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Abstract How the neutral diversity is affected by selection and adaptation is inves-
tigated in an eco-evolutionary framework. In our model, we study a finite population
in continuous time, where each individual is characterized by a trait under selection
and a completely linked neutral marker. Population dynamics are driven by births and
deaths, mutations at birth, and competition between individuals. Trait values influ-
ence ecological processes (demographic events, competition), and competition gener-
ates selection on trait variation, thus closing the eco-evolutionary feedback loop. The
demographic effects of the trait are also expected to influence the generation andmain-
tenance of neutral variation. We consider a large population limit with rare mutation,
under the assumption that the neutral marker mutates faster than the trait under selec-
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tion. We prove the convergence of the stochastic individual-based process to a new
measure-valued diffusive process with jumps that we call Substitution Fleming–Viot
Process (SFVP).When restricted to the trait space this process is the Trait Substitution
Sequence first introduced by Metz et al. (1996). During the invasion of a favorable
mutation, a genetical bottleneck occurs and the marker associated with this favor-
able mutant is hitchhiked. By rigorously analysing the hitchhiking effect and how
the neutral diversity is restored afterwards, we obtain the condition for a time-scale
separation; under this condition, we show that the marker distribution is approximated
by a Fleming–Viot distribution between two trait substitutions. We discuss the impli-
cations of the SFVP for our understanding of the dynamics of neutral variation under
eco-evolutionary feedbacks and illustrate the main phenomena with simulations. Our
results highlight the joint importance of mutations, ecological parameters, and trait
values in the restoration of neutral diversity after a selective sweep.

Keywords Mutation-selection · Measure-valued individual-based model ·
Neutral diversity · Hitchhiking · Selective sweeps · Adaptive dynamics ·
Limit theorems for multi-scale processes · Substitution Fleming–Viot Process

Mathematics Subject Classification 92D25 · 60J80 · 92D15 · 60J75

1 Introduction

The science of biodiversity currently faces the challenge of understanding how ecolog-
ical processes shape evolutionary change, and reciprocally how evolution affects the
structure and function of ecological systems (Schoener 2011). Such eco-evolutionary
feedbacks determine the dynamics of so-called adaptive traits -quantitative characters
that are heritable yet mutable from parent to offspring (Dieckmann and Law 1996;
Metz et al. 1996). Under the combined assumptions of large population and rare muta-
tion scalings, the time evolution of an adaptive trait can be described as a sequence
of mutant invasions, each being driven by positive selection in the ecological con-
text set by the ‘resident’ value of the adaptive trait (Metz et al. 1992). The resulting
evolutionary model is a jump process called the trait substitution sequence (TSS):
every new mutant trait either goes extinct, or replaces the resident, causing the TSS to
jump from the former resident population equilibrium to a new equilibrium (Metz et
al. 1996; Champagnat 2006; Champagnat et al. 2008). In population genetics, these
jumps are known as selective sweeps (Barton 1998; Stephan et al. 1992). Previous
works support the view that the TSS as a model of long-term phenotypic evolution
is relatively insensitive to the details of the genetic determination of the trait (Lloyd
1977; Christiansen and Loeschcke 1980; Hammerstein 1996; Weissing 1996; Matessi
and Schneider 2009; Eshel et al. 1998).

Whereas eco-evolutionary feedbacks can result in variation of adaptive traits among
populations (and even within populations when evolutionary branching occurs, Geritz
et al. 1998), much of the molecular diversity measured by population geneticists
involve DNA sequences of no known adaptive value, i.e. selectively neutral. A neutral
sequence that is physically linked in the genome to the sequence that codes for the
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Stochastic dynamics of adaptive trait and neutral marker 1213

adaptive trait is called a marker of that trait. A longstanding question in evolutionary
theory is understanding how variation in such molecular markers evolves, and how
patterns of neutral molecular evolution can be used to infer the history of trait mutation
that have driven past adaptation.

When adaptive mutations are rare, adaptation proceeds as a series of selective
sweeps: a trait mutation occurs while the population is monomorphic for the trait,
and increases rapidly in frequency toward fixation. Following on from Kojima and
Schaffer (1967), Smith and Haigh (1974) pointed out that selective sweeps purge
genetic variation at linked sites: a particular marker allele goes to fixation as a conse-
quence of linkage with the selected allele, a phenomenon they dubbed the ‘hitchhiking
effect’. Maynard Smith and Haigh’s deterministic model was revisited in a stochastic
approach by Ohta and Kimura (1975). These seminal studies of hitchhiking focused
on the short-term dynamics of an interaction between two alleles at the locus under
selection and two alleles at the neutral locus. Long-term dynamics were considered
first by Kaplan et al. (1989) who developed a stochastic model for finite populations
to describe the effect of recurrent hitchhiking. In order to describe stationary levels
of nucleotide diversity at the marker locus, they used the infinite site model and a
coalescent approach under the assumption of constant population size and constant
selection coefficients. This has generated an abundant theoretical literature on mod-
eling the impact of selection on neutral polymorphism (Barton 2000; Etheridge et al.
2006; Durrett and Schweinsberg 2004 and references therein). Recent deterministic
models have relaxed the assumption of constant selection either because of the pres-
ence of genetic backgrounds (e.g. assuming a quantitative trait, Chevin and Hospital
2008) or in the case of a parasite, because of the complexity of the demographic events
involved in the life cycle (Schneider and Kim 2010). All previous models assume con-
stant population size and constant selection, or that the population size is independent
of the selective value of the individuals.

In this article, our goal is to relax these key assumptions. Under general ecological
scenarios, eco-evolutionary feedbacks operate: as the adaptive trait evolves, popula-
tion size and selection co-vary. The eco-evolutionary process of adaptive trait and
neutral marker dynamics requires a rigorous mathematical framework, the foundation
of which we establish here. We start with a ‘microscopic’, individual-based model
where individuals have two heritable characteristics: (1) an adaptive trait that influ-
ences their intrinsic demographic rates and ecological interactions, and (2) a genetic
marker that has no demographic or ecological effects, hence, is selectively neutral. This
work focuses entirely on asexual populations and short genomic regions that remain
perfectly linked to the loci under selection, neglecting recombination. The population
is described by ameasure according to which each individual is represented by a Dirac
mass that weights its characters. This leads to study the population eco-evolutionary
dynamics as a measure-valued stochastic process.

The dynamics are driven by competition between individuals, asexual reproduction
without or with mutation, and death. Variation in population size and selection as the
trait evolves are mediated by the demographic effects of change in the trait. These
effects are expected to influence the generation and maintenance of neutral variation.

The effect of mutation on the marker can be continuous or discrete. Our framework
thus encompasses a variety of conventional mutation models such as the two-alleles
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model, the stepwise mutation model, and the continuous state mutation model. Our
distinctive assumption here is that the marker mutation process is much faster than
the trait mutation process but much slower than the ecological time-scale of birth and
death events. This is supported by the fact that most mutations are neutral or nearly
neutral (such as mutations involved in microsatellite variation). Therefore, there are
three time scales in the model: the fast ecological time scale of birth and death events,
the slow time scale of trait mutation, and an intermediate time scale of marker muta-
tion.We study the joint process of trait and marker dynamics on the trait mutation time
scale.

We are interested in limit theorems when the population carrying capacity goes
to infinity. Then, the population size stabilizes in a neighborhood of the ecological
equilibrium and jumps to another equilibrium when a successful trait mutant goes to
fixation in the population. This is the TSS dynamics of the adaptive trait. It does not
depend on the marker and has been mathematically proved by Champagnat (2006).
The novelty in the model and in the proofs comes from the time-scales difference
for the marker and trait mutations. The study of the marker distribution during the
invasion period requires careful consideration of the individual process and of the
different scales involved. In a first period, starting with the single invading mutant,
we prove that the marker distribution remains close to a Dirac mass at the value of
the initial mutant. Until the next jump of the TSS, the marker evolves as a stochastic
distribution-valued process. In the case where the marker mutation effects are contin-
uous and small, this is a Fleming–Viot process whose drift and covariance depend on
the resident adaptive trait. In every cases, for any marker mutation model, the collated
dynamics define a measure-valued diffusive process with jumps that we call Substi-
tution Fleming–Viot Process (SFVP). The convergence of the microscopic process to
the SFVP is shown both in the sense of finite dimensional distributions and in the
sense of convergence of trait-marker-time measures, thus improving previous results
of Champagnat (2006).

From a biological standpoint, we recover the conventional hitchhiking phenom-
enon: when a new mutant trait appears and sweeps through the population to fix-
ation, the marker carried by the mutant individual is hitchhiked, and the marker
distribution undergoes a genetical bottleneck. The mathematical construction of
the SFVP process has new implications of biological relevance. Neutral diver-
sity is restored after each adaptive jump, but as the adaptive trait evolves, popu-
lation size, the mutation rate, genetic drift and demographic fluctuations change,
which causes the rate of neutral polymorphism build-up and the moments of the
marker distribution to change too. This suggests that the nature and structure of
the whole eco-evolutionary feedback loop (i.e. how adaptive traits influence demo-
graphic rates and ecological interactions, and how ecological processes shape selec-
tion pressures on adaptive traits) may be important to explain the extreme dis-
parities in genetic neutral diversity observed among species, even closely related
ones and in the absence of differences in recombination profiles (Cutter and Pay-
seur 2013). In fact, it is well-known that demographic differences due to exter-
nal causes (demographic bottleneck or population expansion due to environmen-
tal changes) can affect neutral diversity of a population and that closely related
species can show very different neutral diversity patterns. Here, we show that inter-
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Stochastic dynamics of adaptive trait and neutral marker 1215

nal causes of demographic variation involved in adaptation can also affect species
differently.

