

) (
P

h+P

)
. To bound this

above, we first note, by positivity and Lemma 1, that P/(h + P) ≤ P̂/(h + P̂) for
t ≥ 0, where P̂ is a positive constant defined in Lemma 1. Second, note that, by
positivity, we have, for t ≥ 0:
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caN

1 + bN + qP
≤ caN

1 + bN
. (25)

We can make this upper bound more specific. In the proof of Lemma 1, we saw that
N (t) can be bounded above by a function N1(t)which, when N (0) > 0, tends to K as
t → ∞. Hence, for any ε1 > 0, there exists T1 > 0 such that N (t) ≤ N1(t) < K + ε1
for t ≥ T1. Using this, and also using positivity, we have, for t ≥ T1:

caN

1 + bN
≤ ca(K + ε1)

1 + b(K + ε1)
. (26)

Combining our observations from the last two paragraphs, and using positivity and
the equation for dP/dt in model (14), we have, for t ≥ T1,

dP

dt
≤ P

[(
ca(K + ε1)

1 + b(K + ε1)

) (
P̂

h + P̂

)
− d1

]
. (27)

Now by assumption, caK
1+bK ≤ d1. Using this, we may choose ε1 > 0 small enough that

the large term in square brackets in (27) is a negative constant, say −θ (where θ > 0).
Then, using (27), we have P(t) ≤ P1(t) for t ≥ T1 where P1(T1) = P(T1) and where,
for t ≥ T1, we have

dP1
dt = −θ P1. Since P satisfies positivity and is bounded above

by Lemma 1, then P1(T1) = P(T1) is non-negative and finite. Hence P1(t) → 0 as
t → ∞. But then P(t) → 0 as t → ∞, since 0 ≤ P(t) ≤ P1(t) for t ≥ T1.

Finally we show that N (t) → K as t → ∞. To that end, choose any ε2 > 0.
Then, reasoning as in the second paragraph in this proof, there exists T2 > 0 such that
N (t) < K + ε2 for t ≥ T2. Now choose ε3 > 0 so that ε3 < max{ ra , rε2

2aK }. Then,
since P(t) → 0 as t → ∞, we see that there exists T3 > 0 such that 0 < P(t) < ε3
for all t ≥ T3. Using this, and using positivity, we have aN P

1+bN+qP ≤ aε3N for
t ≥ T3. Hence, by the equation for dN/dt in model (14), we have, for t ≥ T3, that
dN
dt ≥ r N (1 − aε3

r − N
K ). Also, we know that N (T3) is bounded (by Lemma 1) and

positive [by the assumption that N (0) > 0 and property (C3) in Sect. 2.2]. Then
N (t) ≥ N2(t) for t ≥ T3 where N2(T3) = N (T3) > 0 and where, for t ≥ T3, we
have dN2

dt = r N2(1 − aε3
r − N2

K ). Since ε3 < r
a by assumption, then 1 − aε3

r > 0, so
that, by solving explicitly for N2(t) or by using a phase portrait argument, we have

N2(t) → K
(
1 − aε3

r

)
as t → ∞. In particular, then, N2(t) > K

(
1 − 2aε3

r

)
for

t ≥ T4, say, where T4 ≥ T3. But by our choice for ε3, we have ε3 < rε2
2aK , so that

1− 2aε3
r > 1− ε2

K .Hence N (t) ≥ N2(t) > K
(
1 − ε2

K

) = K−ε2 for t ≥ T4.Combining
our observations, and letting T5 = max{T2, T4}, we see that K −ε2 < N (t) < K +ε2
for t ≥ T5. Thus, N (t) → K as t → ∞, as required.

Thus, we have proved the theorem for model (14). Setting q = 0 or m = 0 in
our argument gives a proof of the theorem for, respectively, model (8) or model (12).
Setting both q = 0 and m = 0 gives a proof for model (6). ��
Theorem 2 Suppose that one of the following models holds: model (6), model (8),

model (12), or model (14). Suppose also that caN̂
1+bN̂

> d1, where d1 is defined accord-
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ing to whichever model is assumed to hold, and where N̂ = max{N (0), K }. Then
( caN̂
1+bN̂

)( P
h+P ) = d1 has a least positive solution Pm. Moreover:

(i) if P(0) < Pm and N (0) > 0, then (N (t), P(t)) → (K , 0) as t → ∞;
(ii) if P(0) ≥ Pm, then τ = (2/d1) [1 + ln(P(0)/Pm)] is a positive constant and

(N (t), P(t)) → (K , 0) as t → ∞ if 0 < N (0) < 1/(caτerτ ).

