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Abstract Continuous-time Markov chains are a standard tool in phylogenetic infer-
ence. If homogeneity is assumed, the chain is formulated by specifying time-
independent rates of substitutions between states in the chain. In applications, there
are usually extra constraints on the rates, depending on the situation. If a model is
formulated in this way, it is possible to generalise it and allow for an inhomogeneous
process, with time-dependent rates satisfying the same constraints. It is then useful
to require that, under some time restrictions, there exists a homogeneous average
of this inhomogeneous process within the same model. This leads to the definition
of “Lie Markov models” which, as we will show, are precisely the class of models
where such an average exists. These models form Lie algebras and hence concepts
from Lie group theory are central to their derivation. In this paper, we concentrate
on applications to phylogenetics and nucleotide evolution, and derive the complete
hierarchy of Lie Markov models that respect the grouping of nucleotides into purines
and pyrimidines—that is, models with purine/pyrimidine symmetry. We also discuss
how to handle the subtleties of applying Lie group methods, most naturally defined
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over the complex field, to the stochastic case of a Markov process, where parameter
values are restricted to be real and positive. In particular, we explore the geometric
embedding of the cone of stochastic rate matrices within the ambient space of the
associated complex Lie algebra.

Keywords Phylogenetics · Markov model · Representation theory · Permutation
groups · Lie algebras

Mathematics Subject Classification 15A30 · 22E60 · 52B99 · 62P10

1 Introduction

Most of the commonly implemented models in molecular phylogenetics are based
on the continuous-time Markov assumption. For these models, molecular substitu-
tion events (along an edge of a phylogenetic tree) are ruled by substitution rates. For
DNA models—where the state space consists of the four nucleotides adenine, cyto-
sine, guanine and thymine—12 substitution rates must be specified for each edge of
the evolutionary tree, and the precise characteristics of the process are fixed by con-
straints on these rates. These constraints define a space of parameter values where each
point corresponds to unknown evolutionary quantities such as base composition and
mutation rate. As in all applied statistics, there is a trade-off between more complex,
realistic models, and simpler, tractable models: complex models can provide very
close fits to the observed data, but are more vulnerable to random error. A standard
assumption in molecular phylogenetics is to work with homogeneous Markov chains,
where the substitution rates are assumed to be constant in time.

The motivation behind our previous work (Sumner et al. 2012a) was to consider
the consequences of allowing for some change in individual substitution rates which
may well have occurred independently across the evolutionary history. With this per-
spective, the evolutionary process can still be modelled as a continuous-time Markov
chain, but we must allow the process to be inhomogeneous, where the rates are allowed
to vary as a function of time throughout the evolutionary history. This leads to con-
sidering evolutionary model classes that are “locally multiplicatively closed”, that is,
models where the product of substitution matrices is still in the model as long as they
are sufficiently close to the identity.1 For such models, it is possible to interpret the time
average of their inhomogeneous behaviour as a homogeneous process within the same
model class. Many oft-used models, such as the general time-reversible model (Tavaré
1986; Posada and Crandall 1998), are not multiplicatively closed do not satisfy this
property and this deficiency poses a problem for phylogenetic analysis in both flexi-
bility of interpretation, and as a potential source of model-misspecification (Sumner et
al. 2012). For a locally multiplicatively closed model, under some time restrictions it

1 The reader may notice that we have changed the terminology of Sumner et al. (2012a) and we refer to
the desired property as “locally multiplicative closure” instead of “multiplicative closure”. The problem
of global multiplicative closure for a continuous-time Markov model is a deep problem related to the
convergence of the Baker–Campbell–Hausdorff formula (see Blanes and Casas 2004). Notice that this is
not a serious drawback as the nature of the problem is local.
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Lie Markov models with purine/pyrimidine symmetry 857

is possible to model evolutionary processes homogeneously, by interpreting the fitted
substitution rates as an “average” of the true inhomogeneous process occurring on
each branch of the tree. Sumner et al. (2012a) presented sufficient conditions for local
multiplicative closure of continuous-time Markov chains, and this lead directly to the
concept of Lie Markov models. These models arise when we demand the set of rate
matrices of the model form a Lie algebra. This is a technical condition guaranteeing the
corresponding set of substitution probability matrices will be locally multiplicatively
closed, as desired. Moreover, we will show that this condition is actually sufficient (see
Theorem 1). Mathematically, Lie Markov models can be regarded as a generalisation
of other model classes, such as equivariant models introduced by Draisma and Kuttler
(2008) or group-based models (Semple and Steel 2003; Michałek 2011; Donten-Bury
and Michałek 2012).

Sumner et al. (2012a) discussed the symmetry properties of DNA models to
nucleotide permutations, and noted the statistical relevance of these symmetries to
likelihood calculations. The main result of that paper was a procedure to generate
multiplicatively closed Markov models with a prescribed symmetry, which has desir-
able properties in terms of model selection. For instance, a biologist may wish that
candidate models do not provide any natural groupings of nucleotides, and hence
S4 symmetry—i.e. the symmetry group of all possible nucleotide permutations—is
appropriate. It is then a matter of choosing how many free parameters are appropri-
ate for the given data set. The complete hierarchy of Lie Markov models with S4
symmetry was derived by Sumner et al. (2012a).

In this paper, we deal with the case of locally multiplicatively closed Markov
models whose symmetry is consistent with the grouping of nucleotides into purines and
pyrimidines, i.e. AG | CT = {{A, G}, {C, T }}. As will be discussed, this motivates
us to produce and examine the Lie Markov models with symmetry governed by the
permutation subgroup of S4 that preserves the purine/pyrimidine grouping:2

G := {e, (AG), (CT ), (AG)(CT ), (AC)(GT ), (AT )(CG), (ACGT ), (AT GC)},

where e is the identity, or “do nothing”, permutation.
We will also go further than Sumner et al. (2012a) by exploring the definition

of these models and investigate the geometrical properties that arise naturally when
we deal with the tension between the algebraic formalism of Lie groups, where one
works over the complex field, and the stochastic constraints of Markov models, where
parameter values are constrained to be real and positive. In particular, we discuss
the geometric embedding of the stochastic rate matrices within the vector space of
complex rate matrices. These considerations motivate our definition of the stochastic
cone of a Lie Markov model. Besides its geometrical interest, the stochastic cone is
the set of stochastic rate matrices of the model and in a practical context is actually
the main object of interest. We plan to discuss implementation and performance of the
models we present here in a future publication.

2 Note this group is isomorphic to the dihedral group D4, which describes the symmetries of a square.
However, it also admits a more natural description in our setting as S2 �S2, the wreath product of S2 with
itself (see Rotman 1995, Chapter VII).
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Although our presentation focuses on the purine/pyrimidine grouping AG|CT ,
given the appropriate nucleotide permutation, exactly the same hierarchy of models
would arise if we were to consider the grouping AC |GT , or the grouping AT |GC . The
reader should note that choosing the grouping AT |GC would give the classification of
all Lie Markov models that preserve complementation A ↔ T, C ↔ G (see Yap and
Pachter 2004). In particular, the “strand-symmetric” model defined by Casanellas and
Sullivant (2005) arises in this way from our Model 6.6 (see Table 1). The conversion
of our hierarchy of models from the AG|CT grouping to the AT |GC grouping would
follow by simultaneously permuting the G and T rows and columns of the rate matrices
in each model.

In Sect. 2 we recall some of the basic definitions and tools introduced by Sumner et
al. (2012a). We revisit the definition of Lie Markov models, and introduce the concept
of the stochastic cone of a Lie Markov model. We also recall the basic results on
group theory and representation theory necessary for the development of our results.
In Sect. 3 we recall the idea of Lie Markov model with prescribed symmetry given by
a permutation group G. We introduce the ray-orbits of the corresponding stochastic
cone, which are the orbits under the action of G of the rays of the stochastic cone.
In Sect. 4, we take G = G, decompose the space of rate matrices as a G-module and
provide a basis consistent with this decomposition. We also determine the isomor-
phism classes of possible G-orbits and the decomposition of their (abstract) span into
irreducible modules. In Sect. 5, we give the whole list of Lie Markov models with
purine/pyrimidine symmetry. Each model is given by exhibiting a basis of the cor-
responding space of matrices as well as the ray-orbits of its stochastic cone. Among
these models, we obtain the Jukes–Cantor model, the Kimura models with two or three
parameters, the general Markov model and a number of new models that may have
special interest for the biologists. Some of these are shown in Table 1 as an appetizer
before the whole list, which itself can be found in explicit form as Supplementary
Material online. Finally, in the conclusions we discuss implications and possibilities
for future research.

