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Abstract Density dependent Markov population processes with countably many
types can often be well approximated over finite time intervals by the solution of
the differential equations that describe their average drift, provided that the total pop-
ulation size is large. They also exhibit diffusive stochastic fluctuations on a smaller
scale about this deterministic path. Here, it is shown that the individuals in such
processes experience an almost deterministic environment. Small groups of individu-
als behave almost independently of one another, evolving as Markov jump processes,
whose transition rates are prescribed functions of time. In the context of metapopula-
tion models, we show that ‘individuals’ can represent either patches or the individuals
thatmigrate among the patches; in host–parasite systems, they can represent both hosts
and parasites.
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1 Introduction

In a series of papers motivated by models of structured metapopulations (Levins 1969;
Hanski and Gilpin 1991) and parasitic disease transmission (Kretzschmar 1993), the
authors have extended Kurtz’s (1970, 1971) theory to provide laws of large numbers
and central limit theorems for Markov population processes with countably many
types of individual, together with estimates of the approximation errors: see Barbour
and Luczak (2008, 2012a, b). These theorems provide a good description of the overall
behaviour of such processes, when the population size is large. However, as observed
by Léonard (1990), many ecological models, when seen from the perspective of the
individuals themselves, can be interpreted as interacting particle systems. It is then of
interest to be able to describe the behaviour of (small groups of) individuals within the
large system. Under very stringent assumptions on the transition rates, in particular
requiring that they be uniformly bounded, he proves a ‘propagation of chaos’ theo-
rem, showing that individuals evolve almost independently of one another, as Markov
processes whose transition rates are determined by the bulk behaviour of the system.

In this paper, we establish an analogous result for systems with countably many
types, under much less restrictive conditions. We formulate a model that is general
enough to encompass many host parasite systems and structuredmetapopulation mod-
els. The main tool used in showing the asymptotic independence of individuals in such
processes is to couple the process describing the evolution of individuals in the original
system with one in which they evolve independently. The coupling is constructed by
matching the transition rates in the two processes, and the argument is described in
Sect. 2.

In order to show that the coupling is close, we rely on the quantitative law of large
numbers proved in Barbour and Luczak (2012a). The conditions needed for the law of
large numbers have already been shown to be satisfied for a number of examples from
the literature, including the models of Arrigoni (2003), Barbour and Kafetzaki (1993),
Kretzschmar (1993) and Luchsinger (2001a, b). However, some work is required to
find explicit conditions based on the parameters of our general model under which the
law holds; this is accomplished in Sect. 3. The paper concludes with examples taken
from Metz and Gyllenberg (2001) and from Kretzschmar (1993).

2 Main results

We begin by formulating our models in a way which explicitly reflects their origins
in metapopulation and parasitic disease modelling. The basic description is in terms
of the numbers of patches of each of a countable number of types. The type of a patch
is determined by the numbers of animals of each of d different varieties present in
the patch, indexed by i = (i1, . . . , id) ∈ Z

d+. For instance, a patch may represent a
host, and its type the numbers of parasites of various different species that it harbours.
However, an animal’s varietymay also indicate its developmental stage, or its infection
status, so that its variety may change over its lifetime. We also define d further types,
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Structured metapopulation models 715

to account for animals of the different varieties that are in transit between patches.
Thus the possible patch types are indexed by Z := Z1 ∪ Z2, where Z1 = Z

d+
and Z2 = {1, . . . , d}. In these terms, the state space is expressed as X := {X ∈
Z
Z+ ,

∑
z∈Z Xz < ∞}. The interpretation is that X i records the number of patches of

type i, i ∈ Z1, whereas Xl , 1 ≤ l ≤ d, denotes the number of migrating animals of
variety l. The restriction

∑
z∈Z Xz < ∞ in the definition ofX constrains total numbers

of patches and animals to be finite. Our model for the evolution of the metapopulation
consists of a family XN := (XN (t), t ≥ 0) of pure jump Markov processes on X ,
indexed by N ∈ N, with N to be thought of as a typical number of patches in the
process XN . Writing e(z) for the z-coordinate vector in RZ+ , z ∈ Z , and el for the l-th
coordinate vector in Z

d , the transition rates for XN are assumed to be given by

I : X → X + e(j) − e(i) at rate X i{λ̄ij + λij(x)}, i, j ∈ Z1;
II : X → X + e(i) at rate Nβi(x), i ∈ Z1;

III : X → X − e(i) at rate X i{δ̄i + δi(x)}, i ∈ Z1;
IV : X → X + e(l) + e(i − el) − e(i) at rate X i{γ̄il + γil(x)}, i ∈ Z1, 1 ≤ l ≤ d;
IV′ : X → X + e(l) at rate

∑
j∈Z1

Xj{γ̄ ′
jl + γ ′

il (x)}, 1 ≤ l ≤ d;
V : X → X + e(i + el) − e(i) − e(l) at rate Xl xiσli(x), i ∈ Z1, 1 ≤ l ≤ d,

VI : X → X − e(l) at rate Xl{ζ̄l + ζl(x)}, 1 ≤ l ≤ d,

where x := N−1X ∈ {x ′ ∈ RZ+ , ‖x ′‖1 < ∞} =: X ′, and ‖x‖1 := ∑
z∈Z xz .

The transitions I correspond to changes in the type of a patch, because of births,
deaths and changes of status involving animals within the patch, or as a result of
infection or catastrophe, or of immigration from outside the metapopulation, and we
set λ̄ii = λii(·) = 0, i ∈ Z1. Then II and III correspond to the creation and destruction
of patches, IV andVconcern themigration of animals of the different varieties between
patches, andVI the deaths of animals duringmigration. The transitions IV′ allow for the
possibility of an individual being born as a migrant, as is allowed in our first example,
in Sect. 4. More complicated transitions of this kind could have been incorporated, but
the biological motivation for doing so does not seem compelling. The parameters λ̄ij,
δ̄i, γ̄il , γ̄ ′

il and ζ̄l represent fixed rates of transition per patch. To ensure that the overall
rate of jumps is finite at any x ∈ N−1X , it is necessary to have

∑
j∈Z1

λ̄ij < ∞ for
all i ∈ Z1. The corresponding quantitieswithout the bars, togetherwithσli(·) andβi(·),
represent state dependent components of the transition rates. For each x ∈ X ′, it is
then also necessary to have

∑

j∈Z1

λij(x) < ∞,
∑

j∈Z1

βj(x) < ∞ and
∑

j∈Z1

xiσli(x) < ∞; (2.1)

further assumptions are added in Sect. 3. In transition IV, we require γ̄il = γil(x) = 0
whenever il = 0, to avoid ever having il < 0, which would be biologically meaning-
less.

Let T > 0 be a constant; we study the evolution of the metapopulation over the
interval [0, T ]. Under further assumptions on the transition rates I–VI and on the initial
condition xN (0), it can be shown that, with high probability, xN (t) is uniformly close
to the solution x of a deterministic integral equation, which is the analogue of the
usual deterministic drift differential equations found in finite dimensional problems.
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716 A. D. Barbour, M. J. Luczak

In Sect. 3, we illustrate how to use the results of Barbour and Luczak (2012a) to justify
this. For the rest of this section, we assume that

P

[

sup
0≤t≤T

‖xN (t) − x(t)‖μ > εN

]

≤ PT (N , εN ), (2.2)

for some (small) εN and PT (N , εN ), and for some norm ‖ · ‖μ, and show how (2.2)
can be used to establish the joint behaviour of groups of individuals in the process XN .