Proof First we prove the theorem for model (14). From Lemma 1, we know that

N (t) ≤ max{N (0), K } = N̂ for t ≥ 0. Let ξ(P) = ( caN̂
1+bN̂

)( P
h+P ) − d1. Then clearly

ξ(0) < 0. Also, ξ(P) is continuous in P ≥ 0, and ξ(P) > 0 for all P sufficiently

large because of the assumption that caN̂
1+bN̂

> d1. Therefore, standard results ensure

that there is a least positive solution Pm to ξ(P) = 0. We clearly then have ξ(P) < 0
for 0 ≤ P < Pm .

Now we prove part (i). By an argument similar to the derivation of (27) in the proof
of Theorem 1, we find, for t ≥ 0, that:

dP

dt
≤ P

[(
caN̂

1 + bN̂

)(
P

h + P

)
− d1

]
= Pξ(P). (28)

Then P(t) ≤ P1(t) for t ≥ 0 where P1(0) = P(0) ≥ 0 and where, for t ≥ 0, we have
dP1
dt = P1ξ(P1). By assumption, P(0) < Pm . Also we have seen that ξ(P) < 0 for
0 ≤ P < Pm . Therefore, by a standard argument (such as a phase portrait argument),
we have P1(t) → 0 as t → ∞. But then P(t) → 0 as t → ∞, since [using positivity
of P(t), which is ensured by property (C2) in Sect. 2.2] we have 0 ≤ P(t) ≤ P1(t)
for t ≥ 0. We may argue that N (t) → K in the same way that we did this in the proof
of Theorem 1.

Next we prove part (ii). Thus, suppose P(0) ≥ Pm . Then, since Pm > 0, it is
clear that we may define the positive constant τ = (2/d1) [1 + ln(P(0)/Pm)]. Hence
caτerτ > 0, and we may (and we do) choose N (0) so that 0 < N (0) < 1/(caτerτ ).
Now by the equation for dN/dt in model (14), and using strict positivity [see property
(C3) in Sect. 2.2], we may write dN/dt < r N for t ≥ 0. Hence N (t) ≤ N (0)ert for
t ≥ 0. But then, using our choice for N (0), we have

N (t) < 1/(caτ) for 0 ≤ t ≤ τ. (29)

By the equation for dP/dt in model (14), and using positivity, we have

dP

dt
≤ (caN − d1) P for t ≥ 0. (30)

By (29) and (30), and using positivity, we have

dP

dt
≤

(
1

τ
− d1

)
P for 0 ≤ t ≤ τ. (31)
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But then P(t) ≤ P(0)e

(
1
τ
−d1

)
t
for 0 ≤ t ≤ τ . Hence P(τ ) ≤ P(0)e(1−d1τ).

But then we will have P(τ ) < Pm if P(0)e(1−d1τ) < Pm , which holds if τ >

(1/d1) [1 + ln(P(0)/Pm)]. This latter inequality holds, in view of how τ has been
defined. Hence P(τ ) < Pm . If we now apply the argument used above to prove part
(i) of the theorem, with the time origin shifted from t = 0 to t = τ , we may deduce
that (N (t), P(t)) → (K , 0) as t → ∞.

