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Abstract The United States Endangered Species Act (ESA) was enacted to pro-
tect and restore declining fish, wildlife, and plant populations. The ESA mandates
endangered species protection irrespective of costs. This translates to the restriction
of activities that harm endangered populations. We discuss criticisms of the ESA in
the context of public land management and examine under what circumstance ban-
ning non-conservation activity on multiple use federal lands can be socially optimal.
We develop a bioeconomic model to frame the species management problem under
the ESA and identify scenarios where ESA-imposed regulations emerge as optimal
strategies. Results suggest that banning harmful activities is a preferred strategy when
valued endangered species are in decline or exposed to poor habitat quality. However,
it is not optimal to sustain such a strategy in perpetuity. An optimal plan involves a
switch to land-use practices characteristic of habitat conservation plans.
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1 Introduction

Habitat destruction threatens species existence; species loss is accelerating because of
human population growth, urban sprawl, agricultural development and other profitable
land conversions on public and private lands (Barbier and Schulz 1997; Polasky et al.
2004; Brock et al. 2009). In an effort to reverse this trend, the United States Congress
passed the Endangered Species Act (ESA) in 1973. The ESA establishes a set of
rules for planning government intervention to protect dwindling fish, wildlife, and
plant populations and creates a platform for recovery and conservation. Opponents of
the ESA argue for restructuring the act. They claim that the ESA creates extensive
regulatory burdens that directly conflict with other public and private land-use ventures
(Merrifield 1996; Innes et al. 1998; Shogren et al. 1999; Langpap 2006). Substantial
effort has gone into understanding the conflicts between private property rights and
endangered species policy (Innes et al. 1998; Langpap 2006; Eichner and Pethig 2009;
Lewis et al. 2011; Sorice et al. 2011). We focus instead on ESA regulation and public
land management and specifically address the question, are there conditions that make
ESA-imposed regulations socially optimal on federally managed lands?1

The ESA mandates federal participation in conservation by imposing land-use
restrictions on federal land managing agencies. Under the ESA, wildlife management
officials have two primary tools to support population recovery on existing public
lands, (1) restricting ‘take’, which includes any harvest or incidental killing that may
take place as part of otherwise lawful activities (e.g. ordnance training on military
lands) (DOI 1996), and (2) improving the quality of existing habitat for local endan-
gered populations (FWS 2007). Both of these management modifications are common
on government land (e.g., on military installations, US National Forests, and US Fish
and Wildlife reserves) in the American west, where public lands are administered by
federal agencies such as the Bureau of Land Management (BLM), the U. S. National
Park Service (NPS), and the Department of Defense (DoD), make up approximately
half of the landscape (Skillen 2009). Often, agencies must curtail other socially benefi-
cial activities (e.g. grazing, renewable energy development, mining, military training)
in order to meet conservation goals.

The ESA is explicit about how to navigate tradeoffs when listing a species as threat-
ened or endangered—only evaluation of biological risks faced are considered to the
exclusion of all other factors (Coggins et al. 1993). But the act is unclear about what
information can or should be used when determining delisting criteria and long-term
management for recovered populations; this ultimately delays the recovery process,
as well as the reallocation of scarce resources to other beneficial land-use activities.
Thus a secondary objective of this study is to use the mathematical formulation of
the recovery problem to highlight areas in which the ESA can be improved to support
efficient resource allocation within recovery plans. Economic tradeoffs are inherent
in species recovery under the ESA, but the act does not discuss how agencies should
structure a recovery plan in light of such factors. Economic analysis can help recon-

1 This focus is motivated by interest in plans for the restoration of the endangered Sonoran pronghorn
(Antilocapra americana sonoriensis) population on public lands in Arizona (Hosack et al. 2002; FWS
2002).
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ciliation of biological recovery goals amidst budget constraints and alternate land-use
benefits (Shogren et al. 1999). Brown and Shogren (1998) state that the role of econo-
mists under the ESA is to find the least-cost approach to achieving some biologically
determined recovery criteria. Economic analysis can also be helpful in establishing
post-delisting management strategies since, over the long-run, conservation efforts
will need to coexist with conflicting land-use activities (Rosenzweig 2003; Godfray
2011; Persha et al. 2011).

Economics analyses pertaining to endangered species policy and public land man-
agement have focused on the U.S. Fish and Wildlife Service (FWS) budget allocation
(Langpap and Kerkvliet 2010).We take a mathematical bioeconomic approach to con-
ceptualizing the management issue on public lands and discussing the implications
of the ESA. We develop an optimal management model that couples the biological
growth dynamics of a managed population with the economic incentive properties of
conservation.We tailor the stylizedmodel to threatened and endangered (T&E) species
that (1) exhibit decreasing population growth per capita with reductions in population
density (i.e. Allee effect) and (2) inhabit significantly degraded habitat that must be
maintained over a lengthy management horizon via artificial habitat improvements.
Sonoran pronghorn (Hoffman et al. 2010), Desert Tortoise (Tracy et al. 2005), Sierra
Nevada bighorn sheep (FWS 2007), andNorthern spotted owl (Courchamp et al. 1999;
FWS 2011b) are some examples of T&E species that satisfy these conditions.

The ESA is criticized as an inefficient and costly way to do conservation (Stokstad
2005). Our bioeconomic investigation contributes to the literature by highlighting the
important role that ESA style management can play along the optimal trajectory to
recovery—implying that in some cases ESA style management not only potentially
passes a benefit-cost test but also is socially optimal. However, our results also show
that ESA style prohibition is unlikely to be long-run optimal. Using our results, we
discuss practical post-ESA management plans. These results contribute to the liter-
ature by clarifying the place of the ESA, and its incentive properties, in the suite of
conservation instruments.

2 Material and methods

2.1 A model for habitat quality and population growth

Sonoran pronghorn (Antilocapra americana sonoriensis, hereafter referred to as
pronghorn), an endangered species found exclusively on public land in southern Ari-
zona, provide a motivating example for our analysis. Livestock grazing in the south-
western United States led to significant degradation of pronghorn habitat (Sheridan
2000). Human activities such as hunting and fencing led to further pronghorn declines
(FWS 2002). The US military uses a large part of the current range of pronghorn for
live ordnance training, whichmay also place individual pronghorns in danger. Further-
more, changing climate has brought on frequent, harsher droughts in theSonoran desert
(Hosack et al. 2002). The supplement and amendment to the 1998 final revised prong-
horn recovery plan (FWS 2002) states that improved habitat quality, which includes
establishment and assessment of forage enhancement plots, evaluation of pronghorn
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use and dependence on temporary and permanent water sources, reducing predation
in specific areas of pronghorn habitat, is necessary for pronghorn recovery. Such mea-
sures imply that survival of the pronghorn depends on continued habitat maintenance
through the foreseeable future, as is the case in other federally funded management
programs across the US (FWS 1996, 2005b, 2013).

Ecosystems are not static and humans have highly modified many habitats. We
assume that without continued management intervention and regulation over the cur-
rent horizon, species growth is unsustainable. Large-scale anthropogenic changes to
the biosphere make this condition common for many endangered populations (Bean
and Wilcove 1996; Bean 1998). For instance the areas occupied by Sonoran prong-
horn were grasslands prior to cattle introduction. The grassland has largely shifted into
desert. Roads and fences present other major obstacles for pronghorn.2 Therefore, it
is reasonable to expect that in many cases involving endangered species continued
human intervention is necessary. Continued habitat investment/cost are part of the
opportunity cost of conservation that needs to be accounted for.3

To develop a model of an endangered species such as pronghorn, let x(t) denote
the size of the population at time t . Growth dynamics for the population are governed
by

ẋ = G(h(t), x(t)) − yx (t) (1)

Eq. (1) is a population growth model that captures the effects of habitat quality on
population growth as well as the biological impact of non-conservation activities. h(t)
represents the quality of habitat available to population x(t). yx (t) is the removal rate
of the protected population (hereafter referred to as ‘take’) due to other legal activities
that result in the reduction of the population. Specifically, yx (t) is conceptualized
as removing animals from the population or causing physical harm separate from
habitat destruction. Take may be the result of targeted pressures on the population
(e.g. harvesting, translocation) or the incidental byproduct of other valuable uses of
habitat (e.g. ordnance delivery and live rounds from training flights on military lands).
Habitat destruction is modeled separately [see Eq. (3)].

