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Abstract Establishing a distance between genomes is a significant problem in compu-
tational genomics, because its solution can be used to establish evolutionary relation-
ships including phylogeny. The “double cut and join” (DCJ) model of chromosomal
rearrangement proposed by Yancopoulos et al. (Bioinformatics 21:3340–3346, 2005)
has received attention as it can model inversions, translocations, fusion and fission on
a multichromosomal genome that may contain both linear and circular chromosomes.
In this paper, we realize the DCJ operator as a group action on the space of multichro-
mosomal genomes. We study this group action, deriving some properties of the group
and finding group-theoretic analogues for the key results in the DCJ theory.

Keywords Genome rearrangements · Double cut and join · Group theory ·
Inversion · Algebraic biology
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1 Introduction

The use of genome rearrangements to estimate evolutionary distance dates back as
far as Watterson et al. (1982). The novelty of this approach is that it ignores single
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nucleotide polymorphisms (SNPs) and takes genes and their relative positions (and
orientation) as the fundamental unit of DNA for the purposes of distance calculations.
This is particularly valuable in the case of bacterial DNA, which undergoes relatively
frequent rearrangement (relative to eukaryotes, that is), but which also experiences
significant horizontal, or lateral, gene transfer (HGT). The use of large-scale rearrange-
ments to establish distance is thought to be less vulnerable to the effects of HGT than
the use of SNPs (Darling et al. 2008).

The double cut and join (DCJ) operator, introduced by Yancopoulos et al. (2005)
[see also Bergeron et al. (2006)], provided a significant breakthrough by treating a
much larger family of operations acting on amore general,multichromosomal genome,
and showing how distance can be expressed in a very simple formula based on features
of a graph derived directly from the genome arrangements. While the DCJ operator
treats all operations in its remit as equally likely, it is possible that this operator
may provide a valuable base for operators that account for differences in frequency
of different operations, and may potentially be specialised to genomes with specific
chromosomal structure (such as a single circular chromosome).

With this potential in mind, in this paper we translate the DCJ operator into a group-
theoretic setting. We show that by expressing the multi-chromosomal genome with n
oriented regions as a permutation of {1, . . . , 2n}, a DCJ operator can be defined as
an action on the genome. Hence, the set of double cut and join operators generates
a group acting on the entire genome space. The DCJ distance is then a path distance
on the Cayley graph of this group [as described in Egri-Nagy et al. (2014)]. We show
how the DCJ distance between two genomes can be obtained in a very simple way
from the permutation encoding of the genomes. We obtain a formulation for the DCJ
distance that is analogous to the distance formula found by Yancopoulos et al. (2005),
but is expressed in terms of features of a permutation. This is derived independently
of the established DCJ theory.

Over the last decade, there have been several examples of algebraic approaches
to modeling biological phenomena, particularly in the genomic distance literature.
While the traditional approach to the problem of finding distance between genomes is
to cast them as permutations, limited use has beenmade of the powerfulmachinery that
algebra provides to deal with permutations. Adopting an algebraic viewpoint might in
fact reveal deep insights and lead to simplification.

A recent example of this is the work of Lu et al. (2006) who used the theory of
symmetric groups to give an algorithm that gives a sorting sequence between circular
genomes using fission, fusion and block interchanges. More recently, group theory has
been used by the authors’ group to calculate the inversion distance between circular
genomes under one model (Egri-Nagy et al. 2014), and a wider algebraic framework
has been proposed that includes DNA knotting (Francis 2014).

A circular genome ismodeled as a cyclic permutation byMeidanis andDias (2000),
treating a genome as a permutation of the genes a1, a2, . . . , an . Writing the circular
genome in cycle notation as (a1, a2, . . . , an) denotes that gene ai is adjacent on the
genome to gene ai+1, with gene an being adjacent to a1. This approach allowed them
to derive many important properties of the breakpoint graph in terms of permutation
products, and to give a lower bound on the transposition distance. This work was
later extended in Feijão and Meidanis (2013) to include linear chromosomes. Feijão
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and Meidanis (2013) model a genome as a product of disjoint 2-cycles, and present a
formulation of a k-break operation as a permutation. The double cut and join model
then becomes a special case of the k-break operation with k = 2.

The model of the genome as a product of disjoint 2-cycles and the double cut and
join operation as conjugation used by Feijão and Meidanis (2013), is also employed
by us in this paper. The novelty of our work lies in development of this model in
a completely algebraic framework, without making use of the existing theory. This
allowsus to present newproofs for existing results, sometimes leading to a considerable
simplification of arguments such as in the result related to counting sorting scenarios
(Theorem 7.3).

This paper is organized as follows. In Sect. 2 we introduce the double cut and join
model, following the exposition of Bergeron et al. (2006). Section 3 explains how
we can encode a genome as a product of 2-cycles, essentially extending the concept
of “adjacencies” and “telomeres” from the established theory. In Sect. 4 we give the
major construction of this paper, namely the definition of the DCJ operator as a group
action on the genome space.While the standard definition has several cases depending
on the arrangement of the genome, this action requires just two cases. In order to find
a distance formula in this model (Sect. 6), we first need to establish some results about
products of involutions, covered in Sect. 5. The main result, establishing distance in
this model, is given in the following theorem:

Main Theorem (Theorem 6.11) Let G1 and G2 be genomes on n regions with cor-
responding genomic permutations π1 and π2. The DCJ distance between G1 and G2
is given by

dDC J (π1, π2) = 1

2
(�t (π2π1) + nc)

where nc is the number of cycles in the product π2π1 which contain two fixed points
of π1 or π2, and �t is the transposition length.

Finally, in Sect. 7, we derive a formula for the number of optimal sorting scenarios
between two genomes. That is, the number of minimal length paths in the Cayley
graph of the group generated by the DCJ operators. As our work utilizes many well-
known results about permutations, we have collected them in Appendix A for ease of
reference. These results are stated without proofs. A complete treatment may be found
in an abstract algebra text such as (Herstein 2006; Fraleigh 2003).

2 The double cut and join model

In this section we follow the notation of Bergeron et al. (2006). For a more complete
introduction to the model and results, see that paper as well as Yancopoulos et al.
(2005).

2.1 The genome graph

Before presenting the double cut and join operator, we first explain howmultichromo-
somal genomes are modeled. In this model, a gene is essentially an oriented section of
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1t

(1)

1h, 3t

(2, 5)

3h, 2t

(6, 3)

2h, 4t

(4, 7)

4h

(8)

5h, 6t

(10, 11)

5t, 6h

(9, 12)

Fig. 1 The genome graph of a genome with one linear chromosome containing genes numbered 1, 2, 3
and 4, and one circular chromosome containing genes numbered 5 and 6. The vertex set of the graph is
{{1t }, {1h , 3t }, {3h , 2t }, {2h , 4t }, {4h}, {5h , 6t }, {6h , 5t }}. Edges are drawnbetween extremities of the same
gene.Themapφ (Definition3.2)maps the set of extremities {1t , 1h , 2t , 2h , . . . , 6h} into {1, 2, 3, 4, . . . , 12},
with φ(1t ) = 1, φ(1h) = 2 and so on. 1t and 4h are telomeres, hence 1 and 8 are fixed points of
the permutation π (Definition 3.3). 1h is connected to 3t which is captured by the 2-cycle (2, 5) in the
permutation encoding. The other 2-cycles can be similarly interpreted. The above genome is thus encoded
as the permutation (2, 5)(3, 6)(4, 7)(10, 11)(9, 12)

the DNA and its two ends are called its extremities. This of course differs from the bio-
logical meaning of the word gene and is closer to what are referred to as “conserved
blocks” in the rearrangement literature [for example see Hannenhalli and Pevzner
(1995), Lin and Tang (2006)]. However, for convenience we will use the words gene
and region interchangeably. The extremities of the gene a are denoted at and ah where
the subscripts stand for tail and head respectively.

To represent a genome, considered as an arrangement of oriented genes, it is suf-
ficient to note which extremities are adjacent on the genome. An extremity that is
not adjacent to any other is the end point of a linear section of the genome and is
called a telomere. An (unordered) pair of extremities that are adjacent on the genome
is referred to as an adjacency. For instance, the adjacency {at , bh} indicates that the
tail of gene a is adjacent to the head of gene b on the genome. Note that an extremity
can be adjacent to at most one other extremity.

Thus, in this model a genome is represented by a partition of the set of extremeties
of the genes into subsets of cardinality 1 (telomeres) or 2 (adjacencies). Equivalently,
the genome can be viewed as a graph whose vertex set is the set of all adjacencies and
telomeres and whose edges are drawn between the extremities of the same gene. Thus
every vertex of a genome graph has degree one or two. Figure 1 illustrates a genome
graph.

