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Abstract This work concerns the optimization of the dose fractionation for cancer
radiotherapy schedules of the kind one fraction/day, five fractions/week, assuming
a fixed overall treatment time. Constraints are set to limit the radiation damages to
surrounding normal tissues, as well as the daily fraction size. The response to radiation
of tumour and normal tissues is represented by the classical LQ model, including the
exponential repopulation term. We provide a framework to analytically determine the
optimal weekly scheme of radiation doses as a function of the tumour type, the fraction
upper bound and the normal tissue parameters. For a comparisonwith the literature, we
present some numerical examples of optimal treatment schedules for specific tumour
types.
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1 Introduction

The fundamental problem in cancer radiotherapy consists in achieving the best trade-
off between maximizing the tumour cell kill while sparing the surrounding normal
tissue. Indeed, finding strategies aimed at improving the outcome of cancer radiation
treatments is a subject widely investigated in the literature related to clinical practice
and to mathematical applications. Among the methods meant to improve the treatment
efficacy we mention: the use of chemical agents able to enhance the tumour response
to radiation or to reduce the normal tissue response (Tannock and Goldenberg 1998;
Prasanna et al. 2012), techniques to achieve the optimal volume distribution of the radi-
ation dose intensity (Li et al. 2012), and procedures to optimize the dose-fractionation
protocols with respect to the fraction sizes and the overall treatment time (Jones and
Dale 1999; Fowler 2010, 2012; Bertuzzi et al. 2013b; Astrahan 2008; Yang and Xing
2005).

Protocol optimization methods are based on models of the radiation response of
tumours and normal tissues. The most frequently used model to represent the relation
between a single radiation dose and the fraction of cells surviving the irradiation is
the linear-quadratic (LQ) model (Thames 1985; Fowler 1989; Jones and Dale 1999)
that expresses the lethal damage produced by a single irradiation as the sum of two
terms proportional to the dose and to the squared dose, respectively according to the
radiosensitivity parametersα andβ. The linear termaccounts for non repairable lesions
to DNA while the quadratic term accounts for lethal misrepair events following DNA
double strand breaks (Hlatky et al. 1994). TheLQmodel combines a simple formalism,
derived from biophysical principles, with the possibility of representing both tumour
and normal tissue responses during different radiotherapy treatments.

When multiple radiation doses are delivered and the repopulation due to the
regrowth of surviving cells is taken into account, the survival fraction is expressed
by more complex expressions including also the treatment time (Fowler et al. 2003a;
Fowler 2008). The LQ model has been extended to include, beyond the repopulation,
other processes characterizing the cell response to radiation, i.e. the repair of the radia-
tion damage, the redistribution of cells among the cell-cycle phases, the reoxygenation
of tissues (Wong and Hill 1998). A recent review by O’Rourke et al. (2009) examines
the LQ formalism with emphasis on the modelling of repopulation and redistribution
mechanisms. A resensitization term, intended to account for both the redistribution
and the reoxygenation, has been included in the LQ model leading to the LQR model
proposed by Brenner et al. (1995). The kinetic effects of repopulation and reoxy-
genation have been modeled in studies where the geometry of the tumour mass was
explicitly taken into account (Düchting et al. 1992, 1995). The diffusion/consumption
of oxygen in the tumour cell aggregate has been represented in models of the radiation
response of tumour cords (Bertuzzi et al. 2008) and of multicellular tumour spher-
oids (Bertuzzi et al. 2010). Simulation models with cell-cycle structure have been
proposed to account for the different phase-specific radiosensitivities of cells (Diony-
siou et al. 2004; Ribba et al. 2006). A modified model, the linear-quadratic-linear
(LQL) model, has been proposed by Guerrero and Li (2004) to provide a better fit to
dose-response data at high fractional radiation doses (Guerrero and Li 2004; Astrahan
2008).
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The LQ and LQR models have been applied to a variety of experimental cell popu-
lation data, in order to estimate the model parameters (Brenner et al. 1995). However,
the assessment of these parameters from clinical data may be critical in highly hetero-
geneous populations such as the human tumours (Qi et al. 2006; Jones and Sanghera
2007).

Following the LQ formalism, recent papers propose radiotherapeutic strategies in
the context of optimization techniques. For instance, the LQR model has been used
by Lee et al. (2006) in a mixed integer programming procedure for improving the 3-D
distribution of the radiation dose by determining the optimal beam angles and inten-
sities in the intensity-modulated radiation therapy (IMRT). Optimal adaptive frac-
tionation schemes accounting for variations of the relative positions between tumour
and healthy tissues during the treatment have been derived by Lu et al. (2008a, b).
An application of cancer treatment optimization has been presented in the paper by
Ledzewicz and Schättler (2012), where a model of the tumour dynamics under radio
and anti-angiogenic therapy is analyzed, and an optimal control problem is set with the
objective of minimizing the tumour volume subject to constraints limiting the negative
effects on healthy tissues.

In the framework of radiotherapy protocol optimization, different approaches have
been proposed. For instance, the LQ model with the repopulation term has been used
by Fowler (2007, 2008) to investigate optimal schedules for head and neck cancer,
taking into account both the early reacting normal tissues and the late complications.
In these papers, the author proposed an empirical procedure in order to optimize the
total duration of the treatment, keeping the late tissue damage fixed and using uniform
fractionation schedules. Yang and Xing (2005), using the complete LQR model with
parameter values taken from the literature, investigated by a numerical procedure
(simulated annealing) optimal radiotherapy schemes for fast proliferating and slowly
proliferating tumours. The optimization procedure searches for the highest tumour
biologically effective dose (BED) over the total treatment length, while the BED of
the late normal tissue is kept constant. Interestingly, the resulting optimal fractionation
scheme was found to be not necessarily uniform. In a previous paper, we proposed
the analytical formulation of an optimal radiotherapy problem, describing the tumour
and normal tissue responses by the LQ model that included the repopulation term and
the sublethal damage term due to incomplete repair (Bertuzzi et al. 2013b). Assuming
that the number of treatment weeks is fixed and that some rule is assigned to distribute
the total tolerable damage to healthy tissues over the weeks, the optimization problem
can be formulated with respect to the fraction sizes of a single week (one fraction/day,
five fractions/week). Unlike the uniform protocols, consisting of five equal fractions,
used in clinical practice, a single fraction dose per week was found to be optimal
for slowly proliferating tumours, either taking into account the sublethal damage due
to incomplete repair or not. Concerning fast proliferating tumours, in the absence of
the incomplete repair term the optimal weekly scheme equalled the standard uniform
fractionation. Including the incomplete repair term in the model led to non-uniform
schemes, though the optimal fraction sizes (and then the log cell kill) were negligibly
affected.

In the present paper, we reconsider the problem of finding the optimal radiotherapy
scheme, over a fixed treatment time, that maximizes the tumour damage satisfying
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constraints related to the tolerable damage to the early and late responding normal
tissues. On the basis of the results of (Bertuzzi et al. 2013b; Papa and Sinisgalli 2013)
we do not include the sublethal damage term due to incomplete repair in the cell
response model. A new constraint consisting of an upper bound for the daily fraction
is introduced here in order to strengthen the normal tissue constraints, especially with
respect to late complications possibly occurring months or years after irradiation.
Indeed, while the LQ model is commonly accepted to express acute reactions of
tissues, the prediction of late complications by the samemodel is a controversial issue,
especially at high fraction doses (Yang and Xing 2005; Astrahan 2008; Brenner 2008;
Kirkpatrick et al. 2008, 2009; Macchia et al. 2010; Ling et al. 2010). The problem
is analytically formulated and, using classical non-linear programming results, we
determine the optimal fractionation scheme as a function of the tumour class and of
the other model parameters. In order to simplify the problem solution we followed a
procedure that allows to successively reduce the number of candidates and in Sect. 3
we find that only two sets of candidates exist: a finite set consisting of isolated points
having particular structures and a possibly dense set of non-structured points (Bertuzzi
et al. 2013a). In Sect. 4, the influence of normal tissue and tumour parameters on the
structured and non-structured candidates is analyzed. In Sect. 5, the influence of the
constraint on the fraction size is examined, showing how the candidates change as the
upper bound changes. Collecting the results of Sects. 3–5, we get the extremals table
in terms of tumour type, fraction upper bound and normal tissue parameters. Finally, in
Sect. 6, the comparison of the cost function (log cell kill) among the extremals provides
the optimal solution for different tumour classes. To illustrate and complement the
analytical results on the basis of the literature relevant to radiotherapy treatments, we
give numerical examples of application of the proposed procedure, determining the
optimal fractionation schemes and the log cell kill they produce on specific tumour
types in comparison with clinical fractionation schemes.

2 Formulation of a constrained radiotherapy problem and optimality conditions

We address the problem of finding the fractionated radiotherapy scheme that maxi-
mizes the overall tumour damage, keeping within given admissible levels the damages
to the normal tissues as well as the size of each daily dose fraction. The LQ model is
assumed to describe the response to radiation of a homogeneous cell population, so
that the logarithmic fraction of surviving cells is written as

ln(S) = −α

5ν∑

k=1

dk − β

5ν∑

k=1

d2
k + ln(2)

TP
(T − TK )H(T − TK ). (2.1)

The first two terms represent the cumulated effect of instantaneous lethal damages,
where α, β > 0 are the LQ radiosensitivity parameters of the population, accounting
for non-repairable lesions to DNA and, respectively, for the lethal misrepair events
occurring in the repair process of DNA double strand breaks (Hlatky et al. 1994).
Moreover dk ≥ 0 is the radiation dose at day k-th, k = 1, . . . , 5ν, ν is the number of
treatment weeks assumed integer and assigned. The positive term in (2.1) accounts for
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cell repopulation, where TP is the repopulation doubling time, TK is the kick-off time
of compensatory proliferation, T = 7ν − 3 is the (fixed) overall treatment length, and
H is the Heaviside function.

Representing by the LQ model the response to radiation of both tumour and sur-
rounding normal tissues, the problem is that of minimizing the tumour survival (2.1)
with respect to the doses dk , under the constraint of keeping the damages to the early
and late responding normal tissues below maximal admissible levels Ce, Cl > 0:

αe

5ν∑

k=1

dk + βe

5ν∑

k=1

d2
k − ln(2)

TPe
(T − TK e)H(T − TK e) ≤ Ce, (2.2)

αl

5ν∑

k=1

dk + βl

5ν∑

k=1

d2
k ≤ Cl , (2.3)

where the parameters have been indexed by subscripts “e” and “l”when referring to the
early and late tissues respectively. The cell repopulation term is absent in constraint
(2.3) as it is negligible for late responding tissues (Fowler 2012). While using the
LQ model is rather accepted to express acute complications after radiation therapy,
predicting late complications by the samemodel is a controversial issue, especially for
high fraction doses (Yang and Xing 2005; Astrahan 2008; Brenner 2008; Kirkpatrick
et al. 2008, 2009; Macchia et al. 2010; Ling et al. 2010). For this reason, in addition
to the constraints (2.2) and (2.3), already envisaged by Bertuzzi et al. (2013b), we
introduce a constraint directly limiting the level of radiation, setting an upper bound
dM on the dose fraction size:

dk ≤ dM , k = 1, . . . , 5ν.

In order to simplify the optimization problem reducing the number of variables and,
at the same time, to strengthen the constraints (2.2) and (2.3), we consider the total
damage equi-distributed over the treatment weeks. So we can formulate the optimiza-
tion problem over a single week, assuming the obtained solution repeated for each
treatment week. Let us introduce the notations

ρ = α

β
, ρe = αe

βe
, ρl = αl

βl
,

ke = 1

νβe

[
Ce + ln(2)

TPe
(T − TK e)H(T − TK e)

]
, kl = Cl

νβl
, (2.4)

recalling that ρe > ρl (Fowler 2012). We have the following optimization problem.