For some species, population growth per capita decreases with a reduction in pop-
ulation density. For example, pronghorn vigilance against potential predators is more
effective in larger herds, allowing individuals to focus more on foraging (Hoffman
et al. 2010). We incorporate this phenomenon by introducing an Allee effect into the
population growth function, G. The growth curve is convex and negative below the
Allee threshold population, and concave afterwards. Below theAllee threshold, extinc-
tion is certain without intervention (see Fig. 1a). The population growth function is

G (h (t) , x (t)) = r x

(
x

m(h)
− 1

) (
1 − x

n(h)

)
(2)

2 Similar large-scale anthropogenic changes to the biosphere impact other endangered species. These may
include introduction of novel predator and parasites, competitors for nest sites.
3 At a minimum, reserve areas reflect forgone earnings that could have been made developing land. Such
continuing costs should be accounted for in conservation planning.
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Fig. 1 Growth of the target species expressed as a dynamic function of habitat quality (h) with an Allee
effect. a Illustrates growth of the target species when habitat quality is maintained above a critical threshold
(i.e. h > hcri t ). The growth curve is negative when species fall below the Allee threshold (m(h)), and
positive (but bounded) when species exceed the Allee threshold but remain under the carrying capacity (i.e.
G < 0 when x < m(h),G > 0 when m(h) < x < n(h)), and attains a maximum at xMSY . b Illustrates
‘growth’ of the target species when habitat quality falls below a critical threshold (i.e. h < hcri t ). The
target population is unable to persist due to lack of resources

where r is the positive intrinsic growth rate of the population, absent density effects.
n(h) is the carrying capacity, which is related to habitat quality (n(h) > 0). The
growth rate, G, is negative when species fall below the Allee threshold, which is
denoted m(h) (i.e. G < 0 when 0 < x < m(h)). G is positive and bounded above
when the population is between the Allee threshold and the carrying capacity (i.e.
G > 0 and ∂2G/∂x2 < 0 when m(h) < x < n(h)). Finally, G attains maximum
growth at population xMSY . We assume that active habitat enhancement reduces the
Allee threshold (i.e. ∂m/∂h < 0, ∂2m/∂h2 > 0)—e.g. increases in resource avail-
ability and/or reduction in predation pressure (Hoffman et al. 2010)—and increases
the carrying capacity (∂n/∂h > 0, ∂2n/∂h2 < 0). Lastly, we assume that a habitat
quality threshold hcrit exists such that for h < hcrit the target population is unable to
survive in the wild and dies out (Fig. 1b).4 The explicit functional forms of m(h) and
n(h) used in numerical analysis are given in Table 1.

Assume the temporal dynamics of habitat quality can be expressed as,

ḣ = yh(t) − K (h(t)) = yh − (γ (h) − ω)h (3)

4 For h > hcri t the Allee threshold and carrying capacity, m(h) and n(h) respectively, are necessarily real
valued functions such that m(h) < n(h) (Fig. 1a). When h = hcri t , the Allee threshold and the carrying
capacity coalesce (i.e. m(hcri t ) = n(hcri t )). When habitat quality falls below the critical threshold (i.e.
h < hcri t ),m(h) and n(h) become imaginary, which can be biologically interpreted as a scenario where
the Allee threshold and carrying capacity do not exist, and extinction is the only long-term outcome from
any initial condition (Fig. 1b).
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822 K. R. Salau, E. P. Fenichel

Table 1 Submodels—Functions of habitat quality

Denotation Description Formula

γ (h) Habitat degradation rate αg
h

h+ξg

m(h) Allee threshold population 1
2 [a(h) + b(h) −

√
[a(h) + b(h)]2 − 4a(h)b(h)d(h)]

n(h) Carrying capacity 1
2 [a(h) + b(h) +

√
[a(h) + b(h)]2 − 4a(h)b(h)d(h)]

a(h) Characterizes effects of
habitat quality on Allee
threshold population

A
(
1 − h

h+ξm

)

b(h) Characterizes effects of
habitat quality on
carrying capacity

A
(
1 − h

h+ξn

)

d(h) Determines hcri t
h+αd
h+ξd

The population markers described as Allee threshold population and carrying capacity are derived as roots
of the twodimensional characteristic polynomial that makes up the population growth model, G(x, h) =
(x/m(h) − 1)(1 − x/n(h)). As habitat degrades, the two population markers coalesce into one point (see
Fig. 1) and then disappear when habitat quality falls below some minimum threshold, hcri t . Note h = hcri t
is the value such that [a(h) + b(h)]2 = 4a(h)b(h)d(h)

Eq. (3) is a first-order approximation to any process of improving habitat quality in
a world where other pressures reduce habitat. yh denotes managerial investments in
habitat enhancement. yh , measured in units of h per time, has a positive andmonotonic
effect on habitat quality (∂ ḣ/∂yh > 0). ω is the intrinsic rate of habitat increase in the
absence of human intervention. We model habitat degradation according to γ (h). The
magnitude of γ diminishes with further reduction in habitat quality (i.e. γ (h) → 0 as
h → 0+ and ∂γ /∂h > 0 for all h ≥ 0).

Exogenous development pressures (e.g., water demand), increased human use of
wild areas, and climate change create a scenario where constant intervention must be
undertaken to combat habitat degradation. In many cases habitat increase may be near
zero without active management. Therefore, we simplify the habitat model by setting
ω to zero (this assumption is relaxed in Subsect. 4.3).

Figure 2 illustrates the phase dynamics of the ecological system in the absence of
managers, where there is no investment in habitat quality (yh = 0) and no restric-
tion on take (yx = yMAX

x )—hereafter referred to as the no-regulation scenario. No
regulation refers to cases where other economic activities persist, but people do not
play an active role in conserving the species. The long-run outcome of this scenario is
eventual collapse of the population due to the compounded effect of constant habitat
degradation and unregulated take—conditions that motivated the ESA. Existence of
the ESA suggests there is public desire to prevent the extinction of rare species, and
this may be achieved with sufficient habitat enhancement conditional on some level of
allowable take. In the next subsection, we explore the conditions under which a social
planner would optimally choose to engage in species conservation (e.g. reducing take
and enhancing habitat to some degree) and when such conservation behaviors would
satisfy the ESA.
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Fig. 2 Phase dynamics for the no-regulation scenario with no investment in habitat quality (yh = 0)
and no regulation on take (yx = ymax

x ). The dashed ‘c-curve’ is a 2-state representation of the Allee
curve from Fig. 1 with varying levels of habitat quality. Initial populations outside the Allee basin and
below carrying capacity (i.e. {(h0, x0) : h0 > hcri t ,m (h) < x0 < n(h)}) experience positive growth, but
continued degradation of habitat leads to eventual population decline. Extinction is the long-run outcome
from all initial conditions in the absence of habitat enhancement

2.2 A complete market for conservation

The existence value associated with a species includes non-consumptive economic
benefits from maintaining the population; this includes non-consumptive use values,
e.g., wildlife viewing, and values more difficult to measure such as individuals’ per-
sonal values expressed as a willingness to forgo other goods and services to ensure
the existence of the species (Freeman 2003). Existence value of a species can be
considerable and can outweigh other values (Swanson and Barbier 1992; Barnes
1996; Kellner et al. 2011). Estimating existence values for rare species is an area
of ongoing research (Loomis and White 1996), but such values are likely impor-
tant for managers to consider. If there were a complete market for conservation,
then corresponding existence values could be realized. A federal land manager, act-
ing as a social planner may manage the system as if there were a complete market
for conservation; this is analogous to maximizing the discounted social net bene-
fits from the full suite of land-use activities. Initiating management at some arbi-
trary time, t = 0, the bioeconomic problem of optimally managing a renewable
resource is
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Maxyh ,yx

∫ ∞

0
e−δt (Bx (x) + By (yx ) − C (yh)

)
dt

s.t. ẋ, ḣ, x(0) = x0, h(0) = h0

(4)

where the discount rate, δ, reflects the social discount rate (Dasgupta et al. 1999). The
social planner is free to choose the investment and removal programs, yh(t) and yx (t)
respectively, to maximize social welfare over an infinite horizon (sensu Horan et al.
2011).C(yh) is the time varying cost of habitat enhancement. By(yx ) represents social
benefits from non-conservation activities that adversely affect the target population.
Bx (x)measures the stream of social benefits from species conservation, e.g., existence
value. ẋ and ḣ refer to population and habitat quality dynamics respectively [see Eqs.
(1) and (3)].

2.3 Solving the social planner problem

Assuming states and controls are bounded to be non-negative, problem (4) can be
solved for the optimal rate of investment in habitat enhancement (yh) and take of
species (yx ). Exploring the parameter space in (4) is helpful for identifying conditions
that lead to a no-take corner solution (i.e. when yx optimally equals 0). An optimal cor-
ner solution is interpretable as ESA regulation being socially optimal. In order to ease
derivation and interpretationof necessary conditions characteristic of solutions to prob-
lem (4) we use linear approximations and specify the economic functional forms as,

Bx (x (t)) = px x(t), By (yx (t)) = py yx (t), C (yh (t)) = cyh(t),

where px , py , and c are all constants. All other functional forms used in this study are
provided in Table 1. Sensitivity to these functional assumptions is tested in Sect. 4.