2.2 The double cut and join operator

The double cut and join (DCJ) operator acts on a pair of vertices of a genome graph
in one of the following ways:

1. {p, q}, {r, s} may be changed to {p, r}, {q, s} or {p, s}, {q, r},
2. {p, q}, {r} may be changed to {p, r}, {q} or {q, r}, {p},
3. {p, q} may be changed to {p}, {q} or {p}, {q} changed to {p, q}.

Depending on the vertices that it acts on, the double cut and join operator can
simulate the inversion, excision and translocation of a section of the genome as well
as fusion and fission of chromosomes. Figure 2 presents some examples.
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(a)
1t 1h, 3t 3h, 2t 2h

−→
1t 1h, 3h 3t, 2t 2h

(b)
1t 1h, 3t 3h, 2t 2h

−→
1h 1t, 3t 3h, 2t 2h

(c)
1t 1h, 3t 3h, 2t 2h 4h 4t

−→
1t 1h, 3t 3h, 2t 2h, 4h 4t

Fig. 2 a {1h , 3t }, {3h , 2t } is changed to {1h , 3h}, {3t , 2t } leading to an inversion.b {1t }, {1h , 3t } is changed
to {1h}, {1t , 3t }, another inversion. c {2h}, {4h} is changed to {2h , 4h}, a fusion

2.3 The double cut and join distance

The DCJ distance between genomes G1 and G2 is the minimal number of DCJ oper-
ations required to change one genome into the other.

Bergeron et al. (2006)make use of a graph construct called the “adjacency graph” to
determine the DCJ distance between two genomes. An adjacency graph AG(G1,G2)

can be drawn for any pair of genomes G1 and G2 defined on the same set of n genes.
The vertex set of the graph is the set of all adjacencies and telomeres inG1 andG2. For
an adjacency (or telomere) u ∈ G1 and adjacency (or telomere) v ∈ G2, there is an
edge in AG(G1,G2) between u and v for each gene extremity they have in common.

The vertices of the adjacency graph then have degree either one (at a telomere) or
two (at an adjacency), so the graph consists of a set of cycles and a set of paths. Let c
be the number of cycles and p be the number of paths of odd length in AG(G1,G2).
Bergeron et al. (2006) established that the DCJ distance between two genomes can be
given in terms of these adjacency graph statistics as follows:

dDC J (G1,G2) = n − (c + p/2).

3 Genomes as permutations

We now present our reformulation of the double cut and join model. We first formalize
the notion of a genome on n regions. Let {h, t} be the extremities of a gene where h
and t denote the head and tail respectively. Let n be the set {1, 2, . . . , n} enumerating
the n regions.

Definition 3.1 (Extremities) The Cartesian product E = n × {h, t} is the set of all
extremities of n regions.

To conform to the notation used earlier in this paper and in previous literature, we
will use ih and it to denote the extremities (i, h) and (i, t) giving the head and tail of
gene i respectively.

We define a map that assigns numeric labels to the elements of E .
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Definition 3.2 (Assignment map) Let φ : E → 2n be defined as follows:

φ(it ) = 2i − 1,

φ(ih) = 2i.

Definition 3.3 (Genome) A genome on n regions is a permutation π on the set E such
that

π(i) = j ⇐⇒ π( j) = i.

The above definition implies that a genomic permutation is a product of disjoint
2-cycles. The restriction in the definition of a genome captures the notion of pairing
of gene extremities on a genomic strand. Therefore a 2-cycle in this formulation is an
adjacency, and similarly, fixed points of a permutation are telomeres. It is important to
note that at this point we use the permutation π as a static description of the genome,
not as an operation, so that the 2-cycles can be considered as synonyms for unordered
pairs. Furthermore, this constructionwith 2-cycles representing adjacenciesmeans that
the identity permutation will only arise in the trivial case in which all chromosomes
in the genome contain just a single region.

As mentioned in Sect. 2, the vertex set of the genome graph consists of the adja-
cencies and telomeres. For every gene i , an edge is drawn between the adjacency
containing ih and it . In writing the genome as a permutation, the 2-cycles and the
fixed points are the adjacencies and the telomeres. The assignment map φ tells us the
correspondence between the gene extremities and the set 2n. Hence the assignment
map φ and the genomic permutation π contain all the information that is needed to
construct the genome.

Bafna and Pevzner (1993) introduced the notion of a breakpoint graph for an
unsigned permutation. To extend this concept to signed permutations, they transform
a signed permutation π on n elements to an unsigned permutation π ′ on 2n elements.
This is done by replacing a positive integer i in π by 2i − 1 followed by 2i in π ′ and
by replacing a negative integer −i in π by 2i followed by 2i − 1. This transformation
is precisely the labeling map φ. Reverse orientation of a gene on a chromosomemeans
that the tail of the gene is present after the head of the gene. Thus in the permutation
representation, a negative integer −i is replaced by 2i (label of ih) followed by 2i − 1
(label of it ).

We use cycle notation to write permutations. Thus the cycle (i1, i2, i3, . . . , in) in a
permutation α means that α(i1) = i2, α(i2) = i3 etc. and α(in) = i1 (see Appendix
A). Figure 1 illustrates an example of permutation encoding of a genome on 6 regions.

A genome on n regions is a permutation of the set 2n satisfying the constraints in
Definition 3.3. Lemma 3.4 gives an expression for the number of permutations in S2n
satisfying this definition.

Lemma 3.4 The number of genomes on n regions is given by

n∑

t=0

(
2n

2t

)
(2n − 2t − 1)!! =

n∑

t=0

(
2n

2t

)
(2t − 1)!!.
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Table 1 The number of
genomes on n regions (also the
number of tableaux on 2n
elements)

#Regions #Genomes

1 2

2 10

3 76

4 764

5 9,496

6 140,152

7 2,390,480

8 46,206,736

9 997,313,824

Proof Let the set of all genomes on n regions be Γn . Each genome is a permutation
of the 2n extremities E , and hence Γn is a subset of the symmetric group S2n . The
cardinality of Γn can be determined as follows.

Each genomic permutation can have an even number of fixed points, since it is a
product of disjoint 2-cycles and 1-cycles acting on a set of even cardinality (2n). This
also follows from the fact that fixed points are telomeres, and a genome must have an
even number of telomeres.

Let the number of fixed points be 2t . The remaining 2n−2t elementsmust be paired
off with each other. Each such pairing of the 2n − 2t elements defines an involution
in the symmetric group S2n−2t that does not have any fixed points. An involution is
an element of order 2 i.e., π is an involution if π2 is the identity permutation.

Thenumber of such involutions is (2n−2t−1)!! (Stanley1999, pp. 15–16)where the
double factorial function is the product of odd numbers i.e. (2k−1)!! = ∏k

i=1(2i−1).
Therefore the cardinality of Γn is given by

|Γn| =
n∑

t=0

(
2n

2t

)
(2n − 2t − 1)!! =

n∑

t=0

(
2n

2t

)
(2t − 1)!!.

��
The number of genomes is already almost a billion for 9 regions. The astute observer

will note that this number is also the number of tableaux on 2n elements, with a
correspondence given by the Robinson–Schensted algorithm [see for instance Fulton
(1997)]. The first nine numbers in the sequence are shown in Table 1.

4 The DCJ operator as an action on a permutation

In this section we define an algebraic version of the DCJ operator acting on the set
Γn of genomes on n regions, and show that it is an involution. Appendix A contains
a summary of some results on symmetric groups that may be useful for reference in
this section and the next.

As explained in the previous section, the genome is modeled as a set of unordered
pairs of gene extremities (adjacencies) and single geneextremities (telomeres). A DCJ
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operation as defined in Bergeron et al. (2006) swaps gene extremities between two
pairs (i.e. adjacencies) or a pair and a singleton, as described in Sect. 2.2.

Hence, the possible scenarios are that the two gene extremities being swapped are:
adjacent to each other on the genome; both involved in different adjacencies; one of
them is a telomere and the other in an adjacency; or both of them are telomeres.When a
DCJ operation acts on a pair of gene extremities that form an adjacency, it splits them,
producing two telomeres, and conversely when it acts on two telomeres, it combines
them into an adjacency. In the two other cases, an extremity is swapped.

Thus, in the permutation representation, the DCJ operation swapping i and j
changes:

(i, k)( j, l) −→ ( j, k)(i, l),

(i, k)( j) −→ ( j, k)(i),

(i, j) −→ (i)( j), and

(i)( j) −→ (i, j).

With this in mind, for i, j ∈ 2n, and i 	= j we define the double cut and join
operator Di j acting on the set of genomes Γn , Di j : Γn → Γn as follows:

Definition 4.1 (Set of fixed points) Let π be a permutation of 2n, then the set of fixed
points of π is defined by

Fπ := {i | i ∈ 2n, π(i) = i}.