Problem 1 Minimize the function:

J (d) = −ρ

5∑

k=1

dk −
5∑

k=1

d2
k , (2.5)
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on the admissible set:

D =
{

d ∈ R5|ge(d) = ρe

5∑

k=1

dk +
5∑

k=1

d2
k − ke ≤ 0,

gl(d) = ρl

5∑

k=1

dk +
5∑

k=1

d2
k − kl ≤ 0, dk ∈ [0, dM ], k = 1, . . . , 5

}
.

��
The same formulation holds as long as the weekly damages to the normal tissues
ke, kl are assigned, even though not necessarily constant over the weeks of treatment.
A basic result comes from the Weierstrass theorem that states the existence of optimal
solutions for Problem 1. The result is crucial, however, as the problem is not convex
and only necessary conditions, provided by the Kuhn–Tucker theorem, are available
(see, e.g. Pierre 1969). The Lagrangian function associated to Problem 1 is

L(d, λ0, ηe, ηl , η, μ) = λ0 J (d) + ηege(d) + ηl gl(d) −
5∑

k=1

ηkdk +
5∑

k=1

μk(dk − dM ),

where λ0, ηe, ηl are scalar multipliers and η,μ are 5-dimensional vectors with com-
ponents ηk, μk, k = 1, . . . , 5, respectively. Introducing the notations

δ(λ0, ηe, ηl) = −λ0ρ + ηeρe + ηlρl , σ (λ0, ηe, ηl) = 2(−λ0 + ηe + ηl), (2.6)

the necessary minimum and admissibility conditions are

∂L

∂dk
= δ(λ0, ηe, ηl) + σ(λ0, ηe, ηl)dk − ηk + μk = 0, k = 1, . . . , 5, (2.7)

ηkdk = 0, k = 1, . . . , 5, (2.8)

μk(dk − dM ) = 0, k = 1, . . . , 5, (2.9)

ηege(d) = 0, (2.10)

ηl gl(d) = 0, (2.11)

ge(d) ≤ 0, gl(d) ≤ 0, (2.12)

0 ≤ dk ≤ dM , k = 1, . . . , 5, (2.13)

λ0, ηe, ηl , ηk, μk ≥ 0, k = 1, . . . , 5, (2.14)

with λ0, ηe, ηl , ηk, μk, k = 1, . . . , 5, not simultaneously equal to zero.
In order to find the extremal solutions of system (2.7)–(2.14) we carried out a

procedure in three sequential steps that allows to successively restrict the admissible
set reducing the number of candidates. The adopted procedure is the following:
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(i) solve Eqs. (2.7)–(2.9) with respect to d, η, μ, assuming λ0, ηe, ηl fixed;
(ii) solve Eqs. (2.10), (2.11) with respect to ηe, ηl for λ0 > 0 (λ0 = 0 not possible),

taking into account constraints ge(d) ≤ 0, gl(d) ≤ 0, dk ≥ 0, k = 1, . . . , 5, and
(2.14);

(iii) impose dk ∈ [0, dM ], k = 1, . . . , 5.

Among the extremals so determined, the optimal solutions can be obtained by direct
comparison of the cost function values, and are classified in terms of tumour and
normal tissue parameters, and of dM .

3 Classes of structured and non-structured solutions

Performing step (i), we consider the subsystem made up of Eqs. (2.7), (2.8) and (2.9),
assuming λ0, ηe, ηl fixed, as we intend to focus on the solutions with respect to the
subset of variables d, η, μ. Fixing the triple λ0, ηe, ηl , the quantities δ and σ in (2.6)
become fixed coefficients of Eq. (2.7). The following theorem classifies the problem
solutions in terms of δ and σ .

Theorem 1 Problem 1 admits two sets of extremal candidates: “structured” and
“non-structured”. The set of structured candidates is associated to values of λ0, ηe, ηl

such that σ �= 0 and it consists at most of 35 structures (including the trivial vector
d = 0) that can be grouped into 21mutually exclusive classes. Structures in each class
are characterized by the number of doses equal to zero, dM and A ∈ (0, dM ), with

A = − δ

σ
, (3.1)

independently of the dose positions. Having the same value of the cost function J, all
the structures of the same class are equivalent. The classes are listed in Table 1, where
d(i, j), i, j = 0, . . . , 5, 0 ≤ i + j ≤ 5, denotes the class whose elements contain
i doses equal to A and j doses equal to dM , while A(i, j) denotes the value of the
intermediate dose of the structure d(i, j), i �= 0.

The set {d̊} of non-structured candidates is associated to values of the multipliers
λ0, ηe, ηl such that σ = δ = 0, and consequently η = μ = 0, making Eq. (2.7)
identically satisfied.

Proof Let us multiply each equation ∂L
∂dk

= 0 in (2.7) by dk (dk − dM ). In view of
(2.8) and (2.9), we obtain

dk (dk − dM )[δ + σdk] = 0, k = 1, . . . , 5,

and, for values of the multipliers λ0, ηe, ηl such that σ �= 0, we get three values for
dk :

dk = 0,

dk = dM , (3.2)

dk = − δ

σ
= A.
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Table 1 Classes of equivalent
structures for Problem 1

Class Equivalent structures

Representative Number

d(5, 0) (A(5, 0) A(5, 0) A(5, 0) A(5, 0) A(5, 0)) 1

d(4, 1) (A(4, 1) A(4, 1) A(4, 1) A(4, 1) dM ) 5

d(3, 2) (A(3, 2) A(3, 2) A(3, 2) dM dM ) 10

d(2, 3) (A(2, 3) A(2, 3) dM dM dM ) 10

d(1, 4) (A(1, 4) dM dM dM dM ) 5

d(0, 5) (dM dM dM dM dM ) 1

d(4, 0) (A(4, 0) A(4, 0) A(4, 0) A(4, 0) 0) 5

d(3, 1) (A(3, 1) A(3, 1) A(3, 1) dM 0) 20

d(2, 2) (A(2, 2) A(2, 2) dM dM 0) 30

d(1, 3) (A(1, 3) dM dM dM 0) 20

d(0, 4) (dM dM dM dM 0) 5

d(3, 0) (A(3, 0) A(3, 0) A(3, 0) 0 0) 10

d(2, 1) (A(2, 1) A(2, 1) dM 0 0) 30

d(1, 2) (A(1, 2) dM dM 0 0) 30

d(0, 3) (dM dM dM 0 0) 10

d(2, 0) (A(2, 0) A(2, 0) 0 0 0) 10

d(1, 1) (A(1, 1) dM 0 0 0) 20

d(0, 2) (dM dM 0 0 0) 10

d(1, 0) (A(1, 0) 0 0 0 0) 5

d(0, 1) (dM 0 0 0 0) 5

d(0, 0) (0 0 0 0 0) 1

For A ∈ (0, dM ), the values (3.2) are distinct and their 35 dispositions with repetition
in a vector d ∈ R5 give all the possible structured candidates. As vectors containing
the same number of A and dM are indistinguishable with respect to J , i.e. they are
equivalent, the vectors can be grouped into 21mutually exclusive classes of equivalent
structures. In each class, a single structure can be chosen as representative, as shown
in Table 1.

Let us now reconsider the original system (2.7)–(2.9) supposing that the fixed values
of the multipliers λ0, ηe, ηl are such that σ = 0.

If δ �= 0 it can be verified that the solutions are d(0, 0) and d(0, 5), already listed
in Table 1. If instead δ = 0, Eqs. (2.7)–(2.9) imply ηk = μk = 0, k = 1, . . . , 5, and
the system is identically satisfied, providing no information about the value of dk or
the structure of d. Therefore, when σ = δ = 0 the system of necessary conditions
admits a set of “non-structured” solutions {d̊} associated to multipliers η = μ = 0
with dose values defined only by constraints (2.10) and (2.11), as fully specified in
the next sections. ��

As yet, structured and non-structured candidates given by Theorem 1 depend on
λ0, ηe, ηl that still have to be found. Next, we show that some of the 23 combinations
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of λ0, ηe, ηl originated by (2.14) are inconsistent with the necessary or admissibility
conditions and must be discarded.

4 Influence of normal tissue and tumour parameters on the extremals

Wego through the second step of the procedure outlined in Sect. 2, selecting structured
and non-structured candidates on the basis of normal tissues and tumour parameters.
We find that the dose fractions amplitude is related to the normal tissue parameters,
while the multipliers are affected by the tumour parameter ρ. Extremal candidates
identified during the present section must undergo the upper bound check at step (iii).

The next two corollaries demonstrate what values of λ0, ηe, ηl have to be excluded
to obtain non negative η,μ and admissible vectors d.

Corollary 1 No extremals exist for λ0 = 0.

Proof Let us exclude λ0 = 0 by contradiction. Setting λ0 = 0 in (2.6), from (2.14) it
follows

ηeρe + ηlρl ≥ 0, 2(ηe + ηl) ≥ 0.

Then, no extremals exist for ηe ≥ 0, ηl ≥ 0. In fact, if ηe = ηl = 0, both the quantities
δ(0, 0, 0) and σ(0, 0, 0) vanish and Eq. (2.7) imply

ηk = μk, k = 1, . . . , 5.

If ηk = μk > 0, the complementarity conditions (2.8) and (2.9) require dk = 0 and
dk = dM at the same time, which is absurd. If instead ηk = μk = 0, all the multipliers
are zero which is excluded by the Kuhn–Tucker Theorem.

As it cannot be ηe = ηl = 0, at least one multiplier ηe or ηl must be positive, which
means both δ(0, ηe, ηl) and σ(0, ηe, ηl) are strictly positive and Eq. (2.7) imply

ηk > μk, k = 1, . . . , 5.

But then (2.8) impose dk = 0 for any k, incompatible with ge(d) = 0 or gl(d) = 0. ��
So, λ0 must be strictly positive and we can set λ0 = 1. Concerning the multipliers ηe

and ηl , we have the following result.

Corollary 2 If the dose fraction upper bound is such that

dM > min{Ae(5, 0), Al(5, 0)}, (4.1)

where

Ae(5, 0) = −ρe

2
+

√(ρe

2

)2 + ke

5
, Al(5, 0) = −ρl

2
+

√(ρl

2

)2 + kl

5
, (4.2)
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no extremals exist for ηe = ηl = 0, i.e. extremals must satisfy at least one of the
conditions ge(d) = 0, gl(d) = 0. On the contrary, if

dM ≤ min{Ae(5, 0), Al(5, 0)}, (4.3)

the only extremal d(0, 5) exists, and it is the optimum.

Proof Let us suppose ηe = ηl = 0 in (2.6). It follows δ(1, 0, 0), σ(1, 0, 0) < 0
and from Eq. (2.7) we deduce μk > ηk, k = 1, . . . , 5, so that μk > 0. Hence,
Eq. (2.9) yield the only solution dk = dM , k = 1, . . . , 5, that is the structure d(0, 5).
The structure d(0, 5) can be extremal if and only if it satisfies constraints (2.12) that
become

5d2
M + ρe5dM − ke ≤ 0, 5d2

M + ρl5dM − kl ≤ 0, (4.4)

which, taking into account (4.2), are equivalent to the inequalities

dM ≤ Ae(5, 0), dM ≤ Al(5, 0).

So, the pair ηe = ηl = 0 provides the only candidate d(0, 5), which clearly cannot be
an extremal if the upper bound dM is set according to (4.1). That proves the first part
of the corollary.