To solve the optimal control problem given by (4), write the current value Hamil-
tonian (CVH) as

H = px x + py yx − cyh + μx (t) ẋ + μh(t)ḣ (5)

The CVH is a measure of welfare (Dasgupta andMaler 2000). The CVH is not always
concave in all state variables because of the Allee growth curve (see Fig. 1). However,
existence of optimal controls and use of Pontryagin’s Maximum Principle is made
feasible by the boundedness of ẋ and ḣ (Fleming and Rishel 1975; Fister et al. 1998).
The first three terms on the RHS of the CVH (px x, py yx and cyh) are measured in
monetary units and represent the value of take, species existence, and the cost of
enhancing habitat respectively. μx (t), the adjoint variable, is in units of dollars per
population growth, and it is interpreted as the marginal benefit or shadow value of
conserving an additional unit of the population (Lenhart and Workman 2007). μh(t),
is also an adjoint variable and is in units of dollars per habitat restored and represents
the marginal benefit or shadow value of enhancing one more additional unit of habitat.
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The CVH is linear in both controls (yh, yx ).5 Therefore, the optimal solution is a mix
of bang-bang and singular controls, depending on initial conditions (Bryson and Ho
1975; Conrad and Clark 1987).

The marginal effects of the control variables on the CVH are

∂H

∂yh
= σh = −c + μh (6)

∂H

∂yx
= σx = py − μx (7)

whereσh andσx are switching functions for habitat enhancement and take respectively.
When the switching functions in Eqs. (6) and (7) vanish, both shadow value terms are
constants. For habitat enhancement the optimal feedback control rule is

yh (x, h) =
⎧⎨
⎩
0 iff σh < 0
y∗
h (x, h) iff σh = 0
ymax
h iff σh > 0

(8)

Similarly, the feedback rule for take is

yx (x, h) =
⎧⎨
⎩
0 iff σx < 0
y∗
x (x, h) iff σx = 0
ymax
x iff σx > 0

(9)

σh < 0 signifies that the marginal value of enhancing habitat is negative, suggesting
that it is optimal to cease improvements to habitat quality—thus, yh is optimally set
to zero. Likewise, if σx < 0, then no take should occur (yx = 0) because the marginal
benefit of onemore unit of take is negative. Ifσh > 0 (σx > 0), then there ismore value
in enhancing habitat (increasing take), so yh (yx ) should be set at the maximum.When
one switching function vanishes but the other does not, this results in a partial singular
solution. When both switching functions optimally vanish the resulting control rule is
called double singular (Bryson and Ho 1975).

Necessary conditions for characterizing optimal solutions to problem (4) include
the adjoint equations,

μ̇h = δμh − ∂H

∂h
= δμh −

(
μx

∂G

∂h
− μh

∂K

∂h

)
(10)

and,

μ̇x = δμx − ∂H

∂x
= δμx −

(
px + μx

∂G

∂x

)
(11)

Eqs. (10) and (11) are implicit equations for the optimal levels of habitat quality
and population through time. Interpreting these equations helps build intuition about

5 Clark (2005) states that linear control models serve as approximations to more general convex/concave
problems and this simplification is useful for researchers seeking qualitative insight. Sanchirico et al.
(2010) add that qualitative results from approximate linear control models “generally carry over” to their
less-restrictive, nonlinear counterparts.
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intertemporal tradeoffs. In the bioeconomics literature, the adjoint equations are often
rewritten as “golden rules” relating the discount rate, δ, which is the marginal oppor-
tunity cost associated with forgoing investments in other sectors of the economy, to
the rate of return (social benefit) from species conservation (Clark 2005):

δ = μ̇h

μh
+

(
μx

∂G
∂h − μh

∂K
∂h

)
μh

(12)

δ = μ̇x

μx
+

(
∂G

∂x
+ px

μx

)
(13)

Eqs. (12) and (13) collectively state that the optimal levels of x and h must equate
the marginal opportunity cost of conservation (of forgoing yx and investing in yh)
to the return rate at each point in time (Clark 2005). Equation (12) shows the trade-
offs associated with investing in habitat quality. In this case, δ reflects the marginal
opportunity cost of habitat enhancement. The RHS of Eq. (12) represents the marginal
productivity of habitat enhancement. The first RHS term represents the percent change
in the shadow value of habitat quality. The second RHS term is the normalized net
gain from a marginal increase in habitat quality, which can be further separated into
the marginal effects of changes in habitat on each of the state variables. The first term
in the numerator of the second RHS term is the marginal value of population growth
from habitat enhancement and the second term reflects amarginal cost because the rate
of habitat degradation, γ (h), is greater for higher levels of habitat quality (effectively,
there is more to lose).

Equation (13) is the golden rule equation related to population growth, where δ

is interpreted as the marginal opportunity cost of conserving one additional unit of
the population. The first RHS term represents the percent change in the shadow value
of population growth. The second RHS term is the marginal productivity of the pop-
ulation and could be positive or negative depending on the magnitude of x . Con-
cave regions of the Allee growth curve, where x ∈ (m(h), n(h)), imply decreasing
returns to population growth. So a sufficiently large level of marginal productivity
(i.e. m(h) < x < xMSY ), relative to the discount rate, may signify greater value in
increasing population size, while a sufficiently low level (i.e. xMSY < x < n(h))
signals disinvestment in conserving individuals.

The bang-bang control combinations of {0, 0} and {
yMAX
h , 0

}
and the partial sin-

gular control
{
y∗
h , 0

}
are strategies corresponding to the ESA’s prohibition on take.

We refer to such control combinations as no-take strategies. We are particularly inter-
ested in identifying conditions where it is optimal to employ no-take strategies. Initial
conditions play a major role in characterizing optimal programs, so it is helpful to map
out regions in x − h space where no-take ESA regulation is the optimal strategy. It is
also helpful to highlight regions where ESA regulation is not optimal. The boundaries
of these regions will be defined by optimal partial singular arcs. Therefore, a first step
in exploring both scenarios is to identify the double singular scenario, when σh and
σx both optimally vanish.

Solutions to autonomous, infinite-horizon, linear-control problems generally
include the use of bang-bang controls along the path to a long-run steady state solu-
tion, at which point the extreme control value (lower or upper bound) switches to the
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singular value (Lenhart and Workman 2007). Equations (8) and (9) suggest that paths
to an optimal steady state solution may also involve one (or more) of the four partial
singular solutions, where one control switches to follow a singular arc or value while
the other remains at a corner. The control following the singular arc must be contin-
uously adjusted according to a nonlinear feedback rule much like the solution to a
nonlinear control problem (Horan andWolf 2005; Fenichel and Horan 2007; Fenichel
et al. 2010). Different combinations of finite-time optimal bang-bang and partial sin-
gular solutions are employed along the path to a double singular, steady state solution
(Fenichel and Horan 2007; Horan et al. 2011). Thus exploring the double singular
scenario coincides with the overall goal of identifying optimal ESA regions because
no-take strategies may be optimal for a finite-time along the optimal path to a double
singular solution. Moreover, the existence of an optimal interior solution is a realistic
baseline suggesting that long-run management goals will consist of conservation and
non-conservation activities, as both are socially beneficial uses of public land.

In what follows, we derive partial singular solutions as a preliminary step to ana-
lyzing no-take strategies such as

{
y∗
h , 0

}
and characterizing finite-time optimal paths

to the double singular solution. The general form of the double singular solution is
then calculated. Lastly, we consider a numerical example in order to illustrate optimal
paths to the long-run equilibrium from different areas of the state space, with emphasis
on regions suggestive of ESA regulation.

2.3.1 Deriving partial singular solutions

Consider the singular solution for habitat quality, conditional on a nonsingular level
of take (i.e. upper or lower bound). In this case σh vanishes, which implies,

μh = c → μ̇h = 0 (14)

Substituting Eq. (14) into Eq. (10) and solving for μx yields,

μx = c (δ + ∂K/∂h)

∂G/∂h
(15)

By using Eqs. (1), (3), and (15), and the derivative identity μ̇x = (∂μx/∂x)ẋ +
(∂μx/∂h)ḣ, we rewrite Eq. (11) as,

∂μx

∂x
[G − yx ] + ∂μx

∂h
[yh − K ] = δc (δ + ∂K/∂h)

∂G/∂h
−

(
px + c (δ + ∂K/∂h)

∂G/∂h

∂G

∂x

)

Solving this equation for yh yields,

yh =
δc(δ+∂K/∂h)

∂G/∂h −
(
px + c(δ+∂K/∂h)

∂G/∂h
∂G
∂x

)
− ∂μx

∂x [G − yx ]

∂μx/∂h
+ K (16)

Eq. (16) represents a nonlinear feedback control rule that is the partial singular solution
for habitat enhancement conditional on a nonsingular level of take.
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We now consider the singular solution for take. When σx vanishes

μx = py → μ̇x = 0 (17)

Substituting the results of Eq. (17) into Eq. (11) and solving for ∂G/∂x yields,

∂G

∂x
= δ − px/py → δ = ∂G

∂x
+ px

py
(18)

Eq. (18) is a special case of the golden rule equation given in Eq. (13). The modified
golden rule suggests that a necessary condition for characterizing a singular solution
for take is that the discount ratemust equal themarginal growth of the target population
plus the ratio of conservation to non-conservation related benefits.

The sign on the RHS of Eq. (18) is indicative of population magnitude in the long
run. For any given value of h, Eq. (18) can only hold for a single unique value of x .6

So for a higher discount rate or greater value of take, fewer individuals are conserved
and the population converges to a steady state solution between the Allee threshold
(m(h)) and xMSY . For a greater value of existence, a larger population is conserved
with the optimal level occurring between xMSY and the carrying capacity, n(h).