Definition 4.2 (Algebraic double cut and join operator) For a permutation π repre-
senting a genome, set

Di j (π) :=
{

(i, j)π if i, j ∈ Fπ or π(i) = j, and

(i, j)π(i, j) otherwise.

Therefore, in algebraic terms, the double cut and join operators as defined above
are conjugations or left actions by 2-cycle involutions. To distinguish this formulation
from the standard, we will call Di j the algebraic double cut and join operator.

The vertex set of the genome graph consists of unordered 2-tuples and singletons
from the set of gene extremities E . The map φ simply relabels elements of the set E
with the labels from the set 2n. Therefore we can consider the vertex set of the genome
graph to consist of unordered 2-tuples and singletons from 2n. A genomic permutation
π is a permutation on the set 2n satisfying the constraint π(i) = j ⇐⇒ π( j) = i .

Let ρ be the map that writes the vertex set of the genome graph G as permutation
π .

ρ({i, j}) = (i, j) and ρ({i}) = (i).

Let D{i, j}(G) be the DCJ operator acting on the extremities i and j of genome G
and let Di j (π) be the operator acting on the permutation π . The remarks motivating
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Fig. 3 Rewriting genome G as
the permutation π , and acting on
π by Di j gives the same result
as acting on G by the DCJ
operator and then rewriting the
result as permutation π ′

G π

G π

D{i,j}

ρ

Dij

ρ

the definition of algebraic DCJ operator informally explain why we can expect the
graph-theoretic and the algebraic operators to be equivalent. That is, the diagram in
Fig. 3 commutes.

We now prove this statement formally.

Lemma 4.3 For all genomes G,

ρ
(D{i, j}(G)

) = Di j (ρ(G)) .

Proof We prove this by considering all the four cases in the definition of the operator
D (Sect. 2.2).

Case 1. i and j are in separate 2-tuples {i, k}, { j, l} ∈ G.

ρ
(D{i, j}(G)

) = ρ (D({i, k}, { j, l})) = ρ ({ j, k}, {i, l}) = ( j, k)(i, l).

Di j (ρ({i, k}, { j, l})) = Di j ((i, k)( j, l)) = ( j, k)(i, l).

Case 2. Exactly one of the i, j is in a 2-tuple {i, k}, { j} ∈ G.

ρ
(D{i, j}(G)

) = ρ (D({i, k}, { j})) = ρ({( j, k)}, {i}) = ( j, k)(i).

Di j (ρ({i, k}, { j})) = Di j ((i, k)( j)) = ( j, k)(i).

Case 3. None of the i, j is in a 2-tuple. {i}, { j} ∈ G.

ρ
(D{i, j}(G)

) = ρ
(D{i, j}({i}, { j})

) = ρ({i, j}) = (i, j).

Di j (ρ({i}, { j})) = Di j ((i)( j)) = (i, j).

Case 4. i, j are in the same 2-tuple in G {i, j} ∈ G

ρ
(D{i, j}(G)

) = ρ
(D{i, j}({i, j})

) = ρ({i}, { j}) = (i)( j).

Di j (ρ({i, j})) = Di j ((i, j)) = (i)( j).

Thus in all cases, ρ
(D{i, j}(G)

) = Di j (ρ(G)). ��
The following lemma shows that the algebraic DCJ operator is an involution.

Lemma 4.4 D2
i j (π) = π for all π ∈ Γn and i, j ∈ 2n.

Proof For any permutation π ∈ Γn , if i, j are not both telomeres and do not form an
adjacency of π , then the same holds in Di j (π) = (i, j)π(i, j). Similarly if i and j
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are both telomeres in π then they form an adjacency in Di j (π), and if they are in an
adjacency in π , they will both be telomeres in Di j (π). Thus acting by Di j on Di j (π)

will cause the same condition in the definition of Di j to be invoked which was invoked
when Di j acted on π .

The operation in each case is an involution, hence D2
i j (π) = π for all π ∈ Γn . ��

At this point, we make the following note about the notation employed in the
remainder of this paper. Permutations are functions where the operand is written on
the right. So for example, π(i) is the permutation π acting on i . In line with this,
permutation multiplication is done from right to left.

A 2-cycle is written as (i, j). We will not in general write cycles of length 1, except
for emphasis.

5 Products of involutions

In this section we prove some results about products of involutions. We make use of
these results in Sect. 6 to determine the DCJ distance between genomic permutations
π1 and π2.

Lemma 5.1 Let α and β be involutions acting on the set 2n = {1, 2, . . . , 2n}. If
Fα = Fβ = ∅, then

1. For any i ∈ 2n, i and α(i) are in different cycles of βα. Similarly i and β(i) are
in different cycles of βα.

2. βα has an even number of cycles of length k for any k ∈ N.

Proof (1) The cycle in βα containing 1 is of the form

(
1, βα(1), βαβα(1), . . . , (βα)k(1)

)
,

where k is the smallest positive integer such that (βα)k+1(1) = 1, therefore the length
of this cycle is k + 1. We claim that α(1) /∈ {1, βα(1), . . . , (βα)k(1)}.

Suppose that α(1) = (βα)r (1) for some r . If r is even then

α(1) = (βα)r (1)

= (βα)(r/2)−1βα(βα)r/2(1).

By multiplying on the left both sides by (αβ)(r/2)−1, (the inverse of (βα)(r/2)−1), we
get

(αβ)(r/2)−1α(1) = βα(βα)r/2(1),

and multiplying by β yields

β(αβ)(r/2)−1α(1) = α(βα)r/2(1)

(βα)r/2(1) = α
(
(βα)r/2(1)

)
.
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Algebraic double cut and join 1159

In otherwords, (βα)r/2(1) ∈ Fα , contradicting the assumption that Fα = ∅. Similarly,
if r is odd, we find that α(1) = (βα)r (1) implies that (βα)(r+1)/2(1) is a fixed point
of β, another contradiction.

Thus α(1) /∈ {1, βα(1), . . . , (βα)k(1)}.
(2) Write the cycle in βα containing α(1) as (α(1), β(1), βαβ(1), . . . , (βα)sβ(1)),
where s is the smallest positive integer such that (βα)s+1β(1) = α(1). Then multi-
plying both sides of the equation by β(αβ)s+1 (the inverse of (βα)s+1β) we obtain

1 = β(αβ)s+1α(1)

= (βα)s+2(1).

That is, (βα)s+2(1) = 1. But (βα)k+1 = 1 and minimality of k and s imply
s = k − 1. Thus, the length of the cycle containing α(1) is k + 1, which is the same
as the length of the cycle containing 1. Since the same argument holds for any i ∈ 2n
there will be an even number of cycles of any given length in βα. ��

Lemma 5.2 Let α and β be permutations on the set 2n such that α and β are involu-
tions. Then a cycle in βα contains at most 2 points from Fα ∪ Fβ .

Proof If Fα ∪ Fβ = ∅, then any cycle on βα contains 0 elements of Fα ∪ Fβ and the
statement is vacuously true.

Suppose then that Fα ∪ Fβ 	= ∅. Suppose 1 ∈ Fα; that is, α(1) = 1. If 1 ∈ Fβ , a
similar argument would apply.

The cycle containing 1 in βα is of the form

(
1, βα(1), βαβα(1), . . . , (βα)k(1)

)

where k is the smallest positive integer for which (βα)k+1(1) = 1. As in the proof of
Lemma 5.1, this cycle contains α(1) = 1 = (βα)k+1(1). We have argued in the proof
of Lemma 5.1 that if k + 1 is odd then

(βα)k+1(1) = 1 = α(1) �⇒ (βα)(k+2)/2(1) ∈ Fβ

and if k + 1 is even then

(βα)k+1(1) = 1 = α(1) �⇒ (βα)(k+1)/2(1) ∈ Fα.

That is, if 1 ∈ Fα then the cycle containing 1 contains at least one other point from
Fα ∪ Fβ , namely (βα)(k+2)/2(1) if the length of the cycle is odd, and (βα)(k+1)/2(1)
if it is even.

Suppose that this cycle contains another point i ∈ Fα ∪ Fβ. We claim that i must
be one of the points identified above. Since i is in the cycle, for some positive integer
s, i = (βα)s(1). Let s be the smallest such integer.
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If i ∈ Fα; that is, α((βα)s(1)) = (βα)s(1). We then have

1 = (αβ)sα(βα)s(1) since ((βα)s)−1 = (αβ)s

= α(βα)2s(1).

But α(1) = 1, so acting on both sides by α we have that (βα)2s(1) = 1. If i ∈ Fβ , so
that β((βα)s(1)) = (βα)s(1), we obtain (βα)2s−1(1) = 1.

But since k + 1 is the minimal integer for which (βα)k+1(1) = 1, and s is also
minimal, it follows 2s = k + 1 or 2s − 1 = k + 1 according to whether i ∈ Fα or
i ∈ Fβ . That is,

s =
{

(k + 1)/2 if i ∈ Fα,

(k + 2)/2 if i ∈ Fβ.