The article is organized as follows. In Sect. 2, we start with the model descrip-
tion. The stochastic individual-based process and its key assumptions are carefully
described and examples are provided. A key parameter is K , an integer that gives the
order of the population size and is used to rescale the mutation rates and kernels. By
letting K go to infinity we study the large population limit of the stochastic process.
The main theorem is enounced and discussed in Sect. 3, where biological implications
are also highlighted. Time scale separations implied by the dependence in K of the
trait and marker mutations lead to homogenization phenomena and then to the SFVP.
Our mathematical analysis provides a precise description of the genetical bottleneck
that occurs at each trait substitution. We show that the marker of the initial mutant
individual dominates in themarker distribution of themutant population until this pop-
ulation reaches a neighborhood of the new ecological equilibrium. Then, we present
two numerical examples based on an ecological model adapted from Dieckmann and
Doebeli (1999). In the first example, marker mutation is described by a continuous
state model that leads to a piecewise Fleming–Viot process (Sect. 3.3) for the marker.
In the second example, marker mutation follows a discrete two-allele model and the
classical Wright–Fisher diffusion (3.5) is recovered. Further generalizations are dis-
cussed. The proof of the main theorem in the adaptive dynamics scaling is in Sect. 4.
After having introduced a semi-martingale decomposition of our stochastic measure-
valued process, we start with recalling and refining the result of Champagnat (2006)
for the convergence of trait-marginals. For this purpose, we introduce theM1-topology
on the Skorokhod space where the TSS lives, using some ideas of Collet et al. (2013).
The second part of the proof focuses on the marker distribution in an invading mutant
population. This gives the result on the genetical bottleneck. Then, between two trait
substitutions, the dynamics of the marker converges to a diffusive measure-valued
process. As a conclusion of the proof, we show the convergence to the SFVP in the
space of trait-marker-time measures.

2 The stochastic model

We consider an asexual population driven by births and deaths where each individual
is characterized by hereditary types: a phenotypic trait under selection and a neutral
marker. The trait and marker spacesX and U are assumed to be compact subsets ofR.
The type of individual i is thus a pair (xi , ui ), xi ∈ X being the trait value and ui ∈ U
its neutral marker. The individual-based microscopic model from which we start is
a stochastic birth and death process with density-dependence whose demographic
parameters are functions of the trait under selection and are independent of the marker.
We assume that the population size scales with an integer parameter K tending to
infinity while individuals are weighted with 1

K . At any time t ≥ 0, we have a finite
number NK

t of individuals, each of them holding trait and marker values in X × U .
Let us denote by ((x1, u1), . . . , (xNK

t
, uNK

t
)) the trait and marker values of these

individuals. The state of the population at time t ≥ 0, rescaled by K , is described by
the point measure
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νK
t = 1

K

NK
t∑

i=1

δ(xi ,ui ), (2.1)

where δ(x,u) is the Dirac measure at (x, u). This measure belongs to the set of finite
point measures on X ×U with mass 1/K . This set is a subset of the setMF (X ×U)

of finite measures onX ×U , which is embedded with the weak convergence topology.
We denote by 〈ν, f 〉 the integral of the measurable function f with respect to the

measure ν and by Supp(ν) the support of ν. Then 〈νK
t , 1〉 = NK

t
K .

For any t ≥ 0, we also introduce the trait marginal of themeasure νK
t onX , denoted

by XK
t and defined by

XK
t = 1

K

NK
t∑

i=1

δxi .

Therefore, the population measure νK
t writes

νK
t (dx, du) = XK

t (dx) πK
t (x, du) (2.2)

where πK
t (x, du) is the marker distribution for a given trait value x defined by

πK
t (x, du) =

∑NK
t

i=1 1xi=xδui
∑NK

t
i=1 1xi=x

. (2.3)

Our purpose is to study the asymptotic behavior of the measure-valued process νK

at large times, when the trait and marker are inherited but mutations occur. The main
interest of our model is that these mutations happen at different time scales for trait
and marker, but both longer than the individuals lifetime scale. The trait mutates much
slower than the marker and drives the evolution time scale. Thus, the limiting behavior
results from the interplay of three time scales: births and deaths, trait mutations and
marker mutations.

We describe the individuals’ life history. The trait has an influence on the ability
of individuals to survive (including competition with other ones) and to reproduce but
the marker is neutral. The demographic parameters are thus functions of the trait only
and are defined on X .

Assumption 2.1 • An individual with trait x and marker u reproduces with birth
rate given by 0 ≤ b(x) ≤ b̄, the function b being continuous.

• Reproduction produces a single offspring which usually inherits the trait and
marker of its ancestor except when a mutation occurs. Mutations on trait and
marker occur independently with probabilities pK and qK respectively. Mutations
are rare and the marker mutates much more often than the trait. We assume that

qK = pK rK , with pK = 1

K 2 , qK (log K )2 →K→∞ 0, rK →K→∞ +∞.

(2.4)
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• When a trait mutation occurs, the new trait of the descendant is x + k ∈ X with k
chosen according to the probability measure m(x, k)dk.

• When a marker mutation occurs, the new marker of the descendant is u + h ∈ U
with h chosen according to the probability measure GK (u, dh).
For any u ∈ U ,GK (u, .) is approximated as follows when K tends to infinity:

lim
K→+∞ sup

u∈U

∣∣∣∣
rK
K

∫

U
(φ(u + h) − φ(u))GK (u, dh) − Aφ(u)

∣∣∣∣ = 0, (2.5)

where (A,D(A)) is the generator of a Feller semigroup and φ ∈ D(A) ⊆
Cb(U ,R), the set of continuous bounded real functions on U .

• An individual with trait x andmarker u dieswith intrinsic death rate 0 ≤ d(x) ≤ d̄,
the function d being continuous. Moreover the individual experiences competition

the effect of which is an additional death rate η(x)C ∗νK
t (x) = η(x)

K

∑NK
t

i=1 C(x −
xi ). The quantity C(x − xi ) describes the competition pressure exerted by an
individual with trait xi on an individual with trait x . We assume that the functions
C and η are continuous and that there exists η > 0 such that

∀x, y ∈ X , η(x) C(x − y) ≥ η > 0. (2.6)

A classical choice of competition function is C ≡ 1 which is called “mean field
case” or “logistic case”. In that case the competition death rate is η(x)NK

t /K .

Remark 2.2 Let us insist on the generality of Assumption (2.5) which allows a larger
set of possible dynamics.

• Equation (2.5) is for example true for U = [u1, u2],GK a centered Gaussian
law (conditioned to U) with variance σK → 0 such that limK σ 2

K
rK
K = σ 2 and

Aφ = σ 2

2 φ′′ for φ ∈ C2 with φ′(u1) = φ′(u2) = 0.
Choosing for example rK = K 3/2, qK = 1/

√
K and σ 2

K = 1/
√
K works. This

choice can be seen as a continuous state generalization of the stepwise mutation
model (Ohta and Kimura 1973).

• If in addition the distribution GK has a non zero mean μK such that rKμK
K →

μ > 0 corresponding to a mutational directional drift, then the operator A will be
defined by Aφ = σ 2

2 φ′′ + μφ′.
• If we relax the compactness of U and assume that U = R, a third example consists
in taking for GK the law of a Pareto variable with index α ∈ (1, 2) divided by
K η/α , for η ∈ (0, 1]. Then it has been proved by Jourdain et al. (2012) that

lim
K

sup
u

∣∣∣∣K
η

∫

R

(φ(u + h) − φ(u))GK (u, dh) − α

2
Dαφ(u)

∣∣∣∣ = 0,

where

Dαφ(u) =
∫

R

(φ(u + h) − φ(u) − hφ′(u)1|h|≤1)
dh

|h|1+α
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1218 S. Billiard et al.

is the fractional Laplacian with index α. Thus if we take rK such that rK
K 1+η con-

verges as K tends to infinity, and choose A = Dα in (2.5), Assumptions (2.4)–(2.5)
will be satisfied as soon as η < 1.

• Another very interesting case is the discrete case when U = {a, A} is a set of two
alleles. The mutation kernel is given by

GK (u, dv) = 1u=a qa δA(dv) + 1u=A qA δa(dv). (2.7)

In this case, (2.5) implies that rK /K has a limit when K → +∞. Let r̄ be this
limit, then

Aφ(u) = r̄
(
1u=a qa

(
φ(A) − φ(a)

) + 1u=A qA
(
φ(a) − φ(A)

))
. (2.8)

We see that the ratio between the two mutation probabilities rK = qK /pK that
allows convergence is highly dependent on the mutation distribution.

Note that since the demographic rates do not depend on the marker, the dynamics
of the population distribution of the trait is independent of the marker distribution. But
the dynamics of the marker distribution cannot be separated from the trait distribution
as we shall see.