2 Preliminaries

Throughout this section, we will recall some definitions and basic facts from Sumner
et al. (2012a), which we also refer to for some proofs. We keep the assumptions and the
notation already introduced there. In particular, we work over the complex field C, and
for simplicity refer to a matrix as “Markov” if the entries in each column sum to one.
Later we will discuss how to specialise to the stochastic case where the entries must
be real numbers in the range [0, 1]. This will lead us to considering the stochastic cone
of the Lie Markov model, which will be the set of real rate matrices with non-negative
entries outside the diagonal.

We define the general Markov model MG M as the set of n × n matrices whose
columns sum to one:

MG M :=
{

M ∈ Mn(C) : θT M = θT
}

,

123



Lie Markov models with purine/pyrimidine symmetry 859

Table 1 Some Lie Markov models with purine/pyrimidine symmetry that may have special interest for
biologists

Model Rate matrix Description

3.3b

⎛
⎜⎜⎝

∗ α β γ

α ∗ γ β

γ β ∗ α

β γ α ∗

⎞
⎟⎟⎠

A 3-dimensional model, with parameter α for transitions
A ↔ G, C ↔ T , and two different parameters for
transversions: β for A �→ C �→ G �→ T �→ A and
γ for A �→ T �→ G �→ C �→ A.

3.3c

⎛
⎜⎜⎝

∗ α β β

α ∗ β β

β β ∗ γ

β β γ ∗

⎞
⎟⎟⎠

A 3-dimensional model, with two parameters for transi-
tions: α for A ↔ G and γ for C ↔ T , and one parameter
for transversions: β for A ↔ C ↔ G ↔ T ↔ A.
Note the similarity of both of these models with model
by Kimura (1981), which also belongs to our hierarchy
as Model 3.3a.

4.4a

⎛
⎜⎜⎝

∗ α α α

β ∗ β β

γ γ ∗ γ

δ δ δ ∗

⎞
⎟⎟⎠

The model by Felsenstein (1981): a 4-dimensional model,
where mutations share the same rate when they change
to the same nucleotide.

4.4b

⎛
⎜⎜⎝

∗ α β β

α ∗ β β

γ γ ∗ δ

γ γ δ ∗

⎞
⎟⎟⎠

A 4-dimensional model, with two parameters for transi-
tions: α for A ↔ G and γ for C ↔ T , and the other two
parameters for transversions: β for A �→ C �→ G �→
T �→ A and γ for A �→ T �→ G �→ C �→ A.

5.6b

⎛
⎜⎜⎝

∗ a + x b + x b + x
a + y ∗ b + y b + y
b + z b + z ∗ a + z
b + t b + t a + t ∗

⎞
⎟⎟⎠

A 5-dimensional model, where rates depend on two fam-
ilies of parameters {a, b} and {x, y, z, t}: transitions and
transversions have parameters a and b respectively, while
they are affected by some other parameters according to
the nucleotide they change to: x for mutations to A, y
for mutations to G, z for mutations to C and t for muta-
tions to T . Notice the resemblance of this model with the
model by Hasegawa et al. (1988); see Remark 11.

6.6

⎛
⎜⎜⎝

∗ α β γ

α ∗ γ β

δ ε ∗ ζ

ε δ ζ ∗

⎞
⎟⎟⎠

This 6-dimensional model has two parameters for differ-
ent transitions: α for A ↔ G and ζ for C ↔ T , and
4 for transversions: β : A �→ C, G �→ T, γ : A �→
T, G �→ C, δ : C �→ A, G �→ T, ε : A �→ T, G �→ C .
By permuting rows and columns according to (GT ) (or
(AC)), we obtain the strand symmetric model introduced
by Casanellas and Sullivant (2005).

6.7a

⎛
⎜⎜⎝

∗ a + x b + x c + x
a + y ∗ c + y b + y
b + z c + z ∗ a + z
c + t b + t a + t ∗

⎞
⎟⎟⎠

This 6-dimensional model is similar to 5.6b, but it has two
parameters for different transversions: b for A �→ C �→
G �→ T �→ A and c for A �→ T �→ G �→ C �→ A.

where θ is the column n-vector with all its entries equal to 1, i.e. θT = (1, 1, . . . , 1).
Recall that, in a homogeneous continuous-time Markov chain, the corresponding
Markov matrices occur as exponentials M = eQt , where Q is a “rate matrix” and
t is time elapsed. We write

LG M :=
{

Q ∈ Mn(C) : θT Q = 0T
}
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to indicate the set of all (complex) rate matrices. We refer to a Markov matrix M ∈
MG M , or a rate matrix Q ∈ LG M , as “stochastic” if its off-diagonal elements are real
and positive.

Under matrix multiplication, the set

GL1(n, C) :=
{

M ∈ Mn(C) : θT M = θT , det(M) �=0
}

,

forms a subgroup of the general linear group of invertible n ×n matrices with complex
entries, i.e. GL1(n, C) < GL(n, C). It contains the matrix exponential of any rate
matrix, that is,

eLG M :=
{

eQ : Q ∈ LG M

}
⊂ GL1(n, C).

We refer to eLG M as the general rate matrix model.
A Markov model M is some subset M ⊆ MG M of the general Markov model

containing the identity matrix 1. A Markov model M is locally multiplicatively closed
if for all M1, M2 ∈ M in a neighbourhood of 1 we also have the matrix product
M1 M2 ∈ M. Similarly, given a subset L ⊆ LG M of rate matrices containing the null
matrix, we refer to eL as a rate matrix model. It is clear that all rate matrix models are
Markov models, and we simplify terminology and also refer to L as a “model”.

We are primarily interested in rate matrix models M = eL which that are locally
multiplicatively closed. For such a model M, suppose that it is a smooth manifold
around the identity matrix 1, so there exist differentiable paths A(t) ∈ M with A(0) =
1. Then, we can define the tangent space at the identity: T1(M) = {A′(0) : A(t) ∈
M, A(0) = 1}. The following theorem provides a characterization for these models.
Recall that a L ⊂ LG M is a Lie algebra if for all Q1, Q2 ∈ L and λ ∈ C:

1. Q1 + λQ2 ∈ L,
2. [Q1, Q2] := Q1 Q2 − Q2 Q1 ∈ L.

The first condition states that L is a vector space, and the second states that L is closed
under “Lie brackets”.

Theorem 1 (cf. Birkhoff 1938) A model M = eL is locally multiplicatively closed if
and only if T1(M) is a Lie subalgebra of LG M .

Proof The sufficient condition is a consequence of the Baker–Campbell–Hausdorff
formula (Campbell 1897): if L forms a Lie algebra, there is a small ball B = Bε around
0 in LG M such that if X, Y ∈ B, then the product given by the Baker–Campbell–
Hausdorff expansion

X ∗ Y := X + Y + 1

2
[X, Y ] + . . .

is absolutely convergent and associative. Then, for any X, Y ∈ B, we can write
eX eY = eX∗Y . Define U = exp(B ∩ L), which is a neighbourhood of 1 in M, and
conclude that if M1, M2 ∈ U , then M1 M2 ∈ M.
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Conversely, assume that M = eL is locally multiplicatively closed, so there
is a neighbourhood U of 1 in M such that if M1, M2 ∈ U , then M1 M2 ∈ M.
Given X, Y in the tangent space T1(M), define A(t) = et X , B(t) = etY , and
C(s, t) = A(t)B(s)A(t)−1. There exists some ε > 0 such that if 0 < t, s < ε,
then A(t), B(s), A(t)−1 ∈ U and also A(t)B(s) ∈ U . Because of the assumption, we
infer that C(s, t) ∈ M. By taking derivatives, we conclude that

d

ds

(
dC(s, t)

dt

∣∣∣∣t=0

)∣∣∣∣
s=0

= [X, Y ] ∈ T1(M).

It follows that T1(M) is a Lie subalgebra. �
Presently, we recall the Lie algebra structure of the general Markov model (Johnson

1985; Sumner et al. 2012a). To this aim, consider the set of “elementary” rate matrices
{Li j : 1 ≤ i �= j ≤ n}, where Li j is the n × n matrix with 1 in the i j entry, −1 in the
j j entry and 0 everywhere else. The matrices {Li j }i �= j form a C-basis for the tangent
space of GL1(n, C) and, in particular, we can express any rate matrix Q as a linear
combination:

Q =
∑
i �= j

αi j Li j . (1)

This is a convenient basis for LG M because the stochastic condition on Q is simply that
the coefficients αi j are real and non-negative. Moreover, if δi j denotes the Kronecker
delta (δi i = 1 and δi j = 0 when i �= j), the equalities

[Li j , Lkl ] = (Li j − L jl)(δ jk − δ jl) − (Lkj − Ll j )(δil − δ jl)

exhibit the Lie algebra structure of LG M .
Given a vector subspace L ⊂ LG M , a stochastic generating set for L is a generating

set BL = {L1, L2, . . . , Ld} of L such that each Lk is a non-negative linear combination
of the Li j , i.e. Lk = ∑

i �= j αi j Li j where αi j ≥ 0. A stochastic basis of L is a stochastic
generating set where the vectors are linearly independent.