Hence i is one of the points identified.
The two points are the same if

k + 1 = k + 1

2
or k + 1 = k + 2

2
.

The first equation does not have any nonnegative solution. The only nonnegative
integer satisfying the second condition is k = 0. If k is 0 i.e., (βα)(1) = 1 then since
1 ∈ Fα , it follows that β(1) = 1 and hence 1 is a fixed point of β as well. In this case,
the cycle of αβ containing 1 will be of length 1 and hence contains a single point from
Fα ∪ Fβ . Thus, a cycle of βα contains no fixed points if there are no fixed points in β

and α.
A cycle of length 1 contains a point i from Fα ∪ Fβ if i is fixed in both α and β,

that is if i ∈ Fα ∩ Fβ .
If Fα ∩ Fβ = ∅, then a cycle of βα contains exactly two points from Fα ∪ Fβ . ��

Petersen and Tenner (2013) also investigate the nature of the product of involutions and
prove similar results. Their results are stated in terms of the structure of an involution
product graph.

6 Determining the DCJ distance

6.1 Subpermutations and the link to transposition distance

We define a binary relation on 2n which will allow us to separate out the different
components of a pair of genomic permutations, each of which we will then be able to
sort independently of the others.

Definition 6.1 Let π1 and π2 be genomic permutations on n regions. That is, π1 and
π2 are involutions on the set 2n. Define the binary relation ∼ on 2n by setting

i ∼ j ⇐⇒ (π2π1)
k(i) = j or π1(π2π1)

k(i) = j for some k ∈ Z.
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The cycles of π1π2 and π2π1 are the same as sets (they are inverses of each other
in S2n), hence the binary relation ∼ defined for the pair π1, π2 would be the same as
defined for the pair π2, π1. Therefore, without any ambiguity ∼ can be defined for an
unordered pair of genomic permutations.

Lemma 6.2 ∼ is an equivalence relation on 2n.

Proof It is easy to verify that ∼ is reflexive and symmetric. To establish that ∼ is
transitive, note that since i could be related to j through either of the two relations
π1(π2π1)

k(i) = j or (π2π1)
k(i) = j , there are four possible cases to be checked.

For example, suppose that π1(π2π1)
p(i) = j and (π2π1)

q( j) = k. Noting that
(π2π1)

qπ1 = π1(π2π1)
−q , since πi are involutions, we have

k = (π2π1)
qπ1(π2π1)

p(i)

= π1(π2π1)
p−q(i),

and hence i ∼ k. The other cases can be checked similarly. ��
For any i, j ∈ 2n, if i and j are in the same cycle of π2π1 then j = (π2π1)

s(i) for
some s and hence i ∼ j . Also, i ∼ π1(i) and π1(i) is related to all the elements in the
cycle of π2π1 that contains π1(i). Therefore an equivalence class under ∼ will be the
union of the cycles of π1π2 containing i and π1(i).

Observe that i ∼ π1(i) and i ∼ π2(i). Hence the partition of 2n under ∼ will also
partition the 2-cycles of π1 and π2. In what follows we would like to talk about the
sub-permutations of π1 and π2 thus induced. Formally,

Definition 6.3 Let π1 and π2 be genomic permutations, and let C1, C2, . . . , Cr ⊆ 2n
be the equivalence classes under ∼ defined by π1, π2. For 1 ≤ s ≤ r and i = 1, 2, the
sub-permutation π

(s)
i of πi induced by ∼ is defined to be the restriction of πi to Cs ,

that is,

π
(s)
i := πi

∣∣Cs
.

Intuitively, we have collected in a sub-permutation all the 2-cycles that are relevant
for sorting π

(s)
1 into π

(s)
2 .

An example will help illustrate these definitions. Let π1 and π2 be the following
genomic permutations on 4 regions:

π1 = (1, 6)(2, 3)(4, 5)(7, 8), π2 = (1, 2)(3, 4)(5, 6).

The partitions of the set {1, 2, . . . , 8} under ∼ are C1 = {1, 2, 3, 4, 5, 6}, C2 = {7, 8}.
The sub-permutations π

(1)
1 and π

(2)
1 are then π

(1)
1 = (1, 6)(2, 3)(4, 5), π

(2)
1 =

(7, 8). Similarly, the sub-permutations π
(1)
2 and π

(2)
2 are π

(1)
2 = (1, 2)(3, 4)(5, 6),

π
(2)
2 = (7)(8) where the cycles of length 1 are written for clarity.
As remarked earlier, an equivalence class Cs under ∼ contains precisely those

elements of 2n that are contained in the cycle ofπ1π2 containing i andπ1(i). Therefore
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as proved in Lemmas 5.1 and 5.2, the product of the sub-permutations π
(s)
1 and π

(s)
2

is either a single cycle containing one or two points from Fπ1 ∪ Fπ2 or a product of
(exactly) two disjoint cycles.

Suppose the sub-permutations π
(s)
1 and π

(s)
2 are distinct. If either π

(s)
1 and π

(s)
2 are

conjugate in S2n , then they have the same cycle type. Hence either Cs contains no
points from Fπ1 ∪ Fπ2 , or it contains one point each from Fπ1 and Fπ2 . In the first
case, it follows from Lemma 5.1 that Cs contains an even number of points. In the
latter case, the cardinality of Cs is odd.

These observations are summarised in Corollary 6.4.

Corollary 6.4 Let π(s)
1 and π

(s)
2 be distinct sub-permutations induced by an equiva-

lence class Cs such that π
(s)
1 and π

(s)
2 are conjugate in S2n. Let i ∈ Cs . The product

π
(s)
2 π

(s)
1 is given by

π
(s)
2 π

(s)
1 =

{
(i, π2π1(i), . . . , (π2π1)

u(i))
(
π1(i), π2(i), . . . , (π2π1)

u−1π2(i)
)

if Fπ1 ∪ Fπ2 = ∅,
(
i, π2π1(i), . . . (π2π1)

2u(i)
)

if Fπ1 ∪ Fπ2 	= ∅, i ∈ Fπ1 .

The sum of lengths of the cycles in the product is the cardinality of Cs .
Continuing our example above, we see π

(1)
1 π

(1)
2 = (1, 3, 5)(2, 6, 4), π

(2)
1 π

(2)
2 =

(7, 8).
Observe that π

(1)
1 π

(1)
2 is a product of two disjoint cycles. π

(2)
1 π

(2)
2 contains two

points from Fπ2 namely 7 and 8.
If a partition Ct consists of a single point say i then i is a fixed point of both π1 and

π2, hence the DCJ distance between sub-permutations induced by Ct is 0.
We will determine the DCJ distance between π1 and π2 by determining the DCJ

distance between π
(s)
1 and π

(s)
2 for s ∈ {1, 2, . . . , r}.

Definition 6.5 For any permutation π , the transposition length of π denoted by �t (π)

is the minimal number of transpositions needed to express π .

Since the Di j operation involves multiplying a permutation with transpositions, we
are interested in how multiplication by a transposition affects the tranposition length
of a permutation. In fact this effect is easily stated: multiplication by a transposition
changes the transposition length of a permutation by ±1.

That is,

�t ((i, j) π) = �t (π) ± 1,

�t (π(i, j)) = �t (π) ± 1. (1)

This can be observed by noting first that a permutation can be expressed as a product
of either an odd or an even number of transpositions, but not both. That is, the parity
of the number of transpositions needed to write a permutation as a product is unique.

Let the transposition length of a permutation π be r . That is,

π = t1t2 . . . tr ,

where the ti are transpositions.
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Suppose r is odd. Then the parity of (i, j)π is even since (i, j)t1t2 . . . tr is one
expression of the result as a product of transpositions, although it may not be minimal.
The transposition length of (i, j)π is also therefore even, and hence it is either r + 1
or r − 1. A similar argument follows if r is even.

In the remaining part of this section, we will show that the DCJ distance between
π1 and π2 can be determined in terms of the transposition length of the permutation
product π2π1. First of all, note that if π1 = π2 then π2π1 = () where () is the identity
permutation, hence �t (π2π1) = 0.

Wemake the following claim regarding a lower bound on the DCJ distance between
permutations π1 and π2.

Lemma 6.6 Let π1 and π2 be genomic permutations. Then

dDC J (π1, π2) ≥ �t (π1π2)

2
.

Proof A single DCJ operation Di j acts either by conjugation ofπ1 by the transposition
(i, j), or by multiplication of π1 by (i, j).

If Di j (π1) = (i, j)π1, then Di j (π1)π2 = (i, j)π1π2. Hence by Eq. (1)

�t
(
Di j (π1)π2

) = �t (π1π2) ± 1.

If Di j (π1) = (i, j)π1(i, j) then

Di j (π1)π2 = (i, j)(π1(i), π1( j))π1π2.