The process (νK
t , t ≥ 0) is a càdlàgMF (X×U)-valuedMarkov process. Existence

and uniqueness in law of the process can be adapted fromFournier andMéléard (2004)
andChampagnat et al. (2008) under the assumption thatE(〈νK

0 , 1〉) < +∞.Moreover,
Assumption (2.6) allows to prove as by Champagnat (Champagnat 2006, Lemma 1)
that if for p ≥ 1, supK∈N∗ E(〈νK

0 , 1〉p) < +∞, then

sup
t∈R+,K∈N∗

E
(〈νK

t , 1〉p) < +∞ (2.9)

which will be useful to study the tightness and convergence of the sequence.

3 Convergence to the Substitution Fleming–Viot Process

The adaptive trait mutation time scale is the slowest, equal to 1
KpK

= K by Assump-
tions (2.4). It scales the evolutionary time. So we shall consider the limiting behavior
of (νK

Kt , t ≥ 0). We will see in Sect. 4.2.1 that pK of order 1/K 2 is the only choice
which leads to a non-trivial or non-degenerate marker dynamics.

Before stating our main result, we introduce several important ingredients which
are used to describe the limit of (νK

Kt , t ≥ 0) when K → +∞. We conclude the
section with extensions and simulations.

3.1 Invasion fitness function

The large population behavior of the process (νK
t , t ≥ 0) as K tends to infinity, can

be studied by classical arguments and is given in the appendix. At the ecological
time scale (of order 1), no mutation occurs in the asymptotic K → +∞. If the
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Stochastic dynamics of adaptive trait and neutral marker 1219

initial population has a single adaptive trait x , then, in the limit K → +∞, the trait
distribution remains δx since pK and qK vanish in the limit. The rescaled population
size process (NK

t /K , t ≥ 0) converges to the solution (nt , t ≥ 0) of the ordinary
differential equation

dnt
dt

= (
b(x) − d(x) − η(x)C(0)nt

)
nt (3.1)

which converges when t tends to infinity to the equilibrium

n̂x = b(x) − d(x)

η(x)C(0)
. (3.2)

Conversely, at the adaptive trait-mutation time scale Kt , new mutant traits can
invade. If they replace the previous traits, then the corresponding event is called “fix-
ation”.

The probability of fixation of a mutant trait y in a trait resident population x at
equilibrium depends on the invasion fitness function f (y; x):

f (y; x) = b(y) − d(y) − η(y)C(y − x) n̂x . (3.3)

This fitness function describes the initial growth of the mutant population. It does not
depend on the neutral marker.

By simplicity we work under the assumption of ‘invasion implies fixation’, but this
assumption will be relaxed in Sect. 3.5. When a mutant trait appears, either its line of
descent replaces the resident population or it disappears. As a consequence, two traits
cannot coexist in the long term.

Assumption 3.1 (“Invasion implies fixation”) For all x ∈ X and for almost every
y ∈ X ,

either
b(y) − d(y)

η(y)C(y − x)
<

b(x) − d(x)

η(x)C(0)
,

or
b(y) − d(y)

η(y)C(y − x)
>

b(x) − d(x)

η(x)C(0)
and

b(x) − d(x)

η(x)C(x − y)
<

b(y) − d(y)

η(y)C(0)
.

Remark 3.2 In the case of logistic populations withC ≡ 1, this assumption is satisfied
as soon as x �→ n̂x is strictly monotonous.

3.2 Main theorem

Let us first give the definition of the Fleming–Viot process which will appear in our
setting (see e.g. Dawson andHochberg 1982;Dawson 1993;Donnelly andKurtz 1996;
Etheridge 2000). We recall that the operator A has been introduced in (2.5).

In the sequel, we denote by P(U) and P(X × U) the probability measure spaces
respectively on U and on X × U .
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1220 S. Billiard et al.

Definition 3.3 Let us fix x ∈ X and u ∈ U . The Fleming–Viot process (Fu
t (x, .), t ≥

0) indexed by x , started at time 0 with initial condition δu and associated with the
mutation operator A is the P(U)-valued process whose law is characterized as the
unique solution of the following martingale problem. For any φ ∈ D(A),

Mx
t (φ) = 〈Fu

t (x, .), φ〉 − φ(u) − b(x)
∫ t

0
〈Fu

s (x, .), Aφ〉ds (3.4)

is a continuous square integrable martingale with quadratic variation process

〈Mx (φ)〉t = b(x) + d(x) + η(x)C(0)̂nx
n̂x

∫ t

0

(
〈Fu

s (x, .), φ2〉 − 〈Fu
s (x, .), φ〉2

)
ds

= 2b(x)

n̂x

∫ t

0

(
〈Fu

s (x, .), φ2〉 − 〈Fu
s (x, .), φ〉2

)
ds. (3.5)

Let us now state ourmain theorem that describes the slow–fast dynamics of adaptive
traits and neutral markers at the (trait) evolutionary time scale.

Theorem 3.4 We work under Assumptions 2.1 and 3.1. The initial conditions are
νK
0 (dy, dv) = nK0 δ(x0,u0)(dy, dv) with limK→∞ nK0 = n̂x0 and for any ε > 0,
supK∈N∗ E((nK0 )2+ε) < +∞.

Then, the population process (νK
Kt , t ≥ 0) converges in law to theMF (X × U))-

valued process (Vt (dy, dv), t ≥ 0) defined by

Vt (dy, dv) = n̂Yt δYt (dy) F
Ut
t (Yt , dv), (3.6)

where the process ((Yt ,Ut ), t ≥ 0) onX ×U , started at (x0, u0), jumps at time t from
(x, u) to (x + k, v) with the jump measure

b(x )̂nx
[ f (x + k; x)]+

b(x + k)
Fu
t (x, dv)m(x, k)dk. (3.7)

The convergence holds in the sense of finite dimensional distributions onMF (X ×
U).

In addition, the convergence also holds in the space of trait-marker-time measures,
i.e. the measure νK

Kt (dy, dv)dt on X × U × [0, T ] converges weakly to the measure

n̂Yt δYt (dy) F
Ut
t (Yt , dv)dt for any T > 0. �

Definition 3.5 The limiting measure-valued process (Vt (dy, dv), t ≥ 0) is called
Substitution Fleming–Viot Process. It generalizes the Trait Substitution Sequence
(TSS) introduced by Metz et al. (1996).

Weobserve that theSubstitutionFleming–Viot Process includes the three qualitative
behaviors due to the three different time scales: deterministic equilibrium for the size
of the population (driven by the ecological birth and death events), transitory diffusive
behavior for the marker distribution (driven by marker mutation), jump process for
the trait distribution (driven by adaptive trait mutation).
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Stochastic dynamics of adaptive trait and neutral marker 1221

Remark 3.6 Equations (3.4)–(3.5) have important biological implications regarding
neutral genetic diversity. Once the fixation of a favorable mutation has occurred and
the population is monomorphic for the selected trait, the evolution of the neutral
marker distribution is described by a Fleming–Viot process whose law is given by the
martingale in (3.4). The bracket of the martingale in (3.5) shows that the stochastic
fluctuations with time of the marker distribution are due to randomness in births and
deaths and mutations. The multiplicative factor 2b(x)/̂nx in (3.5) depends on the trait
value x , and on the assumed ecological model which determines the relationships
between x , the death and birth rates and the competition kernel. Notice that 2b(x)/̂nx
corresponds to the quotient of variance (here 2b(x)) divided by effective size Ne (here
n̂x ) that appears in the usual Wright Fisher equation. The quantity n̂x corresponds
to the mass of the population when there is an infinite number of small individuals;
if the size of the population is of order K , it means that there is approximately n̂x K
individuals ofweights 1/K . The right term in (3.4), (i.e. the drift term in amathematical
sense) involves the generator A and is associated with the mutation model as seen in
Assumption (2.5). The generator A describes the speed at which the neutral diversity
is restored. For instance in a continuous state model, if Aφ = σ 2

2 φ′′, we recover the
heat equation whose solutions have a variance in t . In a discrete state model similar
to (2.8), this equation gives the growth of the support.

In short, (3.4)–(3.5) shows that the distribution of the neutral marker depends on
ecological processes and their parameters: every changes in x will result in changes
in the distribution of the neutral marker, through changes in birth, death and muta-
tion rates, in competition and equilibrium population size. This result is biologically
relevant and important since it differs from the assumptions of classical genetic hitch-
hiking models, in which selection and population size remain constant, leading to
the fact that the neutral diversity restoration will not depend on the trait substitution
and its history. In examples below, we will give more detailed results regarding the
distribution of the neutral marker changes.

The proof of Theorem 3.4 is the subject of Sect. 4.
The trait dynamics in the limit of Theorem 3.4 is the Trait Substitution Sequence

obtained by Theorem 1 in Champagnat (2006) whose assumptions are satisfied. Our
main contribution in Theorem 3.4 is to prove that at the adaptive trait mutation time
scale, a homogeneization phenomenon takes place. There is a deterministic limit for
the fastest process (the births and deaths leading to n̂x ), and stochastic limits for the
two slower processes. The limiting process (Vt , t ≥ 0) is a measure-valued process
with jumps (corresponding to trait mutations) and diffusion (corresponding to marker
dynamics). If the population is trait-monomorphic with trait x , the jump measure is

b(x )̂nx

∫

X−{x}
[ f (x + k; x)]+

b(x + k)
m(x, k)dk,

where X − {x} = {y − x, y ∈ X }. When a jump occurs at t , the process jumps from
(x, u) to (x + k, v) where k is chosen in m(x, k)dk and v is chosen at time t in the
marker distribution Fu

t (x, dv).
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1222 S. Billiard et al.