When instead dM is chosen according to (4.3), d(0, 5) is an extremal as it sat-
isfies (4.4) along with all the necessary and admissibility conditions, and we are
going to prove that no other extremals can exist. Let us proceed supposing ηe or ηl

strictly positive. According to the complementarity conditions (2.10), (2.11), only
“boundary” vectors, i.e. vectors satisfying ge(d) = 0 or gl(d) = 0, can be extremals.
Boundary vectors enjoy the property of having at least one entry greater than or
equal to min{Ae(5, 0), Al(5, 0)}. The latter statement can be proved by means of
a nonlinear programming argument. Precisely, we set the problem of finding the
minimum value of the maximal entry of d on the early or late constraint bound-
ary, proving that the minimum equals Ae(5, 0) or Al(5, 0) respectively. Without loss
of generality, on each boundary the problem can be solved choosing one particu-
lar ordering of the entries, for instance d5 ≥ d4 ≥ d3 ≥ d2 ≥ d1 ≥ 0. Mini-
mizing d5 on each boundary, ge(d) = 0 or else on gl(d) = 0, under the previ-
ous constraint, leads to the minimum d5 = Ae(5, 0) on ge(d) = 0, attained for
(Ae(5, 0), Ae(5, 0), Ae(5, 0), Ae(5, 0), Ae(5, 0)), while the minimum d5 = Al(5, 0)
on gl(d) = 0, attained for (Al(5, 0), Al(5, 0), Al(5, 0), Al(5, 0), Al(5, 0)). As a con-
sequence of this property, if dM < min{Ae(5, 0), Al(5, 0)} no boundary vectors verify
the upper bound dk ≤ dM , k = 1, . . . , 5, meaning that no extremals with positive ηe

or ηl can exist. If instead dM = min{Ae(5, 0), Al(5, 0)}, only the boundary vector
d with dk = min{Ae(5, 0), Al(5, 0)}, k = 1, . . . , 5, can be an extremal, as it satis-
fies the upper bound, and it coincides with the extremal d(0, 5). In conclusion, when
dM is chosen according to (4.3), no other extremal than d(0, 5) exists, so it is the
optimum. ��
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From a geometrical point of view, when dM ≤ min{Ae(5, 0), Al(5, 0)}, the box 0 ≤
dk ≤ dM , k = 1, . . . , 5, is included in the intersection region of the healthy tissues
constraints, and satisfying (2.13) implies automatically satisfying (2.12), so that the
optimization problem could be reformulated without these latter constraints. Then the
result of Corollary 2 is rather intuitive since the maximal damage to the tumour is just
achieved by making the dose fractions as large as possible and equal to the maximum
value dM .

Therefore, the present study is carried out under the hypothesisdM > min{Ae(5, 0),
Al(5, 0)}. As stated in Corollary 2, three alternatives are left for the multipliers ηe, ηl :

(1) ηe > 0, ηl = 0,

(2) ηl > 0, ηe = 0, (4.5)

(3) ηe > 0, ηl > 0.

Merging (4.5) with (2.10) and (2.11), the extremals are found from the following
systems:

(1) ge(d) = 0, gl(d) ≤ 0,

(2) gl(d) = 0, ge(d) ≤ 0, (4.6)

(3) ge(d) = 0, gl(d) = 0.

In other words, all the structured and non-structured extremals are “boundary” points
as they must satisfy at least one of the constraints ge(d), gl(d) with the equality sign.

A few comments about the related value of the cost function follow. Any point
solution of system (3) of (4.6) has sum of the doses and sum of the squared doses
independent of the point itself and given by

5∑

k=1

dk = ke − kl

ρe − ρl
� S, (4.7)

5∑

k=1

d2
k = ρekl − ρl ke

ρe − ρl
� Q. (4.8)

Consequently, all the points belonging to the intersection of the boundaries of the
normal tissue constraints yield the same value of J independently of the point

J (d) = −ke
ρ − ρl

ρe − ρl
− kl

ρe − ρ

ρe − ρl
. (4.9)

On the other hand, it is easy to see that points satisfying system (1) of (4.6) have a
cost function

J (d) = −ke + (ρe − ρ)

5∑

k=1

dk, (4.10)
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with a total dose satisfying the inequality

5∑

k=1

dk ≥ S. (4.11)

Similarly, points satisfying system (2) are such that

J (d) = −kl + (ρl − ρ)

5∑

k=1

dk, (4.12)

with

5∑

k=1

dk ≤ S. (4.13)

We observe that evaluating (4.10) and (4.12) for a total dose equal to S, the same
quantity (4.9) is obtained. Because of (4.11) and (4.13), it is thus clear that the cost
function of any candidate has to be compared with the quantity (4.9) and that the
relative ordering of (4.9), (4.10) and (4.12) depends on the sign of the differences
ρe − ρ and ρl − ρ.

4.1 Influence of the normal tissue parameters on the structured extremals

Postponing the analysis of non-structured candidates, let us examine the implications
of (4.6) on the structured candidates listed in Table 1, noting that the six structures
d(0, j), j = 0, . . . , 5, contain only zero or dM values, while the remaining 15 struc-
tures contain at least one dose equal to A ∈ (0, dM ).

Concerning the first group, we observe that neither d(0, 0) is an extremal, as it does
not satisfy ge(d) = 0 or gl(d) = 0, nor d(0, 5) can be an extremal, as a consequence
of Corollary 2. The structures d(0, j), for j �= 0, 5, have fixed entries independent of
the options (4.6), and they can be considered as extremal candidates only when dM is
such that

jd2
M + jρedM − ke = 0, (4.14)

or such that

jd2
M + jρldM − kl = 0. (4.15)

Note that (4.14) and (4.15) are linear with respect to j , so that for dM assigned there
can exist at most one index j satisfying (4.14) and one index j satisfying (4.15).

Among the second group of structures d(i, j), i = 1, . . . , 5, j = 0, . . . , (5 − i),
the unknown value of the dose A(i, j) is explicitly determined by the constraints being
active in (4.6), without going through the computation of ηe, ηl and of the expression
(3.1). The non-active constraint (if present) along with the upper bound dM determine
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whether d(i, j) belongs to the admissible domain. In practice, in case (1) of (4.6),
A(i, j) is the real positive root of the second degree equation

i A2(i, j) + iρe A(i, j) − ke + jd2
M + jρedM = 0, (4.16)

and it is given by the following function of the early tissue parameters plus dM :

A(i, j) = −ρe

2
+

√(ρe

2

)2 + ke − jdM (dM + ρe)

i
� Ae(i, j). (4.17)

In case (2) of (4.6), A(i, j) is the positive root of

i A2(i, j) + iρl A(i, j) − kl + jd2
M + jρldM = 0, (4.18)

given by the following function of the late tissue parameters plus dM :

A(i, j) = −ρl

2
+

√(ρl

2

)2 + kl − jdM (dM + ρl)

i
� Al(i, j). (4.19)

For a given pair i, j , according to (4.17) and (4.19), A(i, j) can simultaneously satisfy
(4.16) and (4.18) only for suitable parameter values such that the same root Ae(i, j) =
Al(i, j) is obtained from all the three systems in (4.6).

By means of the expressions (4.17) and (4.19), two sets comprehensive of all the
possible values of the intermediate dose A are identified. If, for some i, j , one of these
values equals zero or dM , it cannot be assigned to A(i, j) conventionally defined in the
open interval (0, dM ) in Theorem 1, although certainly lying in the admissible range
of dk .

Noting that the equality dM = Ae(h, 0) coincides with (4.14) written for j = h and
that dM = Al(h, 0) coincides with (4.15) written for j = h, we prove the following
properties, valid for the appropriate indexes:

dM = Ae(h, 0) ⇔ Ae(i, j) = dM , with i + j = h,

Ae(i, j) = 0, with j = h,
(4.20)

dM = Al(h, 0) ⇔ Al(i, j) = dM , with i + j = h,

Al(i, j) = 0, with j = h.
(4.21)

Property (4.20) can be proved starting from the equation defining Ae(i, j):

i A2
e(i, j) + iρe Ae(i, j) + jd2

M + jρedM − ke = 0. (4.22)

If dM = Ae(h, 0), setting j = h in (4.22) we immediately obtain Ae(i, h) = 0, for
any i . Moreover, rewriting (4.22) for j = h − i and taking into account (4.14) with
j = h, we obtain

i (dM + Ae(i, j) + ρe) (dM − Ae(i, j)) = 0, i + j = h, (4.23)
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which, being (dM + Ae(i, j) + ρe) > 0, (4.23) implies Ae(i, j) = dM for any
admissible pair i, j such that i + j = h.

Concerning the inverse implications in (4.20), given a pair i, j such that Ae(i, j) =
0, for j = h, Eq. (4.22) equals Eq. (4.14), so that dM = Ae(h, 0). Moreover, given
a pair i, j with i + j = h and such that Ae(i, j) = dM , from (4.22), the equality
dM = Ae(h, 0) follows. Property (4.21) can be proved applying the same arguments
to the “late” doses Al(i, j).

From property (4.20) it follows that when dM = Ae(h, 0), the group of structures
d(i, j) having A(i, j) = Ae(i, j) for i > 0 and j = h plus the group of structures
d(i, j), with A(i, j) = Ae(i, j) for i > 0 and i + j = h, both coincide with the
structure d(0, h) which is the only extremal candidate, coherently with the conven-
tional definition of A(i, j). A similar implication comes from (4.21) for the group of
structures d(i, j) with A(i, j) = Al(i, j) that are all coinciding with d(0, h).

With this specification, we can extend the group of structures d(i, j) with i > 0 to
include the structures d(0, j) with j �= 0, 5, using the notations de(i, j) and dl(i, j),
for i = 1, . . . , 5, j = 0, . . . , (5 − i), to indicate the vectors having i entries equal to
Ae(i, j) ∈ [0, dM ] and Al(i, j) ∈ [0, dM ] respectively, and j entries equal to dM .

In principle, at most 15 different structures de(i, j) plus 15 different structures
dl(i, j) might be expected from Eq. (4.6). Still, the following corollary proves that,
because of the non-active normal tissue constraint, the number of possible extremals
is actually smaller.

Corollary 3 Given a pair i, j, i = 1, . . . , 5, j = 0, . . . , (5 − i), only one of the
vectors de(i, j), dl(i, j) satisfies both normal tissue constraints providing an accept-
able candidate, and in particular the vector containing the minimum value between
Ae(i, j) and Al(i, j).