Equation (18) implies that themarginal growth rate of the population (∂G/∂x) must
be constant so calculating the total time derivative of this term yields,

d

dt

(
∂G

∂x

)
= ∂2G

∂x2
ẋ + ∂2G

∂x∂h
ḣ = ∂2G

∂x2
(G − yx ) + ∂2G

∂x∂h
(yh − K ) = 0 (19)

Solving for yx ,

yx =
∂2G
∂x∂h (yh − K )

∂2G/∂x2
+ G (20)

Eq. (20) gives the partial singular solution for take conditional on a nonsingular level
of habitat enhancement.

2.3.2 Deriving the double singular solution

In order for a double singular solution to exist, both switching functions must vanish
simultaneously. Suppose habitat enhancement (yh) is on a singular path and the adjoint
condition for habitat quality is also satisfied (i.e. μh = c, μ̇h = 0), then Eq. (10) can
be rewritten in terms of μx , which is given by Eq. (15). Now suppose the switching
function for the target population also vanishes, soμx = py ; substituting this equation
into Eq. (15) yields,

6 If we drop the assumption of a growing population, it is possible that a second value of x can satisfy Eq.
(18) for population smaller than the Allee threshold. But in order for the population to remain persistent,
the steady state population must be greater than the Allee threshold (Fig. 1).
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py = c
(
δ + ∂K

∂h

)
∂G/∂h

�⇒ σx |σh=0 = 0 (21)

Eq. (21) represents the switching function for take conditional on a singular solution for
habitat enhancement. Contrary to Fenichel and Horan (2007), Fenichel et al. (2010),
Sanchirico et al. (2010), and Horan et al. (2011), who all explore similar multi-state
linear control problems, the derivation of the singular arc given in Eq. (21) does not
depend on both adjoint conditions; we later use this information to develop alternate
proofs for the absence of certain solutions.

The switching function for habitat enhancement conditional on a singular solution
for take is similarly derived. Suppose take, yx , is on a singular path and the adjoint for
species holds (i.e. μx = py, μ̇x = 0), then Eq. (11) can be rewritten in terms of δ [see
Eq. (18)]. Let the switching function for habitat also vanish and the corresponding
adjoint is also satisfied, so μh = c (μ̇h = 0); substituting this equation into Eq. (10)
and solving for the discount rate yields,

δ = py
c

∂G

∂h
− ∂K

∂h
(22)

Eq. (22) yields another version of the golden rule result with respect to the optimal
level of habitat quality; this result is similar to Eq. (12). The RHS of Eq. (22) is a
rescaling of the marginal benefit of take driven by an increase in habitat quality (the
first RHS term) minus the marginal cost of habitat enhancement (the second RHS
term). Thus, a necessary condition for the existence of double singular solutions is
that the discount rate must equal the marginal net benefit of habitat enhancement.
Substituting Eq. (22) back into Eq. (18) yields,

∂G

∂x
+ px

py
= py

c

∂G

∂h
− ∂K

∂h
�⇒ σh |σx=0 = 0 (23)

Eq. (23) represents the switching function for habitat enhancement conditional on a
singular solution for take. While this is not the case for σx |σh=0 = 0, the derivation of
σh |σx=0 = 0 is dependent on both adjoint conditions. Combining Eqs. (21) and (23)
yields a well-defined system of two equations and two unknowns with, at most, a finite
number of solutions. Solving the coupled system yields the double singular solution.

3 Results and discussion

3.1 Numeric example

Constructing illustrative examples of solutions to problem (4) using bang-bang con-
trols and the singular feedback rules is a numerical exercise (Arrow 1968). We bound
the space of possible outcomes by considering a particular set of parameter combi-
nations that highlight the existence of an interior, double singular steady state solu-
tion (Table 2). Sanchirico et al. (2010) employ a similar strategy when studying the
effects of spatial configuration on optimal harvest trajectories and switching times in
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Table 2 Parameter values for numerical example

Parameter Description Numerical value

r Species growth constant 0.025

A Minimum carrying capacity 125

ξm Determines when ATP reduction rate half-maximal 25

ξn Determines when carrying capacity growth rate half-maximal 25

αg Maximum degradation rate of habitat quality 0.01

ξg Determines when degradation rate half-maximal 25

ω Intrinsic growth rate of habitat quality 0, 0.005a

αd Growth constant affecting habitat quality 25

ξd Growth constant affecting habitat quality 2.5

c Marginal cost of habitat enhancement 6, 0.22a

px Marginal existence value 20, 4569a

py Marginal value of take 10

δ Discount rate 0.05

ymax
h Maximum rate of habitat enhancement 25

ymax
x Maximum rate of take 60

ATPAllee threshold population. a These alternate values are used in Sect. 4 as part of a function uncertainty
analysis

metapopulation fisheries. The growth rate, minimum and maximum carrying capacity
are calculated based on Hosack et al.’s (2002) population viability analysis for prong-
horn. Hosack et al. (2002) find that the probability of extinction increases markedly for
populations lower than 100 individuals; we use this value to guide parameterization for
the Allee threshold. Other ecological parameters are chosen to allow for the existence
of a positive, interior DSS. Economic parameters in this general study were chosen
to reflect the relative values of certain activities to others. We employ the common
assumption of a 5% discount rate.

The maximal take rate is set to reflect reasonable large incentives for people to
engage in take related activities in the absence of other management, and such levels
of take drive the population to extinction despite other model inputs (Table 2). This
allows a population of any size to transition from persistence to extinction over a
period of time as a result of overexploitation; the reality for many T&E species. The
maximal rate of habitat enhancement is set large enough to drive arbitrarily small
populations to carrying capacity, which occurs only in the absence of a maximal
take rate. This mimics the potential recovery of declining populations; much like
pronghorns in Nebraska (Hoffman et al. 2010).

For parameter values in Table 2, the switching curves given in Eqs. (21) and (23)
intersect at a single point, denoted DSS (Fig. 3). The DSS equilibrium satisfies the
above necessary conditions as well as Kelley’s condition, a second-order necessary
condition for the optimality of singular arcs (Bryson and Ho 1975). So the DSS
equilibrium is a candidate long run solution. This suggests that there are regions of the
state space where a no-take, ESA-style strategy is not long-run optimal. Nevertheless,
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Fig. 3 Switching curves for habitat enhancement (σh |σx=0 = 0) and take (σx |σh=0 = 0). The intersection
of both curves, at DSS, gives rise to a double singular solution

a no-take strategy may be optimal along a path to the DSS equilibrium; therefore we
determine the optimal approach paths to the DSS equilibrium from all arbitrary points
on the x − h state space.

3.1.1 Bang-bang controls

Bang-bang control combinations can only be optimal as temporary strategies along
the path to the DSS equilibrium. Bang-bang controls include no-take strategies ({0, 0}
and

{
ymax
h , 0

}
), the no-regulation scenario ({0, 0}) discussed in Subsect. 2.1, and{

ymax
h , ymax

x

}
. {0, 0} and {

ymax
h , 0

}
can be interpreted as the extremes of ESA reg-

ulation with the former representing a scenario where take alone is fully restricted
and the latter a situation where agencies must fully invest in habitat enhancement in
addition to halting all take.

{
ymax
h , ymax

x

}
reflects another extreme where agencies

conduct conservation and non-conservation activities simultaneously at the maximum
possible level; this management scenario may be the case for large, valuable unlisted
or recovered populations on multi-use federal lands.

3.1.2 Partial singular solution for habitat enhancement, maximum take-
{
y∗
h , y

max
x

}

Large populations in increasingly degraded habitat are also at risk of future population
decline (see top-left region of Fig. 2). A feasible strategymay include harvesting down
the population for profit while simultaneously engaging in habitat enhancement to
reduce the Allee threshold. The strategy

{
y∗
h , y

max
x

}
achieves this result. The partial

singular solution for habitat enhancement conditional on the maximum level of take,
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Eq. (16), is substituted back into the equations of motion in Eqs. (1) and (3). This case
yields one saddle point steady state solution, denoted PSS1 (‘PSS’ denotes partial
singular solution). The singular path leading to PSS1, denoted σh |ymax

x
= 0, intersects

the switching curve σx |σh=0 = 0 necessarily implying a double singular solution does
exist, denoted DSS1 (Fig. 4a). Ultimately, DSS1 cannot be optimal and is discarded
because, as discussed above, the adjoint equation for species is not satisfied along
σx |σh=0 = 0. We are able to locate a feasible singular path, denoted PSP1, in this
scenario leading to the DSS equilibrium (‘PSP’ stands for partial singular path). Along
this path, management sets take at the maximum level and switches to the singular
value for take once the DSS equilibrium is reached (Fig. 4b).