Themarker distribution is the second fastest-evolving component, butmarkermuta-
tions are assumed small (2.5), allowing to recover a non-degenerate Fleming–Viot
superprocess parameterized by the trait of the population but with jumps. Between the
jumps, this superprocess is the pathwise limit of the marker dynamics where traits are
fixed. The jumps are hitchhiking events due to the trait mutations (see in another con-
text Etheridge et al. 2006). There is a bottleneck at each successful invasion-fixation
of mutant traits. Indeed, the individuals present at the fixation time are all descendants
of the successful initial mutant. The trait and marker of the latter alone determine
the state of the new mutant population, hence creating the bottleneck for the whole
population genealogy. This result is biologically intuitive since we assume that the
neutral marker and the trait are completely linked, but the mathematical proof of these
phenomena is the hardest part of the proof of Theorem 3.4, and we will show that our
results still have biological interest. Extending this model to the case of recombination
is a challenging problem for future work (see Smadi 2014 in this direction).

It is also worth to notice that contrarily to other extensions of the TSS (e.g. the TSS
with age-structure of Méléard and Tran 2009 or the Polymorphic Evolution Sequence
for a multi-resource chemostat in Champagnat et al. 2014) that usually jump from
an equilibrium to another, the marker distribution is here described by a stochastic

Fig. 1 Invasion and fixation of a successful trait mutant. In the population of resident trait x and marker
distribution Fu

t (x, dv), a mutant trait x + k appears at time τ1. Let v be the marker of the mutant individ-
ual. As in Champagnat et al. (2008), the fluctuations of the resident population can be neglected in first
approximation and the mutant population evolves as a birth and death process with rates b(x + k) and
d(x + k) + η(x + k)C(k )̂nx , independent of the marker distribution. When the mutant population reaches
a sufficient size ε at time t2, with probability [ f (x + k, x)]+/b(x + k), the ‘invasion implies fixation’
assumption leads to the replacement of the former population in a time tK such that tK / log(K ) → ∞.
This time interval is too short to allow other marker mutant to appear in non-negligible proportion, with
large probability. Thus, when the mutant population has fixed, at time σ1, it is close to n̂x+kδ(x+k,v). Before
the next adaptive trait mutation occurs, the marker mutates a lot, since marker mutations happen on a faster
scale. The dynamics of the marker distribution is then the one of a Fleming–Viot superprocess started at δv
and with statistics depending on x + k
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Stochastic dynamics of adaptive trait and neutral marker 1223

process and not an equilibrium measure. This is due to the fact that the time scales
of the trait and marker mutations are assumed different: in the time scale of marker
mutations, the trait mutations are too rare and not seen.

An illustration of the invasion and fixation phenomena is summed up in Fig. 1.

3.3 An example from Dieckmann and Doebeli (1999)

Let us first illustrate our model by simulations based on an example inspired from
Roughgarden (1979) and Dieckmann and Doebeli (1999). Here X = [−1, 1],U =
[−2, 2] and K = 1,000 in all the simulations. The individual dynamics is characterized
by

• the birth rate b(x) = exp(−x2/2σ 2
b )with σb = 0.9. The probability of mutation of

the trait and marker are respectively pK = 1/K 2 and qK = 1/
√
K . The adaptive

trait mutation kernel m(x, k)dk is a Gaussian law with mean 0 and variance 0.1,
conditioned to [−1, 1]. The marker mutation kernel GK (u, dh) is a Gaussian law
with mean 0 and variance σ 2

K = 1/
√
K , conditioned to [−2, 2].

• symmetric competition for resources, with η(x) = 1 and C(x − y) = exp(−(x −
y)2/2σ 2

C ), σC = 0.8.

Here, the ‘optimal trait’ is x = 0 where the birth rate has its maximum and the
population is governed by local competition. We start with the initial condition: x0 =
−1, u0 = 0.

The simulations (see Fig. 2) illustrate Theorem 3.4. They show the replacement of a
resident population by a mutant population. In Fig. 2a, the dynamics of the support of
themarker distribution is represented. Themutant and resident populations are pictured
together and separately to better observe the extinction of the resident population
(black) and the expansion of the mutant population from one individual (light). The
invasion started around time 3,175 and after time 3,250, the mutant population has
totally replaced the resident one.

In Fig. 2b, the histograms of traits andmarkers at three times during the invasion are
represented simultaneously, to underline the hitchhiking effect of the marker during
the ‘invasion implies fixation’ phase. We can see that the distribution of the marker
during the fixation remains close to a Dirac mass at the marker value of the initial
mutant (red line). This illustrates the bottleneck phenomenon, the existence of which
we prove rigorously [Eq. (4.8) of Proposition 4.5].

Let now focus on the Dieckmann–Doebeli’s example and highlight the biological
implications regarding the eco-evolutionary feedback on the distribution of the neutral
marker. Here, n̂x = b(x) − d(x) and therefore the Fleming–Viot process Fu

t (x, .) is

the solution of the martingale problem (3.4) with Aφ = σ 2

2 φ′′ and with bracket (3.5)

given for all φ ∈ C(U ,R) by 2 b(x)
b(x)−d(x)

∫ t
0

(〈Fu
s (x, .), φ2〉 − 〈Fu

s (x, .), φ〉2)ds.
If the death rate is a constant d(x) = d, then the multiplicative factor in the bracket

(3.5), b(x)/(b(x) − d), decreases when b(x) increases. Heuristically we expect that
the stochastic fluctuations in time of the distribution of the neutral marker decrease
when the trait x approaches the evolutionary stable strategy (ESS, see Maynard Smith
1982) and b(x) increases, since the equilibrium size is greater and the diffusion coeffi-
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Stochastic dynamics of adaptive trait and neutral marker 1225

cient is lower. The drift term is b(x) σ 2

2

∫ t
0 〈Fu

s (x, .), φ′′〉ds and thus the multiplicative
factor b(x) increases when approaching the ESS, contrarily to the multiplicative fac-
tor of the bracket (3.5). In the case d ≡ 0, the Fleming–Viot process has a constant
diffusion coefficient and the bracket (3.5) does not depend on x . The Fleming–Viot
process depends only on the trait x through the drift term. Notice that this is true for
any mutation model satisfying (2.5). This simple result illustrates how the ecological
processes can shape the neutral diversity.

3.4 Corollary: the Wright–Fisher evolutionary process

There exists a version of the SFVP in the case when the marker space U is discrete.
Assume for instance that there exist only two alleles of the marker trait, denoted by
a and A, so that U = {a, A}. In this case, we apply Theorem 3.4 with the mutation
kernel GK defined in (2.7) and rK /K → r̄ > 0 when K → +∞.

Proposition 3.7 We work under Assumptions 2.1 and 3.1 with probabilities qA and
qa to mutate from marker A to marker a and from marker a to marker A. Moreover,
we consider similar initial conditions νK

0 as in Theorem 3.4. Then, the population
process (νK

Kt , t ≥ 0) converges in law to the MF (X × {a, A})-valued process

(̂nYt
(
Wa

t δ(Yt ,a)(dy, du) + (1 − Wa
t ) δ(Yt ,A)(dy, du)

)
, t ≥ 0),

where (Yt , t ≥ 0) is the TSS process that jumps from x to x + k in X with the
jump measure b(x) n̂x

[ f (x+k;x)]+
b(x+k) m(x, k)dk and where (Wa

t , t ≥ 0) is the following
Wright–Fisher jump process that represents the proportion of alleles a in the popula-
tion of trait Yt at time t. Between jumps, it satisfies the usual Wright–Fisher equation
with mutations

dWa
t = r̄ b(Yt )

(
qA(1 − Wa

t ) − qaW
a
t

)
dt +

√
2b(Yt )

n̂Yt
Wa

t
(
1 − Wa

t
)
dBt (3.8)

(Bt , t ≥ 0) being a standard Brownian motion. It jumps with the TSS and at jump
time t, the process (Wa

t , 1−Wa
t ) goes to (1, 0) with probability Wa

t and to (0, 1) with
probability 1 − Wa

t . �

An illustration of this proposition is given in Fig. 3.
This result can be generalized to discrete marker spaces U = {a1, . . . am}, by intro-

ducing the transition probabilities qi j to mutate from ai to a j , i, j ∈ {1, . . . ,m}. An
application is when the marker corresponds to the genetical sequence of n nucleotides
(A, T,G or C for each position). In this case, m = Card U = 4n .

Traditionally in a population genetics framework, the evolution in finite popula-
tions of the diversity at a neutral marker is described as a diffusion process with two
fixed parameters: the population size and the mutation “rate” (e.g. Crow and Kimura
1970). The population size is related to what is called the “genetic drift” and generally
refers to the random sampling of gametes performed for reproduction at the beginning
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1226 S. Billiard et al.