By applying Eq. 1 twice,

�t
(
Di j (π1)π2

) = �t (π1π2) or �t (π1π2) ± 2.

Thus a single DCJ operation on π1 can reduce the transposition length of π1π2 by at
most 2. Since �t (π2π1) = 0 when π1 = π2, the DCJ distance between π1 and π2 must
be at least �t (π1π2)/2. ��

6.2 DCJ distance between conjugate sub-permutations

Let the sub-permutations π
(s)
1 and π

(s)
2 be conjugate in S2n . That is, there exists a

g ∈ S2n such that

gπ(s)
1 g−1 = π

(s)
2 .

By writing g as a product of transpositions, we obtain a sequence of DCJ operations
that transforms π

(s)
1 to π

(s)
2 , each of which is conjugation by a transposition. Let

dcDC J

(
π

(s)
1 , π

(s)
2

)
be the minimal number of DCJ conjugation operations needed to

transform π
(s)
1 into π

(s)
2 . Then clearly
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dDC J

(
π

(s)
1 , π

(s)
2

)
≤ dcDC J

(
π

(s)
1 , π

(s)
2

)
.

Theorem 6.7 Let π(s)
1 and π

(s)
2 be sub-permutations of genomic permutations π1 and

π2 on n regions such that π
(s)
1 and π

(s)
2 are conjugate in S2n. Then the conjugation

distance dcDC J

(
π

(s)
1 , π

(s)
2

)
is half the transposition length of π(s)

2 π
(s)
1 , that is,

dcDC J

(
π

(s)
1 , π

(s)
2

)
= 1

2
�t

(
π

(s)
2 π

(s)
1

)
.

Proof We prove the claim by induction on r := dcDC J

(
π

(s)
1 , π

(s)
2

)
.

Suppose first that dcDC J

(
π

(s)
1 , π

(s)
2

)
= 1. Because π

(s)
1 and π

(s)
2 are conjugate,

π
(s)
2 π

(s)
1 is an even permutation, so �t

(
π

(s)
2 π

(s)
1

)
is at least 2. Since r = 1, there

exists a transposition (i, j) ∈ S2n such that (i, j)π(s)
1 (i, j) = π

(s)
2 . Hence,

π
(s)
2 π

(s)
1 = (i, j)π(s)

1 (i, j)π(s)
1 = (i, j)(π(s)

1 (i), π(s)
1 ( j)).

Therefore the transposition length of π
(s)
2 π

(s)
1 is 2.

Assume that the hypothesis is true for all r ∈ N, with r < u. That is, for r < u,

r = dcDC J

(
π

(s)
1 , π

(s)
2

)
= 1

2
�t

(
π

(s)
2 π

(s)
1

)
.

Next suppose that dcDC J

(
π

(s)
1 , π

(s)
2

)
= u. That is,

wuwu−1 . . . w1(π
(s)
1 )w1 . . . wu−1wu = π

(s)
2 ,

for some transpositions wi ∈ S2n with u minimal. Let π ′
1 = wu−1 . . . w1(π

(s)
1 )w1 . . .

wu−1.
Since the conjugation distance between π ′

1 and π1 is u−1 < u, from the induction

hypothesis we know that �t
(
π ′
1π

(s)
1

)
= 2(u − 1). Write

π ′
1π

(s)
1 = t1t2 . . . t2(u−1)

for transpositions ti ∈ S2n . Sincewuπ
′
1wu = π

(s)
2 , we have dcDC J

(
π ′
1, π

(s)
2

)
= 1, and

hence �t

(
π

(s)
2 π ′

1

)
= 2. That is, π(s)

2 π ′
1 = v1v

′
2 where v1 and v2 are transpositions in

S2n .
Then

π
(s)
2 π

(s)
1 = π

(s)
2 π ′

1π
′
1π

(s)
1 = v1v2t1t2 . . . t2(u−1).
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This is a product of a permutation of transposition length 2(u−1) with two transposi-

tions. The transposition length of the resultwill be �t

(
π

(s)
2 π

(s)
1

)
∈ {2u−4, 2u−2, 2u}.

However, if �t

(
π

(s)
2 π

(s)
1

)
< 2u then dcDC J (π

(s)
1 , π

(s)
2 ) < u, contrary to our assump-

tion. Hence �t (π
(s)
2 π

(s)
1 ) = 2u. That is,

dcDC J

(
π

(s)
1 , π

(s)
2

)
= u �⇒ �t

(
π

(s)
2 π

(s)
1

)
= 2u.

��
Putting together the lower bound for DCJ distance from Lemma 6.6 with the upper

bound from Theorem 6.7, we have the following.

Corollary 6.8 If π
(s)
1 and π

(s)
2 are conjugate sub-permutations of the genomic per-

mutations π1 and π2 on n regions, then

dDC J

(
π

(s)
1 , π

(s)
2

)
=

�t

(
π

(s)
2 π

(s)
1

)

2
.

6.3 Constructing a sorting element for conjugate sub-permutations

When the sub-permutations π
(s)
1 and π

(s)
2 induced by Cs are conjugate, an element of

minimal length sortingπ
(s)
1 intoπ

(s)
2 can easily be constructed as follows.Corollary 6.4

gives the structure of the product π(s)
2 π

(s)
1 .

If π
(s)
1 and π

(s)
2 have no fixed points then

π
(s)
2 π

(s)
1 =

(
1, π2π1(1), (π2π1)

2(1), . . . , (π2π1)
u(1)

)

×
(
π1(1), π2(1), π2π1π2(1), . . . , (π2π1)

u−1π2(1)
)

. (2)

If π
(s)
1 and π

(s)
2 contain fixed points then π

(s)
2 π

(s)
1 is a single cycle

π
(s)
2 π

(s)
1 =

(
1, π2π1(1), (π2π1)

2(1), . . . , (π2π1)
2u(1)

)
. (3)

Let g = (
1, π2π1(1), (π2π1)

2(1) . . . , (π2π1)
u(1)

)
. We claim that

gπ(s)
1 g−1 = π

(s)
2 .

If i is moved by g, then g(i) = π2π1(i). For any 2-cycle (i, π1(i)) in π
(s)
1 , either

i or π1(i) is moved by g. If π
(s)
2 π

(s)
1 is a product of two cycles then as proved in

Lemma 5.2, i and π1(i) are in different cycles of π
(s)
2 π

(s)
1 . Since g is precisely one

of the two cycles of π
(s)
2 π

(s)
1 , it moves exactly one of i and π1(i).

123



1166 S. Bhatia et al.

On the other hand, if π(s)
2 π

(s)
1 is a single cycle as in Eq. (3), then suppose π1(1) = 1

(if instead π2(1) = 1, a similar argument would apply). Then,

1 =
(
π

(s)
2 π

(s)
1

)2u+1
(1)

= π
(s)
2

(
π

(s)
1 π

(s)
2

)2u
(1).

This implies that
(
π

(s)
1 π

(s)
2

)2u
(1) = π

(s)
2 (1). Now suppose i =

(
π

(s)
2 π

(s)
1

)b
(1) for

some b then π
(s)
1 (i) =

(
π

(s)
2 π

(s)
1

)a
(i) for some a, since i and π

(s)
1 (i) are in the same

cycle. Also,

π
(s)
1 (i) = π

(s)
1

(
π

(s)
2 π

(s)
1

)b
(1)

=
(
π

(s)
1 π

(s)
2

)b
(1)

=
(
π

(s)
1 π

(s)
2

)−2u+b (
π

(s)
1 π

(s)
2

)2u
(1)

=
(
π

(s)
1 π

(s)
2

)−2u+b
π

(s)
2 (1) =

(
π

(s)
1 π

(s)
2

)−2u+b−1
(1)

=
(
π

(s)
2 π

(s)
1

)2u−b+1
(1).

If i is moved by g, that is if i is in the cycle (1, π2π1(1), . . . , (π2π1)
u(1)), then

b ≤ u which means that a = 2u−b+1 > u and π
(s)
1 (i) is not in this cycle and hence

not moved by g.
Ifπ(s)

1 (i) ismovedby g, that is ifπ(s)
1 (i) is in the cycle (1, π2π1(1), . . . , (π2π1)

u(1)),
then a = 2u − b + 1 ≤ u which means that u + 1 ≤ b and i is not in this cycle and
hence not moved by g.

Thus we have established that whether the product π
(s)
2 π

(s)
1 is given by Eq. (2) or

Eq. (3), for any i ∈ Cs , g moves either i or π
(s)
1 (i).

So if i is moved by g, then g(i) = π2π1(i), and since π1(i) is then not moved by g,
g(π1(i)) = π1(i). Consider the product gπ

(s)
1 g−1. For any 2-cycle (i, π1(i)) in π

(s)
1

suppose i is moved by g. We have

g (i, π1(i)) g
−1 = (g(i), g (π1(i))) = (π2 (π1(i)) , π1(i))

which is the 2-cycle in π
(s)
2 containing π1(i). Thus

gπ(s)
1 g−1 = π

(s)
2 .