Definition 1 (cf. Sumner et al. 2012a) A Lie Markov model is a Lie subalgebra L of
LG M for which there exists a stochastic basis.

Leaving the technical aspects aside, a Lie Markov model is a model for which the
product of two substitution matrices is still in the model. The motivation of such models
is given by the fact a non-homogeneous evolutionary processes can be described in a
homogeneous fashion. In more concrete terms, if M1, M2 ∈ eL, then M1 M2 ∈ eL, i.e.
for any inhomogeneous process on an edge where the rate matrices always lie within
L, there is an equivalent homogeneous process on that edge, whose rate matrix also
lies within L. This is not the case for the general time reversible model (the reader is
referred to the paper by Sumner et al. (2012a) for a detailed proof of the non-closure
of GTR).
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862 J. Fernández-Sánchez et al.

Fig. 1 A strongly convex polyhedral cone of dimension 3 with six rays (represented by arrows) and a
convex polyhedral cone which is not strongly convex

Remark 1 By an elementary result in linear algebra, any generating set for a vector
space can be reduced to a basis by removing elements, and hence Definition 1 would
remain unchanged if “stochastic basis” were replaced with “stochastic generating set”.

�

We are especially interested in the study of the set of stochastic rate matrices of
the model. The condition of Definition 1 ensures L contains enough stochastic rate
matrices (see Theorem 2 forthcoming), and it is useful to give some geometrical
interpretation of this condition. To this aim, we need to recall some basic definitions
on convex polyhedral cones.

Following the book by Alexandrov (2005), a convex polyhedral cone in R
n is

defined as a set

C = {λ1v1 + . . . + λrvr : λi ≥ 0}

generated by some finite set of vectors v1, . . . , vr in R
n . Such vectors are called

generators of the cone C . The reader may note that, with this definition, every linear
subspace of R

n is a convex polyhedral cone. When a convex polyhedral cone contains
no nonzero linear subspaces, it is said to be strongly convex. In this case, which has
special interest for us, any minimal system of generators of the cone is unique up
to multiplication with positive scalars (Alexandrov 2005). The rays of the cone are
the non-negative spans of each vector in a minimal system of generators, and they
correspond to the 1-dimensional faces of the cone (see Fig. 1 for an illustration).
Farkas’s theorem ensures the polyhedral cones can be equivalently defined as the
intersection of finitely many halfspaces. It follows that the intersection of any two
convex polyhedral cones in R

n is again a convex polyhedral cone.

Note 1 Consider a collection of vectors X = {X1, . . . , Xr }. In what follows we will
use the notation FX or 〈X1, . . . , Xr 〉F to indicate the linear span of X over the field
F, where F = R or C. That is,

FX = 〈X1, . . . , Xr 〉F := {λ1 X1 + . . . + λr Xr : λi ∈ F}.
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Lie Markov models with purine/pyrimidine symmetry 863

Of course, FX is a vector space. In particular, we can consider V := CX as a complex
vector space with dimension r , or as a real vector space V = RX + R(iX) with
dimension 2r . To distinguish these dimensions, we use the notation dimC(V ) = r and
dimR(V ) = 2r . �

The dimension of the cone C is defined as the dimension of the linear space RC =
C +(−C) spanned by C , i.e. dim(C) := dim(RC). Of course, since a set of generators
of a cone C is also a system of generators of the linear space RC , we conclude that
the number of rays of a cone is at least its dimension.

Returning to our setting, we consider the real vector space LR

G M of dimension
n(n − 1) spanned by the n × n elementary rate matrices Li j , i �= j defined above. We
denote

L+
G M :=

{
Q =

∑
i �= j

αi j Li j : αi j ≥ 0

}
,

which is clearly a convex polyhedral cone in LR

G M . Given a (complex) vector subspace
L in LG M , we consider

L+ := L ∩ L+
G M .

Notice that all the entries of each matrix in L+ are real and non-negative.

Theorem 2 For any (complex) vector subspace L, L+ = L ∩ L+
G M is a strongly

convex polyhedral cone in LR

G M . The dimension of L+ as a cone is less than or equal
to the complex dimension of L, and equality holds if and only if L has a stochastic
generating set.

Proof The set L+ is the intersection of two convex polyhedral cones, so it is also a
convex polyhedral cone. Moreover, being contained in L+

G M it is clear it contains no
linear subspaces, so it is strongly convex, as required. Now, to show that the dimension
of L+ is less than or equal to the complex dimension of L, consider the vector space
CL+ and observe it is a subspace: CL+ ⊂ L. This implies dimC(CL+) ≤ dimC(L),
and since L+ contains only real vectors, we have dimC(CL+) = dimR(RL+) =
dim(L+) ≤ dimC(L), as required. Now, assume L has a stochastic generating set BL

so BL ⊂ L+ and CBL = L. As BL contains only real vectors, we have dimR(RBL) =
dimC(CBL) = dimC(L); and because L+ contains only real vectors and L+ ⊂ L,
we have BL ⊂ L+ ⊂ RBL, so RBL = RL+. Together this implies dimR(RBL) =
dimR(RL+) = dim(L+) = dimC(L). Conversely, suppose dimC(L) = dim(L+).
Take a generating set for RL+ composed of vectors in L+; by removing vectors in
this generating set, we can always assume they actually form a basis B ⊂ L+ of RL+.
Now consider the vector subspace CB ⊂ L and observe dimC(CB) = dimR(RB) =
dimR(RL+) = dim(L+) = dimC(L). Thus CB = L, as required. �
Remark 2 The previous result implies that the vector subspace L has a stochastic basis
if and only if there is no drop in dimension when we restrict to the intersection with
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864 J. Fernández-Sánchez et al.

the positive orthant L+
G M . From a practical perspective, it is the cone L+ that contains

the relevant part of the model, as only real matrices with non-negative off-diagonal
entries make some sense as rate matrices of a continuous-time Markov chain. This
observation justifies the requirement of stochastic basis in Definition 1. �

Definition 2 The dimension of a Lie Markov model is the dimension of L as a complex
vector space (which by virtue of Theorem 2 equals the dimension of L+ as a cone).
The stochastic cone of L is the convex polyhedral cone L+ and the rays of the model
are the rays of L+.

Remark 3 It is important to note that not every stochastic generating set of L is a set
of generators of the cone L+. If this is the case and the set of generators is minimal,
the positive linear span of each generator is a ray of the cone. �

Background on group representation theory
In what follows we recall basic results from the representation theory of permutation

groups G ≤ Sn . We recommend the books by Sagan (2001) and James and Liebeck
(2001) as an excellent introductions to the required material.

A (linear) representation of a group G is a group homomorphism ρ : G →
GL(V ) ∼= GL(m, C), where V is a C-vector space of dimension m. In this situation, ρ
provides an action of G on V , and we say that V forms a G-module. A representation
is said to be irreducible if it does not contain any proper G-submodules.

Let G ≤ Sn be a permutation group on n elements. Write {Vi }i=1,...,l for the
irreducible G-modules and ρi : G → GL(Vi ) for the corresponding group homomor-
phism. Since G is finite, any representation ρ : G → GL(V ) is completely reducible
and there is a decomposition of the corresponding module V into irreducible parts
called isotypic components, so we can write (Maschke’s theorem):

V ∼= ⊕

i=1ci Vi , (2)

where the ci are non-negative integers specifying the number of copies of the module
Vi in the decomposition of V .

Example 1 The irreducible representations of Sn are indexed by the integer partitions
of n (Sagan 2001). The defining representation of Sn is defined on the vector space
C

n = 〈{ei }1≤i≤n〉
C

by σ : ei �→ eσ(i). It decomposes as {n} ⊕ {n − 1, 1}, where {n}
is the (one-dimensional) trivial representation and {n − 1, 1} has dimension n − 1. �

Example 2 After identifying the nucleotides A, G, C, T with the integers 1, 2, 3, 4,
consider G as a subgroup of S4:

G := {e, (12), (34), (12)(34), (13)(24), (14)(23), (1324), (1423)}.
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Lie Markov models with purine/pyrimidine symmetry 865

The group G has five conjugacy classes:

[e] = {e},
[(12)] = {(12), (34)},

[(12)(34)] = {(12)(34)},
[(13)(24)] = {(13)(24), (14)(23)},

[(1324)] = {(1324), (1423)}.