Proof Let us consider a pair i, j , with i = 1, . . . , 5, j = 0, . . . , (5 − i). By the
definition of de(i, j), it is ge(de(i, j)) = 0 and by the definition of dl(i, j), it is
gl(dl(i, j)) = 0. Nevertheless, de(i, j) is acceptable if and only gl(de(i, j)) ≤ 0,
which amounts to say Ae(i, j) ≤ Al(i, j). On the other hand, dl(i, j) is acceptable if
and only if ge(dl(i, j)) ≤ 0, which amounts to say Al(i, j) ≤ Ae(i, j). In summary,
given a pair i, j , if the parameters are such that Ae(i, j) = Al(i, j), the two vectors
coincide and may come from the three systems (4.6). Conversely, only de(i, j) can be
acceptable when Ae(i, j) < Al(i, j) (given by system 1 of (4.6)), or only dl(i, j) can
be acceptable when Al(i, j) < Ae(i, j) (given by system 2). ��

Corollary 3 establishes that, for each i, j , only one vector between de(i, j) and
dl(i, j) can satisfy both normal tissues constraint, leading to at most 15 structured
candidates in all. Let us define the sum of the doses and the sum of the squared doses
for de(i, j) as

Se(i, j) = i Ae(i, j) + jdM , Qe(i, j) = i A2
e(i, j) + jd2

M , (4.24)

and for dl(i, j) as

Sl(i, j) = i Al(i, j) + jdM , Ql(i, j) = i A2
l (i, j) + jd2

M . (4.25)
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Table 2 Relationship between
normal tissue parameters and
geometry of the admissible
domain

Geometry Model parameters

Prevalent early constraint ke − kl ≤ 0

ke − kl > 0, ρekl − ρl ke > 0, v < 1

No prevalent constraint ke − kl > 0, ρekl − ρl ke > 0, 1 ≤ v ≤ 5

Prevalent late constraint ke − kl > 0, ρekl − ρl ke > 0, v > 5

ke − kl > 0, ρekl − ρl ke ≤ 0,

The acceptability of de(i, j) or dl(i, j) can be checked exploiting properties of the
quantities (4.24), (4.25). Let for instance dl(i, j) be the acceptable vector solution
of gl(dl(i, j)) = 0, ge(dl(i, j)) ≤ 0. Then, taking the differences ge(dl(i, j)) −
gl(dl(i, j)) and ρegl(dl(i, j))−ρl ge(dl(i, j)), the following inequalities are obtained
for dl(i, j):

Sl(i, j) ≤ S, (4.26)

Ql(i, j) ≥ Q. (4.27)

So, if dl(i, j) is acceptable, it is Al(i, j) ≤ Ae(i, j) and (4.26), (4.27) hold. On the
other hand, the acceptability of de(i, j) can equivalently be verified by means of the
inequality Ae(i, j) ≤ Al(i, j) or of the inequalities

Se(i, j) ≥ S,

Qe(i, j) ≤ Q.

Observing the definitions (4.7), (4.8) of S and Q, it can be seen that the acceptability
of de(i, j) or dl(i, j) depends on the sign of the differences ke − kl and ρekl − ρl ke.
Indeed, these quantities along with the global parameter v defined as

v � (ke − kl)
2

(ρe − ρl)(ρekl − ρl ke)
= S2

Q
, (4.28)

determine the geometry of the admissible domain D, so determining the acceptability
of de(i, j) or dl(i, j). Table 2 depicts the relationship between the model parameters
and the geometrical properties of D. The details about this result are reported in
Appendix.

The geometric prevalence of one constraint over the other means that points satis-
fying the prevalent constraint necessarily make the other strictly satisfied. Therefore,
when the early constraint prevails the acceptable vectors are de(i, j) and, similarly,
when the late constraint prevails the acceptable vectors are dl(i, j).

The next corollary concerns the acceptability of de(i, j) and dl(i, j) when the
normal tissue parameters are such that no constraint prevails. However, the corollary
is not exhaustive providingno information about the structures such that j �= 0, i+ j >

[v], which may or may not be acceptable depending on the value of dM .
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Corollary 4 For ke − kl > 0, ρekl − ρl ke > 0, and 1 ≤ v ≤ 5, the acceptable
vectors are

– dl(i, j), i = 1, . . . , [v], j = 0, . . . , (5 − i), i + j ≤ [v],
– de(i, 0), i = min{[v] + 1, 5}, . . . , 5,

where [v] denotes the integer part of v.

Proof If ke − kl > 0, ρekl − ρl ke > 0 and 1 ≤ v ≤ 5, the boundaries ge(d) = 0 and
gl(d) = 0 intersect each other and there is no prevalent constraint (see Appendix). In
order to establish whether de(i, j) or instead dl(i, j) is acceptable for a given i, j , we
firstly set j = 0 and consider de(i, 0) and dl(i, 0), i = 1, . . . , 5. Proceeding as in the
proof of Corollary 4 of (Bertuzzi et al. 2013b), we obtain

min{Ae(i, 0), Al(i, 0)} =
{

Al(i, 0), i = 1 . . . [v],
Ae(i, 0), i = min{[v] + 1, 5}, . . . , 5, (4.29)

and, only when v is integer, it is Ae(i, 0) = Al(i, 0) for i = v. Thus, for j = 0, the
acceptable vectors are dl(i, 0) for i ≤ [v], and de(i, 0) for i > [v].

To complete the proof, let us rewrite Sl(i, j) in (4.25) as Sl(i, t − i), introducing the
number of non zero doses t = i + j, t = 1, . . . , 5. We intend to study the behaviour
of Sl(i, t − i) fixing t and letting i vary. Let us then consider i as a continuous variable
z > 0 writing

Sl(z, t − z) = z

(
−ρl

2
+

√(ρl

2

)2 + kl − (t − z)dM (dM + ρl)

z

)
+ (t − z)dM ,

(4.30)

which is physically meaningful when Al(z, t − z) is real and positive, that is for z such
that kl − (t − z)dM (dM + ρl) > 0. Introducing the function

R(z) =
(ρl

2

)2 + kl − (t − z)dM (dM + ρl)

z
,

the derivative of (4.30) with respect to z is given by

∂Sl(z, t − z)

∂z
=

(√
R(z) − (

dM + ρl
2

))2

2
√

R(z)
,

that is obviously non-negative. Then, Sl(i, t − i) is not decreasing as i increases and
we have:

Sl(i, t − i) ≤ Sl(t, 0), t = 1, . . . , 5, i = 1, . . . , t.

The vectors dl(t, 0), t = 1, . . . , [v], are acceptable in view of (4.29) and, from (4.26),
they satisfy Sl(t, 0) ≤ S. In conclusion, it is

Sl(i, t − i) ≤ Sl(t, 0) ≤ S, t = 1, . . . , [v], i = 1, . . . , t,
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and, being t = i + j , the acceptability of all the vectors dl(i, j), with i + j ≤ [v], is
so proved. ��

4.2 Influence of the tumour parameter on structured and non-structured extremals

We focus now on the effect of the tumor parameter ρ, showing that the possible
existence of an extremal can be determined comparing the tumour parameter to the
normal tissues parameters ρl , ρe. In particular, the next corollary identifies the values
of ρ that make it possible to find a pair ηe, ηl consistent with (4.5) and η ≥ 0, μ ≥ 0.

Corollary 5 If Al(5, 0) ≤ Ae(5, 0), the structure dl(5, 0) is an extremal for any ρ.
Otherwise, if Ae(5, 0) ≤ Al(5, 0) the structure de(5, 0) is an extremal for any ρ.

Furthermore:

– the structures dl(i, j), i = 1, . . . , 4, j = 0, . . . , (5 − i), can be extremals if and
only if ρ ≤ ρl ;

– the structures de(i, j), i = 1, . . . , 4, j = 0, . . . , (5 − i), can be extremals if and
only if ρ ≤ ρe;

– the non-structured set {d̊}, can provide extremals if and only if ρl ≤ ρ ≤ ρe.

Proof Let us start examining the non-structured set {d̊}, recalling that its points are
associated to multipliers ηe, ηl satisfying δ = σ = 0 (proof of Theorem 1). Then,
(2.7)–(2.9) imply η = μ = 0. From the definitions (2.6) of δ and σ , we notice that the
equations δ = 0 and σ = 0 are linear with respect to ηe, ηl and yield

ηe = ρ − ρl

ρe − ρl
, ηl = ρe − ρ

ρe − ρl
. (4.31)

Clearly, non-structured extremals {d̊} do not exist for ρ < ρl or for ρ > ρe, since ηe, or
respectively ηl , are negative. So, multipliers ηe, ηl associated to {d̊} are non-negative
if and only if ρl ≤ ρ ≤ ρe. Then (4.31) with (2.10), (2.11) allow to determine the
points of {d̊}, whenever the set is actually non-empty (see next Theorem 2).

Coming to the structured vectors, which are associated to multipliers ηe, ηl such
that σ �= 0 (Theorem 1), we exploit Eq. (2.7) written for the vectors de(i, j) or dl(i, j)
taking into account the complementarity conditions (2.8), (2.9). The k-th equation in
(2.7) assumes three different expressions depending on the value of the corresponding
k-th entry dk . In particular, from (2.7), (2.8), (2.9) we get: j equations associated to
dk = dM

δ(ηe, ηl) + σ(ηe, ηl)dM + μk = 0, (4.32)

where ηk = 0; 5 − i − j equations associated to dk = 0

δ(ηe, ηl) − ηk = 0, (4.33)

whereμk = 0; i remaining equations associated to entries equal to Ae(i, j) in de(i, j),
or equal to Al(i, j) in dl(i, j). Both Ae(i, j) and Al(i, j), for some values of the
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normal tissue parameters, can be equal to 0 or dM leading again to Eq. (4.32) or
(4.33). Conversely, when Ae(i, j) �= 0, dM and Al(i, j) �= 0, dM we get i equations
where ηk = μk = 0, and precisely for de(i, j)

δ(ηe, ηl) + σ(ηe, ηl)Ae(i, j) = 0, (4.34)

or for dl(i, j)

δ(ηe, ηl) + σ(ηe, ηl)Al(i, j) = 0. (4.35)

The proof develops now imposing ηk, μk ≥ 0 in Eqs. (4.32)–(4.35) so to obtain
conditions on δ, σ , that is conditions on ηe, ηl , and eventually ρ.

Let us begin from de(i, j) and dl(i, j) for i �= 5.When the normal tissue parameters
are such that Ae(i, j) �= 0, dM and Al(i, j) �= 0, dM , either from (4.34) and from
(4.35), we have δ > 0, σ < 0 or δ < 0, σ > 0, because Ae(i, j) > 0, Al(i, j) > 0
andbecauseσ = δ = 0provides only the already considerednon-structured extremals.
Moreover, at least one of Eq. (4.32) or (4.33) is present for i �= 5 and, in order to make
η and μ non-negative, it must be δ > 0, σ < 0, i.e.

ρ < ηeρe + ηlρl , ηe + ηl < 1. (4.36)

If Ae(i, j) �= Al(i, j), vectors dl(i, j) can only satisfy (2.10) with ηe = 0, whereas
vectors de(i, j) are necessarily associated to ηl = 0. So, (4.36) immediately imply
that vectors dl(i, j), with Al(i, j) < Ae(i, j), can be extremals if and only if ρ < ρl

(and ηl < 1), while vectors de(i, j), with Ae(i, j) < Al(i, j), can be extremals if and
only if ρ < ρe (and ηe < 1). Suppose now Ae(i, j) = Al(i, j) so that the extremal
de(i, j) = dl(i, j) may be provided in principle by all the three cases of (4.5), with
each case associated to an interval for ρ derived from (4.36). The widest range in
which these extremals exist is

ρ < ηeρe + ηlρl < ρe − ηl(ρe − ρl).

and, recalling ρe > ρl , we recognize that vectors de(i, j) = dl(i, j) (automatically
acceptable) can be extremals if and only if ρ < ρe.

If Ae(i, j) equals 0 or dM , or similarly if Al(i, j) equals 0 or dM , for some i, j ,
only equations of the type (4.32) or (4.33) are present, and they require δ ≥ 0, σ < 0
to have both μk, ηk ≥ 0 (δ = σ = 0 not possible for structured extremals). Then,
the vector dl(i, j), with Al(i, j) < Ae(i, j), can be extremal if and only if ρ < ρl ,
as σ < 0 implies ηl < 1 while δ ≥ 0 implies ρ ≤ ρlηl < ρl . On the other hand,
the vector de(i, j), with Ae(i, j) ≤ Al(i, j), can be extremal if and only if ρ < ρe,
because the widest range of ρ implied by δ ≥ 0, σ < 0 is

ρ ≤ ηeρe + ηlρl < ρe − ηl(ρe − ρl) < ρe.