We begin by investigating the behaviour over time of the type of a single patch P .
The transitions I, IV and V each contain elements corresponding to the rate of change
of type of a patch that is currently of type i, with the rates depending on the current
state of the whole system, and the death rate of such a patch is given in III. Thus we can
single out the transition rates for the patchP , with its evolution only being Markovian
if the current state x of the whole system is adjoined. For any i, j ∈ Z1 and 1 ≤ l ≤ d,
these take the form

i → j at rate λ̄ij + λij(x), ‖j − i‖1 ≥ 2;
i → j at rate λ̄ij + λij(x) + γ̄il + γil(x); j = i − el
i → j at rate λ̄ij + λij(x) + xlσli(x); j = i + el
i → 	 at rate δ̄i + δi(x),

(2.3)

with 	 a state to represent that the patch has been destroyed. We let YN denote the
process describing the time evolution of the type assigned to P , with YN (t) taking
values in Z1 ∪ 	; the N -dependence reflects that its transition rates are as described
in (2.3), but with xN (t) in place of x for the rates at time t .

Analogously, we could define a process representing the life history of an animalA
in the metapopulation. The migration transitions IV, V and VI are easy to interpret,
and the destruction of a patch in III implies the death of any animals in that patch.
The transitions I are more complicated. Considering an animal of variety l, its death
is typically recorded in a transition in which jl ≤ il − 1 (several animals of the same
variety may die as a result of the same event), but a change of developmental stage,
for instance, may also result in jl = il − 1. Then, for unicellular animals, division is
recorded most simply as jl = il + 1, though it may be useful to interpret the same
event as the death of the original animal at the same time as the birth of two offspring.
Furthermore, transitions in which il does not change may represent births of animals
that are directly associated with the particular animal of variety l being considered, as
when an adult gives birth to juveniles that are represented as a distinct variety; such
events are naturally to be recorded in a life history. This suggests defining a life history
process ZN := {(ZN0(t), . . . , ZNd(t)), t ≥ 0} for an animal A, whose statespace is

((Z1 × {1, 2, . . . , d}) ∪ {1, 2, . . . , d} ∪ 	) × Z
d+.

A value ZN0(t) ∈ Z1×{1, 2, . . . , d} denotes the the type of patch in whichA is living
and its current variety. Then ZN0(t) = l if A is of variety l and in migration, and, if
ZN0(t) = 	, the animal A has died before time t . The values ZNl(t), 1 ≤ l ≤ d,
record the numbers of children of the different varieties to whichA has given birth up
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Structured metapopulation models 717

to time t . For i ∈ Z1, l, l ′ ∈ {1, 2, . . . , d} and m, s ∈ Z
d+, the transition rates can be

represented in the form

((i, l),m) → ((i + s, l),m + s) at rate λ̄
(1)
ils + λ

(1)
ils (x);

((i, l),m) → ((j, l),m) at rate λ̄
(2)
ij + λ

(2)
ij (x);

((i, l),m) → ((i − el + el ′ , l ′),m) at rate λ̄
(3)
ill ′ + λ

(3)
ill ′ (x);

((i, l),m) → ((i, l),m + el ′) at rate λ̄
(4)
ill ′ + λ

(4)
ill ′ (x);

((i, l),m) → (	,m) at rate δ̄′
il + δ′

il(x);
((i, l),m) → (l,m) at rate i−1

l {γ̄il + γil(x)};
(l,m) → ((i + el , l),m) at rate xiσli(x);
(l,m) → (	,m) at rate ζ̄l + ζl(x).

(2.4)

Here, the quantities λ̄
(1)
ils and λ

(1)
ils (x) represent the rates at which, in a type i patch, an

animal of variety l produces offspring in the composition s, and they would form a
part of the rates λ̄i,i+s and λi,i+s(x); they are assumed not to depend on m. Similar
considerations apply to the quantities λ̄

(2)
ij and λ

(2)
ij (x), which relate to events changing

the composition of the patch containing A that do not result in offspring for A or a
change in its variety, including migration of other animals from the patch or the
arrival of migrants. Thus, for instance, one might have λ̄i,i+el = ϕ1l il , λ̄i,i−el = ϕ2l il ,
γ̄il = ilϕ3l and σli(x) = σli, 1 ≤ l ≤ d, corresponding to constant per capita
birth, death, migration and immigration rates ϕ1l , ϕ2l , ϕ3l and σli of individuals of
variety l. These would imply λ̄

(1)
ilel

= ϕ1l , λ̄
(2)
i,i+el

= (il − 1)ϕ1l , λ
(2)
i,i+el

(x) = xlσli,

and λ̄
(2)
i,i−el

= (il − 1)(ϕ2l + ϕ3l) for transitions only involving l-animals, and, for

l ′ 
= l, λ̄
(2)
i,i+el′ = il ′ϕ1l ′ , λ

(2)
i,i+el′ (x) = xl ′σl ′i, and λ̄

(2)
i,i−el′ = il ′(ϕ2l ′ + ϕ3l ′). The

transition rates λ̄
(3)
ill ′ and λ

(3)
ill ′ (x) relate to events that change A’s variety from l to l ′;

it is tacitly assumed that no other changes take place when this happens, but more
general possibilities could have been allowed. The rates λ̄

(4)
ill ′ and λ

(4)
ill ′ (x) relate to

births of migrants as offspring of an l-animal. The rates δ̄′
il ≥ δ̄i and δ′

il(x) ≥ δi(x)
include a contribution from the mortality rate of an animal of variety l in a patch of
type i, in addition to the rate of destruction of the patch itself. As for the single patch
dynamics, the rates for the process ZN at time t are obtained by replacing x with xN (t)
in the expressions (2.4).

These constructions immediately suggest approximating the processes YN and ZN

by random processes Y and Z , in which the transition rates at time t are obtained by
replacing x by x(t) in (2.3) and (2.4). Consider first the processes YN and Y . Suppose,
for some δ > 0, that the functions λij, γil , σli and δi are all of uniformly bounded
Lipschitz μ-norm, for x in a set BT,δ := {x ∈ X ′ : inf0≤t≤T ‖x − x(t)‖μ ≤ δ} of
points close to the deterministic trajectory (x(t), 0 ≤ t ≤ T ). Then, in view of (2.3),
the jump rates of YN and Y at any time t ∈ [0, T ] differ only by a small amount, on
the event that sup0≤t≤T ‖xN (t) − x(t)‖μ ≤ εN , provided that N is large enough that
εN ≤ δ. Indeed, defining f ∗ := supx∈BT,δ

| f (x)| for any f : X → R, and setting

|Df |(x) := lim sup
ε→0

sup
0<‖y−x‖μ<ε

{| f (y) − f (x)|/‖y − x‖μ},
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718 A. D. Barbour, M. J. Luczak

it follows that, if |x − x(t)| ≤ ε < δ and 0 ≤ t ≤ T , then the sum of the differences
of the transition rates out of x and x(t) is bounded by

sup
i∈Z1

⎧
⎨

⎩

∑

j∈Z1

|λij(x) − λij(x(t))| +
d∑

l=1

|γil(x) − γil(x(t))|

+
d∑

l=1

|xlσli(x) − xl(t)σli(x(t))| + |δi(x) − δi(x(t))|
}

≤ εDY (T, δ),

where, writing σ̂li(x) := xlσli(x), we define

DY (T, δ):= sup
i∈Z1

⎧
⎨

⎩

∑

j∈Z1

|Dλij|∗ +
d∑

l=1

{|Dγil |∗ + |Dσ̂li|∗} + |Dδi|∗
⎫
⎬

⎭
.