Recall the number of irreducible representations of a finite group is equal to the
number of its conjugacy classes, and the sum of the dimension of each irreducible
representation squared is equal to the order of the group (see Sagan 2001 for exam-
ple). We conclude there are five irreducible representations of G, which we denote as
id, sgn ζ1, ζ2, and ξ ; with the corresponding character table presented as Table 2.
Notice the first row in the character table gives the dimension of each representation.
Notice also there are four one-dimensional representations, namely id (the trivial rep-
resentation),sgn (each permutation σ is mapped tosgn(σ )), ζ1 and ζ2. Besides these,
the representation ξ is two-dimensional. The rows of Table 2 represent the conjugacy
classes of G. �

Every irreducible module Vi of G has a projection operator associated to it:

Θi (σ ) := 1
|G|

∑
σ∈G χ i (σ )ρ(σ ), (3)

where χ i : G → C is the character of the irreducible representation ρi defined as
χ i (σ ) := tr(ρi (σ )), i.e. the trace of the representing matrix ρi (σ ). These operators
project a given G-module V onto its isotypic components, i.e. Θi (V ) = ci Vi , so they
can be used to compute the ci as well as to identify generators of the components.

Of course, we can restrict ρ to any subgroup H ≤ G, inducing an H -module
structure on making a H -module of V . By virtue of Maschke’s theorem, we can also
decompose V into the irreducible H -modules. Recall an irreducible representation
of G does not necessarily stay irreducible when restricted to a subgroup H of G.
The branching rule G ↓ H applies to describe the decomposition of the irreducible
representations of G in terms of the irreducible representations of H (see Sagan 2001,
Chap. 2.8). By applying orthogonality in the character tables of S4 and G (see Table
2), and concentrating on the conjugacy class [(12)(34)] in S4 compared to the same
class in G, it is straightforward to derive the group branching rules shown in Table 3.

Background on discrete group actions
Whenever a group G acts on a finite set B = {b1, . . . , bt }, there is a group homo-

morphism

ρ : G → St . (4)

A G-orbit in B is a subset B = {bi1, bi2 , . . . , bil } ⊂ B which is invariant under G and
is minimal. That is
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Table 2 The character tables of S4 and G = {e, (12), (34), (12)(34), (13)(24), (14)(23), (1324), (1423)}

The rows are labelled by the conjugacy classes and the columns are labelled by the irreducible characters.
The character table of a group plays a key role to obtain the decomposition of any representation of that
group into its irreducible representations (see (2))

Table 3 The branching rule of S4 ↓ G describes the decomposition of the irreducible representations of
S4 when restricted to the subgroup G

For example, {22} �→ id + sgn means that, when restricted to G, the irreducible representation {22} of
S4 decomposes as one copy of the identity representation of G, and one copy of the sign representation
of G

σB := {biρ(σ)(1)
, biρ(σ)(2)

, . . . , biρ(σ)(l)} = B, for all σ ∈ G,

and B contains no smaller subsets with this property. From this, we can decompose B
as a disjoint union of G-orbits: B = B1 ∪ B2 ∪ . . . ∪ Bk .

If we focus on each orbit, the orbit stabilizer theorem (see Bogopolski 2008) states
that, up to bijective correspondence, every G-orbit has the form of the quotient

G/H = {[σ1], . . . , [σq ]}, [σi ] := σi H,

where H is a subgroup of G and the σi ∈ G are chosen so that the coset σ j H �= σi H
if i �= j . The group operation of G induces an action in the finite set G/H by
σ : σi H �→ (σσi )H . Actually, H is the stabilizer of some element x ∈ B, Gx :=
{g ∈ G : gx = x}. As Gx ≤ G, and there are only finitely many subgroups of G,
it is thus possible to give a complete list of G-orbits (up to isomorphism) by simply
listing all quotients G/H with H ≤ G. We recall we can turn the quotient G/H into
a G-module by considering the vector space generated by the cosets of G/H :

〈G/H〉C = 〈[e], [σ2], . . . , [σq ]〉
C

= {v = c1[e] + c2[σ2] + . . . + cq [σq ] : ci ∈ C},

with the action σ : v = ∑
ci [σi ] �→ v′ = ∑

ci [σσi ].
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Back to the general case, the action of G on the set B induces a representation of
G in the vector space CB. We will refer to these as permutation representations and
they will play a key role throughout the paper. Notice they decompose as

CB ∼= ⊕k
i=1〈G/Hi 〉C

where Hi ≤ G is the stabilizer of some element in the orbit Bi . The reader should note
this decomposition is not the decomposition into irreducible representations of (2).
In fact it is possible to show that any nontrivial permutation representation is actually
reducible.

3 Lie Markov models with prescribed symmetry

Sumner et al. (2012a) showed the search for Lie Markov models is significantly simpli-
fied by demanding the models to have some non-trivial symmetry since this reduces
a potential infinity of models to just a number of special cases. The idea is to rely
on imposing symmetry to assist in the search for Lie Markov models. An alternative
strategy would be to enumerate all possible Lie Markov models and toss out those
without the desired symmetry. However, unless the number of states is equal to 2 or
3, this approach is computationally infeasible. Thus, we are led to deal with the tech-
nicalities of this section in order to refine our search of the Lie Markov models with
some prescribed symmetry. Of course, it is expected that the larger the symmetry we
demand, the easier the analysis will be.

To this aim, recall the symmetric group Sn has an action on LG M defined on the
elementary rate matrices as ρ(σ) · Li j := Lσ(i)σ ( j) for all σ ∈ Sn , and extended to
all of LG M by linearity. Equivalently, the action can be defined by

Q =
∑
i �= j

αi j Li j �→ σ · Q := Kσ QK −1
σ =

∑
i �= j

αi j Lσ(i)σ ( j), (5)

where Kσ is the permutation matrix associated to σ .

Definition 3 (cf. Sumner et al. 2012a) We say a Lie Markov model L has the symmetry
of the group G ≤ Sn if there is a basis BL of L invariant under the action of G induced
by (5), that is, a basis BL = {L1, L2, . . . , Ld} such that

σ · BL :=
{

Kσ L1 K −1
σ , Kσ L2 K −1

σ , . . . , Kσ Ld K −1
σ

}
= BL, ∀σ ∈ G.

In this case, we will say that BL is a permutation basis of L.

Notice a Lie Markov model L has the symmetry of G if and only if there is a per-
mutation representation of G on L, so we have a decomposition L ∼= ⊕k

i=1〈G/Hi 〉C.
A permutation basis for L is then obtained by collecting a permutation basis Bi for
each 〈G/Hi 〉C and putting them together.
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Remark 4 Notice if L has the symmetry of a permutation group G, then it also has
the symmetry of any subgroup H ≤ G. �

The reader is referred to Sumner et al. (2012a) for the statistical motivations for this
definition. In a nutshell, parameter estimation under such a model is invariant under
nucleotide permutations belonging to G. In particular, we have a group homomorphism

ρ : G → Sd , (6)

where the image of any permutation σ ∈ G is determined by the equality Kσ Li K −1
σ =

Lρ(σ)(i). Thus, for any rate matrix Q = ∑d
i=1 αi Li ∈ L, we have

σ : Q =
d∑

i=1

αi Li �→
d∑

i=1

αi Lρ(σ)(i) =
d∑

i=1

αρ(σ−1(i))Li ,

so G acts by permuting the model parameters, ie. αi �→ αρ(σ−1(i)), and hence leaves
maximum likelihood estimates invariant.

Example 3 (Sumner et al. 2012a) The list of 4-state Lie Markov models with S4
symmetry is:

1. the 1-dimensional model by Jukes and Cantor (1969);
2. the 3-dimensional model by Kimura (1981);
3. the 4-dimensional model by Felsenstein (1981);
4. the Kimura+Felsenstein model or “K3ST+F81”, with dimension 6; see Example 5

below (Sumner et al. 2012);
5. the General Markov model, with dimension 12.

Presently, we recall the general procedure to obtain Lie Markov models with pre-
scribed symmetry. Suppose we have a Lie Markov algebra L with dimension d and
a permutation group G ≤ Sn . We demand that L satisfies the conditions of Defin-
ition 3 for the permutation group G. Then, L is provided with a basis BL which is
invariant under G. As explained above, we have a decomposition of BL into G-orbits.
We can then compare the irreducible G-modules that occur in the decomposition
of LG M to those that occur in the decomposition of 〈G/H〉C for each H ≤ G.
Finally, we can attempt to construct subalgebras L ⊂ LG M with a basis BL such that
BL = B1 ∪ B2 ∪ . . . ∪ Br is a plausible union of orbits Bi consistent with the linear
decomposition of LG M induced by the action of G.

The general procedure is:

1. Decompose the Lie algebra of the GM model into irreducible modules of G:

LG M = ⊕k fk Vk, (7)

where k labels the irreducible G-module Vk and the fk are non-negative integers
specifying the number of copies of each irreducible module in the decomposition.
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2. Apply the orbit stabilizer theorem and construct the list of G-orbits, G/H , by
working through the subgroups H ≤ G. For each subgroup H , extend the orbits
linearly over C to the G-module 〈G/H〉C and decompose this space into irre-
ducible G-modules:

〈G/H〉C ∼= ⊕kbH
k Vk,

where again the bH
k are non-negative integers.