So far, we have proved that the structures dl(i, j) and de(i, j), for i = 1, . . . , 4, j =
0, . . . , (5− i) can be extremals in the open intervals ρ < ρl and ρ < ρe, respectively.
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Nevertheless, vectors dl(i, j) can be extremals also for ρ = ρl , as well as vectors
de(i, j) can be extremals also for ρ = ρe, which occurs when they are associated to
multipliers ηe, ηl such that δ = σ = 0. Then, they belong to the set {d̊} of points
without a particular structure. In particular, according to (4.31), for ρ = ρl vectors
dl(i, j) belong to {d̊} with ηe = 0 and ηl = 1, whereas for ρ = ρe vectors de(i, j)
belong to {d̊} with ηe = 1 and ηl = 0.

To complete the proof, we consider the vectors de(5, 0) (when Ae(5, 0) ≤ Al(5, 0))
and dl(5, 0) (when vice versa Al(5, 0) ≤ Ae(5, 0)) which turn out to be extremals for
any value of ρ. Indeed, according to (4.34) and (4.35), it must be δ > 0, σ < 0 or δ <

0, σ > 0, and from (2.8), (2.9) it results η = μ = 0. Let us firstly suppose Ae(5, 0) �=
Al(5, 0), assuming for instance the acceptable vector is dl(5, 0), Al(5, 0) < Ae(5, 0).
This vector verifies (4.35) for ρ < ρl with ηe = 0, ηl < 1 (consistent with δ > 0, σ <

0) but also for ρ > ρl with ηe = 0, ηl > 1 (consistent with δ < 0, σ > 0) and it
is actually an extremal, as Al(5, 0) satisfies the upper bound dM by the hypothesis
(4.1). An identical argument applies to de(5, 0) when Ae(5, 0) < Al(5, 0) proving
it is an extremal if and only if ρ < ρe and ρ > ρe. Clearly, the acceptable vector
between dl(5, 0) and de(5, 0) keeps being extremal for ρ = ρl (with ηe = 0, ηl = 1)
or, respectively, ρ = ρe (with ηe = 1, ηl = 0) as a vector in the non structured set
{d̊}. When instead Ae(5, 0) = Al(5, 0) the structured vector de(5, 0) = dl(5, 0) is
indeed extremal for any ρ, because it is always possible to find a non negative pair
ηe, ηl consistent with the necessary conditions on δ, σ . ��
For any value of ρ, Corollary 5 allows to exclude a subgroup of candidates and, at
the same time, to select the candidates that can be extremals provided they satisfy
the possible non-active normal tissue constraint (Corollaries 3 and 4), as well as the
fraction upper bound (Sect. 5). The next theorem concludes this section giving a
complete description of the set {d̊} of non-structured candidates for ρ in the range
[ρl , ρe], also establishing on the basis of normal tissue parameters whether the set is
empty or not.

Theorem 2 For ρl < ρ < ρe, the set {d̊} is non-empty if and only if ke − kl >

0, ρekl − ρl ke > 0, 1 ≤ v ≤ 5, and it is given by

{d̊} = {d ∈ R5|ge(d) = 0, gl(d) = 0, d ≥ 0}.

For ρ = ρl , the set {d̊} is non-empty if and only if ke − kl > 0, ρekl − ρl ke ≤ 0 or
ke − kl > 0, ρekl − ρl ke > 0, v ≥ 1, and it is given by

{d̊} = {d ∈ R5|gl(d) = 0, ge(d) ≤ 0, d ≥ 0}.

For ρ = ρe, the set {d̊} is non-empty if and only if ke − kl ≤ 0 or ke − kl >

0, ρekl − ρl ke > 0, v ≤ 5, and it is given by

{d̊} = {d ∈ R5|ge(d) = 0, gl(d) ≤ 0, d ≥ 0}.

Points of {d̊} satisfying the upper bound dM are optimal solutions.
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Proof First of all, we remind that the condition ρl ≤ ρ ≤ ρe is necessary for the
existence of {d̊} and that all its points are associated to the same pair ηe, ηl in (4.31).
Another interesting property is that the cost function J is constant over the whole {d̊}
with the following value

J (d̊) = −ke
ρ − ρl

ρe − ρl
− kl

ρe − ρ

ρe − ρl
. (4.37)

Indeed, as δ = 0 and σ = 0, summing (2.10) and (2.11) it results

5∑

k=1

d2
k + ρ

5∑

k=1

dk = ηeke + ηl kl

which, recalling (4.31) and the definition (2.5) of J , provides (4.37).
When ρ belongs to the interval (ρl , ρe), it results ηe, ηl > 0 and then, in view of

(2.10), (2.11), the points of {d̊} must satisfy both normal tissue constraints with the
equality sign, i.e. they must satisfy system (3) of (4.6), which admits solutions d ≥ 0
when ke − kl > 0, ρekl − ρl ke > 0, 1 ≤ v ≤ 5 (Table 2). In such a case, points of
{d̊} are optimal solutions as any other (structured) point possibly coming from case
(1) or (2) of (4.6) would result in a cost function greater than or equal to J (d̊). In fact,
points satisfying system (1) of (4.6) have the cost function (4.10) which, in view of
(4.11) and for ρ < ρe, is such that J (d) ≥ J (d̊). Similarly, for points (2) of (4.6) it is
J (d) ≥ J (d̊), according to (4.12) and taking into account (4.13) and ρ > ρl .

When ρ = ρl , from (4.31) we get ηe = 0, ηl = 1 so that acceptable points of {d̊}
belong to the boundary of the late constraint and are defined by system (2) of (4.6).
Solutions d ≥ 0 of system (2) of (4.6) exist for ke − kl > 0, ρekl − ρl ke ≤ 0 or
ke − kl > 0, ρekl −ρl ke > 0, v ≥ 1 (see bottom rows of Table 2). Moreover, the cost
function (4.37) turns out to be J (d̊) = −kl . This value is the minimum value that J
can assume when ρ = ρl , because evaluating J in any other point satisfying system
(1) or (3) of (4.6) by means of (4.9), (4.10) and (4.11), it results J (d) ≥ −kl .

Otherwise, when ρ = ρe it is ηe = 1, ηl = 0 so that points of {d̊} belong to the
boundary of the early constraint defined by system (1) of (4.6), which admits solutions
d ≥ 0 only for ke − kl ≤ 0, ρekl − ρl ke > 0 or ke − kl > 0, ρekl − ρl ke > 0, v ≤ 5
(see top rows of Table 2). For all these points, it is J (d̊) = −ke and, evaluating (4.9),
(4.12) and (4.13), it can be verified that J (d) ≥ −ke for any other point satisfying
system (2) or (3) of (4.6). ��

The totality of extremal candidates for different intervals of the tumour parameter
ρ and for the normal tissue parameter values characterizing different geometries of
the domain D are summarized in Table 3.

5 Influence of the upper bound dM on the extremals

Aim of this section is to identify the extremals of Problem 1, by verifying what are
the candidates of Table 3 satisfying the constraint dk ∈ [0, dM ], k = 1, . . . , 5. Let us
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Table 3 Extremal candidates with respect to the tumour and normal tissue parameters

Prevalent early constraint No prevalent constraint Prevalent
late constraint

ρ < ρl de(i, j), i = 1, . . . , 5,
j = 0, . . . , (5 − i)

dl (i, j), i = 1, . . . , [v],
j = 0, . . . , (5 − i), i + j ≤ [v]

dl (i, j), i = 1, . . . , 5,
j = 0, . . . , (5 − i)

de(i, 0), i = min{[v] + 1, 5}, . . . , 5
de(i, j)|Ae(i, j) ≤ Al (i, j),
dl (i, j)|Al (i, j) ≤ Ae(i, j),

i = 1, . . . , 4, j = 1, . . . , (5 − i),
i + j > [v]

ρ = ρl de(i, j), i = 1, . . . , 5,
j = 0, . . . , (5 − i)

{d̊} = {d̊ ∈ R5|gl (d̊) = 0,
ge(d̊) ≤ 0}

{d̊}={d̊ ∈ R5|
gl (d̊)=0}

de(i, 0), i = min{[v] + 1, 5}, . . . , 5
de(i, j)|Ae(i, j) ≤ Al (i, j),

i = 1, . . . , 4,
j = 1, . . . , (5 − i), i + j > [v]

ρl < ρ < ρe de(i, j), i = 1, . . . , 5,
j = 0, . . . , (5 − i)

{d̊} = {d̊ ∈ R5|gl (d̊) = 0,
ge(d̊) = 0}

dl (5, 0)

de(i, 0), i = min{[v] + 1, 5}, . . . , 5
de(i, j)|Ae(i, j) ≤ Al (i, j),

i = 1, . . . , 4,
j = 1, . . . , (5 − i), i + j > [v]

ρ = ρe {d̊}={d̊ ∈ R5|ge(d̊)=0} {d̊} = {d̊ ∈ R5|ge(d̊) = 0,
gl (d̊) ≤ 0}

dl (5, 0)

ρ > ρe de(5, 0) de(5, 0) dl (5, 0)

For the relationship between column headings and normal tissue parameters, see Table 2

examine the second column of Table 3, reporting the situation of no prevalent normal
tissue constraint, starting from the structured candidates.

In order to check for any i = 1, . . . , 5, j = 0, . . . , 5− i , if it is Ae(i, j), Al(i, j) ∈
[0, dM ], it suffices to compare the upper limit dM to the elements of the sub-
set for j = 0, i.e. to the quantities Ae(i, 0), Al(i, 0), i = 1, . . . , 5, that do not
depend on dM itself, but exclusively on the normal tissue parameters. Although a
general ordering of these quantities cannot be defined a priori, as it depends on
the normal tissue parameter values, the five minima Al(i, 0), i = 1, . . . , [v] and
Ae(i, 0), i = min{[v] + 1, 5}, . . . , 5, taken within “early-late” couples (see Corol-
lary 4) are univocally ordered, and the next Theorem shows that the comparison of
dM only with these values allows us to select the structured extremals.

Theorem 3 For a given integer u = 1, . . . , 4, if

dM ∈
(
min{Ae(u + 1, 0), Al(u + 1, 0)}, min{Ae(u, 0), Al(u, 0)}

]
, (5.1)

the structured extremals are
{

de(i, j), if Ae(i, j) ≤ Al(i, j),
dl(i, j), else ,

j = 0, . . . , u, i = u + 1 − j, . . . , 5 − j.