Thus, until the time at which first ‖xN (t) − x(t)‖μ > εN , the aggregate difference
between the jump rates of the processes YN and Y is bounded by εN DY (T, δ), if also
t ≤ T . This immediately leads to the following theorem.

Theorem 2.1 Suppose that (2.2) holds, and that DY (T, δ) < ∞ for some δ > 0.
Then, if YN (0) = Y (0) and εN ≤ δ, the processes YN and Y can be constructed on
the same probability space in such a way that

P[YN (t) = Y (t) for all 0 ≤ t ≤ T ] ≥ 1 − {T εN DY (T, δ) + PT (N , εN )}.

Proof Let Y1 and Y2 be time-inhomogeneous Markov processes on a countable state
space Y , with transition rates q1(t, y, y′) and q2(t, y, y′) respectively. Starting with
Y1(0) = Y2(0) = y0, the processes can be coupled by representing them as the
marginals of a joint process ((Y1(t),Y2(t)), t ≥ 0), whose transition rates at points
on the diagonal are given by

q(t, (y, y), (y′, y′)) := min{q1(t, y, y′), q2(t, y, y′)};
q(t, (y, y), (y, y′)) := {q2(t, y, y′) − q1(t, y, y

′)}+;
q(t, (y, y), (y′, y)) := {q1(t, y, y′) − q2(t, y, y

′)}+,

and with the components evolving independently when off the diagonal. Let τ :=
inf{t ≥ 0 : Y1(t) 
= Y2(t)}, and let Eη

t denote the event {Q(s,Y1(s)) ≤ η for all 0 ≤
s ≤ t}, where

Q(t, y):=
∑

y′∈Y
|q2(t, y, y′) − q1(t, y, y

′)|.

Then the one-jump process (I [{τ ≤ t} ∩ Eη
t ], t ≥ 0) has compensator
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Structured metapopulation models 719

At :=
∫ t∧τ

0
Q(s,Y1(s))I [Eη

s ] ds ≤ ηt.

This implies that, for any T > 0,

P[{τ ≤ T } ∩ Eη
T ] = E{I [{τ ≤ T } ∩ Eη

T ]} = EAT ≤ ηT,

fromwhich it follows thatP[τ ≤ T ] ≤ ηT +P[(Eη
T )c]. Thus this construction realizes

Y1 and Y2 on the same probability space, in such a way that the two remain identical
up to time T with probability at least 1 − (ηT + P[(Eη

T )c]).
Now, taking YN for Y1 and Y for Y2, and setting η = εN DY (T, δ), the theorem

follows from (2.2). ��
Since all the transitions in (2.3) involve a single patch, the theoremgeneralizes easily

to any group of K patches. The transition rates for the process (Y [1]
N ,Y [2]

N , . . . ,Y [K ]
N )

at time t from a state (i(1), . . . , i(K )) to one in which i(k) is replaced by i(k
′), with

i(k
′) either of the form i(k) + j, j ∈ Z

d , or 	, are given by the formulae in (2.3) with
i(k) for i, and with xN (t) for x . The rates for a vector of independent processes Y [k],
1 ≤ k ≤ K , each distributed as Y , with Y [k](0) = i(k), are the corresponding rates
with x(t) for x . This leads to the following corollary.

Corollary 2.2 Under the conditions of Theorem 2.1,

P[(Y [1]
N (t), . . . ,Y [K ]

N (t)) = (Y [1](t), . . . ,Y [K ](t)) for all 0 ≤ t ≤ T ]
≥ 1 − {KT εN DY (T, δ) + PT (N , εN )}.

Thus the joint distribution of KN patches is asymptotically close to that of KN inde-
pendently evolving patches over any fixed interval [0, T ], as N → ∞, if KN εN → 0,
PT (N , εN ) → 0 and DY (T, δ) < ∞ for some δ > 0.

For the life history process of an animal, the argument for a single individual is
very similar. We consider the differences in the transition rates (2.4) with arguments
xN (t) and x(t); defining

DZ (T, δ) := max
1≤l≤d

⎛

⎜
⎝ sup

i∈Z1

⎧
⎪⎨

⎪⎩

∑

s∈Zd+

|Dλ
(1)
ils |∗ +

∑

j∈Z1

|Dλ
(2)
ij |∗ +

d∑

l ′=1

|Dλ
(3)
ill ′ |∗

+
d∑

l ′=1

|Dλ
(4)
ill ′ |∗ + |Dδ′

i|∗ + |Dγil |∗ + |Dσ̂ ′
li|∗

⎫
⎬

⎭
+ |Dζl |∗

⎞

⎠ ,

where σ̂ ′
li(x) := xiσli(x), this gives the following result.

Theorem 2.3 Suppose that (2.2) holds, and that DZ (T, δ) < ∞ for some δ > 0.
Then, if εN ≤ δ and ZN (0) = Z(0), the processes ZN and Z can be constructed on
the same probability space in such a way that

P[ZN (t) = Z(t) for all 0 ≤ t ≤ T ] ≥ 1 − {T εN DZ (T, δ) + PT (N , εN )}.
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720 A. D. Barbour, M. J. Luczak

For the joint distribution of a group of K animals, asymptotic independence is
not quite as straightforward, since all but the fourth and the last transitions in (2.4)
simultaneously change the state of any other animal in the same patch. Hence it is
necessary to begin with all animals in different patches, and the simple coupling
breaks down once two of them are to be found in the same patch. This can only occur
when a migrant enters a patch that already contains another of the K animals. For a
given animal of variety l, an upper bound for the maximum rate at which it can enter
such a patch is N−1(K −1) supi |σli|∗, because the (K −1) other animals of the group
can be in at most K − 1 distinct patches, and σli(x) ≤ |σli|∗; and there are K animals
that could migrate into such a patch. Hence the event that no two of the K animals are
in the same patch during the interval [0, T ] has probability bounded by K 2N−1σ+,
where σ+ := supi∈Z1

max1≤l≤d |σli|∗. This leads to the following corollary.

Corollary 2.4 Suppose that (2.2) holds, and that DZ (T, δ) < ∞ for some δ > 0.
Then, if εN ≤ δ and the K individuals are initially all in distinct patches, we have

P[(Z [1]
N (t), . . . , Z [K ]

N (t)) = (Z [1](t), . . . , Z [K ](t)) for all 0 ≤ t ≤ T ]
≥ 1 − {KT εN DZ (T, δ) + T K 2N−1σ+ + PT (N , εN )},

where the Z [k], 1 ≤ k ≤ K, are independent copies of Z with Z [k](0) = Z [k]
N (0).