Since the transposition length of g is u (that is, we require u transpositions to express
g as a product), and conjugation by a 2-cycle (i, j) is one Di j operation, we require u

DCJ operations to sort π(s)
1 into π

(s)
2 . This is exactly the DCJ distance between them.

Hence g gives an optimal sorting element that is, gπ(s)
1 g−1 = π

(s)
2 .
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As there is nothing special about the choice of 1 in this argument, the cycle

(
π1(1), π2(1), π2π1π2(1), . . . , (π2π1)

u−1π2(1)
)

is also an optimal sorting element.
The above construction might be better understood through an example. Let π1 and

π2 be the following genomic permutations on 6 regions:

π1 = (1, 6)(2, 3)(4, 5), π2 = (1, 2)(3, 4)(5, 6).

Since π1 and π2 have the same cycle structure, we know that they are conjugate in
S2n . Consider the product π1π2.

π1π2 = (1, 6)(2, 3)(4, 5)(1, 2)(3, 4)(5, 6) = (1, 3, 5)(2, 6, 4).

Let g = (1, 3, 5). Then g−1 = (1, 5, 3).

gπ2g
−1 = (1, 5, 3)(1, 2)(3, 4)(5, 6)(1, 3, 5) = (1, 6)(2, 3)(4, 5) = π1.

The above discussion is summarised in Lemma 6.9.

Lemma 6.9 Let π
(s)
1 , π

(s)
2 and u be as in Corollary 6.4. An element g such that

�t (g) = dDC J (π
(s)
1 , π

(s)
2 ) that sorts π

(s)
1 into π

(s)
2 can be constructed from the product

π
(s)
2 π

(s)
1 as

g =
(
1, π2π1(1), (π2π1)

2(1), . . . , (π2π1)
u(1)

)
.

A similar construction has been given in Feijão and Meidanis (2013), where they
construct the sorting element by establishing a correspondence between the connected
components of adjacency graph and the permutation product.

6.4 DCJ distance between non-conjugate sub-permutations

We will now consider the case where π
(s)
1 and π

(s)
2 are not conjugate in S2n .

Theorem 6.10 Let π(s)
1 and π

(s)
2 be non-conjugate sub-permutations of the genomic

permutations π1 and π2 on n regions. Then

dDC J

(
π

(s)
1 , π

(s)
2

)
= 1

2

(
�t (π

(s)
2 π

(s)
1 ) + 1

)
.

Proof We have remarked earlier that for any i in the equivalence class Cs , Cs contains
only the elements contained in the cycles of π1π2 containing i and π1(i). Hence as
proved in Lemma 5.2 if the induced sub-permutations π

(s)
2 π

(s)
1 are not identical, their

product contains exactly two fixed points. Since π
(s)
1 and π

(s)
2 are not conjugate, both

the fixed points belong to the same sub-permutation.

123



1168 S. Bhatia et al.

Suppose the fixed points are i1 and i2 and that they belong to π
(s)
1 . Recall that if

i, j are both fixed in π then Di j (π) = (i, j)π , and hence

Di1i2

(
π

(s)
1

)
= (i1, i2)π

(s)
1 .

While π
(s)
1 and π

(s)
2 are both products of 2-cycles, the number of 2-cycles in π

(s)
1 is

one less than the number of 2-cycles of π
(s)
2 , since it has two fixed points. Therefore

Di1i2(π
(s)
1 ) is conjugate to π

(s)
2 . Similarly, if the two fixed points belong to π2 then

Di1i2(π
(s)
2 ) is conjugate to π

(s)
1 . As the DCJ distance is symmetric we can assume

without loss of generality that the fixed points belong to π
(s)
1 .

Let π ′ = Di1i2(π
(s)
1 ). From Theorem 6.7 we have that

dDC J

(
π ′, π(s)

2

)
= 1

2
�t

(
π

(s)
2 π ′) = 1

2
�t

(
π ′π(s)

2

)
= 1

2
�t

(
(i1, i2)π

(s)
1 π

(s)
2

)
.

Since i1 and i2 are in the same cycle of π
(s)
1 π

(s)
2 , multiplication by (i1, i2) will split

this cycle into two cycles, reducing the transposition length of the product by 1. Hence

dDC J

(
π ′, π(s)

2

)
= 1

2
�t

(
(i1, i2)π

(s)
1 π

(s)
2

)
= 1

2

(
�t

(
π

(s)
1 π

(s)
2

)
− 1

)
.

The DCJ distance between π
(s)
1 and π ′ is 1. Thus the triangle inequality gives

dDC J

(
π

(s)
1 , π

(s)
2

)
≤ dDC J

(
π

(s)
1 , π ′) + dDC J

(
π ′, π(s)

2

)

= 1

2

(
�t

(
π

(s)
1 π

(s)
2

)
− 1

)
+ 1

= 1

2

(
�t

(
π

(s)
1 π

(s)
2

)
+ 1

)
.

At the same time we have a lower bound on the distance (Lemma 6.6), so that

1

2
�t

(
π

(s)
1 π

(s)
2

)
≤ dDC J

(
π

(s)
1 , π

(s)
2

)
≤ 1

2

(
�t

(
π

(s)
1 π

(s)
2

)
+ 1

)
.

Since the DCJ distance is an integer (the number of DCJ operations), and the transpo-
sition length of π

(s)
1 π

(s)
2 is odd, we have

dDC J

(
π

(s)
1 , π

(s)
2

)
= 1

2

(
�t

(
π

(s)
1 π

(s)
2

)
+ 1

)

as required. ��
From Theorems 6.7 and 6.10, it is clear that the sub-permutations induced by the

partitions C1, C2, . . . , Cr under ∼ can be sorted independently. Therefore
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dDC J (π1, π2) ≤
∑

s

dDC J

(
π

(s)
1 , π

(s)
2

)
.

We claim that a sorting sequence that involves a DCJ operation Di j , where i, j are
in different partitions Cs , cannot be shorter than a sequence that sorts each partition
independently.

Let Cr and Cs be distinct equivalence classes of 2n under ∼. Let �t

(
π

(r)
1 π

(r)
2

)
be

l1 and �t

(
π

(s)
1 π

(s)
2

)
be l2. Then

1

2
(l1) ≤ dDC J

(
π

(r)
1 , π

(r)
2

)
≤ 1

2
(l1 + 1).

Similarly

1

2
(l2) ≤ dDC J

(
π

(s)
1 , π

(s)
2

)
≤ 1

2
(l2 + 1).

Combining these, we have

1

2
(l1 + l2) ≤ dDC J (Cr ) + dDC J (Cs) ≤ 1

2
(l1 + l2 + 2).

The action of Di j on π1 may combine the two partitions Cr and Cs into a single
partition Ct or it may change each of the partitions Cr and Cs . In the latter case, by an
abuse of notation we use Ct to denote the union of the partitions changed by the action
of Di j . We wish to determine the transposition length of π

(t)
1 π

(t)
2 in order to find the

DCJ distance.
The action of Di j on π1 may be left multiplication by (i, j) or conjugation by (i, j).

If it acts by left multiplicaton, so that Di j (π1) = (i, j)π1, then since i and j are in

different partitions and hence in different cycles of π
(r)
1 π

(r)
2 π

(s)
1 π

(s)
2 , multiplication

by (i, j) will combine the two cycles that contain i and j . The transposition length of
the product will therefore increase by 1. That is, in this case,

�t

(
π

(t)
1 π

(t)
2

)
= �t

(
π

(r)
1 π

(r)
2 π

(s)
1 π

(s)
2

)
+ 1.

On the other hand, if Di j acts by conjugation then Di j (π1) = (i, j)π1(i, j), and
we have that

(i, j)π1(i, j) = (i, j) (π1(i), π1( j)) π1.

The images π1(i) and π1( j) are in different cycles of π
(r)
1 π

(r)
2 π

(s)
1 π

(s)
2 since i and j

are in different partitions. In x = (π1(i), π1( j)) π1π2, the cycles containing π1(i) and
π1( j)will combine into a single cycle, increasing the length of the product by 1. Then
the cycle of x containing π1(i) and π1( j) will contain either both, one, or neither of i
and j .
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Accordingly, multiplication by (i, j) will either split this cycle into two cycles
or combine two different cycles into one cycle. Thus the transposition length may
increase or decrease by 1 (from the previous step). Hence

�t

(
π

(t)
1 π

(t)
2

)
= �t

(
π

(r)
1 π

(r)
2 π

(s)
1 π

(s)
2

)
,

or

�t

(
π

(t)
1 π

(t)
2

)
= �t

(
π

(r)
1 π

(r)
2 π

(s)
1 π

(s)
2

)
+ 2.