3.1.3 No habitat enhancement, partial singular solution for take-
{
0, y∗

x

}

This case represents a scenario where the manager allows a restricted level of take
but does not invest in habitat enhancement. Similar to the no-regulation scenario, this
case yields no interior solutions, as the population cannot survive in the long run
without upkeep of its habitat.7 However, a feasible singular path leading to the DSS
equilibrium exists, PSP2 (Fig. 5). Along this path, managers do not invest in habitat
enhancement but switch to its singular value once the DSS equilibrium is reached.

3.1.4 Maximum habitat enhancement, partial singular solution for take-
{
ymax
h , y∗

x

}

The partial singular solution with maximum habitat enhancement and regulated take
represents the idea of habitat conservation plans (HCPs) under the ESA. HCPs are a
joint partnership between federal and non-federal entities to conserve land critical to
the survival and growth of a listed species. HCPs allow agencies some level of inciden-
tal take when conducting valued, species-adverse activities—so long as the general
procedure is ‘minimizing and mitigating’ the level of take (DOI 1996; Kareiva 1999).

Themathematical representation of theHCP scenario yields one saddle point steady
state solution, denoted PSS3 (Fig. 6a). The singular path leading to PSS3, denoted
σx |ymax

h
= 0, does not intersect any switching curves, thus leaving PSS3 as the only

candidate long-run solution in this scenario, other than the DSS equilibrium (Fig.
6a). Right above PSS3 is PSP2, the singular arc for

{
0, y∗

x

}
(see Fig. 6a). We assess

the optimality of PSS3 by considering a shift towards path PSP2 and reevaluating the
CVH; an optimal PSS3 should maximize the CVH (Rondeau 2001; Horan et al. 2011).
At PSS3, ḣ = G(hPSS3, x PSS3) − y∗

x = 0 and yh = ymax
h , this yields,

HPSS3 = px x
PSS3 + pyG

(
hPSS3, x PSS3

)
− cymax

h (24)

7 Stopping direct take, without habitat enhancement, is insufficient for the recovery or maintained recovery
of many T&E species. Allowing take of pronghorn without investment in habitat improvements to battle
droughts, predation, etc. still leaves the population in significant risk of decline. Another case where active,
continual habitat management appears necessary is on public lands in Oregon, Washington, and California,
where conservation is focused on northern spotted owls. FWS recently sanctioned the removal of the invasive
barred owl from northern owl habitat and reduced public timber harvests (FWS 2011b).
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A

B

Fig. 4 a The partial singular solution for yh conditional on yMAX
x with a superimposed sketch of the

switching curves characterizing the double singular solution DSS. PSS1 and DSS1 are ruled out as long-run
optimality candidates. b Phase dynamics for the current scenario and an illustration of the partial singular
path (PSP1) leading to DSS. ‘PSP’ stands for partial singular path

Consider the alternate strategy of moving upwards from PSS3 to partial singular path
PSP2, this requires management to set yx to zero (yh stays fixed at ymax

h ), which
implies σx = py − μalt

x < 0, where μalt
x is the alternate shadow value of species
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Fig. 5 Phase dynamics for the scenario with no habitat enhancement and a partial singular solution for
take-

{
0, y∗

x
}
. PSP2 is the partial singular path leading to DSS

corresponding to the shift towards path PSP2 (Eq. 9). The CVH associated with this
alternate strategy, evaluated at PSS3, is,

Halt = px x
alt − cymax

h + μalt
x G

(
hPSS3, x PSS3

)
(25)

Recall that xalt is the new population level attained from halting take and xalt > x PSS3

(see Fig. 6a). Taking the difference of Eqs. (24) and (25) yields,

HPSS3 − Halt = px
(
x PSS3 − xalt

)
+

(
py − μalt

x

)
G

(
hPSS3, x PSS3

)
< 0

PSS3 cannot be optimal because a shift in strategies away from the PSS3 saddle
towards PSP2 increases the value of the CVH.We are able to locate a feasible singular
path, denoted PSP3, in this scenario leading to the DSS equilibrium; along this path,
management sets habitat enhancement at the maximum level and switches to the
singular value once the DSS equilibrium is attained (Fig. 6b).

3.1.5 Partial singular solution for habitat enhancement, no take-
{
y∗
h , 0

}

It is common for agencies to invest in habitat (e.g., water fixtures and food plots in the
case of pronghorn) as part of conservation under the ESA in addition to prohibiting
take. The partial singular solution associated with this case yields one saddle steady
state solution, denoted PSS4. Like the previous partial singular case, the singular path
leading to PSS4, denoted σh |yx=0 = 0, does not intersect any switching curves, so
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A

B

Fig. 6 Phase plane dynamics for scenario involving the partial singular solution for take and maximum
habitat enhancement {yMAX

h , y∗
x }. a PSS3 is not an optimal long run candidate because management is

better off moving to PSP2. b PSP3 is the partial singular path leading DSS

PSS4 is the only candidate long-run solution in this scenario. However, using the same
method employed in the previous subsection, we eliminate PSS4 as an optimal long
run candidate by considering the alternate strategy ofmoving directly to PSP3. PSS4 is
not optimal because there is positive value inmoving away to PSP3. Furthermore, there
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Fig. 7 The optimal feedback control diagram for the complete market scenario. The Allee curve (dashed)
is included to illustrate optimal control strategies relative to different initial conditions in the state space

is no partial singular path to the DSS equilibrium in this scenario because all values on
the proposed singular arc imply negative investments in habitat enhancement, which
is not feasible given model specifications.

3.1.6 Optimal feedback control diagram

The feedback control diagram in Fig. 7 illustrates optimal control strategies from any
initial value in the h− x state space. The three partial singular paths partition the feed-
back control diagram into 6 distinct regions where different bang-bang and partial
singular controls are optimal.8 Depending on the initial condition, the optimal path is
governed by a possible mixture of bang-bang and partial singular controls leading to
the DSS equilibrium. If a bang-bang trajectory intersects a partial singular path prior
to reaching the DSS equilibrium, then the partial singular path is followed to the DSS
equilibrium.

There is no region of the state space where it is optimal to fully restrict take without
actively investing in habitat improvement (Fig. 7); the {0, 0} strategy is never optimal.
The payoff from the {0, 0} strategy is lower compared to the combination of other
bang-bang controls (see Table 3); this is due to the delay in reaching the long-run

8 For illustrative purposes, we assume impulse controls are feasible (i.e. singular values for the controls,
and subsequently the bounds as well, can get arbitrarily large) as this simplifies the derivation of the partial
singular solution leading to the long-run optimal solution. This assumption does not change the qualitative
result, and the use of impulse controls is common in other studies involving the analysis of infinite-horizon,
linear control problems (Sanchirico et al. 2010; Horan et al. 2011).
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Table 3 Table of net present benefits along optimal and suboptimal paths from different initial points

The gray-shaded sections of the table denote optimal control combinations (as illustrated Fig. 7) and net
benefits for sample initial conditions. The diagonal-shaded sections denote suboptimal paths. The DSS is
the only non-extinction long-run outcome. If the solution does not originate at the DSS, the optimal strategy
is to take the most rapid approach path to the DSS using the appropriate mixture of bang-bang and partial
singular solutions (see Fig. 7) a Sample initial condition from the ESA region b Sample initial condition
from the top-left region of the x − h state space, where the population is within the Allee basin

optimum and the restriction on take from non-conservation activities. But for initial
conditions in the region below PSP1 and PSP2, which we refer to as the ESA region,
ESA regulation (i.e. {yh, yx } = {yMAX

h , 0}) is part of the optimal strategy along the
path to the DSS equilibrium. Moreover, the area below PSP1 and PSP2 may represent
regions of potential concern for wildlife populations. The bottom-most portion of the
ESAregion indicates initial conditions of lowpopulation abundance,where individuals
may be below the Allee threshold. The left-most portion of the ESA region represents
initial conditions with relatively low habitat quality, where individual survival is low
due to resource limitations. Both sets of initial conditions are indicative of a population
that may be considered threatened or endangered.

ESA regulation on federal lands is primarily characterized by take restriction and
investment in activities that help maintain/improve habitat quality for endangered
populations. However, ESA regulation is not the long-run solution to conservation.
Results suggest it is optimal to switch to a singular arc (PSP1 or PSP2) along the
path to long-run optimum DSS (Fig. 7). Along both these singular arcs management
regulation is relaxed, some take is optimal and investments in habitat enhancement
begin to phase out.