Thus, if (2.2) holds and DZ (T, δ) < ∞ for some δ > 0, any group of KN animals
that are initially in different patches behaves asymptotically as a group of independent
individuals, under the same asymptotic scenario as before, if also N−1K 2

N → 0 as
N → ∞.

Themodel inArrigoni (2003) does not conform to our general prescription, because
migration is assumed to take place instantaneously, rather than by way of an interme-
diate migration state. However, the state dependent elements of its transition rates are
locally uniformly Lipschitz, and (2.2) holds, so that analogous theorems hold for this
model as well. We do not include instantaneous migration in our general formulation,
partly because it seems unrealistic, but mainly because, for the methods in Barbour
and Luczak (2012a) to be applied, only rather restrictive choices can be allowed for
the migration transitions. For instance, in the Arrigoni model, it is important that the
migration rate γ̄i out of patches with i individuals is given by γ̄i = γ i ; variants in
which i−1γ̄i increases with i would not lead to a locally Lipschitz drift F in (3.14)
below.

3 Establishing the law of large numbers

We now need to prove that (2.2) holds. For this, we need to find conditions on the
transition rates in I–VI that allow us to apply the results of Barbour and Luczak (2012a)
to the process XN . First, we need to make some small modifications to the setting in
the previous section. We start by augmenting the type space Z to Z̃ , by substituting
Z̃2 := {1, 2, . . . , d} × {0, 1} for Z2, where the type (l, 1) replaces the previous type l
in representing an individual of variety l in migration, and type (l, 0) is to be thought
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Structured metapopulation models 721

of as an unused place available for a migrant of variety l. Then, in transitions IV and
IV′, e(l) is replaced by e(l, 1)− e(l, 0) and, in transitions V and VI, −e(l) is replaced
by e(l, 0) − e(l, 1) and Xl by Xl1. The number Xl0 of patches of type e(l, 0) can be
deduced from the number Xl1 of e(l, 1) patches, since the sum Xl1 + Xl0 remains
constant in all transitions, and is therefore always the same as its initial value. However,
to prevent the number of type (l, 0) patches becoming negative, the process XN has
to be stopped at the time τ0,N := inf{t ≥ 0 : min1≤l≤d X N

l0 = 0}. So that this has
little effect on the process, XN (0) is chosen with XN

l0 ≥ Nhl , 1 ≤ l ≤ d, with the hl
so large that, for fixed T , the event {τ0,N ≤ T } has asymptotically small probability
as N → ∞. The reason for introducing the empty migration patches will emerge
shortly.

3.1 A priori bounds

We now introduce a measure ν of the size of a patch, defining ν(l, 0) = ν(l, 1) := 1
for 1 ≤ l ≤ d, and ν(i) := ‖i‖1+1, onemore than the number of individuals in a type i
patch. More flexible choices for ν are allowed in Barbour and Luczak (2012a), but this
suffices here. It is then necessary tomake assumptions ensuring that, for enough values
of r ∈ Z+, the empirical moments Sr (xN (t)) := ∑

z∈Z̃ν(z)r x Nz (t) remain bounded
with high probability as N increases, if they are initially bounded. Let J denote a finite
linear combination of coordinate vectors in Z̃ . Let J denote the jumps J that appear
in the transitions I–VI, with the above modification replacing e(l) by e(l, 1)− e(l, 0),
and let the associated transition rates be denoted by NαJ (x). Note that we can suppose
that x ∈ X ′, if the l coordinates in Z are identified with the (l, 1) coordinates in Z̃ ,
since the values x(l,0) do not appear in the expressions for the transition rates I–VI.
For J := ∑K

k=1 ake(j
(k)) ∈ J , write

ν+
r (J ):=

K∑

k=1

ak{ν(j(k))}r , (3.1)

and, for r ∈ Z+, define

Ur (x):=
∑

J∈J
αJ (x)ν

+
r (J ); Vr (x):=

∑

J∈J
αJ (x){ν+

r (J )}2. (3.2)

Then, in order to be able to apply the theorems of Barbour and Luczak (2012a), we
assume that, for some r (1) ≥ 1 and for all 0 ≤ r ≤ r (1),

∑

J∈J
αJ (N

−1X)|ν+
r (J )| < ∞ for each X ∈ X , (3.3)

and that, for suitable constants krl and all x ∈ X ′,
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U0(x) ≤ k01S0(x) + k04;
U1(x) ≤ k11S1(x) + k14;
Ur (x) ≤ {kr1 + kr2S0(x)}Sr (x) + kr4, 2 ≤ r ≤ r (1),

(3.4)

and, for some r (2) ≥ 1,

V0(x) ≤ k03S1(x) + k05;
Vr (x) ≤ kr3Sp(r)(x) + kr5, 1 ≤ r ≤ r (2),

(3.5)

are satisfied, where 1 ≤ p(r) ≤ r (1) for 1 ≤ r ≤ r (2).
In our setting, satisfying the condition (3.3) is straightforward except for the tran-

sitions of the form II, since, for X ∈ X , only finitely many of the X i are non-zero;
and transitions of the form II are also the only ones that make positive contributions
to U0(x). One plausible assumption, covering these and later conditions, is to require
that

βj(x) ≤ c′
j(‖x‖1 + 1), where

∑

j∈Z1

c′
j{ν(j)}r < ∞ for each r ∈ Z+. (3.6)

Here, and in what follows, c and c′ are used to denote generic constants. If the
types (l, 0) had not been introduced, there would also be positive contributions of∑

j∈Z1
Xjγ̄jl to U0(x) from transitions IV, and the most natural assumption for the

value of γ̄jl is γl jl , for some constant γl , corresponding to a constant per capitamigra-
tion rate for l-individuals. Thus

∑
j∈Z1

Xjγ̄jl would be bounded by amultiple of S1(x),
rather than by a multiple of S0(x), and so would not have come within the scope of
Barbour and Luczak (2012a). For the remaining conditions concerning Ur (x), r ≥ 1,
it is enough to assume that, for i ∈ Z1 and for all x ∈ X ′,

∑

j∈Z1

λ̄ij +
∑

j∈Z1

(λ̄ij + λij(x)){ν(j) − ν(i)}+ ≤ cν(i); (3.7)

∑

j∈Z1

(λ̄ij + λij(x))({ν(j)}r − {ν(i)}r )+ ≤ c{ν(i)}r (‖x‖1 + 1), (3.8)

and that, for 1 ≤ l ≤ d and for all x ∈ X ′,

σli(x) ≤ c;
∑

j∈Z1

xjσlj(x) ≤ c. (3.9)

For the conditions concerning Vr (x), r ≥ 0, with p(r) = 2r + 1 as in Barbour and
Luczak (2012a, b), we assume further that, for i ∈ Z1 and 1 ≤ l ≤ d and for all
x ∈ X ′,

δ̄i + δi(x) ≤ cν(i), γ̄jl + γil(x) ≤ cν(i) and γ̄ ′
il + γ ′

il(x) ≤ cν(i), (3.10)

and that
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∑

j∈Z1

(λ̄ij + λij(x))({ν(j)}r − {ν(i)}r )2 ≤ c{ν(i)}2r+1. (3.11)