Fig. 3 Evolution of sizes of the subpopulationswithmarkers a and A. The simulation uses individual-based
algorithms. The proportions of marker alleles a and A follow Wright–Fisher diffusions while the size of
the population stabilizes around the equilibrium given by the trait value. A trait mutant appears around time
18,290, invades and fixes into the population. Before the appearance of this mutant trait, fluctuations in the
marker distribution are due to (fast) marker mutation, birth and death stochastic events. At the time when
the mutant trait appears, the A-allele frequency is 85%, giving a high probability for an A-allele hitchhike.
This is the case in the simulation. After fixation time (around time 18,490), the a-allele population is extinct.
It is regenerated by mutations of the marker but get extinct three times before taking up around time 19,600

of each generation, and the higher the population size, the lower the genetic drift.
Under this framework, genetic drift induces stochastic fluctuations in the frequencies
of the alleles A and a and can cause the decrease of neutral genetic diversity when an
allele is randomly lost. On the other hand, mutation introduces continuously alleles
A and a in the population and thus allows the restoration and the maintenance of the
neutral genetic diversity. It is important to note that under the population genetics
framework, mutation rates and population size are fixed and do not depend on the eco-
logical processes and their parameters, neither on the trait value when the population is
monomorphic for the trait under selection. As a consequence, those parameters do not
change as successive selective sweeps occur especially during the adaptation process.
Here we can use Eq. (3.8) and try to compare the classical population genetics results
about the distribution of the neutral genetic diversity and the one in our model.

In an eco-evolutionary framework, (3.8) first shows that mutation rates and popu-
lation size, i.e. the genetic drift, are not fixed and depend on the ecological processes
and on the trait value x . The mutation rates are r̄ b(Yt )qA and r̄ b(Yt )qa in our frame-
work while it is only qA and qa under a population genetics framework (e.g. Crow and
Kimura 1970). The genetic drift, i.e. the equilibrium population size, is given by 1/̂nYt
while it is a constant 1/n in population genetics framework. Second, (3.8) shows that
extra ecological processes affect the distribution of the neutral marker since in the
left-hand side there is the term 2b(Yt ). This term can be interpreted as the effect of
demographic stochasticity, which is not taken into account in population genetics.
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3.5 Extensions to co-existing traits

The work of Champagnat and Méléard (2011) generalizes the TSS to the case of
coexisting trait values, when Assumption 3.1 is relaxed. They define a polymorphic
TSS called polymorphic evolutionary sequence (PES) and denoted by (Xt )t≥0 ∈
D(R+,MF (X )). When a mutant trait y appears in a resident population of trait x0
at time t1, either its descendent line is killed with probability 1 − [ f (y; x0)/b(y)]+,
or it survives. In that case, we can have coexistence of y and x0 when there is a
positive globally stable non-trivial equilibrium (n∗

x0,y, n
∗
y,x0) to the Lotka–Volterra

system defined in (5.4). Therefore the population jumps from Xt1− = n̂x0δx0 to

Xt1 = n∗
x0,yδx0(dx) + n∗

y,x0δy(dx).

For a probability π , a trait measure X and x ∈ X , let us denote by Ft (π, x, X, du)

the Fleming–Viot process started at π , evolving in the trait distribution X and para-
meterized by x .

Let π0 be the initial marker distribution of the monomorphic population of trait x0.
Before the time t1 of appearance of the first mutant, the marker distribution evolves as
(Ft (π0, x0, n̂x0δx0 , du))t≥0. Let πt1 = Ft1(π0, x0, n̂x0δx0 , du) be the marker distrib-
ution at t1 and let V1 be a random variable drawn in the distribution πt1 . After t1 and
before the occurence of the second trait-mutation at t2, the population evolves as

n∗
x0,yδx0(dx)Ft−t1(πt1 , x0, Xt1 , du) + n∗

y,x0δy(dx)Ft−t1(δV1 , y, Xt1 , du).

The processes Ft (πt1, x0, Xt1 , du) and Ft (δV1 , y, Xt1 , du) are independent gener-
alizations of the Fleming–Viot process defined in Definition 3.3 conditionally on
πt1 , Xt1andV1. Indeed their semimartingale decompositions are respectively:

〈Ft (πt1, x0, Xt1 , .), φ〉 = 〈πt1 , φ〉 + b(x0)
∫ t

0
〈Fs(πt1 , x0, Xt1 , .), Aφ〉 ds + M1

t (φ);

〈Ft (δV1 , y, Xt1 , .), φ〉 = φ(V1) + b(y)
∫ t

0
〈Fs(δV1, y, Xt1 , .), Aφ〉 ds + M2

t (φ),

(3.9)

where M1(φ) and M2(φ) are independent square integrable martingales such that

〈M1(φ)〉t = b(x0) + d(x0) + η(x0)C(0)n∗
x0,y + η(x0)C(x0 − y)n∗

y,x0

n∗
x0,y + n∗

y,x0

×
∫ t

0

(
〈Fs(πt1, x0, Xt1 , .), φ

2〉 − 〈Fs(πt1, x0, Xt1 , .), φ〉2
)
ds

= 2b(x0)

n∗
x0,y + n∗

y,x0

∫ t

0

(
〈Fs(πt1 , x0, Xt1 , .), φ

2〉−〈Fs(πt1 , x0, Xt1 , .), φ〉2
)
ds,
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1228 S. Billiard et al.

〈M2(φ)〉t = b(y) + d(y) + η(y)C(y − x0)n∗
x0,y + η(y)C(0)n∗

y,x0

n∗
x0,y + n∗

y,x0

×
∫ t

0

(
〈Fs(δV1, y, Xt1 , .), φ

2〉 − 〈Fs(δV1 , y, Xt1 , .), φ〉2
)
ds

= 2b(y)

n∗
x0,y+n∗

y,x0

∫ t

0

(
〈Fs(δV1 , y, Xt1 , .), φ

2〉−〈Fs(δV1 , y, Xt1 , .), φ〉2
)
ds.

(3.10)

At time t2, when a third trait appears in the population, the system can evolve to three
two or just one coexisting traits, depending on the new trait equilibrium of the Lotka
equations that is reached. For each of the traits, the marker distribution evolves as a
generalization of the Fleming–Viot processes above.

Remark 3.8 The above equations show that, when there is coexistence of two traits
in the population, the markers in the subpopulations defined by the two traits evolve
independently butwith parameters depending on the two co-existing traits. Thus, when
there is a diversification event in the population, the distribution of the neutral diversity
in one of the two subpopulations does not evolve as completely forgetting the other
one, as it is usually assumed. The parameters of the underlying Fleming–Viot process
depend on the complete trait distribution.

We present in Fig. 4 simulations in the case of coexistence, with the same model
and parameters as in Sect. 3.3, except σC = 0.7 and the initial condition: x0 = −0.1.
The simulations (see Fig. 4) show the appearance of a new mutant trait (yellow) in a
population of two coexisting traits (black and blue).

4 Proof of Theorem 3.4

Let us sketch the proof. In this section, we will suppose that Assumptions 2.1, 3.1
are satisfied and the initial conditions are νK

0 (dy, dv) = nK0 δ(x0,u0)(dy, dv) with
limK→∞ nK0 = n̂x0 and supK∈N∗ E((nK0 )3) < +∞.
First, we recall results due to Champagnat et al. (2008) that provide the finite mar-

ginal convergence of the trait process (XK
Kt ; t ≥ 0). We extend these results to obtain

the weak convergence of the measures (XK
Kt (dx)dt; K ≥ 0) in MF (X × [0, T ])

embedded with the weak convergence topology. This corresponds to the convergence
of (XK

Kt ; t ≥ 0) as a trait-marker-time measure, as developed by Kurtz (1992). Sec-
ondly, we include the fast component (the marker) and prove the tightness of the
sequence (νK

Kt (dx, du)dt; K ≥ 0) in MF (X × U × [0, T ]). We then consider a
subsequence, again denoted by (νK

Kt (dx, du)dt, K ≥ 0) with an abuse of notation,
that converges to a limit �(dt, dx, du) ∈ MF ([0, T ] × X × U) that we have to
identify. This derivation is done in several steps. When a successful mutant appears
in the monomorphic population with trait x , the transition period to fixation is to be
considered carefully. It has been proved by Champagnat (2006) that these transitions
are of order log(K ). We prove that during this time interval, the marker distribution
in the mutant subpopulation remains a Dirac mass at the value of the initial mutant.
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This results from the combined effects of small or rare marker mutations, large pop-
ulation and slow take-off of the new mutant population. Then, we show that in a
trait monomorphic population with value x , the marker distribution converges to a
Fleming–Viot superprocess parameterized by x .

4.1 Semimartingale decomposition of νK

Let us introduce some notation to keep forthcoming formula simple. For ν ∈ MF (X×
U) and φ(x, u) ∈ C(X × U ,R), we define the (nonlinear) generators BK and DK (ν)

such that

BKφ(x, u) = (1 − pK )(1 − qK )b(x)φ(x, u)

+pK (1 − qK )b(x)
∫

X
φ(x + k, u)m(x, k)dk

+qK (1 − pK )b(x)
∫

U
φ(x, u + h)GK (u, dh)

+pK qK b(x)
∫

X×U
φ(x + k, u + h)m(x, k)dk GK (u, dh) (4.1)

DK (ν)φ(x, u) = (
d(x) + η(x)C ∗ ν(x)

)
φ(x, u). (4.2)

The process 〈νK
. , φ〉 is a square integrable semi-martingale and we give its charac-

teristics.