The qualitative results are not highly sensitivity to parameterization. Sensitivity
analysis on the baseline parameters suggests that a unique, positive double singular
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Table 4 Sensitivity index for equilibrium habitat quality (h̄), population (x̄), habitat enhancement (yh ),
and take (yx ) subject to ecological and economic parameter perturbation. There exists a unique, positive
double singular solution for each parameter perturbation

Parameter Percent change in equilibrium magnitude given 10%
increase in parameter value

h̄ x̄ yh yx

Species growth constant, r −0.14 0.010 −0.14 −0.17

Minimum carrying capacity, A −0.047 0.11 −0.048 −0.066

ATP half-maximal reduction
constant, ξm

0.17 −0.012 0.17 0.20

Carrying capacity half-maximal
growth rate, ξn

−3.08 × 10−3 −2.8 × 10−5 −0.0031 −0.013

Maximum habitat degradation rate, αg 0.0093 −0.0019 0.11 0.030

Half-maximal degradation rate, ξg −5.8 × 10−6 1.2 × 10−6 −0.0017 −1.8 × 10−5

Habitat growth constant, αd 0.0018 −1.8 × 10−6 0.0018 2.8 × 10−5

Habitat growth constant, ξd −1.8 × 10−4 −1.8 × 10−7 −1.8 × 10−4 2.7 × 10−6

Marginal habitat enhancement cost, c 0.06 −0.012 0.061 0.19

Marginal existence value, px 0.11 −2.4 × 10−6 0.11 0.12

Marginal take value, py −0.14 0.010 −0.14 −0.24

Discount rate, δ 0.046 −0.0099 0.047 0.15

ATP Allee threshold population

solution always exists with a feedback diagram qualitatively similar to Fig. 7 (Table 4).
However, the location of the DSS equilibrium in state space changes.

3.2 Recovery and post-recovery under the ESA

Developing optimal recovery plans requires the early establishment of long-run post
delisting plans (Rondeau 2001; Mehta et al. 2007; Homans and Horie 2011). The DSS
is the long-run optimal equilibrium when the social planner endogenously determines
the equilibriumpopulation size (4).However, real systems lack the ability to internalize
conservation benefits. Recovery criteria are often established, but a post-recoveryman-
agement programmust provide incentives for the broader economic system tomaintain
those criteria without ESA protection. For example, the development and approval of
a state management plan to guide post-recovery management of gray wolves enabled
delisting in areas ofMontana and Idaho. Both states restored seasonal hunting and trap-
ping with set quotas, and both states allow culling to reduce predation pressure on live-
stock.Harvest and control ofwolves inMontana and Idahobenefits hunters and farmers
respectively, but is managed so that wolf populations remain above a federally pre-
scribed level as per ESA post-delisting monitoring requirement (FWS 2011a). These
regulatory mechanisms create positive post-delisting marginal value for wolves, μx .

Incentives associated with post-recovery management potentially establish a long-
run equilibrium and salvage value of the stock, V (ĥ, x̂), where the carat indicates
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the state variable values at delisting. The value of V may differ from that established
when the state variables are at the DSS. The adjoint variable μx must approach this
marginal value of the stock post delisting smoothly so that μx = ∂V (h, x)/∂x . The
marginal value of stock just prior to recovery, while under ESA protection, must be
equivalent to the value of stock post recovery without ESA protection.9 Then the
optimal recovery path is found in a backwards recursive fashion using Eqs. (8)–(11).
A necessary condition for finding the optimal path to recovery is knowledge of post-
recovery management plans and how these plans structure V (h, x).

In the absence of post recovery planning, the ESA can create a system where a
marginal increase in the population,μx , has a strictly positive marginal value up to the
point of delisting, but when protection is removed the marginal value of an increase
in the population is zero or negative—creating a discontinuity. Delays in adopting
a post-recovery plan in accordance with federal conservation goals, that implicitly
maintained a positive value on an increase in the wolf population, stalled delisting of
the gray wolf in Wyoming until recently (FWS 2005a, 2011a).

If management plans generate incentives for a positive salvage value and non-
extinction equilibrium, then the qualitative results in the feedback control diagram
(Fig. 7) would not change. All recovery paths initiated in the ESA region undergo a
shift in strategy as bang-bang trajectories merge onto partial singular paths, apart from
one unique trajectory leading directly to the long run equilibrium (Fig. 7). PSP1 and
PSP2 represent second-phase strategies that allow agencies some level of take when
conducting non-conservation activities (i.e. yx ≥ 0).

The true salvage value for many federal land managers is likely managerial flex-
ibility. Regional HCPs can increase flexibility while maintaining a positive value on
increases in the species population. Results from Sect. 3 suggest HCPs are used as
management strategies in the latter stages of species recovery but HCPs may be de
facto recovery plans for many listed species.10 However, the stated goals of these
plans have to do more with reduction in harmful activities and processes than the
actual recovery of a listed species. Therefore, HCPs have come under some scrutiny
(see Langpap and Kerkvliet (2012) for a discussion).

The continued development and implementation of comprehensive HCPs could
serve to guide management from strict ESA-style management to post-recovery man-
agement. HCPs allow for the discussion of tradeoffs in the implementation of conser-
vation and non-conservation activities. Management plans like HCPs phase out the
restrictive regulations of the ESA and allow more flexibility to federal agencies but
not necessarily at the expense of species survival.

4 Functional uncertainty analysis

Having developed intuition using linear approximations, we now systematically test
the generality of our results with nonlinear economic and ecological sub-functions.

9 This is the result of the transversality condition (Bryson and Ho 1975; Clark 2005).
10 Some studies actually suggest that species with HCPs tend to recover faster and are delisted in a shorter
period—though it is unclear if faster recovery is a direct effect of the HCP (Langpap and Kerkvliet 2012).
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In each of the following scenarios, we calibrate model parameters so that equilib-
rium stock and habitat, along with corresponding marginal benefits and costs, remain
unchanged (Table 2) (Rondeau 2001). This calibration allows us to focus on the local
qualitative differences arising from choice of functional form rather than parameter
perturbation.

4.1 Nonlinear benefit function

In the baseline model we assume marginal benefits from wildlife are constant to
enhance tractability. However, it is reasonable to expect the marginal benefit from
conserved wildlife to diminish as the population grows. Diminishingmarginal benefits
to increasing population size has no qualitative impact on our results. Consider the
common functional form used to model existence value (Freeman 2003),

Bx (x (t)) = pxln (bx x(t)) (26)

where bx converts the population to a non-dimensional density and px monetizes the
density. The associated current value Hamiltonian is

H = pxln (bx x(t)) + py yx − cyh + μx (t) ẋ + μh(t)ḣ (27)

In re-solving problem (4) with nonlinear benefit function (26), note that the corre-
sponding Hamiltonian is still linear in both controls and there remains one unique
double singular solution, denoted DSSA. Furthermore, the only optimality condition
that is affected by the change is the equation for μ̇x ; all other optimality conditions
remain unchanged. The optimal feedback control diagram corresponding to the new
management problem is similar to the original (Fig. 8). The same partial singular
combinations serve as trajectories to DSSA. The qualitative differences between Figs.
7 and 8 result from how the logarithm function affects the adjoint conditions.

We use similar arguments as before to identify feasible and optimal approach
paths. We rule out alternate equilibria from the

{
y∗
h , y

max
x

}
and

{
ymax
h , y∗

x

}
scenar-

ios and establish PSP1A and PSP3A (respectively) using an argument similar to the
one detailed in Subsect. 3.1.4. The

{
0, y∗

x

}
scenario does not produce any equilibria

but does give rise to PSP2A. The potential equilibrium solution in the
{
y∗
h , 0

}
scenario

is ruled out because it violates the adjoint associated with μx (we discuss an identi-
cal case in Subsect. 3.1.2) and a positive, partial singular path to the unique double
singular solution does not exist.

One marked difference between Figs. 7 and 8 comes in the positioning of PSP1 and
PSP1A. Figure 8 shows that the no-take control combination is optimal across a larger
region of the h− x state space, replacing some areas where take, at the maximal level,
was permissible. This result stems from the assumption, imposed by a logarithmic
benefits function, that the marginal value of an individual increases as the population
dwindles. In sum, nonlinear benefits from conservation enhance the importance of
ESA-style no-take restrictions,

{
ymax
h , 0

}
, as part of an optimal recovery program.
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Fig. 8 The optimal feedback control diagram assuming nonlinear existence value

However, nonlinear benefits are not sufficient for no-take restrictions to be the long-
run optimal equilibrium solution.

4.2 Nonlinear cost of habitat investment

In the baseline model we assume the marginal cost of habitat investment is constant to
enhance tractability. Now consider the case with quadratic habitat enhancement costs.
In this case the current value Hamiltonian for the problem is

H = px x + py yx − cy2h + μx (t) ẋ + μh(t)ḣ (28)

The problem is nonlinear in yh , but remains linear in yx . Therefore, yx can take on
extreme values (e.g., yx = 0 or yx = ymax

x ) or be singular with yx = y∗
x , but yh cannot

be bang-bang, but is still constrained to be positive. First, consider the instances where
yx = y∗

x . In this case,

∂H

∂yx
= py − μx = 0 → μx = py (29)

∂H

∂yh
= −2cyh + μh = 0 → μh = 2cyh (30)

Additionally, adjoint conditions (10)–(11) must continue to hold.
The four optimality conditions along with the equations of motion define a system

of six equation and six unknowns that lead to equilibria that satisfy the necessary
conditions for a singular solution to be optimal, if one exists. Our calibration suggests
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two candidate equilibria. From Eq. (29), μx is constant ∀t , conditional on the solution
for yx being singular. Therefore, μ̇x = 0 ∀t , which defines an implicit function h(t) =
h(x(t)). Since μx is constant if yx is optimally singular, x must optimally correspond
to the valueμx . The fact that μ̇x is always zero for a singular solution means that there
can be no singular arc associated with yx . The only feasible singular values for yx are
equilibrium values. However, for any values except the equilibrium values, μh will
change leading to changes in h that do not correspond to h(t) = h(x(t)). The only
options are for the system to move to a region where yx = 0 or yx = ymax

x is optimal.
This suggests that no-take, ESA-style solutions are part of the optimal strategy with
nonlinear habitat enhancement costs for at least some initial conditions.