3.2 The deterministic equation

The process xN := N−1XN has infinitesimal drift F0(x), x ∈ X ′, whose components
are formally given by

F0;i(x) :=
∑

j∈Z1

xj{λ̄ji + λji(x)} − xi
∑

j∈Z1

{λ̄ij + λij(x)} − xi{δ̄i + δi(x)}

+βi(x) +
d∑

l=1

xi+el {γ̄i+el ,l + γi+el ,l(x)} − xi

d∑

l=1

{γ̄il + γil(x)}

+
d∑

l=1

xl1{xi−elσl,i−el (x) − xiσli(x)}, (3.12)

for i ∈ Z1, and, for 1 ≤ l ≤ d,

F0;l1(x) :=
∑

j∈Z1

xj{γ̄jl + γjl(x) + γ̄ ′
jl + γ ′

jl(x)}

−xl1
∑

j∈Z1

xjσlj(x) − xl1{ζ̄l + ζl(x)}; (3.13)

these expressions only make sense if the j-sums are all finite. The drift in the (l, 0)
coordinate is given by −F0;l1(x), but we do not use it explicitly. Thus, for x ∈ X ′
such that F(x) exists, we can write

F0(x):=Ax + F(x), (3.14)

to be interpreted as an element of RZ+ , where

Aij := λ̄ji +
d∑

l=1

1{j=i+el }γ̄jl , i 
= j ∈ Z1;

Aii := −
∑

j∈Z1

λ̄ij − δ̄i −
d∑

l=1

γ̄il , i ∈ Z1;

Ail := 0, Ali := γ̄il + γ̄ ′
il , All := −ζ̄l , All ′ := 0, i ∈ Z1, 1 ≤ l, l ′ ≤ d,

(3.15)

with l in the indices of A as shorthand for (l, 1); and where
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Fi(x) :=
∑

j∈Z1

xjλji(x) − xi
∑

j∈Z1

λij(x) + βi(x) − xiδi(x) +
d∑

l=1

xi+elγi+el ,l(x)

−xi

d∑

l=1

γil(x) +
d∑

l=1

xl1{xi−elσl,i−el (x) − xiσli(x)}, (3.16)

for i ∈ Z1, and, for 1 ≤ l ≤ d,

Fl1(x) :=
∑

j∈Z1

xj{γjl(x) + γ ′
jl(x)} − xl1

∑

j∈Z1

xjσlj(x) − xl1ζl(x). (3.17)

The reason for splitting the drift as above is to treat models in which the transition rates
are not bounded as ν(i) increases—migration, birth and death rates proportional to the
numbers of individuals in a patch are very natural—enabling the theory of perturbed
linear operators to be applied.

We first assume that there is a real μ ∈ [1,∞)Z such that, for some w ≥ 0,

ATμ ≤ wμ, (3.18)

and use it to define the μ-norm

‖x‖μ:=
∑

z∈Z
μ(z)|xz | on X ′

μ := {x ∈ R
Z : ‖x‖μ < ∞}, (3.19)

with xl identified with xl1 as before. Note that, if (3.18) is assumed, we must have∑
z∈Z λ̄izμ(z) < ∞ for each i. Then, as in Barbour and Luczak (2012a, Theorem 3.1),

there exists a μ-strongly continuous semigroup {R(t), t ≥ 0} with elementwise
derivative R′(0) = A. Furthermore, if F : X ′

μ → X ′
μ is locally μ-Lipschitz and

‖x(0)‖μ < ∞, the integral equation

x(t) = R(t)x(0) +
∫ t

0
R(t − u)F(x(u)) du (3.20)

has a unique, μ-continuous solution on [0, T ] for any 0 < T < tmax, for some
tmax ≤ ∞. This x is the deterministic curve that approximates xN (t) when xN (0) is
μ-close enough to x(0).

From now on, we take μ(j) := ‖j‖1 + 1 for j ∈ Z1 and μ(l) := 1 for 1 ≤ l ≤ d.
Inequality (3.18) is then satisfied if

∑

j∈Z1

λ̄ij(μ(j) − μ(i)) +
d∑

l=1

(γ̄i−el ,l − γ̄il)μ(i − el) +
d∑

l=1

γ̄ ′
il ≤ wμ(i) (3.21)
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for all i ∈ Z1. In order then to deduce that F : X ′
μ → X ′

μ is locally μ-Lipschitz,
sufficient conditions are that, for 1 ≤ l ≤ d and i ∈ Z1, and for any R > 0,

σil(x), δi(x), γil(x), γ
′
il(x), ζl(x) and

∑

j∈Z1

λij(x) are uniformly bounded, and

δi(x), γil(x), γ
′
il(x), σil(x) and ζl(x) are μ-uniformly Lipschitz, in x ∈ BR;

∑

j∈Z1

|λij(x) − λij(y)| ≤ c‖x − y‖μ,
∑

j∈Z1

|βj(x) − βj(y)|μ(j) ≤ c‖x − y‖μ,

∑

j∈Z1

|λij(x) − λij(y)|μ(j) ≤ cμ(i)‖x − y‖μ and
∑

j∈Z1

λij(x)μ(j) ≤ cμ(i),

uniformly in x, y ∈ BR,

(3.22)

for suitable constants c = cR , where BR is the ball of radius R in X ′
μ.

3.3 The law of large numbers approximation

In order to apply the results of Barbour and Luczak (2012a), we still need to check
that their Assumption 4.2 is satisfied. Part (1) is satisfied with rμ = 1, becauseμ(z) =
ν(z) for all z ∈ Z̃ . For Part (2), we define ζ(i) := (‖i‖1 + 1)2d+5 for i ∈ Z1 and
ζ(l, 1) := ζ(l, 0) = 1 for 1 ≤ l ≤ d, and observe that then, using conditions (3.7)
and (3.10), the sum

Z :=
∑

j∈Z1

μ(j)(Ajj + 1)√
ζ(j)

= O

⎛

⎝
∑

j≥0

j (d−1)+2−(d+5/2)

⎞

⎠ < ∞.

This implies thatBarbour andLuczak (2012a,Assumption 4.2(2)) is satisfied, provided
that ζ satisfies Barbour and Luczak (2012a, Assumption (2.25)). Defining f (J ) :=∑K

k=1 |ak |ζ(j(k)) when J := ∑K
k=1 akj

(k), this in turn requires that

∑

J∈J
αJ (x) f (J ) ≤ {k1Sr (x) + k2}, x ∈ X ′, (3.23)

for some constants k1 and k2 and for some r ≤ r (2). However, this also follows from
conditions (3.7)–(3.10), if r = 2d + 6. Hence it is necessary to have r (2) ≥ 2d + 6
in (3.5) and thus r (1) ≥ 4d + 13 in (3.4).