3. Working up in dimension d, consider all unions of G-orbits S = ⋃q
i=1(G/Hi )

such that |S| = ∑
1≤i≤q |G/Hi | = d (where | · | stands for cardinality). For each

S, consider its linear decomposition into irreducible G-modules

〈S〉C ∼= ⊕kak Vk

where ak := bH1
k +bH2

k +. . .+b
Hq
k , and, in order to exclude unions of G-orbits that

do not occur in the linear decomposition of LG M as a G-module, check ak ≤ fk ,
for each k.

4. For each case thus identified, consider the vector space L = ⊕kak Vk and use
explicit computation to check whether L forms a Lie algebra. If so, attempt to
show it has a stochastic basis.

This procedure is guaranteed to produce all Lie Markov models with symme-
try G. In Sect. 5, we will give a complete presentation of the 4-state models with
purine/pyrimidine symmetry.

Remark 5 In our procedure we first look for all possible decompositions into irre-
ducible modules for a permutation representations and we investigate how these
decompositions are realised into Lie subalgebras of LG M . A different approach would
be to deal first with possible Lie subalgebras of LG M (up to isomorphism) and then,
for each isomorphism class, look for possible subalgebras which are permutation rep-
resentations of G. Our experience tells us this second part is rather unfeasible and, in
the last section, we adopt the procedure just explained. �
Remark 6 Equivariant models were first introduced by Draisma and Kuttler (2008)
and have also been studied by Casanellas and Fernández-Sánchez (2010), and Casanel-
las et al. (2012). Sumner et al. (2012a) modified slightly the definition of equivariant
models to adapt it to the continuous-time Markov model setting. Under this definition,
equivariant models appear as a particular case of Lie Markov models. Actually, the
G-equivariant model is the Lie Markov model with G symmetry obtained when we
take L to be the isotypic component of LG M associated to the trivial or identity rep-
resentation id (which maps each permutation to the identity map): L = fidVid (see
(7)). For example, the S4-equivariant model is the Lie Markov model with symmetry
S4 and decomposition L ∼= id: it is the model by Jukes and Cantor (1969). In a
similar way, we will recover the Kimura model with two parameters (Kimura 1980)
as the Lie Markov model with symmetry G and decomposition L ∼= 2id (see Model
2.2b in Sect. 5). �
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The stochastic cone of a Lie Markov model
We want to explore the geometry of the stochastic cone associated to a Lie Markov

model with symmetry given by some permutation group G ≤ Sn . Since the action of
G on LG M is as given in (5), we infer that the space L+

G M is invariant under this action,
i.e. GL+

G M = L+
G M . From this, we conclude that if L ⊂ LG M is a vector subspace

which is invariant under the action of G, then the stochastic cone L+ = L ∩ L+
G M is

invariant under G as well.
Because each permutation in G induces a linear automorphism in LG M and the

cone L+ is invariant, the set of rays of the cone must also be invariant under the
action of G. We infer that, after giving an ordering to the set of rays, there is a group
homomorphism

G → Sr , (8)

where r is the number of rays of L+. From this, we can decompose the set of rays of
L+ into G-orbits, which we will refer to as ray-orbits. Notice in general, the above
homomorphism is different from the homomorphism arising from a permutation basis,
as described in (6).

Example 4 The number of rays of L+
G M is n(n−1). These rays are exactly the positive

span of the elementary rate matrices Li j . The group homomorphism G → Sr of (8)
corresponds to the action described in (5). �
Example 5 We know there is only one six-dimensional Lie Markov model with S4
symmetry (Sumner et al. 2012a, Result 17). The Lie algebra L is the vector space sum
of the model by Kimura (1981) and the model by Felsenstein (1981). It is generated
by

Wi j := Ls(i j) + (Ri + R j ), i < j, i, j ∈ {1, 2, 3, 4},

where Ri = ∑
j �=i Li j and Ls(i j) = Li j + L ji + Lkl + Llk with i, j, k, l all different.

The reader may notice, although the six vectors Wi j do form a permutation basis of
L, by taking the convex cone generated by them, {∑ λi j Wi j : λi j ≥ 0}, we are not
considering all the stochastic rate matrices in the model. For example, the vector R1
is in the stochastic cone L+ but we cannot obtain it as a positive linear combination
of the vectors Wi j .

The reader may argue this situation occurs because of our particular choice of a
permutation basis, but this will be the case no matter the permutation basis of L we con-
sider. Actually, the stochastic cone L+ has seven rays {Lα, Lβ, Lγ , R1, R2, R3, R4}
(with the notation used there: Lα = Ls(12), Lβ = Ls(13), Lγ = Ls(12)). We will find
this model again in Sect. 5 of this paper as Model 6.7a. �

4 Decomposition of LG M as a G-module

As we are especially interested in nucleotide evolution, we fix n = 4 and deal with
the group of permutations that preserves the partitioning of nucleotides into purines
and pyrimidines: AG|CT := {{A, G}, {C, T }}.
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By identifying nucleotides {A, G, C, T } with numbers {1, 2, 3, 4}, this leads to
consider the subgroup G of S4 presented in Example 2:

G := {e, (12), (34), (12)(34), (13)(24), (14)(23), (1324), (1423)}.

Of course, we expect to recover the Kimura model with three parameters in the list of
Lie Markov models with this symmetry: it is Model 3.3a. However, as already noted
in Remark 3, this model has a wider symmetry and in fact, it is S4-symmetric (see
Sumner et al. 2012a).

Presently, we use the projection operators to decompose the Lie algebra of the
general Markov model into the irreducible representations of G.

Remark 7 The reader may notice the irreducible characters of the group G in Table 2
take only real values. As a consequence, irreducible real representations remain irre-
ducible over the complex field and all the representation theory for G can be dealt over
the real field. However, we prefer to keep our study over the complex as this is the
field where the general theory is developed. For instance, it is important to work over
the complex field when computing the full list of G-submodules of LG M isomorphic
to ⊕kak Vk (see the step 4 of the procedure of Sect. 3): to this aim, we apply that the
only G-endomorphisms of an irreducible module are of the form λ1 (Schur’s lemma),
which is known to be false if the field is not algebraically closed. �

From now on, we will consider the restriction of the action of S4 described in (5)
to the group G. We will denote this action by ρG :

ρG(σ ) : Q �→ Kσ QK −1
σ . (9)

Sumner et al. (2012a, Result 8) showed the decomposition of the LG M into the irre-
ducible representations of S4 (expressed using integer partitions of 4) is LG M ∼=
{4} ⊕ 2{31} ⊕ {22} ⊕ {212}. By applying the branching rule of S4 to G (see Table 3)
we obtain:

Theorem 3 The decomposition of the 4-state general rate matrix model LG M into
irreducible representations of G is given by

LG M ∼= 2id⊕ sgn⊕ ζ1 ⊕ 2 ζ2 ⊕ 3 ξ, (10)

where the decomposition of the dimension is given by 12 = 2×1+1+1+2×1+3×2.

4.1 Decomposition of the orbits of G in LG M

Following the general scheme described in Sect. 3, our task now is to identify the Lie
Markov models occurring as subalgebras of LG M and with symmetry G. In Table 4 we
present the decomposition of the orbits of G. These are computed by using the orbit
stabilizer theorem and projecting 〈G/H〉C onto the irreducible modules Vi of G using
the projection operators Θi defined in (3).
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Example 6 Here we develop the case of H = {e, (12)(34)} as an illustrative example.
We have G /H = {[e], [(12)], [(13)(24)], [(1324)]}, where [σ ] represents the coset in
G/H containing the element σ . Namely, [e] = {e, (12)(34)}, [(12)] = {(12), (34)},
[(13)(24)] = {(13)(24), (14)(23)} and [(1324)] = {(1324), (1423)}. These cosets
inherit an action of G by taking σ : [σ ′] �→ [σσ ′], which can be extended linearly to
a linear representation of G by taking the module 〈G /H〉C ∼= C

4. Next, we decom-
pose 〈G /H〉C into irreducible modules of G by applying the projection operators:
Θid, Θsgn, Θζ1, Θζ2 and Θξ . For example:

Θid[e] = 1
8

∑
σ∈G σ · [e] = 1

4 ([e] + [(12)] + [(13)(24)] + [(1324)]) .