Consider the nature of the solution for yx = 0. This illustrates how the optimal
habitat investment program could be recovered conditional on an ESA-style, no-take
strategy. A similar solution approach can be applied to the yx = ymax

x case. First, set
yx = 0. Equation (29) no longer holds andμx is non-constant. We know thatμx > py
for yx = 0. Using Eq. (30) find dμh/dt and ∂2μh/∂μ2

h . These two expressions are
functions of ẏ and ÿ. Also, use Eq. (10) to find μ̈h , where we use the two alternative
notations to indicate different paths to equivalent expressions. Next, set μ̇h from Eq.
(10) equal to dμh/dt and solve for μx = μx (x, h, y, ẏ). Differentiate this expression
with respect to time and set the result equal to the RHS of Eq. (11), and solve for ÿh .
Setting ∂2μh/∂μ2

h = μ̈h also yields an expression for ÿh . Finally, set these two expres-
sions for ÿ equal and solve for ẏ = ẏh(x, h, y). Using this equation for the change in
y and the two equation of motion for the state variables other candidate long-run equi-
libria could emerge. If one of these equilibria dominated the singular equilibria, then
ESA no-take regulations could persist indefinitely on an optimal program. Numerical
analysis does not suggest that this is the case for our case study.

By exploring non-singular solutions it is also possible to rule out candidate singular
equilibria. These equilibria must be approached using an extreme value of yx because
no singular arc exists. Moreover, there cannot be discontinuities in μx at the point in
state space where the optimal control switches from yx = 0 to yx = y∗

x . In our numer-
ical analysis only one of the two candidate singular equilibria satisfies this criterion.

4.3 Intrinsic growth of habitat quality

Express the equation ofmotion for habitat implicitly as ḣ(h, yh). In our base calibration
we set ω to zero and that implies ḣ(h, 0) < 0 for h > 0 (Table 2). That is, we require
habitat to vanish without intervention.We have assumed that prevailing anthropogenic
forces will erode wildlife habitat without intervention. This may be true for many
threatened and endangered species. However, it is also possible that habitat could
recover without investment, albeit at a slower rate than current human impacts draw
down habitat.

Consider the casewhereω ∈ (0, αg) so that habitat stabilizes at a positive levelwith-
out habitat investment. In this case the current value Hamiltonian remains qualitatively
unchanged from Eq. (5). From the conditions that influence the optimal solution,
ω ∈ (0, αg) only changes μ̇h . Furthermore, introducing ω ∈ (0, αg) does not change
the number of roots for any state, adjoint, or control variable. Therefore, the system
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could be re-parameterized to arrive at the same equilibrium as our baseline calibration.
The effect is similar to the nonlinear existence value scenario—the approach paths to a
positive, double singular solution are qualitatively similar but the criteria for disregard-
ing other equilibrium solutions change.11 Furthermore, naturally recovering habitat
does not reduce the need for ESA-style, no-take restrictions over part of the recovery
program. However, it is possible that a long-run optimal equilibrium exists without
habitat investment. For a given parameterization it is more likely that the optimal long
run solution will involve no habitat investment as αg −ω declines to zero from above.

5 Conclusion

Regions of the state space characteristic of at-risk populations (i.e. the ESA region)
correspond to regions where ESA regulations can be socially optimal. Populations
located in the ESA region face possible extinction, but positive long-run valuation
drives recovery via the cessation of all harmful activities and full investment in habi-
tat enhancement. ESA implementation is optimal in some scenarios. The regulatory
power of the act serves as a preliminary form of protection for endangered popu-
lations. However, ESA regulation is only a short-term solution to the management
problem. Emphasis should be placed on constructing the second-phase management
plan early on in the initial recovery process, as the designation of a post-recovery plan
is essential for the timely delisting and continued conservation of target populations.
This means that managers trying to mimic the socially-optimal result would need to
know the characteristics and benefits of the long run equilibrium or choose the long
run equilibrium endogenously, e.g., solve for the DSS, in order to define an adequate
recovery plan. This is an important preliminary step in the management problem. But
our experience is that post-recovery planning is largely neglected, and most effort is
focused on measuring the current population and tactical short-term interventions.

Our formal finding can be summarized by a common saying, “you can’t get there,
if you don’t know where you are going.” This is somewhat complicated in the case
of species conservation because “where we are going” involves tradeoffs between
conservation and non-conservation activities. Society values species existence as well
as products from non-conservation activities on federal lands, so the most likely long-
run solution iswhere bothmanagement activities coincide (Rondeau 2001).An interior
double singular solution reflects this thinking. In order to realize this long-run outcome,
mechanisms must be in place to ensure recovered populations and their habitat stay
protected over larger time-scales in the wake of other land-use activities. HCPs could
function as the glide path towards a more long-term management solution. Regional
HCPs increase managerial flexibility and incentivize population growth.

Although delisted, or otherwise stable, populations are not the main targets for
HCPs, they can be included as part of a larger plan to conserve wide ranges of habitat;

11 In one specific calibration, where ω = αg/2, the optimal feedback control diagram is identical to Fig. 8.
But in this case we rule out alternate equilibria from the {y∗

h , ymax
x } scenario because it violates the adjoint

associated with μx . Equilibria from the {y∗
h , 0} scenario are discarded using arguments from Subsect. 3.1.4

and a positive path to the double singular solution still does not exist.
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some regional HCPs are already developed this way (DOI 1996). Multi-agency HCPs
could be made more expansive by giving federal land managing agencies a primary
role in region-wide conservation efforts. HCPs could also be made more appealing to
the public (especially private landowners) through incentive-based schemes like ‘no
surprises’, ‘safe harbor’ and ‘candidate conservation’ agreements that support species
conservation. HCPs may not be the ultimate solution to species conservation, but they
remain an important stepping-stone towards a long-run conservation solution.

Acknowledgments Josh Abbott, Rick Horan and the ECOSERVICES group at Arizona State University
provided helpful comments on early drafts of this manuscript. KRS was partially supported by the Alfred
P. Sloan foundation, the More Graduate Education at Mountain States Alliance (MGE@MSA), Alliances
for Graduate Education and the Professoriate (AGEP) [National Science Foundation (NSF) Cooperative
Agreement No. HRD-0450137], and the NSF Alliance for faculty diversity postdoctoral fellowship [NSF
Grant DMS-0946431]. The regular disclaimers apply.

References

Arrow K (1968) Optimal capital policy with irreversible investment. In: Wolfe JN (ed) Value, capital, and
growth, papers in honour of Sir John Hicks. Edinburgh University Press, Edinburgh, pp 1–19

Barbier E, Schulz C (1997) Wildlife, biodiversity and trade. Environ Dev Econ 2:145–172
Barnes JI (1996) Changes in the economic use value of elephant in Botswana: the effect of international

trade prohibition. Ecol Econ 18:215–230
Bean MJ (1998) The Endangered Species Act and private land: four lessons learned from the past quarter

century. Envtl L Rep 28:10701–10710
Bean MJ, Wilcove DS (1996) Ending the impasse. Envtl. Forum 13:22–29
Brock W, Kinzig A, Perrings C (2009) Modeling the economics of biodiversity and environmental hetero-

geneity. Environ Resour Econ 46:43–58
Brown GMJ, Shogren JF (1998) Economics and the endangered species act. J Econ Perspect 12:3–20
Bryson AE, Ho YC (1975) Applied optimal control: optimization, estimation, and control. Hemisphere

Publishing, New York
Clark CW (2005) Mathematical bioeconomics, the optimal management of renewable resources, 2nd edn.

Wiley, Hoboken
CogginsGC,WilkinsonCF, Leshy JD (1993) Federal public land and resources law, 3rd edn. TheFoundation

Press, Westbury, New York
Conrad JM, Clark CW (1987)Natural resource economics notes and problems. CambridgeUniversity Press,

New York
Courchamp F, Clutton-Brick T, Grenfell B (1999) Inverse density dependence and the Allee effect. Trends

Ecol Evol 14:405–410
Dasgupta P, Maler K-G (2000) Net national product, wealth, and social well-being. Environ Dev Econ

5:69–93
Dasgupta P,Maler K-G, Barrett S (1999) Intergenerational equity, social discount rates and global warming.