Suppose now that the assumptions (3.6)–(3.11) of Sect. 3.1, and (3.18), (3.21)
and (3.22) of Sect. 3.2, are all satisfied. Then it follows from Barbour and
Luczak (2012a, Theorem 4.7) that, for a sequence of initial conditions satisfying

xN (0) ∈ X ′, N ≥ 1; S2d+6(xN (0)) ≤ C∗ for some C∗ < ∞, (3.24)

and
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‖xN (0) − x(0)‖μ = O(N−1/2
√
log N ) for some x(0) ∈ X ′

μ, (3.25)

the deterministic approximation (2.2) holds for any T , with

εN = kT N
−1/2

√
log N and PT (N , εN ) = k′

T N
−1 log N ,

for suitably chosen constants kT and k′
T . Note that Eq. (3.20) remains the same,

whatever the values hl , 1 ≤ l ≤ d, chosen as lower bounds for xNl0 . Hence, in view
of this approximation, it follows that the event {τ0,N ≤ T } has probability at most
PT (N , εN ) if the hl are chosen to satisfy hl ≥ sup0≤t≤T xl1 + δ for each l, for some
δ > 0, whenever N is so large that εN < δ. Thus, under the above conditions on the
rates for the transitions I–VI, the results of Sect. 2 all hold, with the above values of εN
and PT (N , εN ). In particular, groups of patches or of animals of sizes KN = O(Nα),
for any α < 1/2, behave asymptotically independently.

Remark 3.1 The assumptions concerning the transition rates are rather general, and
cover many biologically useful models. They can be extended somewhat, as far as
the permissible variation with x is concerned, by noting that the inequality (3.5), for
r ≥ 1, could be replaced by

Vr (x) ≤ kr3Sp(r)(x)(1 + S0(x)) + kr5;

this would require onlyminormodification to the proof of Barbour and Luczak (2012a,
Theorem 2.4). For our purposes, the bounds in (3.10) and (3.11) could then be relaxed
by multiplying their right hand sides by a factor (‖x‖1+1). However, it is not obvious
that the inequality in (3.7) can be relaxed in this way, and this restricts the freedom
for λij(x) to vary with x .

4 Examples

4.1 Example 1: The finite patch size models of Metz and Gyllenberg (2001)

The first model, with N patches and just one variety of animal, has transitions of the
form I–VI, with index set Z+ ∪ {D}, where D is used here as index for the migrants
(Metz and Gyllenberg use D to denote our xD). In their notation, in a patch with i
occupants, the birth rate is λ̄i,i+1 := iλi (1 − di ), the death rate λ̄i,i−1 := iμi , the
catastrophe rate λ̄i,0 := γi and the birth rate of (juvenile) migrants γ̄ ′

i D := iλi di ; here,
0 ≤ di ≤ 1 for all i . The arrival rate of a migrant into an i-patch is σDi (x) := αsi ,
where 0 ≤ si ≤ 1 for all i , and the death rate of a migrant is ζD := μD . All other
transition rates are zero; in particular, there is none of the explicit dependence on x
that would be allowed in our formulation, for functions such as λi j (x).

We take ν(i) = μ(i) = i + 1, i ∈ Z+, and ν(D) = μ(D) = 1. Then assump-
tion (3.6) is trivially satisfied, and (3.7) and (3.8) require λi to be bounded (so, as is
reasonable, the per capita birth rate of an animal is to be bounded), inwhich case (3.10)
is also satisfied. For (3.9), we require si to be bounded, which is satisfied since si are
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assumed to be probabilities. Condition (3.11) also involves γi and μi , and is satisfied
if, in addition, μi and i−1γi are bounded in i ≥ 1. The conditions (3.22) are trivially
satisfied, and (3.21) is satisfied for

w:= sup
i≥1

{λi (1 − di ) − μi − i−1γi + ((i − 1)λi−1di−1 − iλi di )},

finite if also ui := (i −1)λi−1di−1 − iλi di is bounded above in i ≥ 1. The quantity ui
is the amount by which the total migration from a patch declines, when the number of
individuals in the patch increases from i − 1 to i , and for this to be bounded is again
an entirely reasonable hypothesis. Finally, the quantities DY (T, δ) and DZ (T, δ) are
bounded, since the si are bounded. Hence, assuming that

λi , μi , i
−1γi , and ui are bounded, (4.1)

our theorems apply to the initial model of Metz and Gyllenberg (2001), for initial
conditions xN (0) satisfying (3.24) and (3.25). As it happens, the authors restricted
their model by imposing a maximal number of animals per patch ‘to make life easy’,
so that (4.1) is trivially satisfied in their context; but such a restriction is unnatural,
and we have shown that it can be replaced by (4.1). Metz and Gyllenberg use the
deterministic approximation x := {x(t), t ≥ 0} as the basis for their analysis, and
this is justified over any fixed finite time interval [0, T ] by the discussion in Sect. 3,
provided that N is large enough.

The results of Sect. 2 now show, in addition, that small groups of individuals behave
almost independently of each other, according to time inhomogeneous Markov jump
processeswhose transition rates are determined by x . For a chosen patchP , theMarkov
process has transition rates at time t given by

i → i + 1 at rate iλi (1 − di ) + xD(t)αsi , i ≥ 0;
i → i − 1 at rate iμi , i ≥ 2;
i → 0 at rate γi + μ11{1}(i), i ≥ 1.

(4.2)

Any particular animal A is born either as a migrant, or in a patch. Once in a patch, it
never migrates again. Its Markov process has transition rates at time t given by

(i,m) → (i + 1,m + 1) at rate λi (1 − di ); i ≥ 1
(i,m) → (i + 1,m) at rate (i − 1)λi (1 − di ) + xD(t)αsi ; i ≥ 2
(i,m) → (i − 1,m) at rate (i − 1)μi ; i ≥ 2
(i,m) → (i,m + 1) at rate λi di ; i ≥ 1
(i,m) → (	,m) at rate μi + γi ; i ≥ 1
(D, 0) → (i, 0) at rate αxi−1(t)si−1; i ≥ 1
(D, 0) → (	, 0) at rate μD.

(4.3)

In either case, the process depends on x(t) only through the arrival rates of migrants
into patches.

The second model of Metz and Gyllenberg (2001) has animals of two different
varieties, that interact through living in common patches, in that their per capita
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birth and death rates λ and μ and their migration parameters d and s vary with the
entire composition (i1, i2) of the populations of the two varieties in a patch. Under
assumptions analogous to (4.1), the deterministic process {x(t), t ≥ 0} with index set
Z2+ ∪ {D1, D2} again acts as a good approximation to the random process xN , and
small groups of individuals and patches behave asymptotically almost independently.
Sufficient conditions for this are bounded per capita birth, death, catastrophe and
migrant arrival rates, together with ui1,i2 being bounded in i1, i2 ≥ 0, where

ui, j :=(i − 1)λi−1, j di−1, j − iλi j di j + ( j − 1)λ∗
i, j−1d

∗
i, j−1 − jλ∗

i j d
∗
i j ;

here, the starred quantities are those for the second variety, and the unstarred those for
the first.

However, Metz and Gyllenberg are interested in using the approximation when just
a small number of animals of the second variety have been introduced into a resident
metapopulation consisting only of the first variety. Under such circumstances, the
development of the introduced variety has an essentially random component—it may
die out by chance, even if at a theoretical advantage—making it more reasonable to
treat it as a small group of individuals, of a different variety, evolving at random among
a resident population. The following discussion represents a theoretical justification
for the analysis in Metz and Gyllenberg (2001, Section 2(d)).