In both cases l1 + l2 ≤ �t (Ct ) and hence

1

2
(l1 + l2) ≤ dDC J

(
π

(t)
1 , π

(t)
2

)
.

Since one DCJ operation was needed to change the partition Cr and Cs into Ct , and
the DCJ distance of the sub-permutations induced by Ct is at least 1

2 (l1 + l2), any
sorting scenario for Cr and Cs that steps through Ct is of length at least 1

2 (l1 + l2) + 1.
At the same time, the sum of the distances of the partitions Cr and Cs is bounded above
by:

dCr + dCs ≤ 1

2
(l1 + l2) + 1.

Therefore we conclude that no sequence of DCJ operations sorting π1 into π2 can
be shorter than a sequence that sorts the sub-permutations independently.

Theorem 6.11 Let π1 and π2 be genomic permutations on n regions. The DCJ dis-
tance between π1 and π2 is given by

dDC J (π1, π2) = 1

2
(�t (π2π1) + nc)

where nc is the number of cycles in the product π2π1 which contain two fixed points
of Fπ1 or Fπ2 .

7 Counting the optimal sorting scenarios

To sort a permutation πa into πb means to transform πa into πb through a sequence
of allowed operations (in this case the DCJ operation). A sorting scenario is defined
as follows.

Definition 7.1 A sorting scenario of length k that sorts genomic permutation πa into
genomic permutation πb is a sequence of genomic permutations

{(πa =)π0, π1, π2, . . . , πk−1, πk(= πb)},
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such that each element of the sequence is obtained from the previous element through
a single DCJ operation.

That is, a sorting scenario is the sequence of permutations we step through as πa

is sorted into πb through DCJ operations. If the DCJ distance is d, then an optimal
sorting scenario (scenario of minimal length) is a sequence of length d + 1. Two
optimal sorting scenarios are equal if they are equal as sequences i.e., corresponding
terms are equal.

The total number of optimal sorting scenarios between a pair of genomes is an
interesting and important question. In constructing a phylogenetic history, theminimal
distance with respect to some mutational operation is used. However such a minimal
path is seldomunique.Hence asMiklós andDarling (2009) andSiepel (2002) point out,
it would be more appropriate to account for and average over all possible evolutionary
paths to draw meaningful statistical inferences.

Braga and Stoye (2010) extended their earlier work (Braga and Stoye 2009) to give
a closed formula for the number of optimal DCJ sorting scenarios for certain instances
of the problem. Ouangraoua and Bergeron (2010) also present similar results for the
number of optimal sorting scenarios and establish connections between the number
of sorting scenarios and other combinatorial objects such as parking functions.

Considering genomes as permutations and the DCJ as an action on a permutation
allows us to count the number of optimal sorting scenarios for a subset of genomes
in a straightforward manner. The subset of genomes we consider are those that are
conjugate in S2n . Our result is equivalent to the results obtained by the previous papers.

Let π be a genomic permutation on n regions and let i, j ∈ 2n. The restriction of π
to the cycles containing i and j is (i, π(i)) ( j, π( j)). As Di j acting on π only affects
the cycles containing i and j ,

Di j (π) = (i, j) (i, π(i)) ( j, π( j)) (i, j)

= (i, π( j)) ( j, π(i))

= (π(i), π( j)) (i, π(i)) ( j, π( j)) (π(i), π( j))

= Dπ(i)π( j)(π).

If the restriction of π to the cycles containing i and j is (i) ( j, π( j)), then

Di j (π) = (i, j) (i) ( j, π( j)) (i, j) = ( j) (i, π( j)) .

In this case there is no Dkl such that Dkl(π) = Di j (π). As these are the two cases
where the algebraic DCJ operator acts via conjugation (see Definition 4.2), we have
the following lemma.

Lemma 7.2 Let π be a genomic permutation on n regions. Let Di j and Dkl act on π

via conjugation. If

Di j (π) = Dkl (π) ,

then either (i, j) = (k, l) or (i, j) and (k, l) are disjoint transpositions such that
(k, l) = (π(i), π( j)).

123



1172 S. Bhatia et al.

Based on the characterization of the DCJ operators that act in the same way on a
genomic permutation, we can easily enumerate the sorting scenarios.

Theorem 7.3 Let πa and πb be genomic permutations on n regions such that πa and
πb are conjugate in S2n. If the DCJ distance dDC J (πa, πb) = d then the number of
optimal DCJ sorting scenarios sorting πa into πb is (d + 1)d−1.

Proof As we have seen in the proof of Theorem 6.7, if the DCJ distance is d then
we can construct an element g ∈ S2n such that g is a cycle of length d + 1 (and
consequently of transposition length d) and

gπag
−1 = πb.

Lemma 6.9 gives the construction of a cycle g such that gπag−1 = πb. Let g be as in
the statement of Lemma6.9 i.e., g = (

1, πbπa(1), (πbπa)
2 (1), . . . , (πbπa)

d (1)
)
. The

number of ways to represent a cycle of length n as the product of n − 1 transpositions
(i.e., as a minimal product) is nn−2 (Dénes 1959). Hence g can be written as a product
of transpositions in (d + 1)d−1 ways. It remains to show that

1. Each expression of g as a minimal product of transpositions corresponds to a
distinct sorting scenario, and

2. There can be no other sorting scenarios. That is, if there is h ∈ S2n such that
�t (h) = �t (g) and hπah−1, then any sorting scenario produced by h is identical to
some sorting scenario produced by g.

Let S(g) be the set of all expressions for g as a minimal product of transpositions.
For example, if g = (1, 3, 5) then S(g) = {(1, 5)(1, 3), (1, 3)(3, 5), (3, 5)(1, 5)}.
1. Claim: each expression of g as a minimal product of transpositions corresponds to
a distinct sorting scenario.

From the construction of g preceding Lemma 6.9, we know that for any i ∈ 2n,
g moves either i or πa(i) but not both. Suppose g moves i . Then since g fixes πa(i),
in a minimal factorization of g as a product of transpositions, no transposition moves
πa(i).

To observe this, note that the number of trees on d labeled vertices is (d + 1)d−1

(given by Cayley’s formula). Thus there is a bijection between the S(g) and the set of
trees on d vertices. A minimal factorization of g into transpositions can be associated
with a tree by considering a transposition (i, j) to correspond to the edge between
vertices i and j . If a point πa(i) fixed by g is moved by some transposition in a
minimal factorization of g, then the factorization must contain a cycle that would
move πa(i) back to itself. But such a cycle would correspond to a loop in the graph
corresponding to the factorization, which cannot be as the graph is a tree. Hence in
a minimal factorization of g as a product of transpositions, no transposition moves
πa(i).

Suppose udud−1 . . . u1 and wdwd−1 . . . w1 are distinct elements of S(g) that pro-
duce the same sorting scenarios. We will derive a contradiction.

Let k be the lowest index such that uk 	= wk . Let wk−1 . . . w1 = uk−1 . . . u1 = g′
and let g′πag′−1 = πk−1.
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Letuk = (i, j). ByLemma7.2,uk andwk are disjoint andwk = (πk−1(i), πk−1( j)).
Now, uk is a transposition in the minimal expression for g. Since uk moves i , i is

in the support of g, and πa(i) is not in the support of g. The support of g′ is a subset
of the support of g, hence πa(i) is not in the support of g′.

If uk is disjoint from g′, then

πk−1(i) = g′πag
′−1(i) = πa(i).

Hence πk−1(i) is not in the support of g.
If, on the other hand, uk is not disjoint from g′, then let i be in the support of g′.
Clearly, g′−1(i) is in the support of g′ (it gets mapped to i by g′) and hence in the

support of g. Therefore, πa
(
(g′)−1(i)

)
is not in the support of g (and hence not in the

support of g′) since for any i ∈ 2n, g moves either i or πa(i). Hence

πk−1(i) = g′πag
′−1(i) = πa

(
g′−1(i)

)
.

That is, πk−1(i) is not in the support of g.
Thus, in both cases (whether uk is disjoint from g′ or not),wk moves an element that

is not in the support of g. This contradicts the assertion thatwdwd−1 . . . w1 = g. Thus
either wdwd−1 . . . w1 /∈ S(g) or the sorting scenarios produced by distinct elements
are distinct. Each expression of g as a minimal product of transpositions therefore
gives a unique sorting scenario and the number of sorting scenarios is at least the
cardinality of S(g).

2. Claim: there are no additional sorting scenarios

Let h ∈ S2n such that �t (h) = �t (g) = d and hπah−1 = πb. Let h =
wdwd−1 . . . w1 be a factorization of h into transpositions. We claim that h produces
the same sorting scenario as some element in S(g). This will establish that the number
of sorting scenarios is equal to the cardinality of S(g). To prove this assertion, we first
prove that there is some element ud . . . u1 ∈ S(g) such that u1πau1 = w1πaw1.