In: Portney P, Weyant J (eds) Discounting and intergenerational equity. Resources for the Future,
Washington DC

Eichner T, Pethig R (2009) Pricing the ecosystem and taxing ecosystem services: a general equilibrium
approach. J Econ Theory 144:1589–1616

Fenichel EP, Horan RD (2007) Jointly-determined ecological thresholds and economic trade-offs in wildlife
disease management. Nat Resour Model 20:511–547

Fenichel EP, Horan RD, Bence JR (2010) Indirect management of invasive species with bio-control: A
bioeconomic model of salmon and alewife in Lake Michigan. Resour Energy Econ 32:500–518

Fister K, Lenhart S, McNally J (1998) Optimizing chemotherapy in an HIV model. Electron J Differ Eq
32:1–12

Fleming W, Rishel R (1975) Deterministic and stochastic optimal control. Springer, New York
Freeman AMI (2003) The measurement of environmental and resource values: theory and methods, 2nd

edn. Resources For the Future, Washington D.C.

123



Bioeconomic analysis supports the endangered species act 845

Godfray HCJ (2011) Food and biodiversity. Science 333:1231–1232
Hoffman JD, Genoways HH, Jones RR (2010) Factors influencing long-term population dynamics of prong-

horn (Antilocapra americana): evidence of an Allee effect. J Mammal 91:1124–1134
Hood LC (1998) Frayed safety nets: conservation planning under the Endangered Species Act. Defenders

of Wildlife, Washington, D.C.
Homans F, Horie T (2011) Optimal detection strategies for an established invasive pest. Ecol Econ 70:1129–

1138
Horan RD, Wolf CA (2005) The economics of managing infectious wildlife disease. Am J Agr Econ

87:537–551
Horan RD, Fenichel EP, Drury KLS, Lodge DM (2011) Managing ecological thresholds in coupled

environmental-human systems. P Natl Acad Sci-Biol 108:7333–7338
Hosack DA, Miller PS, Hervert JJ, Lacy RC (2002) A population viability analysis for the endangered

Sonoran pronghorn, Antilocapra americana sonoriensis. Mammalia 66:207–229
Innes R, Polasky S, Tschirhart J (1998) Taking, compensations and endangered species protection on private

lands. J Econ Perspect 12:35–52
Kareiva P et al (1999)Using science in habitat conservation plans.American Institute ofBiological Sciences,

Washington, D.C.
Kellner JB, Sanchirico JN, Hastings A, Mumby PJ (2011) Optimizing for multiple species and multiple

values: tradeoffs inherent in ecosystem-based fisheries management. Conserv Lett 4:21–30
Langpap C (2006) Conservation of endangered species: Can incentives work for private Landowners? Ecol

Econ 57:558–572
Langpap C, Kerkvliet J (2010) Allocating conservation resources under the endangered species act. Am J

Agr Econ 92:110–124
LangpapC,Kerkvliet J (2012) Endangered species conservation on private lands: assessing the effectiveness

of habitat conservation plans. J Environ Econ Manag 64:1–15
Lenhart S, Workman JT (2007) Optimal control applied to biological models. In: Chapman & Hall/CRC

Mathematical and Computational Biology series, Boca Raton, FL
Lewis DJ, Plantinga AJ, Nelson E, Polasky S (2011) The efficiency of voluntary incentive policies for

preventing biodiversity loss. Resour Energy Econ 33:192–211
Loomis JB, White DS (1996) Economic benefits or rare and endangered species: summary and meta-

analysis. Ecol Econ 18:197–206
Merrifield J (1996) A market approach to conserving biodiversity. Ecol Econ 16:217–226
Mehta SV, Haight RG, Homans FR, Polasky S, Venette RC (2007) Optimal detection and control strategies

for invasive species management. Ecol Econ 61:234–245
PershaL,AggrawalA,ChhatreA (2011) Social and ecological synergy: local rulemaking, forest livelihoods,

and biodiversity conservation. Science 331:1606–1608. doi:10.1126/science.1199343
Polasky S, Costello C, McAusland C (2004) On trade, land-use and biodiversity. J Environ Econ Manag

48:911–25
Rondeau D (2001) Along the way back from the brink. J Environ Econ Manag 42:156–182
Rosenzweig ML (2003) Win-win ecology: how the earth’s species can survive in the midst of human

enterprise. Oxford University Press, Oxford
Sanchirico JN, Wilen JE, Coleman C (2010) Optimal rebuilding of a metapopulation. Am J Agr Econ

92:1087–1102
Sheridan TE (2000) Human ecology of the Sonoran Desert. In: Phillips SJ, Comus PW (eds) A natural

history of the Sonoran Desert. Arizona-Sonora Desert Museum Press, Tucson, pp 105–118
Shilling F (1997) Do habitat conservation plans protect endangered species? Science 276:1662–1663
Shogren JF, Tschirhart J, Anderson T, Ando AW, Beissinger SR, Brookshire D, Brown GM, Coursey D,

Innes R, Meyer SM, Polasky S (1999) Why economics matters for endangered species protection.
Conserv Biol 13:1257–1261

Skillen J (2009) The nation’s largest landlord: the bureau of land management in the American West.
University Press of Kansas, Lawrence

Sorice MG, Haider W, Conner JR, Ditton RB (2011) Incentive structure of and private landowner partici-
pation in an endangered species conservation program. Conserv Biol 25:587–596

Stokstad E (2005) What’s wrong with the endangered species act? Science 309:2150–2152
Swanson TM, Barbier EB (1992) Economics for the wilds; wildlands, wildlife, diversity and development.

Earthscan, London

123

http://dx.doi.org/10.1126/science.1199343


846 K. R. Salau, E. P. Fenichel

Tracy CR, Averill-Murray R, Boarman WI, Delehanty D, Heaton J, McCoy E, Morafka D, Nussear K,
Hagerty B, Medica P (2005) Desert Tortoise Recovery Plan Assessment. DTRPAC Report: http://
www.fws.gov/arizonaes/Documents/SpeciesDocs/Desert-Tortoise/DTRPACreport.pdf. Accessed 19
Dec 2013

US Department of the Interior (DOI), U.S. Fish and Wildlife Service, U.S. Department of Commerce,
National Oceanic and Atmospheric Administration, and National Marine Fisheries Service (1996)
Habitat conservation planning and incidental take permit processing handbook

USFish andWildlife Service (FWS) (1996) Piping plover (Charadriusmelodus), Atlantic Coast population,
revised recovery plan. Hadley, Massachusetts

US Fish and Wildlife Service (FWS), Region 2 (2002) Recovery criteria and estimates of time for recovery
actions for the Sonoran pronghorn a supplement and amendment to the 1998 final revised Sonoran
pronghorn recovery plan

US Fish andWildlife Service (FWS) (2005a) Endangered and threatened wildlife and plants; regulation for
nonessential experimental populations of the western distinct population segment of the gray wolf;
final rule

US Fish and Wildlife Service (FWS) (2005b) Middle Rio Grande Bosque initiative: FY 2005 Projects.
http://www.fws.gov/southwest/mrgbi/Projects/2005/Table/Index.html. Accessed 25 Dec 2013

US Fish and Wildlife Service (FWS) (2007) Recovery plan for the Sierra Nevada Bighorn Sheep. Califor-
nia/Nevada Operations Office, US Fish and Wildlife Service

US Fish and Wildlife Service (FWS) (2011a) News release: interior announces next steps in protection,
recovery, and scientific management of wolves

US Fish and Wildlife Service (FWS) (2011b) Revised recovery plan for the northern spotted owl (Strix
occidentalis caurina). US Department of Interior, Portland, Oregon, USA

US Fish and Wildlife Service (FWS) (2013) Joint venture program awards grants to promote fish and
wildlife conservation in the Great Lakes. http://www.fws.gov/midwest/news/665.html. Accessed 25
Dec 2013

123

http://www.fws.gov/arizonaes/Documents/SpeciesDocs/Desert-Tortoise/DTRPACreport.pdf
http://www.fws.gov/arizonaes/Documents/SpeciesDocs/Desert-Tortoise/DTRPACreport.pdf
http://www.fws.gov/southwest/mrgbi/Projects/2005/Table/Index.html
http://www.fws.gov/midwest/news/665.html

	Bioeconomic analysis supports the endangered  species act
	Abstract
	1 Introduction
	2 Material and methods
	2.1 A model for habitat quality and population growth
	2.2 A complete market for conservation
	2.3 Solving the social planner problem
	2.3.1 Deriving partial singular solutions
	2.3.2 Deriving the double singular solution


	3 Results and discussion
	3.1 Numeric example
	3.1.1 Bang-bang controls
	3.1.2 Partial singular solution for habitat enhancement, maximum take-{ yhast,yxmax  }
	3.1.3 No habitat enhancement, partial singular solution for take-{ 0,yxast }
	3.1.4 Maximum habitat enhancement, partial singular solution for take-{ yhmax ,yxast }
	3.1.5 Partial singular solution for habitat enhancement, no take-{ yhast,0 }
	3.1.6 Optimal feedback control diagram

	3.2 Recovery and post-recovery under the ESA

	4 Functional uncertainty analysis
	4.1 Nonlinear benefit function
	4.2 Nonlinear cost of habitat investment
	4.3 Intrinsic growth of habitat quality

	5 Conclusion
	Acknowledgments
	References