We begin by choosing xN (0) = x̃ N (0) + N−1KNeD2 , where x̃ N (0) is an initial
composition consisting only of individuals of the first variety, and ‖x̃ N (0)− x̃(0)‖μ =
O(N−1/2√log N ) for some fixed x̃(0) ∈ X ′

μ, which thus also consists only of 1-
individuals. Then, in the transition rates for any Markov process approximating indi-
vidual dynamics, the argument x(t) can be taken to be x̃(t), where x̃ denotes the
solution of (3.20) starting at x̃(0), provided that KN = O(Nβ) for any β < 1/2,
because then ‖xN (0) − x̃(0)‖μ = O(N−1/2√log N ) also. But since x̃(0) consists
only of 1-individuals, so does x̃(t) for all t > 0, and x̃(t) is the solution to the
deterministic equation for the initial model of Metz and Gyllenberg (2001), with the
parameters of the resident population.

Since a 2-juvenile, once arrived in a patch, never leaves it, the development of the
introduced species is best described in terms of the evolution of the patches that 2-
juveniles reach. Each such patch can be treated as an ‘individual’, and the 2-migrants
that leave it as its offspring, up to the time at which the patch contains no more
2-individuals. This patch process, of a ‘p-individual’, can thus be interpreted as a
life history process W , beginning with the juvenile 2-migrant, whose offspring are
the 2-migrants that leave its chosen patch. The entire process begins with a group
of KN juvenile 2-migrants, and the 2-migrant offspring of the resulting p-individuals
in turn initiate new W -processes, so that the entire process, if the bound deduced
from Corollary 2.4 is small, can be approximated by a Crump–Mode–Jagers (CMJ)
branching process (Crump and Mode 1968a, b; Jagers 1968; see also Jagers (1975,
Chapter 6)).

Let W (t) = ((i, j),m) indicate that, at time t , the patch contains i 1-individuals
and j 2-individuals, and that m 2-migrants have left the patch up to time t ; if (i, j) is
replaced by 	, this indicates that the initial juvenile and all of its offspring that did
not migrate, if there were any, have died, and D2 is used when the state consists of
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the single juvenile 2-migrant, before it reaches a patch. The transition rates of W at
time t can then be expressed as

((i, j),m) → ((i, j + 1),m) at rate jλ∗
i j (1 − d∗

i j ); i ≥ 0, j ≥ 1
((i, j),m) → ((i + 1, j),m) at rate iλi j (1 − di j ) + x̃D(t)αsi j ; i ≥ 1, j ≥ 1
((i, j),m) → ((i − 1, j),m) at rate iμi j ; i ≥ 1, j ≥ 1
((i, j),m) → ((i, j),m + 1) at rate jλ∗

i j d
∗
i j ; i ≥ 0, j ≥ 1

((i, j),m) → ((i, j − 1),m) at rate jμ∗
i j ; i ≥ 0, j ≥ 2

((i, j),m) → (	,m) at rate μ∗
11{1}( j) + γi j ; i ≥ 0, j ≥ 1

(D2, 0) → ((i, 1), 0) at rate α x̃i (t)s∗
i0; i ≥ 0

(D2, 0) → (	, 0) at rate μ∗
D.

(4.4)

In particular, if the resident population started at an equilibrium of the deterministic
equations, so that x̃(t) = x̃(0) for all t , then these transition rates are time homoge-
neous. Note also that, since the per capita birth rate of the second variety is uniformly
bounded over all patch compositions, comparison with a linear pure birth process
shows that the expectation of the square of the number of 2-individuals that were ever
alive during [0, T ] is bounded by cT K 2

N , for a suitable cT < ∞. Hence the probability
that any 2-migrant, whenever it was born, arrives during [0, T ] in a patch which has
already been visited by individuals of the second variety is of order O(N−1K 2

N ), and
this is asymptotically small if KN = O(Nβ) for any β < 1/2.

Thus, in view of Corollary 2.4, the evolution of the introduced species over any
finite time interval [0, T ], measured in terms of the number of juvenile migrants, is
the same as that of a CMJ-branching process, with probability of order O(N−1+2β).
The individual life history consists of a period of migration, followed either by death
(with probability μ∗

D/S, where S := μ∗
D + ∑

i≥0 α x̃i (0)s∗
i0) or arrival in a patch

(of type (i, 0) with probability α x̃i (0)s∗
i0/S), after which its subsequent life history

follows that of the Markov process with rates (4.4), started in the state ((i, 1), 0).
In particular, each transition of this process in which the third component increases
corresponds to the birth of a new juvenile migrant. If P(i, j, t) denotes the probability
P[(W1(t),W2(t)) = (i, j) |W (0) = (D2, 0)], then the mean intensity of the offspring
process ism(t) := ∑

i≥0
∑

j≥1 P(i, j, t) jλ∗
i j d

∗
i j dt , and themean number of offspring

is m̄ := ∫ ∞
0 m(t) dt ≤ ∞.

The approximation using a branching process gives a lot of insight into the devel-
opment of the introduced species. In particular, if the equation

∫ ∞
0 e−ρtm(t) dt = 1

has a solution ρ > 0 (which has to be the case if 1 < m̄ < ∞), then the introduced
species, if it becomes established, grows exponentially with rate ρ, and the probabil-
ity that it becomes established from an initial population of K juvenile migrants is
1 − qK , where q is the extinction probability of the Galton–Watson process, starting
with a single individual, whose offspring distribution is the distribution of the total
number of offspring in the CMJ-process. If m̄ ≤ 1, the introduced species dies out
with probability one. However, the current theorems only guarantee this approxima-
tion to be valid over a fixed time interval [0, T ], and then for N sufficiently large. In
Barbour et al. (2013), the development of an introduced species, including the branch-
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ing approximation, is considered over much longer time intervals, but in the context of
finite dimensional Markov population processes. It would be interesting to establish
analogous results in the current context.

Metz and Gyllenberg (2001) made the (intuitively obvious) conjecture that, if the
introduced species has exactly the same parameters as the original, and is introduced
in equilibrium, then m̄ = 1. This is equivalent to saying that, in equilibrium, each
migrant generates a process that results in an average of exactly one new migrant.
They were, however, unable to give a proof of this. If the random process for finite N
were ergodic, it would be natural to use arguments based on long term time averages
as the basis of a proof. However, the finite N process is eventually absorbed in the zero
population extinction state, so such arguments cannot be used. However, we sketch a
proof of the conjecture, under assumptions that include those of Metz and Gyllenberg,
in the “Appendix”.

4.2 Example 2: Kretzschmar’s (1993) model

In Kretzschmar’s (1993) model of parasitic infection, N denotes the initial number
of hosts, these playing the role of patches. The index i ∈ Z+ denotes the number of
parasites living in the host. The model has transitions of the form I–VI, with λi,i−1 :=
iμ, λi,i+1 := λϕ(x), β0(x) := β

∑
i≥0 xiθ

i and δi := κ + iα, all other transition
rates being zero; here, 0 ≤ θ ≤ 1, and ϕ(x) := ∑

j≥1 j x j/(c + ‖x‖1) for some
c > 0. It is shown in Barbour and Luczak (2012a, Example 5.1) that, if the initial
conditions satisfy (3.24) and (3.25), then the law of large numbers approximation (2.2)
holds with εN = kT N−1/2√log N and PT (N , εN ) = k′

T N
−1 log N , for suitably

chosen constants kT , k′
T , where, as usual, μ(i) = i + 1. It is also easy to check that

DY (T, δ) < ∞ for all T and δ. The patch process Y on Z+ ∪ 	 has transition rates at
time t given by

i → i + 1 at rate λϕ(x(t)), i ≥ 0;
i → i − 1 at rate iμ, i ≥ 1;
i → 	 at rate κ + iα, i ≥ 0.