Thus, we have proved the theorem for model (14). Setting q = 0 or m = 0 in
our argument gives a proof of the theorem for, respectively, model (8) or model (12).
Setting both q = 0 and m = 0 gives a proof for model (6). ��

Remark 1 In models (6), (8), (12), and (14), either caK
1+bK ≤ d1 or caK

1+bK > d1. More-

over, if caK
1+bK > d1, then caN̂

1+bN̂
> d1 where N̂ = max{N (0), K }. It follows, using

Theorem 1 and part (i) of Theorem 2, that the fixed point (K , 0) is always locally sta-
ble. Similarly, it follows, using Theorem 1 and part (i) of Theorem 2, that the predator
either always dies out or there exists Pm > 0 where the predator dies out if its initial
population P(0) is less than Pm . Thus, predator extinction will always occur if the
initial predator population P(0) is sufficiently small. This is not necessarily the case
when there is no component Allee effect for predator reproduction in the models. To
see this for model (6), first note that, if we were to assume in our derivation of the per
predator birth rate (in Sect. 2) that every sexually mature female predator can always
find a mate, then this would amount to setting H(γ2P) ≡ 1, with the result that the
factor ( P

h+P ) would be omitted from the equation for dP/dt . This omission would
causemodel (6) to become a special case ofmodel (7) in Terry (2014a), which does not
permit predator extinction, regardless of how small the initial predator population is,
unless the model parameters satisfy certain conditions [see section 5 in Terry (2014a)].

Remark 2 Using Theorem 1 and part (ii) of Theorem 2, the predator either always
dies out or it will die out if the initial prey population N (0) is sufficiently small. Thus,
survival of the predator population depends on some sort of threshold behaviour for the
prey population—the predator population cannot persist unless the prey population is
bigger than some critical value (corresponding, biologically, to a sufficient quantity of
food to sustain the predator population). Of course, we have yet to see if the predator
population can persist at all, but we will see, by results in the next section and in the
Supporting Information file, that co-existence of the predator and prey is possible in
models (8), (12), and (14). The idea that the extinction of a predator population can
depend on some sort of threshold behaviour for a prey population has been encountered
previously in a study of a discrete predator–prey model, where it was described as an
indirect Allee effect (Lopez-Ruiz and Fournier-Prunaret 2005). The same idea was
encountered in a hybrid predator–prey model in Terry (2013).

Remark 3 In view of Theorem 1, we see that, for models (6), (8), (12), and (14), a
necessary condition for the possibility of co-existence of predator and prey is d1 <
caK
1+bK . A biological interpretation of this condition is that predators do not die “too
quickly”. This interpretation is valid because, as noted in the paragraph immediately
before Sect. 2.1, the parameter d1 represents the minimal per predator death rate.
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4.3 Co-existence fixed points

Co-existence fixed points in models (6), (8), (12), and (14) are found from solving
dN/dt = 0 and dP/dt = 0 simultaneously, where we solve algebraically for N > 0
and P > 0. In Sects. 4.3.1–4.3.4 below, we shall, for simplicity, discuss co-existence
fixed points only for the special cases in which the predator death function D, repre-
senting the per predator death rate in relation to prey consumption, is assumed to be
a constant for all values of the prey consumption rate. The function D is defined in
either (3) or (11), according to whichever model is assumed to hold.

We will see below that co-existence fixed points can exist in any of the four models
when the predator death function D is equal to a constant for all values of the prey
consumption rate, and that the maximum number of such fixed points is finite for each
model. We claim that it follows that co-existence fixed points can exist in any of the
four models when the predator death function D is not equal to a constant for all values
of the prey consumption rate. We first prove this claim for model (14). Thus, suppose
that model (14) has at least one co-existence fixed point when the predator death
function D = D(F(N , P)) is identically equal to a constant d > 0. Since there can
only be finitely many such fixed points, we can write them as (N∗

1 , P∗
1 ), .., (N∗

i , P∗
i ),

where i is an integer such that i ≥ 1. We must have 0 < N∗
j , P

∗
j for 1 ≤ j ≤ i , since

the fixed points represent co-existence. There must also be a minimum and maximum
N∗

j for 1 ≤ j ≤ i , which we respectively denote by N∗
u and N∗

v . Similarly, denote
by P∗

u and P∗
v , respectively, the minimum and maximum values for P∗

j such that
1 ≤ j ≤ i . The co-existence fixed points are found from solving dN/dt = 0 and
dP/dt = 0 for N > 0 and P > 0, but they exist only where N∗

u ≤ N ≤ N∗
v and

P∗
u ≤ P ≤ P∗

v . Now, when N∗
u ≤ N ≤ N∗

v and P∗
u ≤ P ≤ P∗

v , the functional
response F(N , P) takes a continuous range of values, specifically F1 ≤ F ≤ F2
where F1 = F(N∗

u , P∗
v ) > 0 and F2 = F(N∗

v , P∗
u ). Therefore, the fixed points would

still exist if we were to redefine the death function D so that it was equal to d when
the prey consumption rate F(N , P) satisfies 0 < F1 ≤ F ≤ F2 but was otherwise
allowed to vary, provided it still satisfied the conditions imposed on it in model (14).
Thus, we have proved our claim for model (14). The claim can be proved for models
(6), (8), and (12) by a very similar argument.