Proposition 4.1 For a continuous bounded function φ(x, u) on X × U , the process

MK ,φ
t = 〈νK

t , φ〉 − 〈νK
0 , φ〉 −

∫ t

0
ds

∫

X×U
νK
s (dx, du)

(
BK − DK (XK

s )
)
φ(x, u)

(4.3)

is a square integrable martingale with previsible quadratic variation

〈MK ,φ〉t = 1

K

∫ t

0
ds

∫

X×U
νK
s (dx, du)

(
BK + DK (XK

s )
)
φ2(x, u). (4.4)

Proof The dynamics being given in Sect. 2, the proof can be adapted from Fournier
and Méléard (2004, Lemma 5.2). One main step consists in showing that there exists
a Poisson point measure driving the measure-valued processes νK for all K ∈ N

∗. ��

4.2 Convergence of the trait-marginal in the trait mutation time scale

As previously emphasized, the trait dynamics is described by the measure-valued
process XK which does not depend on themarkers. This process has been fully studied
in Champagnat (2006) and Champagnat et al. (2008). In this section, we recall the
finite marginal convergence result obtained in these papers. We give some additional
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properties concerning the topology involved. This result shows a time scale separation
with successive fixations of successfulmutants, underAssumptions 2.1 and 3.1.Notice
that the time scale assumption is

∀V > 0, log K � 1

KpK
� exp(V K ), as K → ∞, (4.5)

which is realized in our case for pK = 1/K 2.

Theorem 4.2 Under Assumptions 2.1 and 3.1, let us also assume that the initial
population is trait-monomorphic: XK

0 = nK0 δx for x ∈ X and nK0 → n̂x in probability
and supK∈N∗ E((nK0 )3) < +∞.

Then, the sequence (XK
Kt ; t ≥ 0) converges to the pure jumps singleton measure-

valued Markov process (̂nYt δYt ; t ≥ 0) defined as follows: Y0 = x, and the process

Y jumps from x to x + k with jump measure b(x) n̂x
[ f (x+k;x)]+

b(x+k) m(x, k)dk.
The convergence holds in the sense of finite dimensional distributions on MF (X )

equipped with the topology of total variation.

This theorem has been proved by Champagnat (2006) for the logistic case and
generalized by Champagnat et al. (2008).

The trait-marginal process (XK
Kt ; t ∈ [0, T ]) does not converge in D([0, T ],

MF (X )) embedded with the Skorokhod topology. Indeed, the size of jumps is upper-
bounded by 1

K and nevertheless the limiting total mass process has jumps, preventing
trajectorial tightness (at least in the J1-topology). Following the idea of Kurtz (1992)
and as developed in Méléard and Tran (2012) and Gupta et al. (2014), a weaker
topology consists in forgetting the process point of view and considering the measure
XK
Kt (dx)dt in MF ([0, T ] × X ) embedded with the topology of weak convergence.

This convergence strengthens the result of Theorem 4.2 but in a topology weaker than
the Skorohod topology.

To achieve this, as in Collet et al. (2013), we first introduce the M1-topology
on D([0, T ],R+). It is weaker than the usual J1-topology and allows monotonous
processes with jumps tending to 0 to converge to processes with jumps (see Skorohod
1956). For a càdlàg function h on [0, T ], the continuity modulus for the M1-topology
is given by

wδ(h) = sup
0≤t1≤t≤t2≤T ;
0≤t2−t1≤δ

d(h(t), [h(t1), h(t2)]). (4.6)

Note that if the function h is monotone, then wδ(h) = 0.

Proposition 4.3 Let us consider a continuous, monotonous and non-negative function
g. Then, under Assumptions 2.1 and 3.1, the process (RK

t , t ∈ [0, T ]) defined by

RK
t =

∫
g(x)XK

Kt (dx)

converges in law in the sense of the Skorohod M1-topology to the process (Rt , t ∈
[0, T ]) where Rt = n̂Yt g(Yt ).
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Proof Assume that g is non-decreasing. From Theorem 4.2, finite dimensional distri-
butions of (RK

t , t ∈ [0, T ]) converge to those of (̂nYt g(Yt ), t ∈ [0, T ]). By Skorohod
(1956, Theorem 3.2.1), it remains to prove that for all η > 0,

lim
δ→0

lim sup
K→∞

P(wδ(R
K
. ) > η) = 0,

where wδ has been defined in (4.6).
The mutation rate in (RK

t , t ∈ [0, T ]) being bounded, the probability that two
mutations occur within a time less than δ is o(δ). It is therefore enough to study
the case where there is at most one mutation in the time interval [0, δ]. Following
Champagnat (2006), the path of RK can be decomposed into several subpaths, each
of them being closed to a large population deterministic measure-valued function ξ

(see Proposition 5.1 in the Appendix) with a probability tending to 1. Away from
invading mutations and for a trait-monomorphic population with trait x, 〈ξKt , g〉 =
g(x)nKt (x) where n.(x) is the solution of the logistic Eq. (3.1). We can easily check
that t → nt (x) converges monotonously to its stable equilibrium n̂x and then 〈ξKt , g〉
is monotonous and the modulus of continuity tends to 0. Around an invading mutant
y, 〈ξKt , g〉 is close to nKt (x)g(x) + nKt (y)g(y) where (nt (x), nt (y)) is solution of
the Lotka–Volterra system (5.4) with an initial condition close to (̂nx , 0). The mutant
y invades if the fitness function f (y; x) is positive (and f (x; y) is negative). From
Assumption 3.1, an easy study of the Lotka–Volterra system (see for example the
Appendix in Champagnat 2004, Fig. b p.187), shows that either nt (x) and nt (y) are
increasing or ṅt (x) < 0; ṅt (y) > 0. In that case, nt (x)g(x) + nt (y)g(y) is the sum
of two monotonous functions and the modulus of continuity tends also to 0 ��
Corollary 4.4 The sequence of random measures XK

Kt (dx)dt converges in law to
the random measure n̂Yt δYt (dx)dt in MF ([0, T ] × X ) embedded with the weak
convergence topology.

Proof It is enough to prove the convergence in law of
∫
h(t)e−qx XK

Kt (dx)dt to∫
h(t)e−qx n̂Yt δYt (dx)dt for a measurable bounded function h and q ∈ Q. In Skoro-

hod (1956), it is proved that if xK converges to x in D([0, T ],R) embedded with
the M1-topology, then for t outside a denumerable set, xK (t) converges to x(t).
Then it follows by Lebesgue’s Theorem that

∫ T
0 H(t, xK (t))dt converges to∫ T

0 H(t, x(t))dt , as soon as H is bounded and continuous. We apply this result to
the process (

∫
X e−qx XK

Kt (dx), t ≥ 0) and the function

HM (t, y) = h(t)(y ∧ M),

for any M > 0. Estimate (2.9) (with p = 1) allows to conclude. ��

4.2.1 Marker distribution in a new adaptive trait mutant population

In this section, we study the transition of the marker distribution when a new mutant
adaptive trait appears in a monomorphic population with trait x0. We consider this
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phenomenon at the ecological time scale and we prove that the fixation of the mutant
trait creates a genetical bottleneck.

Let K be fixed. Initially we have a trait monomorphic population with trait x0 and a
marker distribution πK (x0, du). Then an individual (x0, v) from this population gives
birth to an individual with mutant trait y and marker v(v has been chosen according
to πK (x0, du)). We consider the process (νK

t ; t ≥ 0) started at

νK
0 (dx, du) = XK

0 (dx)πK
0 (x, du)

= 1

K
δ(y,v)(dx, du) + NK

0 − 1

K
δx0(dx)π

K
0 (x0, du).

Proposition 4.5 Under Assumptions 2.1 and 3.1, let us consider a mutant (y, v)

appearing in a monomorphic population with trait x0 and marker distribution
πK
0 (x0, du). Let us assume that f (y; x0) > 0, where the fitness function has been

defined in (3.3). There exists ε > 0 such that for any sequence (tK ; K ∈ N
∗) with

limK→+∞ tK / log K = +∞ and limK→+∞ tK /K = 0 (for example tK = (log K )2),
we have

lim
K→+∞P

(〈νK
tK ,1y〉 > ε

) = f (y; x0)
b(y)

and lim
K→+∞P

(〈νK
tK ,1y〉 = 0

) = 1− f (y; x0)
b(y)

.

(4.7)
Further, for the marker distribution, we can prove that

lim
K→+∞P

(
πK
tK (y, du) = δv(du)〈νK

tK ,1y〉 > ε
) = f (y; x0)

b(y)
. (4.8)

The Eq. (4.8) tells us that when the mutant trait survives in the resident population
of trait x0, then by the time tK it needs to reach a non-negligible size, its marker
distribution is still a Dirac mass at y. The assumption qK (log K )2 in Assumption 2.1
ensures this. This assumption is not very restrictive as (log K )2 is a very slow growth
rate. Additional comments are given after the proof.