(4.5)

One way of looking at this process is as a superposition of Poisson processes. Each
parasite on arrival decides independently either to die or to kill the host, with proba-
bilities μ/(μ+α) and α/(μ+α) respectively. The time of this event is exponentially
distributed with mean 1/(μ + α). Independently, the host is killed after an exponen-
tially distributed time with mean 1/κ . Because of the independence of marked Poisson
streams, given that the host is alive at time T , the number of parasites living in it has
a Poisson distribution with mean

∫ T

0
λϕ(x(t))e−(μ+α)(T−t) dt.

Thus a cohort consisting of KN hosts of given age T would exhibit an approximately
Poisson distribution of parasites per host, if KN = O(N γ ) for some γ < 1/2. Thus,
within age classes,Kretzschmar’smodel does not generate over-disperseddistributions
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of parasites per host, though mixing over age classes in a sample may be expected to
do so. Even then, if α and κ are much smaller than μ, and x is in equilibrium, the
departure from Poisson may not be very noticeable, unless there are many young hosts
(with ages comparable to 1/μ) in the sample.
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Appendix

In this section, we establish the conjecture of Metz and Gyllenberg (2001) discussed
above. For this purpose, we can take their single type model, since all individuals
behave in the same way. Let Z denote the CMJ-branching process associated with the
process W of Example 1, when the underlying process x is in equilibrium. Suppose
first that its mean m̄ exceeds 1, so that its extinction probability q is less than 1. In this
case, given any M > 0, there exists a finite time TM such that

P1[Z(TM ) > M] > (1 − q)/2,

where P1 denotes probability starting from a single migrant. Starting the xN -process
close to the equilibrium x̄ , there are dN ≈ N x̄D migrants at time 0. We assume that
x̄D > 0, which is true, for instance, under the irreducibility condition introduced
below. Let Z j

N denote the process of migrant descendants of the j-th of them. As
noted above, it has distribution close to that of Z for large N , by Theorem 2.3. Set
I j := I [Z j

N (TM ) > M], and let N be so large that EI j =: pN > (1 − q)/2. Then,

because any twoof the processes Z j
N and Zk

N , k 
= j , are asymptotically independent as
N → ∞, by Corollary 2.4, it follows thatE(I j Ik) = p2N +o(1) as N → ∞, implying

in turn that SN := ∑dN
j=1 I j hasESN > N x̄D(1−q)/2 for all N large enough, and that

Var SN = o(N 2). Thus, byChebyshev’s inequality,P[MSN ≥ MNx̄D(1−q)/4] → 1
as N → ∞. But this contradicts (2.2) if M is chosen such that M(1 − q)/4 > 1,
because MSN ≤ NxND (TM ), and (2.2) implies that P[NxND (TM ) ≤ N x̄D(1+ε)] → 1
for any ε > 0.

The proof of contradiction if m̄ < 1 is more involved. Recall that m(·) denotes
the mean offspring measure of the CMJ-branching process W =: W0 starting with
W0(0) = (D2, 0). Let mi (·) denote the mean offspring measure for the initial individ-
ual in the processWi , starting withWi (0) = ((i, 1), 0). All of its migrant children have
mean offspringmeasurem, but the initial individual in general has a different measure.
Let ni (t) denote the mean number of migrants alive at time t in the process Wi . Then
ni (t) = ∫ t

0 mi (dv)n0(t − v). The assumption m̄ < 1 implies that limt→∞ n0(t) = 0,
and so limt→∞

∑
i≥0 i x̄i ni (t) = 0 also, if

∑
i≥0 i x̄i

∫ ∞
0 mi (dv) < ∞, by dominated

convergence. The latter is true, if
∑

i≥0 i x̄i < ∞ and if supi
∫ ∞
0 mi (dv) = m∗ < ∞.
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We now make four assumptions. The first three are that 0 <
∑

i≥0 i x̄i < ∞, that
λ∗ := supi λi < ∞, and that, for some ε > 0, there exists i0 such that μi + γi ≥
λi {1− (1− ε)di } for all i ≥ i0. The fourth is an irreducibility assumption: we require
that the birth, death and catastrophe rates are such that a patch with i ≥ 1 occupants
can evolve into a patch with i ′ ≥ 0 occupants, for i 
= i ′ ≤ i∗, where i∗ is the
maximum possible number of occupants of a patch (infinity, if there is no maximum);
that s0 > 0; and that λi di > 0 for some i ≥ 1.

The second of the assumptions ensures that mean proportion of the contribution to
EXN

D (t) arising from individuals in XN (0) whose family trees do not remain coupled
to the corresponding branching process over any fixed interval [0, T ] is asymptotically
negligible as N → ∞, for T fixed: the worst contribution from any such individual
is exp{λ∗T }, and the proportion of them is asymptotically negligible as N → ∞, by
Theorem 2.3. The fourth assumption, together with m̄ < 1, ensures that

∫ ∞
0 mi (dv) <

∞ for each i , since there is then a positive probability that a migrant is at some
time in a patch with i − 1 other occupants, and its total mean number of migrant
offspring is finite. The third assumption ensures that m∗ < ∞. This can be proved
by analyzing a system of recurrence equations satisfied by the quantities

∫ ∞
0 mi (dv),

showing that, in i ≥ i0,
∫ ∞
0 mi (dv) is uniformly bounded by a quantity of the form c1+

c2
∫ ∞
0 mi0(dv). This, combined with the first assumption, shows that the contribution

to N−1
EXN

D (t) arising from individuals for which the coupling is maintained over
[0, T ] is asymptotically close to

∑
i≥0 i x̄i ni (T ) as N → ∞, which can be made

as small as desired by choosing T large enough. Furthermore, because λ∗ < ∞,
the variance of the contribution to XN

D (T ) from any individual is uniformly bounded
in i , and the correlation between the contributions from pairs of different individuals
is asymptotically small in N , by Corollary 2.4. Hence, with ever higher probability
as N → ∞, N−1XN

D (T ) stays close to its (small) expectation. However, for xN in
equilibrium, it has also to be asymptotically close to the fixed value x̄D , by (2.2), and
this is a contradiction, if x̄D > 0; and this is the case, because of the fourth assumption.

Metz and Gyllenberg (2001) actually assume that there is a largest index i∗ < ∞.
In this case the conditions are typically satisfied, if i0 is taken equal to the largest
index i∗ in the third assumption. However, there are some trivial possibilities where
their conjecture is not true. For instance, if i∗ = 1 and μ1 + γ1 = 0 and λ1 > 0
(in which case, from the definition of i∗, d1 = 1, and also σ1 = 0), and if λ0 > 0,
one would have x̄0 = 0, x̄1 = 1 and m̄ = 0, but x̄D = λ1/μD > 0. Of course,
this is a biologically implausible scenario, and it violates both the third and fourth
assumptions.
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