(5.2)
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Proof It is useful to preliminarily settle some properties holding for i = 1, . . . , 5, j =
0, . . . , 5−i and for both Ae(i, j), Al(i, j). Without loss of generality, we consider for
instance the values Ae(i, j), and applying the same argument used to derive properties
(4.20), we obtain for any index h = 1, . . . , 5

dM ≥ Ae(h, 0) ⇔ Ae(i, j) ≤ dM , i + j = h, (5.3)

and, for any m = 1, . . . , 4

dM ≤ Ae(m, 0) ⇔ Ae(i, j) ≥ 0, j = m. (5.4)

Moreover, from (4.17) it is evident that Ae(1, 0) > Ae(2, 0) > · · · > Ae(5, 0),
which along with (5.3) and (5.4) imply the following admissibility conditions for
Ae(i, j):

dM ≥ Ae(h, 0) ⇒ Ae(i, j) ≤ dM , h ≤ i + j ≤ 5, (5.5)

dM ≤ Ae(m, 0) ⇒ Ae(i, j) ≥ 0, 1 ≤ j ≤ m. (5.6)

Note that, being Ae(i, 0) positive by definition, property (5.6) can be extended includ-
ing j = 0 in the range of j , becoming

dM ≤ Ae(m, 0) ⇒ Ae(i, j) ≥ 0, 0 ≤ j ≤ m. (5.7)

Still from (5.3), (5.4), we can derive also the opposite conditions about the non-
admissibility of Ae(i, j):

dM < Ae(h, 0) ⇒ Ae(i, j) > dM , 1 ≤ i + j ≤ h, (5.8)

dM > Ae(m, 0) ⇒ Ae(i, j) < 0, m ≤ j ≤ 4. (5.9)

Keeping in mind that in the current setting it is 1 ≤ v ≤ 5 and that in view of
Corollary 3, only structured vectors having doses equal to min{Ae(i, j), Al(i, j)} can
be accepted, dM is chosen as in (5.1) for u = 1, . . . , 4 and we can prove that for any
u, from properties (5.5)–(5.9) it follows min{Ae(i, j), Al(i, j)} ∈ [0, dM ] for j =
0, . . . , u, i = u +1− j, . . . , 5− j , while it follows min{Ae(i, j), Al(i, j)} /∈ [0, dM ]
for all the remaining pairs i, j . This is equivalent to prove (5.2).

Let us denote by Ap(u+1, 0) and AP (u, 0) the quantitiesmin{Ae(u+1, 0), Al(u+
1, 0)} and respectivelymin{Ae(u, 0), Al(u, 0)}, where the subscripts p, P can be equal
to ‘e’ or ‘l’, depending on being the minimum of ‘e’ or ‘l’ type (which in turns depend
on the value of v in [1, 5]). Let us similarly denote by Ap̄(u + 1, 0) and AP̄ (u, 0) the
quantities max{Ae(u + 1, 0), Al(u + 1, 0)} and max{Ae(u, 0), Al(u, 0)}. Reminding
that 1 ≤ i + j ≤ 5 and 0 ≤ j ≤ 4, in what follows we intend that a given property
has to be disregarded whenever i + j or j is out of its allowed range, as the related
structure is missing.

Let us initially assume dM within the open interval (Ap(u + 1, 0), AP (u, 0)). So,
it is dM < AP (u, 0) ≤ AP̄ (u, 0), and (5.8) implies Ae(i, j), Al(i, j) > dM , for
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1 ≤ i + j ≤ u, indicating that the related structures are not admissible. Moreover,
(5.7) guarantees Ae(i, j), Al(i, j) > 0, for j = 0, . . . , u. Furthermore, being dM >

Ap(u + 1, 0), from (5.9) it results Ap(i, j) < 0, for j = u + 1, . . . , 4, and the
related structures have to be excluded. The structures dp̄(i, j), with j = u +1, . . . , 4,
have to be excluded as well, either directly, because Ap̄(i, j) < 0, or because, being
Ap̄(i, j) > 0 > Ap(i, j), they are not minimal. Exploiting again dM > Ap(u +1, 0),
from (5.5) it certainly is Ap(i, j) < dM , for u + 1 ≤ i + j ≤ 5, but not necessarily
Ap̄(i, j) < dM . Nevertheless, it is guaranteed that min{Ap(i, j), Ap̄(i, j)} < dM , for
u + 1 ≤ i + j ≤ 5.

Summarizing, it is min{Ae(i, j), Al(i, j)} ∈ (0, dM ), for j = 0, . . . , u, i = u +
1 − j, . . . , 5 − j , whereas min{Ae(i, j), Al(i, j)} /∈ (0, dM ) for all the remaining
indexes; then the vectors (5.2) are all (and only) the structured extremals.

To complete the proof we just need to show that the set of structured extremals is
given by (5.2), even for dM = AP (u, 0). It is AP (u, 0) ≤ AP̄ (u, 0), so that from (5.3),
(5.4) we get AP̄ (i, j) ≥ AP (i, j) = dM for i + j = u, and AP̄ (i, j) ≥ AP (i, j) = 0
for j = u, which means that the structures dP (i, j) with i + j = u, and dP (i, j) with
j = u, are extremals (for the same index pair, dP̄ (i, j) can be extremal only when it
coincides with dP (i, j)). Note that the vectors dP (i, j), with i + j = u, and the vectors
dP (i, j), with j = u, are all equal to the vector having u entries equal to dM and 5−u
zeroes, so that it is unnecessary to explicitly include dP (i, j), with i + j = u, in the
set (5.2). ��

Remark 1 Linking together all the intervals in (5.1) for u = 1, . . . , 4, we get the total
variability range of dM , except the interval (Al(1, 0),∞). However, it is evident from
(5.5) and (5.9) that for dM > Al(1, 0) only the structures with j = 0, and precisely
dl(i, 0), i = 1, . . . , [v] and de(i, 0), i = min{[v]+1, 5}, . . . , 5, can be extremals. So,
as it could be expected, setting dM > Al(1, 0), we find the same structured extremals
found in the absence of a dose upper bound (Bertuzzi et al. 2013b).

In order to select the extremals with respect to dM and classify them in terms of ρ

and v, we enunciate a theorem, deferring the proof to the paper by Conte and Papa
(2013) for the sake of brevity.

Theorem 4 When ke − kl > 0, ρekl − ρl ke > 0 and v ∈ [1, 5], the minimum point
solution of the optimization problem

min
d∈D̃

{d5} (5.10)

with

D̃ =
{

d ∈ R5 | gl(d) = 0, ge(d) ≤ 0, d5 ≥ d4 ≥ d3 ≥ d2 ≥ d1 ≥ 0
}

,

is the vector dR having [v] components equal to R1[v], one component equal to S −
[v]R1[v] (provided that v < 5), and 5 − [v] − 1 components equal to zero (provided
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that v < 4), where

R1[v] = S

[v] + 1

(
1 +

√
[v] + 1 − v

v[v]

)
.

Moreover, R1[v] is the minimum value of the cost function d5, and it holds

R1[v] > S − [v]R1[v] ≥ 0. (5.11)

The optimum vector dR satisfies both ge(dR) = 0 and gl(dR) = 0.

Proof See Conte and Papa (2013). ��
The previous result is significant for Problem 1 as it shows that the quantity R1[v] acts
as a threshold:when dM < R1[v], there exist no points of gl(d) = 0, ge(d) ≤ 0, d ≥ 0
satisfying the upper bound, and therefore only the “early” constraint boundary contains
extremals.

From Theorem 4, we deduce the position of R1[v] within the range of dM . Precisely,
for v ∈ [1, 5), it is

Ae([v] + 1, 0) < R1[v] ≤ Al([v], 0). (5.12)

Indeed, dR satisfies the equations

[v]R2
1[v] + [v]ρe R1[v] + (S − [v]R1[v])2 + ρe(S − [v]R1[v]) − ke = 0, (5.13)

and

[v]R2
1[v] + [v]ρl R1[v] + (S − [v]R1[v])2 + ρl(S − [v]R1[v]) − kl = 0. (5.14)

Then, taking into account (5.11), we can easily get (5.12) from the equations obtained
subtracting from (5.13), Eq. (4.16) written for Ae([v] + 1, 0), and subtracting from
(5.14), Eq. (4.18) written for Al([v], 0). Moreover, for v = 5, it is R15 ≡ Al(5, 0) ≡
Ae(5, 0) (Conte and Papa 2013), but then this value falls below the range of interest
for dM .

Table 4 summarizes the extremals of Problem 1 reporting how they change as ρ, v

and dM change. Since the intervals of dM identified so far are delimited by the values
Ae(5, 0), . . . , Ae(min{[v]+1, 5}, 0), R1[v], Al([v], 0), . . . , Al(1, 0)which depend on
v, a different extremal table in terms of ρ and dM might be laid down for v belonging
to subintervals of [1, 5] between two consecutive integers. We propose here a unique
table for an arbitrary value of v ∈ [1, 5]. So, the heading row of the table reporting an
interval for v, is intended to specify whether the related dM interval has to be taken into
account or not. The first and fourth table columns (when they exist) can be multiple
columns and have to be repeated, according to u, a number of times still dependent on
v. The interval in the third column reduces to a single point for v ≡ [v], since in that
case R1[v] ≡ Al([v], 0) (Conte and Papa 2013). Note that, on the basis of the chosen
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subdivision in dM intervals, when dM ≥ R1[v] it is not always possible to specify
whether an extremal is an “early” vector or a “late” vector, because the minimum
between Ae(i, j), Al(i, j) can be different within the same dM interval. Nevertheless,
as we will see in the next section, the chosen subdivision is the minimal one allowing
to determine the optimal solution for any dM .

As far as the set {d̊} of non-structured candidates is concerned, it can contain
infinite extremals which are all equivalent with respect to the value of J (Theo-
rem 2). When such points do verify the upper bound (Theorem 4), they are actu-
ally extremals, and it is possible to select a single representative vector satisfy-
ing all the admissibility constraints. In particular, in Table 4 it has been reported
the representative that satisfies the dose upper bound for the largest range of dM

values. Thus, for ρ = ρe the chosen representative is d̊e(5, 0), because dM >

min{Ae(5, 0), Al(5, 0)} = Ae(5, 0), whereas for ρl ≤ ρ < ρe the representative
vector is d̊R .

For problems in which one constraint prevails over the other (first or third columns
of Table 3) all the extremals belong to the same (early or late) boundary, so that
the tables of the extremals become remarkably simpler. We omit writing down the
tables giving only some hints for their construction. The extremal tables can be simply
derived by means of Theorem 3, for prevalent early constraint and ρ < ρe, or else for
prevalent late constraint and ρ < ρl . Moreover, when the early constraint is prevalent
the only extremal is de(5, 0) for ρ > ρe (see Corollary 5), while the point de(5, 0) is
chosen as the representative for the set of non-structured extremals for ρ = ρe. Simi-
larly, in case of prevalent late constraint and for ρ ≥ ρl the (unique or representative)
extremal is dl(5, 0).

6 Optimal solutions

Still considering themore general setting of normal tissue constraints with intersecting
boundaries, and hence starting from Table 4, we can determine the optimal solution
for any value of ρ, dM and v. This is immediate for ρ > ρe because only one extremal
exists and it necessarily coincides with the optimal solution, whereas for ρ ≤ ρe a
few properties of the cost function J have to be taken into account. The first property
concerns non-structured extremals, which, provided they exist, have minimum J and
are optimal solutions, according to Theorem 2.

When only structured extremals exist, they are “early” vectors only, for dM < R1[v]
and ρ < ρe, or mixed “early” and “late” vectors, for dM ≥ R1[v] and ρ < ρl . In the
first case, we have to select vectors with the smallest sum of the doses in that the
cost function (4.10) decreases with

∑5
k=1 dk for ρ < ρe. For i + j fixed, Se(i, j)

in Eq. (4.24) increases when i increases, as shown in the proof of Corollary 4, and,
similarly, it can be proved that, for a fixed j, Se(i, j) increases when i increases. Then,
the vector de(1, u), having the smallest total dose, is the optimal solution for dM in
(Ae(u + 1, 0), Ae(u, 0)], [v] + 1 ≤ u ≤ 4. Furthermore, de(1, [v]) is the optimal
solution for dM in (Ae([v] + 1, 0), R1[v]).