Proof Properties (4.7) have been proved in Champagnat (2006) and Champagnat et al.
(2008) and depend only on the trait distribution. We consider test functions φ(x, u)

of the form 1y(x)g(u) with g ∈ C2(U ,R) such that ‖g‖∞ + ‖g′′‖∞ ≤ 1. Starting
from Proposition 4.1 and using Itô’s formula with jumps, we obtain as soon as the
population with trait y survives,

∫

U
g(u)πK

tK (y, du) =〈νK
tK ,1yg〉

〈νK
tK ,1y〉

= g(v) + MK ,g
tK +qK (1 − pK ) b(y)

∫ tK

0

(
1− 1

K 〈νK
s ,1y〉 + 1

)

×
∫

U
πK
s (y, du)

∫

U
(
g(u + h) − g(u)

)
GK (u, dh) ds (4.9)

where MK ,g is a square integrable martingale with previsible quadratic variation:
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〈MK ,g〉tK = 1

K

∫ tK

0
ds

{
b(y)(1 − qK )(1 − pK )

× 〈νK
s ,1y〉

(〈νK
s ,1y〉 + 1

K

)2

∫

U
(
g(u) − 〈πK

s , g〉)2πK
s (y, du)

+ (
d(y) + η(y)C ∗ νK

s (y)
) 〈νK

s ,1y〉
(〈νK

s ,1y〉 − 1
K

)2

∫

U
(
g(u) − 〈πK

s , g〉)2πK
s (y, du)

+ b(y)qK (1 − pK )
〈νK

s ,1y〉
(〈νK

s ,1y〉 + 1
K

)2

∫

U
πK
s (y, du)

×
∫

U
GK (u, dh)

(
g(u + h) − 〈πK

s , g〉)2
}
. (4.10)

The third term in the right hand side of (4.9) is of order tK /K . Indeed thanks to
(2.4) and (2.5), it is upper bounded by

tK
K

b̄ ‖Ag‖∞.

Equation (4.10) needs more attention. As soon as the mass 〈νK
s ,1y〉 of the mutant

population is of order 1, the variance of MK ,g
tK is in tK /K which tends to zero when

K → +∞. However, since we start from 1 individual, we have to separate the time
interval [0, tK ] into 2 parts. Let us introduce a sequence (sK ) such that sK ≤ tK for
any K and

log K � sK � 1√
qK

.

This is possible thanks to the assumption that qK (log K )2 → 0. Notice that sK can be
equal to tK . Using Assumption 3.1, we can prove as in Champagnat (2006, Lemma
3) that there exists ε0 > 0 such that

lim
K→∞P

(
∀s ∈ [sK , tK ], 〈νK

s ,1y〉 ≥ ε0

)
= f (y; x0)

b(y)
.

It turns immediately out that

E

(
1{∀s∈[sK ,tK ], 〈νK

s ,1y〉>0}
K

∫ tK

sK

b(y) + d(y) + η(y)C ∗ νK
s (y)

〈νK
s ,1y〉∫

U
(
g(u) − 〈πK

s , g〉)2πK
s (y, du)ds

)
≤ C

tK
K

. (4.11)
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Before time sK , the population size with trait y is not large enough and 1
K 〈νK

s ,1y〉
can only be upper bounded by 1. Therefore we have to control the expectation of
the variance of g under πK

s . The expected number of marker mutations at time s
along a lineage is sqK and the variance of such mutation is bounded by ‖g‖2∞ =
sup{g(h)2, h ∈ U}. Then

E

(∫

U
(
g(u) − 〈πK

s , g〉)2πK
s (y, du)

)
≤ s qK ‖g‖2∞, (4.12)

and

E

(
1

K

∫ sK

0

b(y) + d(y) + η(y)C ∗ νK
s (y)

〈νK
s ,1y〉

∫

U
(
g(u) − 〈πK

s , g〉)2πK
s (y, du)ds

)

≤ C
(sK )2rK

K 2 .

The upper bound converges to 0 by the assumption on qK . The third term of (4.10) is
treated similarly. This concludes the proof. ��
Remark 4.6 For qK = 1/

√
K , let us notice that the rate of appearance of mutant

markers in a population of size K is of order KqK = √
K which does not tend to

zero. This means that many mutant markers appear in the population of trait y during
the tK time interval following the first mutant (y, v). However, heuristically, since in
a tree the mass is concentrated around the leaves, the mutants do not appear with the
same probability along the time interval and mutations are mostly observed after the
time sK when the mutant population (y, v) is already large. Moreover, using that the
marker mutation step and/or marker mutation frequency is small we obtain that the
mutant markers remain in negligible proportion between sK and tK .

4.3 Convergence of the marker distribution process in a trait-monomorphic
population

For K ∈ N
∗, we introduce, as in Champagnat (2006), the following sequence of

stopping times τ K
k and θK

k :

τ K
0 = 0, θK

0 = 0

τ K
k+1 = inf{t > τ K

k , Card
(
supp(X̄ K

t )
) = Card

(
supp(X̄ K

t−)
) + 1}

θK
k = inf{t > τ K

k , Card
(
supp(X̄ K

t )
) = 1}.

The times τ K
k ’s are the times of appearance of the successive mutant traits in the

population and the θK
k ’s are the times at which the population returns to monomorphic

state. These times are possibly infinite, if the corresponding sets are empty. It has been
proved in Champagnat (2006) that for tK be such that limK→+∞ tK / log(K ) = +∞
and limK→+∞ tK /K = 0,
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lim
K→+∞P

(
∀k ≥ 0, τ K

k ∧ KT ≤ θK
k ∧ KT ≤ (

τ K
k + tK

) ∧ KT ≤ τ K
k+1 ∧ KT

)
= 1.

(4.13)

Proposition 4.7 Take the process (νK
Kt ; t ∈ [0, T ]) started with the monomorphic

initial condition νK
0 (dx, du) = nK0 δ(x0,u0)(dx, du), where limK→+∞ nK0 = n̂x0 > 0

and supK∈N∗ E((nK0 )3) < +∞.
(i) In the trait-mutation time scale, the time of first mutation converges in distribution
as follows:

lim
K→+∞ τ K

1 /K = τ1, (4.14)

where τ1 is an exponential time with parameter b(x0)̂nx0 .
(ii) Let us consider the processes (πK

K (t∧τ K
1 )

; t ∈ [0, T ]) stopped at the time of first

mutation.When K → +∞, this sequence converges in distribution inD([0, T ],P(U))

to the Fleming–Viot process Fu0(x0, du) (see Definition 3.3) and stopped at the inde-
pendent exponential time τ1.

Proof First of all, the trait and marker mutations are independent. Thus, the stop-
ping time τ K

1 is independent of the marker distribution πK (x0, du). The results of
Champagnat and coauthors Champagnat (2006) and Champagnat et al. (2008) are
unchanged and give (4.14). Moreover, by Champagnat et al. (2008, Lemma 5.4)

lim
K→+∞P

(
sup

s∈[log K ,τ K
1 ]

〈XK
s , 1〉 ≥ n̂x0

2

)
= 1. (4.15)

Let φ ∈ C(U ,R). Since the population is trait-monomorphic with trait x0, then

〈πK
Kt (x0, du), φ(u)〉 = 〈νK

Kt ,φ〉
〈νK

Kt ,1〉 . Thus, from Proposition 4.1 and Itô’s formula, we

get that in the time scale Kt

〈πK
K (t∧τ K

1 )
(x0, .), φ〉 = 〈πK

0 (x0, .), φ〉 + HK ,φ

K (t∧τ K
1 )

+ b(x0)qK (1 − pK )

×
∫ t∧τ K

1

0

(
1 − 1

K 〈νK
Ks, 1〉 + 1

)rK
K

×
∫

U×U
(
φ(u + h) − φ(u)

)
GK (u, dh)KπK

Ks(x0, du)ds (4.16)

where HK ,φ is a square integrable martingale with quadratic variation is

〈HK ,φ〉K (t∧τ K
1 ) =

∫ t∧τ K
1

0
b(x0)(1 − qK )(1 − pK )

〈νK
Ks,1x0〉(〈νK

Ks, 1〉 + 1
K

)2

×
∫

U
πK
Ks(x0, du)

(
φ(u) − 〈πK

Ks(x0, .), φ〉)2

+ (
d(x0) + η(x0)C ∗ XK

Ks(x0)
) 〈νK

Ks,1x0〉(〈νK
Ks, 1〉 − 1

K

)2
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×
∫

U
(
φ(u) − 〈πK

Ks(x0, .), φ〉)2

+ b(x0)qK (1 − pK )
〈νK

Ks,1x0〉(〈νK
Ks, 1〉 + 1

K

)2

×
∫

U
πK
Ks(x0, du)

(
φ(u + h) − 〈πK

Ks(x0, .), φ〉)2 (4.17)

The computation shows that the order of the quadratic variation of πK
t is 1

K . Thus
at time scale Kt , this order will be 1. That justifies Assumption (2.4) for pK which is
the only choice to get a non degenerate diffusive limit.

Let us introduce a process (π̃
K ,x0
t (du), t ≥ 0) coupled with (πK

t (x0, du), t ≥ 0),
on the same probability space and driven by the same Poisson point measures, that
satisfies the following properties. The dynamics of π̃K ,x0

. (du) is given by (4.16)–
(4.17) butwithout the stopping times τ K

1 andwehave that∀t ≥ 0, πK
K (t∧τ K

1 )
(x0, du) =

π̃
K ,x0
K (t∧τ K

1 )
(du). In a nutshell, (π̃K ,x0

t , t ≥ 0) corresponds to the process (πK
t (x0, .), t ≥

0) that is obtained by setting the trait mutation kernel to the Dirac mass at 0.
Thanks to (2.5), (4.15) and using that π̃K ,x0 is a probability-valued process,

(4.16) and (4.17) imply that for any φ ∈ C(U ,R), the distribution sequence of
(〈π̃K ,x0

K . , φ〉; K ∈ N
∗) is uniformly tight in D([0, T ],R). By Roelly’s criterion (1986,

Theorem2.1), this implies the tightness of the sequence of the laws of (π̃K ,x0
K . ; K ∈ N

∗)
in D([0, T ],P(U)).