4.3.1 Model (6)

When the death function D(F(N )) in model (6) is equal to a constant, then model (6)
becomes equivalent to the model given by equations (33) and (36) in Verdy (2010).
There are at most two co-existence fixed points, which are easily found from solv-
ing a quadratic equation. These fixed points are stated, and their stability properties
discussed, in Verdy (2010).

4.3.2 Model (14)

When the death function D(F(N , P)) in model (14) is chosen to equal a constant
d > 0 [that is, when we set d1 = d2 = d > 0 in (11)], then we find co-existence fixed
points from solving, for N > 0 and P > 0, the following system of equations:
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0 = r

(
1 − N

K

)
− aP

1 + bN + qP
, (32)

0 =
(

caN

1 + bN + qP

) (
P

h + P

)
− d − mP. (33)

From (32), we see that P = ( r
a

) (
1 − N

K

)
(1 + bN + qP). Hence, solving (32) and

(33) for N > 0 and P > 0 requires us, more specifically, to solve for 0 < N < K
and P > 0. Rearranging the system in (32) and (33) yields:

P

[
1 − q

( r
a

) (
1 − N

K

)]
=

( r
a

) (
1 − N

K

)
(1 + bN ) , (34)

caN P = (d + mP) (h + P) (1 + bN + qP) . (35)

In order to solve (34) and (35) for 0 < N < K and P > 0, we are required, more
specifically, to solve for P > 0, 0 < N < K , and

[
1 − q

( r
a

) (
1 − N

K

)]
> 0, that is,

we must solve for

P > 0 and max

{
0,

K [q(r/a) − 1]
q(r/a)

}
< N < K . (36)

Assuming that the restrictions in (36) hold, then the expression
[
1 − q

( r
a

) (
1 − N

K

)]3
is positive. Multiplying through by this expression in (35) is therefore a reversible act.
Performing this multiplication, and then using (34), and then simplifying, we arrive
at a quartic in N :

cr N

(
1 − N

K

) [
1 − q

( r
a

) (
1 − N

K

)]2

=
[
d+

( r
a

) (
1− N

K

)
(m−dq+mbN )

] [
h+

( r
a

) (
1− N

K

)
(1−hq + bN )

]
.

(37)

In summary, we may find co-existence fixed points (N , P) from carrying out the
following steps:

(S1) solve (37) for N restricted as in (36); the number of co-existence fixed points is
equal to the number of values thus found for N ;

(S2) if at least one value is found for N from step (S1), then the value for P corre-
sponding to a particular value for N is found from substituting, into (34), the
particular value for N .

Step (S2) is trivial, and step (S1) involves solving a quartic. A quartic can have at
most four positive real solutions, so there are never more than four co-existence fixed
points.

Using steps (S1) and (S2), it is easy to determine by numerical methods that there
are four co-existence fixed points in model (14) when parameter values are chosen as
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Fig. 4 Simulation results found from solvingmodel (14)when the per predator death function D(F(N , P))

is equal to a constant d. The parameter choices are stated in (38). See Sect. 4.3.2 for a description of this
figure. a Phase portraits, b basins of attraction

follows:

c = 0.5, r = 0.15, K = 50, a = 0.35, d = d1 = d2 = 0.1,

m = 0.2, h = 0.2, b = 0.3, q = 0.01. (38)