As this projection is non-zero, we conclude 〈G/H〉C contains the trivial representation
id. We can check that the image by Θid of the other coset elements gives the same
projection, so 〈G/H〉C contains id only once. Similarly, referring to the character
table of S4 (see Table 2), we have

Θsgn[e] = 1
8

∑
σ∈G χsgn(σ )σ · [e] = 1

4 ([e] − [(12)] + [(13)(24)] − [(1324)]) ,

and we check that Θsgn[e] = Θsgn[(12)] = Θsgn[(13)(24)] = Θsgn[(1324)] to
learn that 〈G/H〉C does contain a copy of the sgn representation. Similarly, we check
〈G/H〉C contains a copy of ζ1 and ζ2 representations. On the other hand, we see

Θξ [e] = 1
8

∑
σ∈G χξ (σ ) · [e] = 1

4 ([e] − [(12)(34)]) = 0,

and we check Θξ [(12)] = Θξ [(13)(24)] = Θξ [(1324)] = 0 to learn 〈G/H〉C does not
contain a copy of the ξ representation. Putting this together and counting dimensions,
we infer that 〈G/H〉C ∼= id⊕ sgn⊕ ζ1 ⊕ ζ2. �

Proceeding as in this example, we have produced the results summarised in Table 4.
It gives the decomposition of 〈G/H〉C into irreducible representations for each sub-
group H ≤ G. The first column shows how many copies of each H occur as a
subgroup in G, with automorphism classes accounted for with distinct decomposition
in the fourth column. For example, there are three automorphism classes of Z2 in G :
{e, (12)} ∼= {e, (34)}, {e, (12)(34)} and {e, (13)(24)} ∼= {e, (14)(23)}, and the corre-
sponding spaces 〈G/H〉C have different decomposition into irreducible modules, as
shown in Table 4. Similarly, there are two “types” of S2×S2: {e, (12), (34), (12)(34)}
and {e, (12)(34), (13)(24), (14)(23)}. Again, these two types have differing decom-
position into irreducible subspaces.

Finally, Table 5 shows all possible decompositions for a G-invariant subspace of
LG M allowed by the decomposition of LG M of Theorem 3. The list is obtained by
adding decompositions of G-orbits (see Table 4) as long as they are allowed by the
decomposition of LG M as a G-module (see Theorem 3). Note the decomposition (10)
of LG M has two copies of the trivial representation while the decomposition of each
G/H has only one copy.

Referring to Table 5, we conclude:
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Table 4 Decomposition of the orbits of G into irreducible modules

Automorphism classes of H ≤ G |G|
|H | Decomp. of 〈G/H〉C

{e} 8 (1) : id⊕ sgn⊕ ζ1 ⊕ ζ2 ⊕ 2ξ

S2 ∼= {e, (12)} ∼= {e, (34)} 4 (2) : id⊕ ζ2 ⊕ ξ

S2 ∼= {e, (14)(23)} ∼= {e, (13)(24)} 4 (3) : id⊕ sgn⊕ ξ

S2 ∼= {e, (12)(34)} 4 (4) : id⊕ sgn⊕ ζ1 ⊕ ζ2

Z4 ∼= {e, (1324), (12)(34), (1423)} 2 (5) : id⊕ ζ1

S2 × S2 ∼= {e, (12), (34), (12)(34)} 2 (6) : id⊕ ζ2

S2 × S2 ∼= {e, (12)(34), (13)(24), (14)(23)} 2 (7) : id⊕ sgn

G 1 (8) : id

Theorem 4 There are no Lie Markov models with purine/pyrimidine symmetry of
dimension seven or eleven.

Remark 8 Being a G-orbit, we can consider the abstract vector space generated by
any ray-orbit B = {Q1, . . . , Qr }, that is, {∑r

i=1 ai [Qi ] : ai ∈ C}, where the notation
[Qi ] is used to emphasise the fact that we are avoiding any reference to matrix addi-
tion between the elements of the ray-orbit. The dimension of this vector space equals
the number of elements in the orbit, and as a permutation representation, the decom-
position into irreducible representations will be one of the decompositions shown
in Table 4. On the other hand, we can also consider the vector subspace of LG M

spanned by the matrices Q1, . . . , Qr . Notice that these matrices may not be may be
not linearly independent as vectors of LG M and the dimension of this vector sub-
space will be smaller than the number of them. In this case, this vector space is not
a permutation representation and its decomposition into irreducible representations
does not appear in Table 4. For an example of this, the reader is referred to ray-orbits
(4, 1

3 , 2
3 )d, (4, 1

3 , 2
3 )e, (4, 1

3 , 2
3 ) f presented in Table 8. �

4.2 A convenient basis

In this section we derive a basis for the vector space of 4×4 rate matrices LG M where
the matrices comprising the basis are organised naturally into subsets that span each
of the irreducible components of the decomposition of LG M with respect to G (as
given in Theorem 3). This basis is presented in Theorem 5 below. The reader should
note these basis vectors play the role of the Li j when models with S4 symmetry were
considered (Sumner et al. 2012a).

Permutation vectors For each σ ∈ G, σ �= e, a permutation vector is defined as

Lσ := −1 + Kσ =
∑

1≤ j≤4

L jσ( j).

Notice that each Lσ is a rate matrix in LG M . The linear span of these vectors has
dimension 5 because of the linear dependencies L(12)+L(34) = L(12)(34), and L(1324)+
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Table 5 Decompositions into
irreducible modules of all
possible G-permutation
subrepresentations of LG M ∼=
2id⊕ sgn⊕ ζ1 ⊕ 2ζ2 ⊕ 3ξ

(see Theorem 3)

Dim. Orbits Decomp. into irreps.

1 (8) id

2 2(8) 2id

(7) id⊕ sgn

(5) id⊕ ζ1

(6) id⊕ ζ2

3 (7)+(8) 2id⊕ sgn

(5)+(8) 2id⊕ ζ1

(6)+(8) 2id⊕ ζ2

4 (2) id⊕ ζ2 ⊕ ξ

(5)+(7) 2id⊕ sgn⊕ ζ1

(4) id⊕ sgn⊕ ζ1 ⊕ ζ2

(3) id⊕ sgn⊕ ξ

2(6) 2id⊕ 2ζ2

(6)+(7) 2id⊕ sgn⊕ ζ2

(5)+(6) 2id⊕ ζ1 ⊕ ζ2

5 (3)+(8) 2id⊕ sgn⊕ ξ

(4)+(8) 2id⊕ sgn⊕ ζ1 ⊕ ζ2

(2)+(8) 2id⊕ ζ2 ⊕ ξ

6 (5)+(3) 2id⊕ sgn⊕ ζ1 ⊕ ξ

(4)+(6) 2id⊕ sgn⊕ ζ1 ⊕ 2ζ2

(2)+(7) 2id⊕ sgn⊕ ζ2 ⊕ ξ

(2)+(5) 2id⊕ ζ1 ⊕ ζ2 ⊕ ξ

(2)+(6) 2id⊕ 2ζ2 ⊕ ξ

8 (1) id⊕ sgn⊕ ζ1 ⊕ ζ2 ⊕ 2ξ

2(2) 2id⊕ 2ζ2 ⊕ 2ξ

(2)+(4) 2id⊕ sgn⊕ ζ1 ⊕ 2ζ2 ⊕ ξ

(2)+(3) 2id⊕ sgn⊕ ζ2 ⊕ 2ξ

9 (1)+(8) 2id⊕ sgn⊕ ζ1 ⊕ ζ2 ⊕ 2ξ

10 (1)+(6) 2id⊕ sgn⊕ ζ1 ⊕ 2ζ2 ⊕ 2ξ

12 (1)+(2) 2id⊕ sgn⊕ ζ1 ⊕ 2ζ2 ⊕ 3ξ

L(1423) = L(13)(24) + L(14)(23). Moreover, the permutation vectors span a Lie algebra
(Sumner et al. 2012a, Proposition 4.12):

[Lσ , Lσ ′ ] = [−1 + Kσ ,−1 + Kσ ′ ] = [Kσ , Kσ ′ ] = Kσσ ′ − Kσ ′σ = Lσσ ′ − Lσ ′σ .

The permutation vectors are useful because they provide simple expressions of gen-
erators of LG M consistent with the decomposition of Theorem 3. The action ρG of
G on these permutation vectors is given by τ : Lσ �→ Kτ Lσ K −1

τ = Lτστ−1 . Notice
this action maps each matrix Lσ to Lσ ′ , where σ ′ is some permutation in the conju-
gacy class of σ . It follows that the vectors {Lσ : σ ′ ∈ [σ ]} span a G-module, and by
applying character theory we can obtain the decomposition of these G-modules into
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isotypic components. Moreover, a basis for these G-modules consistent with these
decompositions can be described with the assistance of the projection operators. The
following example illustrates this procedure.