Let us consider a limiting value (π̄t (du); t ∈ [0, T ]) of the tight sequence and
a subsequence, again denoted by π̃

K ,x0
K . (du), that converges to π̄.(du). By Assump-

tion (4.15) and since individuals have weight 1/K , the limiting laws only charge
C([0, T ],P(U)).

It remains to identify π̄.(du). Let 0 < s < t < T , let k ∈ N and 0 < s1 ≤ · · · sk <

s < t , let φ1, · · · φk be bounded continuous function on P(X × U) and φ ∈ C(U ,R).
We define the following bounded functional on D([0, T ],P(U))

�s,t (Y ) =φ1(Ys1) · · · φk(Ysk )

{
〈Yt , φ〉 − 〈Ys, φ〉 −

∫ t

s
du

∫

U
Yu(du)b(x0)Aφ(u)

}

On the one hand, using (4.16), we obtain that

�s,t (π̃
K ,x0
K . ) = φ1(π̃

K ,x0
Ks1

) · · · φK
k (π̃

K ,x0
Ksk

)
{
HK ,φ
Kt − HK ,φ

Ks + εKKt

}

where

εKKt =
∫ t

0
ds

∫

U
π̃
K ,x0
Ks (du)

[
b(x0)

rK
K

∫

U
(
φ(u + h) − φ(u)

)
GK (u, dh)

]

−
∫ t

0
ds

∫

U
π̃
K ,x0
Ks (du)b(x0)Aφ(u) (4.18)
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tends to 0 in L1 when K → +∞. Thus,

lim
K→+∞E

(
�s,t (π̃

K ,x0
K . )

)
= 0. (4.19)

On the other hand, using (2.9) and the convergence of (π̃
K ,x0
K (.∧τ K

1 )
(du); K ∈ N

∗) to
π̄ ∈ C([0, T ],MF (U)), we get

E
(
�s,t (π̄)

) = lim
K→+∞E

(
�s,t (π̃

K ,x0
K . (du))

)
. (4.20)

This shows that E
(
�s,t (π̄)

) = 0 and hence the process Mx0(φ) defined in (3.4) is a

martingale obtained as the uniform limit in time of HK ,φ
Kt , when K → +∞. Moreover,

the bracket (4.17) converges to

∫ t

0

b(x0) + d(x0) + η(x0)̂nx0
n̂x0

∫

U
π̄(du)

[(
φ(u) − 〈π̄s, φ〉)2

]
ds

=
∫ t

0

2b(x0)

n̂x0

[
〈π̄s, φ

2〉 − 〈π̄ , φ〉2
]
ds. (4.21)

Indeed, the integral in (4.17) can be separated into two integrals, one between 0 and
log K
K ∧ t ∧ τ K

1 and the other between log K
K ∧ t ∧ τ K

1 and t ∧ τ K
1 . The second integral

converges to (4.21), but some caution is needed for the first integral since the ratios
〈νK

Ks,1x0〉/
(〈νK

Ks, 1〉 ± 1
K

)2 are of order K . Using the same arguments as for (4.12),

we can upper bound the integral between 0 and log K
K ∧ t ∧ τ K

1 by

CK
∫ log K/K

0
sqK ds = C

(log K )2

K
qK →K→+∞ 0.

Using Theorem 3.12 p. 432 of Jacod and Shiryaev (1987), that provides the con-
vergence of HK ,φ

K . to the solution of the martingale problem (3.4)–(3.5) with x = x0.

By the independence of π̃K ,x0
K . (du) and τ K

1 , τ1 is independent of π̄.(du) and π̄.∧τ1 =
π
u0
.∧τ1(x0, du). This concludes the proof. ��

4.4 Conclusion

Using Theorem 4.2, Proposition 4.5 and 4.7, we prove the first part of Theorem 3.4,
for the convergence in finite distribution. Let us now consider the convergence in the
space of trait-marker-time measures.

Corollary 4.8 The family (νK
Kt (dx, du) dt, K ∈ N

∗) is uniformly tight in MF (X ×
U × [0, T ]) embedded with the weak convergence topology and converges in distrib-
ution to the measure Vt (dx, du)dt, where V is defined in Theorem 3.4.
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Proof Since the space X × U × [0, T ] is compact, it is sufficient to prove that

sup
K∈N∗

E

(∫ T

0
〈νK

Kt , 1〉dt
)

< +∞

which is a consequence of Fubini’s theorem since

E

(∫ T

0
〈νK

Kt , 1〉dt
)

≤ T sup
K∈N∗,t∈R+

E
(〈νK

t , 1〉).

Estimate (2.9) concludes the proof of tightness.
Let us now consider continuous functions φ ∈ C(X × [0, T ],R) and g ∈ C(U ,R),

where the stopping times τ K
k and θK

k have been introduced in Sect. 4.3. Then

∫ T

0

∫

X×U
φ(x, t)g(u)νK

Kt (dx, du) dt =
∫ T

0
〈πK

Kt (x, .), g〉φ(x, t)XK
Kt (dx)dt

=
∑

k≥0

∫ (τ K
k+1∧T )/K

(θK
k ∧T )/K

〈πK
Kt (x, .), g〉φ(x, t)XK

Kt (dx)dt

+
∫ (θK

k+1∧T )/K

(τ K
k+1∧T )/K

〈πK
Kt (x, .), g〉φ(x, t)XK

Kt (dx)dt. (4.22)

The limit (4.13) implies that the second term of the right hand side of (4.22) converges
to 0. Given XK , the processes (πK

Kt (x, .); t ∈ [θK
k /K , τ K

k+1/K )), for k ≥ 0, in the first
term of the r.h.s. of (4.22) are independent and, by Proposition 4.7, they converge in
distribution in D([0, T ],R) to the Fleming–Viot processes (3.4)–(3.5) with the initial
conditions described by the jumps of the extended TSS (Y,U ). Corollary 4.4 and
dominated convergence theorem allows us to conclude the proof. ��
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5 Appendix: Limit theorems for the trait and marker distributions in the
ecological time scale

If we let K → +∞ without changing the time scale, we obtain:

Proposition 5.1 Assume that the sequence (νK
0 (dx, du); K ∈ N

∗) converges in prob-
ability to the measure ξ0(dx, du) when K → +∞. Then the sequence of processes
(νK

t (dx, du); t ≥ 0)K∈N∗ converges in D(R+,MF (X × U)) to the deterministic
process ξ ∈ C(R+,MF (X × U)) defined for every φ(x, u) ∈ C(X × U ,R) by:
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〈ξt , φ〉 = 〈ξ0, φ〉 +
∫ t

0

∫

X×U
(
b(x) − d(x) − η(x)C ∗ ξs(x)

)
φ(x, u)ξs(dx, du) ds.

(5.1)

Proof The proofs proceed in a classical tightness-uniqueness way (Fournier and
Méléard 2004). ��

Notice that no mutation can be seen at this scale. To see the trait mutations, we have
to consider the process at the mutation scale Kt (Champagnat et al. 2008).

Trait-monomorphic case From Proposition 5.1:

Corollary 5.2 Assume that the initial population is trait-monomorphic νK
0 (dx, du)

= nK0 δx0(dx)π
K
0 (x0, du) where limK→+∞ nK0 = n0 and limK→+∞ πK (x0, du) =

π0(x0, du) in probability. Then the sequence (νK ; K ∈ N
∗) converges, in probability

and uniformly on every compact time interval [0, T ] with T > 0, to (νt (dx, du) =
nt (x)δx0(dx)π0(x0, du); t ≥ 0)where nt (x) is the deterministic solution of the logistic
equation

dnt
dt

= (
b(x) − d(x) − η(x)C(0)nt (x)

)
nt (x) (5.2)

which converges when t tends to infinity to

n̂x = b(x) − d(x)

η(x)C(0)
. (5.3)

Proof For the part of the proof dealing with ξ , we refer to Champagnat et al. (2008).
��

Trait-dimorphic case From Proposition 5.1:

Corollary 5.3 Assume that the initial population is trait-dimorphic

νK
0 (dx, du) = nK0 (x1)δx1(dx)π

K
0 (x1, du) + nK0 (x2)δx2(dx)π

K
0 (x2, du)

where nK0 (x) is the number of individuals with trait x renormalized by K . We assume
that for x ∈ {x1, x2}, limK→+∞ nK0 (x) = n0(x) > 0 and limK→+∞ πK (x, du) =
π0(x, du) in probability. We also assume that (x1, x2) satisfies the Assumption 3.1.

Then the sequence (νK ; K ∈ N
∗) converges, in probability and uniformly on every

compact time interval [0, T ] with T > 0, to

(νt (dx, du) = nt (x1)δx1(dx)π0(x1, du) + nt (x2)δx2(dx)π0(x2, du); t ≥ 0)

where (nt (x1), nt (x2)) solves the system

dnt (x1)

dt
= (

b(x1) − d(x1) − η(x1)(C(0)nt (x1) + C(x1 − x2)nt (x2))
)
nt (x1)

dnt (x2)

dt
= (

b(x2) − d(x2) − η(x2)(C(x2 − x1)nt (x1) + C(0)nt (x2))
)
nt (x2).

(5.4)
whose only stable equilibrium is (0, n̂x2), with n̂x2 defined in (3.2).
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It can be seen that the conditional distributions of the marker, given the trait x1 or
x2 remain constant.

Proof The convergence in large population of (νK ; K ∈ N
∗) is a consequence of

Proposition 5.1. ��
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