The four co-existence fixed points, together with the fixed points at (0, 0) and (K , 0),
are shown as green dots in the diagram of the phase plane (N , P) in Fig. 4a. Also
shown are trajectories, with various initial conditions, found from numerically solving
model (14) when parameters satisfy (38). Let us label the co-existence fixed points
in ascending order of their N co-ordinate—we label them as F1, F2, F3, F4 with N
co-ordinates N1, N2, N3, N4, respectively, where N1 < N2 < N3 < N4. Then from
Fig. 4a, we see that F1 and F3 are locally stable, whilst F2 is a saddle. In addition,
simulations of trajectories that start sufficiently close to F4 suggest that F4 is a saddle
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(results not shown). In view of (38), Theorem 2 holds. Hence the constant Pm > 0,
defined in Theorem 2, exists. It is easily determined numerically; we show P = Pm in
Fig. 4a as a red dashed line. By Theorem 2, trajectories tend to (K , 0)when N (0) > 0
and P(0) < Pm ; this fact is corroborated by one of the trajectories in Fig. 4a. By Sect.
4.1, the fixed point (0, 0) is a saddle.

As in Fig. 4a, we created Fig. 4b using model (14) and the parameter choices in
(38). The fixed points are shown as black dots in Fig. 4b. We also show, in Fig. 4b, the
basins of attraction of the locally stable fixed points. To be specific, the red, light blue,
and yellow regions are basins of attraction for, respectively, the fixed points F1, F3,
and (K , 0). Trajectories that start on the P-axis will tend to (0, 0); we show the P-axis
as orange to highlight this fact. The basins of attraction were found from considering a
fine grid of positive initial conditions, simulating from each point of initial conditions
until time t = 800, and asking, at the end of the simulation, if the trajectory was
within a small distance of F1, F3, or (K , 0). The line P = Pm , which is shown as a
red dashed line in Fig. 4a, is shown as a green dashed line in Fig. 4b.

From the yellow basin of attraction for (K , 0) in Fig. 4b, we see, in corroboration
of Theorem 2, that a trajectory (N , P) tends to (K , 0) either when P(0) is sufficiently
small [and N (0) is positive] or when N (0) is sufficiently small [and N (0) is positive].

In Fig. 4b, a point (N , P) in the red region of the phase plane could move to the
light blue region by jumping in a south-westerly direction. Biologically, we could
interpret such a jump as a mortality event that reduces both the predator and prey
populations, with the event temporarily interrupting the dynamical relationship of
these populations—before and after the event, the behaviour of the trajectory in the
phase plane would be determined by the basins of attraction in it. Examples for such an
event include: a severe storm, a flood, or an application of a fast-degrading pesticide
(Ives et al. 2000; Terry 2013). If a mortality event were to re-set the predator and
prey populations by moving the point (N , P) in the phase plane from the red region
to the light blue region, then it would increase the long-term mean of the predator
and prey populations, because: (i) the trajectory would tend to the fixed point F1
in the absence of the event, whilst it would ultimately tend to the fixed point F3 in
the scenario where the event happens; and (ii) the predator and prey populations are
bigger at F3 than at F1. That a mortality event could ultimately increase both the
predator and prey populations is counter-intuitive and represents an example of the
hydra effect (Sieber and Hilker 2012). If, in Fig. 4b, a trajectory (N , P) is located
in either the red co-existence region or in the light blue co-existence region, then
any sufficiently lethal mortality event (except for events that completely eradicate the
prey population) would relocate (N , P) to the yellow basin of attraction for (K , 0). It
follows that prey resurgence (resurgence of the prey population) would be caused by
the event, provided that the prey population were less than K before the event. Prey
resurgence frommortality events in predator–prey models has been discussed in Terry
(2013).

Finally, we give brief insight into other behaviours that model (14) can exhibit. By
reducing the parameter c in (38) to equal 0.48, but otherwise retaining the parameter
choices in (38), we have found that the number of co-existence fixed points falls to
two, one of which is stable whilst the other is a saddle (results not shown). By reducing
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c still further to equal 0.24, we have found that all co-existence fixed points disappear,
and (K , 0) attracts all trajectories with positive initial conditions.

4.3.3 Model (12)

If we set m = 0 in model (14), then we obtain model (12). It follows that, if we set
m = 0 in the method for finding co-existence fixed points in Sect. 4.3.2, then we
acquire a method for finding co-existence fixed points for model (12) when the death
function D(F(N , P)) is chosen to equal a constant d > 0. By setting m = 0 in the
method described in Sect. 4.3.2, we find that (34) is unchanged, but (37) reduces to a
cubic:

cr N

(
1− N

K

) [
1 − q

( r
a

) (
1− N

K

)]
= d

[
h +

( r
a

) (
1 − N

K

)
(1 − hq + bN )

]
.