Suppose that this is not the case. That is, no element in S(g) produces a sorting
scenario that has w1πaw1 as the second term (the first term in all sorting scenarios is
πa). Consider the element

h′ = udud−1 . . . u1w1.

Let w1πaw1 = π ′
a . Then

h′π ′
ah

′−1 = (udud−1 . . . u1w1) (w1πaw1) (w1u1 . . . wd−1wd)

= (udud−1 . . . u1) (πa) (u1 . . . wd−1wd)

= πb.

At the same time, the DCJ distance between π ′
a and πb is d − 1, since (wd . . . w2)π

′
a

(w2 . . . wd) = πb. Hence udud−1 . . . u1w1 can be written as a product of d − 1
transpositions say vd−1 . . . v1. Then vd−1 . . . v1w1 = g, and is an expression of length
d equal to g that is not is S(g) becausewe have assumed that there is no element in S(g)
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such that u1πau1 = w1πaw1. This is a contradiction since S(g) by definition contains
all factorizations of g of length d. Thus there is some element in ud . . . u1 ∈ S(g)
such that w1πaw1 = u1πau1.

Let S1(g) = {ud . . . u1 ∈ S(g) | u1πau1 = w1πaw1}.
By a similar argument we can prove that there exists some element in S1(g) such

that u2(u1πau1)u2 = w2(u1πau1)w2. In general, let

Sk(g) = {ud . . . u1 ∈ Sk−1(g) | uk(uk−1 . . . u1πau1 . . . uk−1)uk
= wk(wk−1 . . . w1πaw1 . . . wk−1)wk}.

Suppose that there does not exist any element in Sk(g) such that

uk+1(uk . . . u1πau1 . . . uk)uk+1 = wk+1(uk . . . u1πau1 . . . uk).

Let ud . . . u1 ∈ Sk(g) and let uk . . . u1πau1 . . . uk = π ′
a . Then,

(ud . . . uk+1wk+1)
(
wk+1π

′
awk+1

)
(wk+1uk+1 . . . ud) = πb.

The DCJ distance between
(
wk+1π

′
awk+1

)
and πb is d − k. Therefore

ud . . . uk+1wk+1 can be re-written as a product of d−k transpositions, say vd−k . . . v1.
Now vd−k . . . v1wk+1uk . . . u1 is an expression of length d equal to g and prefix
uk . . . u1 that is not in Sk(g). This contradicts the definition of Sk(g).

By repeating this argument, we can conclude that there exists some element in S(g)
that gives the same sorting scenario as h.

Thus the number of sorting scenarios is equal to |S(g)| = (d + 1)d−1. ��

8 Conclusions and future work

The double cut and join operator has been a major step forward for the study of
genome rearrangements, because it is very general, allowing numerous operations on
multi-chromosomal genomes, and in addition has a very simple length formula with
which to calculate genomic distance. In this paper, we have shown how this operator
may be described group-theoretically, and derived a correspondingly simple length
formula independently of prior results. The length formula given in Theorem 6.11
requires only the ability to write each genome as a permutation and to multiply such
permutations. We are also able to provide a simple construction for an optimal sorting
scenario in particular instances of the problem. Translating the model into algebra
allows us to exploit established results in group theory, a field with over a century of
development. The proof of Theorem 7.3 is an example of this, relying as it does
on a combinatorial group theory result from the 1950s. The use of group theory
to model rearrangements provides a natural context in which to study alternative
assumptions about the rearrangement processes. As pointed out in Egri-Nagy et al.
(2014) and Francis (2014), different assumptions about the processes gives rise to
questions about length functions in different groups, or length functions with respect
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to different generating sets. A group-theoretic model may also provide an avenue for
investigating additional operations that are not captured by the DCJ.

Appendix: Some results about symmetric groups

This paper uses some standard results on symmetric groups that we collect here for
ease of reference. More details on these results can be found in many undergraduate
group theory textbooks, for example Fraleigh (2003).

A permutation is a bijection from a set S to itself. S is usually taken to be a set of
natural numbers n = {1, 2, . . . , n}. A permutation can be written by specifying the
value of the map on all the points.

Example

π =
(
1 2 3 4 5 6

3 4 1 6 2 5

)

is a permutation on the set {1, 2, 3, 4, 5, 6} that sends 1 to 3, 2 to 4, etc. The set of all
permutations on the set n forms a group called the symmetric group and denoted by
Sn .

Permutation multiplication

Since permutations are simply bijective functions, permutation multiplication is func-
tion composition. That is, to find the image of i in the product π2π1, we do π2 (π1(i)).

Example Let π1 =
(
1 2 3 4 5

3 4 1 5 2

)
and π2 =

(
1 2 3 4 5

2 1 4 3 5

)
. The image of 1 in the product

π2π1 is π2 (π1(1)) = π2(3) = 4. So for each i , we have to “follow the string” – π1
send i to j , π2 sends j to k, so i gets sent to k by π2π1.

(
1 2 3 4 5

2 1 4 3 5

)(
1 2 3 4 5

3 4 1 5 2

)
=

(
1 2 3 4 5

4 3 2 5 1

)
.

Inverse of a permutation

Informally, a permutation π ∈ Sn scrambles the elements of n. The inverse of π is the
permutation that “undoes” the scrambling. Formallywe define the identity permutation
ι to be the permutation that maps i to i for all i ∈ n.

Definition 8.1 (Inverse) Let π ∈ Sn . Then the inverse of π is the permutation π−1

such that

ππ−1 = ι and ππ−1 = ι.

If π−1 is the inverse of π then π is the inverse of π−1. That is, (π−1)−1 = π . In
general, (π1π2)

−1 = π−1
2 π−1

1 .

123



1176 S. Bhatia et al.

Cycles and cycle decomposition

For a permutation π ∈ Sn , if we repeatedly apply π to any i ∈ n,

i
π→ π(i)

π→ π2(i) . . . ,

we must eventually (say after k steps) reach i again since n is a finite set. If there
is some j ∈ n which does not occur in this sequence, then we can form a similar
sequence for j , and keep doing this until every element of n occurs in some sequence.

Definition 8.2 (Cycle) Let i1, i2, . . . ik be k distinct integers in n. A cycle πc written
as (i1, i2, . . . , ik) is a permutation in Sn defined as

πc(is) :=

⎧
⎪⎨

⎪⎩

is+1 if is ∈ {i1, i2, . . . ik−1}
i1 if is = ik
is otherwise.

A 2-cycle is a cycle of length 2. That is, π = (i, j) means that π(i) = j, π( j) = i
and π(k) = k if k 	= i, j . A cycle of length 2 is also called a transposition.

Two cycles are said to be disjoint if they have no elements in common.

Theorem 8.3 Any permutation π ∈ Sn can be written as a product of disjoint cycles.

Example Let π =
(
1 2 3 4 5 6

3 4 1 6 2 5

)
. π can be written as

π = (1, 3)(2, 4, 6, 5).

This way of writing a permutation is referred to as cycle notation. There is a unique
way of writing a permutation as a product of disjoint cycles, up to the ordering of
the cycles (they commute) and cyclic equivalence of each cycle (e.g. (1, 2, 3) =
(2, 3, 1) = (3, 1, 2)). Since the sizes of the disjoint cycles will always add to n
(including if necessary some 1-cycles), we can define the cycle type as follows.

Definition 8.4 (Cycle type) The cycle type of a permutation π is the partition λ � n
whose components are the sizes of the cycles in the disjoint cycle decomposition of
π .

Example The cycle type of π = (1, 3)(2, 4, 6, 5) is (4, 2) since it has one cycle of
length 2 and one cycle of length 4.

Conjugation

Definition 8.5 Letπ, g ∈ Sn . The conjugate ofπ by g is defined to be the permutation
gπg−1, and we say that π and gπg−1 are conjugate permutations.

Theorem 8.6 Letπ1 andπ2 be permutations on the setn, thenπ1 andπ2 are conjugate
in Sn if and only if they have the same cycle type.
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Permutation as product of transpositions

Theorem 8.7 Any permutation π ∈ Sn can be written as a product of transpositions.

Example The permutation π = (1, 3)(2, 4, 6, 5) can be written as

π = (1, 3)(2, 4, 6, 5) = (1, 3)(2, 5)(2, 6)(2, 4).

While the decomposition of a permutation into a product of disjoint cycles is unique,
the decomposition of a permutation into a product of transpositions is not unique.
However the number of transpositions used must be either always be even, or always
be odd.

Theorem 8.8 A permutation π ∈ Sn can be expressed as a product of either an even
number of transpositions or an odd number of transpositions, but not both.

Definition 8.9 A permutation is said to be even if it can be written as a product of an
even number of transpositions. Otherwise it is said to be an odd permutation.
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