The only part of Table 4 that remains to be analyzed is dM ≥ R1[v] and ρ < ρl . For
ρ < ρl any late structure results in a cost function lower than the cost function of early
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structures, because J in (4.12) is lower than in (4.9) and (4.10). Then, it suffices to pick
out in each dM interval, the late vector of the group having the smallest Sl(i, j) verify-
ing that Al(i, j) ≤ Ae(i, j). Taking into account the behaviour of Sl(i, j), the “late”
vectors with the smallest Sl(i, j) are: dl(1, 0) for dM > Al(1, 0); dl(1, u) for dM in
(Al(u +1, 0), Al(u, 0)]; dl(1, [v]) for dM in [R1[v], Al([v], 0)]. For dM > Al([v], 0),
the mentioned vectors certainly satisfy the early constraint (as reported in Table 4),
whereas for dM in [R1[v], Al([v], 0)] we have to verify that Al(1, [v]) ≤ Ae(1, [v]).
This inequality can be proved taking into account the definition of Al(1, [v])

A2
l (1, [v]) + [v]d2

M + ρl Al(1, [v]) + [v]ρldM − kl = 0, (6.1)

and the definition of dR in (5.14). Subtracting Eq. (6.1) from Eq. (5.14), we obtain

(S − [v]R1[v]) − Al(1, [v]) = ρl + dM + R1[v]
ρl + Al(1, [v]) + (S − [v]R1[v])

[v](dM − R1[v]).

(6.2)

Since dM ≥ Al(1, [v]) when it belongs to the interval [R1[v], Al([v], 0)], and since in
addition R1[v] > S − [v]R1[v] [see (5.11)], Eq. (6.2) implies Al(1, [v]) + [v]dM ≤ S,
which amounts to say Al(1, [v]) ≤ Ae(1, [v]), as seen in Sect. 4.

Taking into account all the properties proved so far, we report the optimal solutions
in the absence of a prevalent constraint in Table 5.

The non-structured solutions reported in Table 5 for ρ ∈ [ρl , ρe] deserve few
comments. When ρ = ρl or ρ = ρe we get limit conditions in which the LQ responses
of tumour andnormal tissue coincide. So,when for instance it isρ = ρl , any admissible
point belonging to the “late” boundary yields the same cost function value equal to
the minimum value. For ρ ∈ (ρl , ρe) and dM ≥ R1[v], again we get an infinite set
of optimal solutions consisting of admissible points of the intersection between the
“early” and “late” boundaries.

We finally consider the situation of prevalent “late” constraint. Table 6 depicts the
optimal solutions in this case and it is simply obtained exploiting the properties of the
cost function (4.12) and of the total dose Sl(i, j). Figure 1 illustrates the behaviour of
the five optimal doses as a function of dM for slowly proliferating tumours (ρ < ρl ),
according to (4.19). Table 6 and Fig. 1 are still valid for prevalent “early” constraint,
as long as the appropriate “early” quantities and parameters are used.

It is worth noting that the optimal solutions of Table 6 for prevalent late constraint
coincide with the optimal solutions of Table 5 when v = 5. Then the geometry of the
admissible domain is such that the only admissible point on the “early” boundary is
de(5, 0) and it is de(5, 0) ≡ dl(5, 0) (see Appendix). Moreover, any other point on
the “late” boundary makes the early constraint strictly satisfied, which means that for
v = 5 the late constraint prevails although not strictly. This is a meaningful situation
from the applicative point of view, as we see in the next section.
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Table 6 Optimal solutions with
respect to the tumour parameter
ρ and the value of dM in case of
prevalent late constraint

dM (Al (u + 1, 0), Al (u, 0)] (Al (1, 0), ∞)

1 ≤ u ≤ 4

ρ < ρl dl (1, u) dl (1, 0)

ρ = ρl d̊l (5, 0) d̊l (5, 0)

ρ > ρl dl (5, 0) dl (5, 0)

Dose fraction equal to dM Dose fraction smaller than dM

days

)y
G(

snoitcarf
esod

A (1,0)l

d 1

A (1,0)l

d 2

A (2,0)l

A (2,0)l

d 3

A (3,0)l

A (3,0)l

d 4 A (4,0)l

A (4,0)l

d 5

d M

A (5,0)l

A (5,0)l

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

Fig. 1 Patterns of optimal dose fractions as functions of dM when the late constraint prevails and for
tumours with ρ < ρl . Upper panel Behaviour of the daily dose fractions with the (arbitrary) choice
d1 ≥ d2 ≥ d3 ≥ d4 ≥ d5. Lower panel Optimal weekly schedules corresponding to six significant values
of dM (indicated by vertical lines)
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6.1 Numerical examples of optimal schedules

Tables 5 and 6 depict the optimal schemes of dose fractionation in a single week of
treatment for different tumour classes and for different values of dM . Hence, according
to the present formulation, which assumes the totalmaximal damages to normal tissues
equi-distributed over an assigned number of weeks, we obtain overall radiotherapy
schedules consisting in the repetition of the same optimal scheme for any treatment
week. It is interesting to compare our optimal schedules to the literature, providing
examples based on real clinical protocols applied to specific tumours.

All the results in the present section refer to values of the normal tissue parameters
commonly found in the literature (Fowler 2010;Yang andXing 2005). In particular, we
assume for the early responding normal tissue ρe = 10 Gy, αe = 0.35 Gy−1, TK e =
7 days and TPe = 2.5 days. As for the late normal tissue, the radiosensitivity ratio
is set to ρl = 3 Gy, while the other parameters do not need to be specified, as the
compensatory repopulation is negligible (Fowler 2012).

Concerning the maximal admissible damages to normal tissues, it is usual in the
literature to express them by means of the quantity called BED introduced by Barend-
sen (1982) and defined as the total radiation dose proportional to the logarithmic cell
kill globally produced by a reference protocol with equal dose fractions d̄. Denoting
by BEDe, BEDl the quantities related to the early and late tissue respectively, the
maximal damages are computed as Ce = αeBEDe and Cl = αlBEDl so that, referring
to conventional protocols of the kind one fraction/day, five fractions/week, delivered
over ν weeks, we can write

BEDe = 5νd̄

(
1 + d̄

ρe

)
− ln(2)

αeTPe
(T − TK e)H(T − TK e), (6.3)

BEDl = 5νd̄

(
1 + d̄

ρl

)
. (6.4)

In view of (2.4), ke and kl are quantified as

ke = 5ρed̄

(
1 + d̄

ρe

)
, (6.5)

kl = 5ρl d̄

(
1 + d̄

ρl

)
, (6.6)

which imply ke > kl and ρekl > ρl ke, being ρe > ρl , and v = 5. Thus, adopting
the BED formalism as a measure of the damage to normal tissues, we obtain optimal
solutions that fall within Table 6 and are such to produce on the late tissue the maximal
damage set as admissible.

The examples are organized as follows. First, we single out a specific tumour class
setting the related radiosensitivity and repopulation parameters. It is evident from
Table 6 that in order to determine the optimal treatment, we only need to distinguish
between ρ < ρl and ρ ≥ ρl , which is a favourable feature, as in general the tumour
parameters are only approximately known because of the high heterogeneity of tumour
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response to radiation. Next, we select a uniform clinical radiotherapy protocol as a
reference protocol and, from (6.4), we determine the tolerable reference value of BEDl

accordingly.Keepingfixed this value ofBEDl and the number of treatmentweeks ν, we
let dM increase andwe recompute the optimal values of the daily fractions in eachweek
enhancing the tumour damaging efficiency. Finally, the fractionation schemes obtained
for each dM are compared with respect to the induced tumour damage expressed in
terms of “log cell kill”:

log10

(
1

S

)
= α log10(e)

(
5ν∑

k=1

dk + 1

ρ

5ν∑

k=1

d2
k − ln(2)

αTP
(T − TK )H(T − TK )

)
.

(6.7)

For the numerical application to specific tumours, we focus on the valuesρ = 10Gy
(Fowler 2008, 2012) and ρ = 1.5 Gy (Brenner and Hall 1999; Yang and Xing 2005)
of the radiosensitivity ratio, typically associated to head and neck or lung cancers (fast
proliferating) and to prostate cancer (slowly proliferating), respectively.

Let us consider ρ = 10 Gy and a reference protocol with dose fractions d̄ . It is
evident from Table 6 that the optimal solution for any tumour having ρ ≥ ρl coincides
with the reference protocol and it is independent of dM , provided d̄ ≤ dM . For instance,
we take as a reference protocol the so-called “strong standard” fractionation schedule,
35 F × 2Gy = 70Gy/46 days (ν = 7, d̄ = 2 Gy) that yields BEDl = 116.7 Gy
and BEDe = 53.1 Gy (Fowler 2008; Yang and Xing 2005). Consequently, as long
as dM ≥ 2 Gy, the optimal weekly scheme consists of five fractions equal to 2 Gy.
Moreover, assuming α = 0.35 Gy−1, TK = 21 days, TP = 3 days (Fowler 2012),
the optimal protocol results in a tumour log cell kill equal to 10.26.

On the other hand, for slowly proliferating tumours (ρ < ρl ) the optimal solution
tends to be hypofractionated (fewer and higher fractions) if dM is allowed to increase,
resulting in higher log cell kill and lower BEDe compared to uniform regimes. For a
comparison with the clinical literature, we have chosen two reference protocols used
in prostate cancer treatment: the already mentioned “strong standard” (Fowler et al.
2003b) and the (shorter) protocol by Lukka et al. (2005) (NCIC protocol), consisting
of 20 F × 2.625Gy = 52.5Gy/25 days (ν = 4, d̄ = 2.562 Gy) and characterized
by BEDl = 98.44 Gy and BEDe = 52.02 Gy. For the tumour parameters, beyond
ρ = 1.5 Gy, we assume α = 0.1 Gy−1, TK = 300 days, TP = 40 days (Yang and
Xing 2005).

Tables 7 and 8 report the optimal schedules for different values of themaximum tol-
erable fraction size dM . The values of dM in the first columns have been actually used as
daily doses in clinical treatments of prostate cancers (Ritter et al. 2009), thoughnot nec-
essarily in uniform schedules. For each dM , the tables report the optimal week scheme
along with the resulting total number of fractions and the total dose over ν weeks.
Moreover, the tumour log cell kill (LCK) and BEDe are computed, along with their
relative (per cent) variations with respect to the corresponding reference quantities. In
Fig. 2 these latter relative variations are plotted as functions of dM for both reference
protocols. The numerical application of the proposed procedure to slowly proliferat-
ing tumours evidences, for dM > d̄ , the optimality of hypofractionated schedules that
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Table 7 Comparison of optimal schedules iso-effective with respect to the late complications, BEDl =
116.667 Gy, and with fixed number of weeks, ν = 7, for tumours having ρ = 1.5 Gy and for different
values of dM

dM

(Gy)
Optimal weekly
scheme (Gy)

Number of
fractions

Total dose
(Gy)

Log cell
kill

LCK gain
(%)

BEDe

(Gy)
BEDe

reduction (%)

2 (2 2 2 2 2) 35 70 7.093 0 53.105 0

2.625 (2.625 2.625
2.625 1.32 0)

28 64.366 7.338 3.449 49.162 −7.426

3 (3 3 2.531 0 0) 21 59.718 7.54 6.295 45.908 −13.553

3.5 (3.5 3.5 1.098 0 0) 21 56.687 7.672 8.151 43.786 −17.549

4.5 (4.5 2.801 0 0 0) 14 51.108 7.914 11.566 39.881 −24.902

6 (5.278 0 0 0 0) 7 40.099 8.392 18.307 32.175 −39.414

Reference protocol: 35 F × 2Gy = 70Gy/46 days (Fowler et al. 2003b)

Table 8 Comparison of optimal schedules iso-effective with respect to the late complications, BEDl =
98.438 Gy, and with fixed number of weeks, ν = 4, for tumours having ρ = 1.5 Gy and for different values
of dM

dM

(Gy)
Optimal weekly
scheme (Gy)

Number of
fractions

Total dose
(Gy)

Log cell
kill

LCK gain
(%)

BEDe

(Gy)
BEDe

reduction (%)

2.625 (2.625 2.625 2.625
2.625 2.625)

20 52.5 6.27 0 52.022 0

3 (3 3 3 3 0.519) 20 50.078 6.375 1.678 50.327 −3.259

3.5 (3.5 3.5 3.5 1.298 0) 16 47.192 6.501 3.677 48.306 −7.143

4.5 (4.5 4.5 1.429 0 0) 12 41.715 6.738 7.47 44.473 −14.512

6 (6 3.199 0 0 0) 8 36.795 6.952 10.878 41.029 −21.132

Reference protocol: 20 F × 2.625Gy = 52.5Gy/25 days (Lukka et al. 2005)

result in increased log cell kill and reduced damage to the early responding normal
tissue than conventional uniform protocols. As additional advantages we mention the
reduction of the total radiation dose and of the number of fractions delivered. As dM

increases, higher dose fractions are permitted, making the advantages of non-uniform
fractionation schemes more marked, particularly in Table 7 referring to the “strong
standard” protocol. For either reference protocol, we observe that any weekly scheme
obtained for a given value of dM (including the reference) is still an admissible solution
for higher values of dM , but clearly it is not the optimum.