(39)

In conclusion, steps (S1) and (S2) in Sect. 4.3.2, with (37) replaced by (39), can be
used to find the co-existence fixed points for model (12) with constant death function
D(F(N , P)) = d. Finding the co-existence fixed points therefore effectively amounts
to solving a cubic in N . Since a cubic has at most three positive real solutions, there
can be at most three co-existence fixed points.

Applying steps (S1) and (S2) in Sect. 4.3.2, with (37) replaced by (39), we find, by
trivial numerical methods, that there are two co-existence fixed points in model (12)
when parameter values are chosen as follows:

c = 0.2, r = 0.2, K = 50, a = 0.7, d = d1 = d2 = 0.1,

h = 2.2, b = 0.1, q = 2.5. (40)

These two co-existence fixed points, together with the fixed points at (0, 0) and (K , 0),
are shown as green dots in Fig. 5a. Also shown are trajectories, with various initial
conditions, found from numerically solving model (12) when parameters satisfy (40).
We label the co-existence fixed points as F1 and F2, where the N co-ordinate is smaller
for F1 than for F2. The fixed point F2 is a saddle, and the fixed point F1 is locally
unstable and is surrounded by a stable limit cycle. The conditions of Theorem 2 hold,
in view of (40). Hence the constant Pm > 0, defined in Theorem 2, exists. It is easily
determined numerically; we show P = Pm in Fig. 5a as a red dashed line. By Theorem
2, trajectories tend to (K , 0)when N (0) > 0 and P(0) < Pm ; this fact is corroborated
by a number of trajectories in Fig. 5a. By Sect. 4.1, the fixed point (0, 0) is a saddle.

As in Fig. 5a, we created Fig. 5b using model (12) and the parameter choices in
(40). In Fig. 5b, the fixed points are shown as black dots and the stable limit cycle
is shown as a thick black line. Also shown, as red and yellow regions, respectively,
are the basins of attraction of the stable limit cycle and the fixed point (K , 0). The
P-axis is shown as orange to signify that trajectories that start on it will tend to (0, 0).
The basins of attraction were found from considering a fine grid of positive initial
conditions, simulating from each point of initial conditions until time t = 800, and
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Fig. 5 Simulation results found from solvingmodel (12)when the per predator death function D(F(N , P))

is equal to a constant d. The parameter choices are stated in (40). See Sect. 4.3.3 for a description of this
figure. a Phase portraits, b basins of attraction

asking, at the end of the simulation, if the trajectory was within a small distance of
(K , 0) or not. If it was within a small distance of (K , 0), then we assumed that the
initial conditions belonged to the basin of attraction for (K , 0); otherwise, we assumed
that they belonged to the basin of attraction of the stable limit cycle. The line P = Pm ,
which is shown as a red dashed line in Fig. 5a, is shown as a green dashed line in
Fig. 5b.

It is illuminating to interpret Fig. 5b in terms of its implications for biological pest
control or “biocontrol”. To this end, suppose that the prey species is a pest, such as a
crop pest, living in a region in the absence of predators, as could happen if the prey
species were an invasive or exotic pest (Pimentel 1993; Pimentel et al. 2000). If we
were to introduce Pi predators as a biocontrol program with the aim of reducing the
long-term mean population of the prey, then, by Fig. 5b, the program would fail (in
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the sense that the predator would simply die out, offering no long-term control of the
prey) if Pi were sufficiently small or sufficiently large, or if the prey population were
sufficiently small at the time of the introduction.Whilst themodel used to create Fig. 5b
may be too simple to shed light on many specific real-world biocontrol programs, our
conclusions from Fig. 5b on the apparent ease with which a biocontrol program would
fail are consistent with the lack of success attained in many real-world programs (Orr
2009). This lack of success is demonstrated in the following excerpt from Roderick
and Navajas (2003):

“Recent estimates indicate that in the biological control of arthropods only 34 % of
all introductions have resulted in establishment, only 47 % of which provided control
of the targeted pest, giving an overall success rate of 16 %.”