Example 7 Consider the 2-dimensional subspace S = 〈L(12), L(34)〉C correspond-
ing to the conjugacy class [(12)] = {(12), (34)}, and the representation ρG :
G → GL(S) induced by the action just defined. It is straightforward to check
τ(12)τ−1 = (12), τ (34)τ−1 = (34) if τ ∈ {e, (12), (12)(34)}, while τ(12)τ−1 =
(34), τ (34)τ−1 = (12) if τ ∈ {(13)(24), (1324)}. Adopting matrix notation, we
obtain

ρG(e) = ρG ((12)) = ρG((12)(34)) =
(

1 0
0 1

)
and

ρG((13)(24)) = ρG((1324)) =
(

0 1
1 0

)
.

If χ denotes the character associated with ρG , we infer

χ(e) = χ((12)) = χ((12)(34)) = 2, and χ((13)(24)) = χ((1324)) = 0.

By virtue of the character table of G (see Table 2), we infer S ∼= id⊕ξ2, and applying
the projection operators (see (3)):

Θid(L(12)) = Θid(L(34)) = 1

2
(L(12) + L(34));

Θξ2(L(12)) = Θξ2(L(34)) = 1

2
(L(12) − L(34)).

�

Proceeding in this way for each conjugacy class of G (excluding the trivial class),
we identify the following G-modules and decompositions:

〈L(12), L(34)〉C ∼= id⊕ ζ2, 〈L(12)(34)〉C ∼= id,

〈L(13)(24), L(14)(23)〉C ∼= id⊕ sgn, 〈L(1324), L(1423)〉C ∼= id⊕ ζ1.

For future convenience, we keep the vectors obtained by applying the projection oper-
ators to these decompositions. From now on, we will use the following notation

Bid
1 := L(12)(34), Bid

2 := L(13)(24) + L(14)(23),

Bsgn := L(13)(24) − L(14)(23), Bζ1 := L(1423) − L(1324),

Bζ2
1 := L(12) − L(34);

where the superscript indicates which irreducible G-module each vector belongs to.
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Cherry vectors Referring to Table 4 and the permutation representation spanned by
the “cherries” {1, 2} and {3, 4}, we introduce the matrices

Ch12 := L13 + L14 + L23 + L24,

Ch34 := L31 + L32 + L41 + L42,

and obtain 〈Ch12, Ch34〉C ∼= id ⊕ ζ2. The action of G on each of these vectors is
given by τ : Chi j �→ Chτ(i)τ ( j). Notice that Ch12 + Ch34 = Bid

2 . By applying the

projection operator Θζ2 , we see that Bζ2
2 := Ch12 −Ch34 accounts for the second copy

of ζ2.

Row-sum and twisted vectors Keeping the notation used by Sumner et al. (2012a),
define the row-sum vectors

Ri :=
∑

j :1≤i �= j≤4

Li j .

The action ρG of G on each of these is σ : Ri �→ Rσ(i), and it is isomorphic to
the restriction of the defining representation of S4 to G. Therefore, the (invariant)
subspace generated by the row-sum vectors is isomorphic to id⊕ {3, 1}, restricted to
the subgroup G. By applying the branching rule S4 ↓ G given in Table 3, we obtain

〈R1, R2, R3, R4〉C ∼= id⊕ ζ2 ⊕ ξ.

Obviously, we have R1 + R2 + R3 + R4 = Bid
1 + Bid

2 and (R1 + R2)− (R3 + R4) =
Bζ2

1 + Bζ2
2 . By applying the projection operator Θξ we find that 〈R1 − R2, R3 − R4〉C

accounts for a copy of the ξ representation. We define

Bξ
1 := R1 − R2, Bξ

2 := R3 − R4.

Next, define the twisted vectors as

Hi := Lik + Lil + L ji ,

Vi := Lki + Lli + Li j ,

where {{i, j}, {k, l}} = {{1, 2}, {3, 4}}. For example, V2 = L21 + L32 + L42 and
H3 = L31+L32 +L43. The action ρG of G on these vectors is given by σ : Vi �→ Vσ(i)

and σ : Hi �→ Hσ(i), again we have with we are dealing with the restriction of the
defining representation of S4 to G. As above,

〈V1, V2, V3, V4〉C ∼= 〈H1, H2, H3, H4〉C ∼= id⊕ ζ2 ⊕ ξ.

Notice that
∑

i Hi = ∑
i Vi = Bid

1 + Bid
2 , (H1 + H2) − (H3 + H4) = Bζ2

1 + Bζ2
2

and (V1 + V2) − (V3 + V4) = Bζ2
1 − Bζ2

2 . By applying the projection operator Θξ
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in 〈V1, V2, V3, V4〉C and 〈H1, H2, H3, H4〉C, we find that 〈H1 − H2, H3 − H4〉C and
〈V1 − V2, V3 − V4〉C account for the two other copies of ξ , so we define

Bξ
3 := H1 − H2, Bξ

5 := V1 − V2,

Bξ
4 := H3 − H4, Bξ

6 := V3 − V4.

Putting all of these results together:

Theorem 5 The Lie algebra LG M can be expressed as

LG M = 〈{Li j }1≤i �= j≤4〉C
= 〈{Lσ }σ∈G,σ �=e ∪ {Ch12, Ch34} ∪ {Ri }1≤i≤4 ∪ {Hj }1≤ j≤4 ∪ {Vk}1≤k≤4〉C,

with linear dependencies

L(12) + L(34) = L(12)(34),

L(13)(24) + L(14)(23) = L(1324) + L(1423) = Ch12 + Ch34,

H1 + H2 = R1 + R2 = Ch12 + L(12),

H3 + H4 = R3 + R4 = Ch34 + L(34),

V1 + V2 = Ch34 + L(12),

V3 + V4 = Ch12 + L(34).

A basis for LG M consistent with the decomposition of Theorem 3 is given by

Bid
1 = L(12)(34), Bξ

1 = R1 − R2,

Bid
2 = L(13)(24) + L(14)(23), Bξ

2 = R3 − R4,

Bsgn = L(13)(24) − L(14)(23), Bξ
3 = H1 − H2,

Bζ1 = L(1324) − L(1423), Bξ
4 = H3 − H4,

Bζ2
1 = L(12) − L(34), Bξ

5 = V1 − V2,

Bζ2
2 = Ch12 − Ch34, Bξ

6 = V3 − V4;

where 〈Bξ
1, Bξ

2〉C, 〈Bξ
3, Bξ

4〉C and 〈Bξ
5, Bξ

6〉C are the three copies of ξ in LG M . With
respect to this basis, the Lie algebra structure of LG M is summarised in Table 7.

5 The list of Lie Markov models with purine/pyrimidine symmetry

We proceed to give the list of Lie Markov models with purine/pyrimidine symmetry,
working up in dimension d ≤ 12. For each d, Table 5 lists all the possible decom-
positions allowed by Theorem 3. For each decomposition, all possible complex Lie
subalgebras L of LG M are obtained by direct computation using code written by the
authors and implemented in the open-source mathematical software SAGE (Stein et
al. 2012) (this code is available online at the website Fernández-Sánchez 2013). For
each Lie algebra, we then impose that it has a stochastic basis (see Definition 1). Since
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a matrix Bid
a,b = aBid

1 +bBid
2 , with a, b > 0, has all its non-diagonal entries positive,

the reader can notice that the above condition is guaranteed if L contains such a matrix
for, in this case, if {B1, . . . , Bt } is a basis for L, then a stochastic basis for L is given
by {B1 + λBid

a,b, . . . , Bt + λBid
a,b} as long as λ > 0 is large enough.

For each model in the list, we describe a basis for the Lie algebra in terms of the
vectors introduced in the Sect. 4 and the rays of the stochastic cone arranged in orbits
(see Table 8). Both data are required to completely describe the model. The general
form of the stochastic rate matrix, as well as a permutation basis (a basis invariant
under the action of G), is also shown when it is not too complicated. In particular,
stochastic rate matrices are presented as linear combinations of the rays with non-
negative coefficients. Since the rays are the generators of the stochastic cone, every
stochastic rate matrix in the model can be expressed in this way (the reader should
notice that in general, we cannot write down all the stochastic rate matrices of a model
in terms of the same permutation basis if we require the coefficients to be non-negative).
The name of each model has the form “d.r”, where d is the dimension of the model
and r is the number of rays of the corresponding stochastic cone (in particular, d ≤ r ).
In case there is more than one model with a given dimension and number of rays, we
will differentiate them by using letters: for example, 5.7a, 5.7b and so on.

Note 2 Throughout the following list, we adopt the notation X+
i j = Xi + X j and

X−
i j = Xi − X j , for i, j ∈ {1, 2, 3, 4} and X ∈ {R, H, V }. �

Ray-orbits The rays of the stochastic cones of the forthcoming models appear in orbits
of cardinality 1, 2, 4 and 8 (as is demanded by the orbit-stabilizer theorem) that we
call ray-orbits. A system of generators for any of these ray-orbits is obtained as the
G-orbit of a rate matrix Q in any of the rays of the family. Notice incidentally the
action of G preserves the total sums of transition rates and of transversions rates of the
rate matrices within the G-orbit.