In conclusion, the results of Tables 7, 8 are in agreement with clinical studies evi-
dencing the improvement achievable in log cell kill using few dose fractions with
high size for slowly proliferating tumours. Indeed, the practical use of non-uniform
hypofractionated protocols in the treatment of prostate tumours has been experi-
enced since many years, still remaining a controversial issue because of the possible
occurrence of late complications acknowledged by the literature. One of the earliest
hypofractionated protocols is reported by Collins et al. (1991) who used 6 fractions
of 6 Gy over three weeks in prostate carcinoma treatments between 1964 and 1984.
In more recent years, the availability of advanced radiotherapeutic techniques, such
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Fig. 2 Relative variations of tumour log cell kill (squares) and BEDe (circles) as dM increases. Left panel
“strong standard” protocol (Fowler et al. 2003b); right panel NCIC protocol (Lukka et al. 2005)

as IMRT, has made it possible to selectively irradiate the tumour with very high dose
fractions. Examples of onceweekly irradiation schemes, very similar to those obtained
for dM > Al(1, 0) (see last row of Table 8), can be found in the papers by Menkarios
et al. (2011) and Tang et al. (2008). Other “extreme” hypofractionated treatments with
very high daily doses up to 10.5 Gy have been reported by Ritter et al. (2009).

7 Concluding remarks

We addressed the problem of finding the optimal weekly scheme of radiotherapy dose
fractions, that achieves the best trade-off between maximizing the tumour cell kill
while sparing the normal tissues. Representing the cell response to radiation by means
of the LQ model, we set constraints on the maximal admissible damage to early and
late responding normal tissues. Furthermore, an upper limit on the dose fraction size
is introduced to strengthen the normal tissue constraints.

In this work, we provide a framework to analytically determine the optimal frac-
tionation of the radiation dose as a function of the tumour type and of the fraction
upper bound, as well as of the normal tissue parameters. However, the generality of
this approach required some simplifying assumptions: (i) the overall treatment time is
assigned, (ii) the cumulative damage to the normal tissues over the whole treatment is
assigned so that, in view of (i), the weekly damage is also assigned, even though not
necessarily equi-distributed.

Concerning assumption (ii), the maximum tolerable damage to normal tissues is
usually expressed in terms of the BED (Barendsen 1982; Yang and Xing 2005; Fowler
2010), so that its value becomes dependent on the treatment protocol and on the model
assumed to represent the damage. The analytical study has been developedwithout this
restriction, to give the optimal solution in terms of general model parameters, letting
them vary taking positive values. However, we stress that the practical applicability
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of the obtained results is limited by the difficulty in assessing the model parameter
values for highly heterogeneous populations such as the human tumours.

Despite the simplicity of the LQmodel and the considered simplifying assumptions,
the analytical determination of the optimal solutions proved to be rather complex.

A first remark on the obtained results is that the optimal protocol produce the
maximal tolerable damage to at least one normal tissue.

Another remark concerns the influence of the tumour α/β ratio on the fraction-
ation scheme. Indeed, when dM is sufficiently large we recognize, by means of the
mathematical formulation of the problem, that hypofractionation is convenient when
α/β is small, whereas the optimal fractionation tends to the uniform scheme for large
α/β. This result is consistent with the clinical and bio-mathematical literature (Fowler
2010; Yang and Xing 2005; Brenner and Hall 1999; Fowler et al. 2003b) and confirms
the results obtained by Bertuzzi et al. (2013b).

An interesting result is how the value of dM influences the optimal solution for
slowly proliferating tumours, such that ρ < ρl . We notice that when dM decreases
the number of positive doses tends to increase, and in particular the positive doses
are all equal to dM except one, which increases continuously from zero to dM when
dM decreases. So, as the upper bound decreases getting “stricter”, even for slowly
proliferating tumors the optimal protocol tends to become uniform. Figure 1 illustrates
the behaviour of the optimal solution just described, reporting different optimalweekly
schedules for different value of dM .

The same solution behaviour with respect to dM characterizes the optimal solution
for tumours having ρ ∈ (ρl , ρe), as long as dM is strictly less than R1[v]. On the other
hand, when dM ≥ R1[v], all the points belonging to the intersection between “late”
and “early” boundaries that satisfy the upper bound dM provides optimal fractionation
schemes, in that they equivalently produce the maximum damage to the tumour.

Some numerical examples of application of our procedure are proposed to illustrate
the behaviour of the optimal solutions with respect to the upper bound dM and to
quantify the tumour damages. In comparison to conventional reference protocols, the
optimal fractionation schemes obtained by the present study show an appreciable
advantage in terms of tumour cell kill.

Acknowledgments Wewish to thank two anonymous referees for their constructive comments and stim-
ulating suggestions.

Appendix

This appendix concerns the study of the intersection region of the constraints ge(d) ≤
0, gl(d) ≤ 0 in the subset d ≥ 0 of R5. More precisely, as seen in Sect. 4, any
possible extremal of Problem 1 must satisfy ge(d) = 0 or gl(d) = 0 or both, so we are
actually interested in studying the systems (4.6) in d ≥ 0. The first goal is to show that
the quantities ke − kl , ρekl − ρl ke and v (functions of the normal tissue parameters)
determine whether the boundaries ge(d) = 0 and gl(d) = 0 intersect each other in
d ≥ 0 or not. Furthermore, when there is not such an intersection, we prove that all the
points lying on one of the two boundaries make the other constraint strictly satisfied
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(acceptable points), and that all the points of this second boundary violate the first
constraint (not acceptable points). Then, all the extremals belong to the boundary of
the same normal tissue constraint, so that Problem 1 has one prevalent constraint to
be established again on the basis of the quantities ke − kl , ρekl − ρl ke and v.

We start looking for the solutions of the system

ge(d) = 0,
gl(d) = 0,
dk ≥ 0, k = 1, . . . , 5.

(8.1)

Rather than the first two equations in (8.1), we can consider the differences ge(d) −
gl(d) = 0 and ρegl(d) − ρl ge(d) = 0, and we rewrite (8.1) as

5∑

k=1

dk = ke − kl

ρe − ρl
= S,

5∑

k=1

d2
k = ρekl − ρl ke

ρe − ρl
= Q,

dk ≥ 0, k = 1, . . . , 5.

(8.2)

From (8.2) it immediately appears that the original system (8.1) has no solution if
ke − kl ≤ 0 or if ρekl − ρl ke ≤ 0. Furthermore, we can prove that the solutions of
(8.1) exist only if

ke − kl > 0, ρekl − ρl ke > 0, 1 ≤ v ≤ 5. (8.3)

A way to prove the above statement is finding the minimal and maximal values of the
total dose

∑5
k=1 dk on the set

D̄ =
{

d ∈ R5|
5∑

k=1

d2
k = Q, dk ≥ 0, k = 1, . . . , 5

}
.

bymeans of a classical quadratic programming approach. Solving the optimality neces-
sary conditions,wefind theminimumpoint at (

√
Q, 0, 0, 0, 0),withminimal total dose∑5

k=1 dk = √
Q, and the maximum point at (

√
Q/5,

√
Q/5,

√
Q/5,

√
Q/5,

√
Q/5),

with maximal total dose
∑5

k=1 dk = √
5Q. This result implies that (8.2), and then

(8.1), has solution if and only if

√
Q ≤ S ≤ √

5Q (8.4)

which, recalling the definition (4.28) of v, amounts to say 1 ≤ v ≤ 5.
When one of the conditions (8.3) is denied, no vector d ≥ 0 exists such that

ge(d) = gl(d) = 0. Then, we prove that one constraint is prevalent and, examining
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the values of the quantities ke − kl , ρekl − ρl ke and v in Table 2, we establish which
is the prevalent constraint.

Let us start supposing ke − kl ≤ 0. For each d ≥ 0, it follows gl(d) ≤ ge(d),
which implies that for each d such that ge(d) ≤ 0 it is gl(d) < 0, whereas for each
d such that gl(d) = 0 it is ge(d) > 0. So, the early constraint is prevalent and no
“late” vector is acceptable. Otherwise, if ρekl − ρl ke ≤ 0, for each d ≥ 0 it follows
ρegl(d) ≥ ρl ge(d), which implies that the late constraint is now prevalent and no
“early” vector is acceptable.

Let us consider ke − kl > 0, ρekl − ρl ke > 0 and v < 1 proving that the early
constraint is prevalent and that no “late” vector is acceptable. Let us proceed by
contradiction, supposing that the two systems

⎧
⎨

⎩

ge(d) ≤ 0,
gl(d) > 0,
dk ≥ 0, k = 1, . . . , 5,

⎧
⎨

⎩

ge(d) < 0,
gl(d) = 0,
dk ≥ 0, k = 1, . . . , 5.

(8.5)

admit solutions so to get an absurd. Indeed, it is always true that (
∑5

k=1 dk)
2 ≥∑5

k=1 d2
k for d ≥ 0, and since both the systems in (8.5) require

∑5
k=1 dk < S and∑5

k=1 d2
k > Q, it would follow Q ≤ S2, which is in contrast with v = S2/Q < 1. So,

neither (8.1) nor (8.5) have solutions and it is easy to deduce that for each d satisfying
ge(d) ≤ 0, it is gl(d) < 0, and that for each d satisfying gl(d) = 0, it is ge(d) > 0.

Finally, for ke − kl > 0, ρekl −ρl ke > 0 and v > 5 we similarly prove that the late
constraint prevails and no “early” vector is acceptable, by showing that the systems

⎧
⎨

⎩

ge(d) > 0,
gl(d) ≤ 0,
dk ≥ 0, k = 1, . . . , 5,

⎧
⎨

⎩

ge(d) = 0,
gl(d) < 0,
dk ≥ 0, k = 1, . . . , 5.

(8.6)

cannot have solutions. Indeed, from the Cauchy–Schwartz inequality, we get
5
∑5

k=1 d2
k ≥ (

∑5
k=1 dk)

2 and since both the systems (8.6) require
∑5

k=1 dk > S and∑5
k=1 d2

k < Q, it would have to be S2 ≤ 5Q, clearly in contrast with v = S2/Q > 5.
Thus, for each d satisfying gl(d) ≤ 0, it is ge(d) < 0, and for each d satisfying
ge(d) = 0, it is gl(d) > 0.

The results proved in this Appendix are schematized in Table 2.
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