Finally, we note that by reducing the parameter c in (40) to equal 0.11, but otherwise
retaining the parameter choices in (40), we have found, for model (12), that the co-
existence fixed points in Fig. 5b disappear, and that (K , 0) attracts all trajectories with
positive initial conditions (results not shown).

4.3.4 Model (8)

Setting q = 0 in the method for finding co-existence fixed points in Sect. 4.3.2 yields
a method for finding co-existence fixed points for model (8) when the death function
D(F(N )) is chosen to equal a constant d > 0. By setting q = 0 in the method in Sect.
4.3.2, we find that (34) simplifies to

P =
( r
a

)(
1 − N

K

)
(1 + bN ) , (41)

and that (37) remains a quartic but is slightly simpler:

cr N

(
1 − N

K

)
=

[
d + m

( r
a

)(
1 − N

K

)
(1 + bN )

] [
h +

( r
a

) (
1 − N

K

)
(1 + bN )

]
.

(42)

We may conclude that steps (S1) and (S2) in Sect. 4.3.2 can be used to find the co-
existence fixed points for model (8), with constant death function D(F(N )) = d, if
the following changes are made: (i) in step (S1), (37) is replaced by (42); and (ii)
in step (S2), (34) is replaced by (41). Thus, finding the co-existence fixed points for
model (8), with constant death function D(F(N )), amounts to solving a quartic in N ,
so that there can be at most four co-existence fixed points.

The results in Fig. 4 and in the final paragraph of Sect. 4.3.2 are not changed
qualitatively, and are almost identical quantitatively, when the value of the parameter
q is changed from 0.01 to 0. Therefore, since model (8) is obtained from setting q = 0
in model (14), we see that the discussion of the results for model (14) in Sect. 4.3.2
applies also to model (8) when parameters and initial conditions are chosen as in Sect.
4.3.2 except for setting q = 0.

123



1350 A. J. Terry

5 Summary; future work

Wehavepresented four predator–preymodelswith componentAllee effect for predator
reproduction. Using numerical simulation results for our models, we have described
how the customary definitions of component and demographic Allee effects, which
work well for single species models, can be extended to predators in predator–prey
models by assuming that the prey population is held fixed. We have then explored our
fourmodels, analytically and numerically.We have found that each of ourmodels has a
fixed point that represents predator extinction, which is always locally stable. We have
proved that the predator will always die out either if the initial predator population
is sufficiently small or if the initial prey population is sufficiently small. Through
numerical simulations, we have explored co-existence fixed points. We have also
demonstrated, by simulation, the existence of a stable limit cycle in one of our models.
We have punctuated our results with comments on their real-world implications; in
particular, we havementioned the possibility of prey resurgence frommortality events,
and the possibility of failure in a biological pest control program.Additional results are
included in a Supporting Information file; specifically, in this file, we derive analytical
conditions for a co-existence trapping region in three of our models, and show that the
fourth model cannot possess a particular kind of co-existence trapping region.

We outline several avenues for future work. First, although we have commented
on co-existence fixed points in our models and have given some numerical results on
them, we have not analytically derived and classified them. Thus, there is certainly
scope for extending our discussion of co-existence fixed points. Second, we have not
analytically investigated the existence of closed orbits in our models. This could be
done in future work, perhaps combining the Poincaré–Bendixson theorem with the
fact that we have established conditions for co-existence trapping regions in three of
our models in the Supporting Information file. Third, our models could be extended by
incorporating an Allee effect for the prey. As far as we are aware, there have only been
a few studies that consider predator–prey models with Allee effect for both predator
and prey—for example, see Terry (2013) andWang et al. (2011a). Finally, our models
could be extended by the inclusion of a third trophic level. For instance, we are not
aware of any studies of predator–prey-vegetation models with Allee effect for the
predator; it may be fruitful to derive and explore such models.

6 Supporting information file

Additional results are included in a Supporting Information file. In this file, we prove
that models (8), (12), and (14) can possess a co-existence trapping region, and that
model (6) cannot possess a particular kind of co-existence trapping region. Also, using
numerical simulation results, we corroborate our proof that model (12) can possess a
co-existence trapping region.
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