For the Lie Markov models with symmetry G, we explicitly describe the rays of the
corresponding stochastic cone arranged in ray-orbits. In order to denote and compare
these ray-orbits in a convenient fashion, we first normalize the generators of the rays,
and take rate matrices whose trace is equal to −1 (recall the absolute value of the
trace of the rate matrix can be understood as the expected number of changes in one
unit of time under the Markov process). Then, taking into account that the sum of
transition rates and of transversion rates is constant, each ray-orbit is referred to as
“(r, s

s+v
, v

s+v
)”, where

r is the number of rays in the orbit: 1, 2, 4 or 8;
s is the sum of the transition rates in (any matrix of) the orbit;
v is the sum of the transversion rates in (any matrix of) the orbit.

The reader is referred to Table 8 for the whole list of ray-orbits arising in Lie Markov
models with G-symmetry.

Note 3 From now on, we write Bid := Bid
1 + Bid

2 , Bζ2 := Bζ2
1 + Bζ2

2 . �
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Dimension One
From Table 4 we see that there is only one abstract orbit of G with cardinality one,

and it has decomposition id.

(id): The general Markov model contains two copies of the trivial representation,
so we can consider the subspace generated by any linear combination aBid

1 + bBid
2 .

Moreover, since [Bid
1 , Bid

2 ] = 0, we see the subspace generated by any aBid
1 +bBid

2 ,
is a Lie algebra for any fixed choice a, b ∈ C. When we request these spaces to have a
stochastic basis, we have to restrict to the condition a, b ≥ 0. Therefore, we conclude:

Theorem 6 In the 4-state case, there is a continuum of one-dimensional Lie Markov
models with G symmetry and decomposition id. Each model in the family has the
form

L = 〈Bid
a,b〉C,

where a + b = 1, a, b ≥ 0 and

Bid
a,b := aBid

1 + bBid
2 =

⎛
⎜⎜⎝

∗ a b b
a ∗ b b
b b ∗ a
b b a ∗

⎞
⎟⎟⎠ .

where we use ∗ to indicate the diagonal entry needed for the column to sum to zero.

Remark 9 This result is not completely satisfactory as all these models will appear as
1-dimensional Lie subalgebras of the 2-dimensional Lie Markov model 〈Bid

1 , Bid
2 〉C.

This situation is quite general and we will avoid the consequent redundancy in the
present list by considering families of Lie Markov models depending on some para-
meters as submodels of a Lie Markov models with larger dimension. Then, the family
of models in Theorem 6 should be regarded as a Lie Markov model with decomposition
2id.

On the other hand, notice that if we expand the symmetry and request the models
in the family of Theorem 6 to have the symmetry of S4, we are lead to the constraint
a = b, which corresponds to the model by Jukes and Cantor (1969). Of course, this
model already appeared as a Lie Markov model with symmetry S4 (Sumner et al.
2012a). �
Model 1.1 Take L = 〈Bid〉C. The stochastic cone has only one ray, spanned by Bid.
Therefore, in this case, we only have a ray-orbit. We refer to it by the ray-orbit (1, 1

3 , 2
3 )

(see Table 8). The generic stochastic rate matrix is

⎛
⎜⎜⎝

∗ 1 1 1
1 ∗ 1 1
1 1 ∗ 1
1 1 1 ∗

⎞
⎟⎟⎠ .
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Dimension Two

(id⊕sgn): We have [Bid
1 , Bsgn] = [Bid

2 , Bsgn] = 0, so for any fixed a, b ≥ 0 with
a + b = 1 and b �= 0, there is a well-defined Lie Markov model:

L = 〈Bid
a,b, Bsgn〉

C

∼= id⊕ sgn.

The condition b �= 0 is needed to ensure that the dimension of the stochastic cone is
equal to the dimension of the Lie algebra. As in Remark 9, these models are considered
as submodels of the model with decomposition 2id⊕ sgn (see Model 3.3a).

(id⊕ζ1): Since [Bid
1 , Bζ1 ] = [Bid

2 , Bζ1 ] = 0, we find that, for any choice of a, b ≥ 0
with a + b = 1 and b �= 0,

L = 〈Bid
a,b, Bζ1〉

C

∼= id⊕ ζ1,

provides a 2-dimensional Lie Markov model. These are submodels of the 3-dimension
model with decomposition 2id+ ζ1 (see Model 3.3b).

(id ⊕ ζ2): We find the same situation for this decomposition. The following Lie
algebras will appear as submodels of the 3-dimensional model indicated:

L = 〈Bid
a,b, Bζ2〉

C
is a submodel of Model 3.4;

L = 〈Bid
a,b, Bζ2

1 〉
C

is a submodel of Model 3.3c.

As a special case of the last family of models, when we take a = 1 and b = 0, we
obtain the following model:

Model 2.2a L = 〈Bid
1 , Bζ2

1 〉
C

. The stochastic cone has two rays generated by L(12)

and L(34), which form the ray-orbit (2, 1, 0) of Table 8. The general stochastic rate
matrix is

⎛
⎜⎜⎝

∗ α 0 0
α ∗ 0 0
0 0 ∗ β

0 0 β ∗

⎞
⎟⎟⎠ , α, β ≥ 0.

This model gives a reducible Markov chain, that is, it is not possible to get to some
states from some other states. We see that the purine states A and G communicate
with each other, and the same for the pyrimidine states C and T (transitions) while no
replacement between purines are pyrimidines (transversions) is allowed.

Apart from these models, our analysis of 1-dimensional Lie Markov models pro-
duces another 2-dimensional model with decomposition 2id.

(2id): Of course, there is only one possible model with this decomposition. Namely,

Model 2.2b L = 〈Bid
1 , Bid

2 〉
C

. If we focus on the stochastic rate matrices, we find a
cone with 2 rays, corresponding to the (see Table 8): ray-orbit (1, 1, 0) = {L(12)(34)},
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and ray-orbit (1, 0, 1) = {L(13)(24) + L(14)(23)}. The Lie algebra is abelian and the
stochastic rate matrices for this model are given by

Q =

⎛
⎜⎜⎝

∗ α β β

α ∗ β β

β β ∗ α

β β α ∗

⎞
⎟⎟⎠ , α, β ≥ 0.

Permutation basis: L(12)(34), L(13)(24) + L(14)(23).

This model corresponds to the Kimura model with 2 parameters (Kimura 1980).

Dimension Three

(2id⊕ sgn): There is only one model with this decomposition:

Model 3.3a L = 〈Bid
1 , Bid

2 , Bsgn〉
C

is an abelian Lie Markov model. The stochas-
tic cone has 3 rays in 2 ray-orbits: ray-orbit (1, 1, 0) = {L(12)(34)}, and ray-orbit
(2, 0, 1)a = {L(13)(24), L(14)(23)} (see Table 8). The general stochastic rate matrix is

⎛
⎜⎜⎝

∗ α β γ

α ∗ γ β

β γ ∗ α

γ β α ∗

⎞
⎟⎟⎠ , α, β, γ ≥ 0.

Permutation basis: L(12)(34), L(13)(24), L(14)(23).

Of course, this is the Kimura model with 3 parameters (Kimura 1981). Note this is
the group-based model corresponding to Z2×Z2 ∼= {e, (12)(34), (13)(24), (14)(23)}.
(2id⊕ ζ1): There is only one model with this decomposition:

Model 3.3b L = 〈Bid
1 , Bid

2 , Bζ1〉
C

is a 3-dimensional abelian Lie Markov model.
The stochastic cone has 3 rays, in 2 ray-orbits: ray-orbit (1, 1, 0) = {L(12)(34)}, and
ray-orbit (2, 0, 1)b = {L(1324), L(1423)}. The general stochastic rate matrix is

⎛
⎜⎜⎝

∗ α β γ

α ∗ γ β

γ β ∗ α

β γ α ∗

⎞
⎟⎟⎠ , α, β, γ ≥ 0.

Permutation basis: L(12)(34), L(1324), L(1423).

Note this is the group-based model corresponding to Z4 ∼= {e, (1324), (12)(34),

(1423)}. This new model may be regarded as a “twisted” version of the Kimura model
with three parameters.

(2id⊕ ζ2): There are two models with this decomposition:

Model 3.3c L = 〈Bid
1 , Bid

2 , Bζ2
1 〉

C
is a 3-dimensional abelian Lie algebra. The sto-

chastic cone has 3 rays, in 2 ray-orbits: ray-orbit (1, 0, 1) = {L(13)(24) + L(14)(23)},
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and ray-orbit (2, 1, 0) = {L(12), L(34)}. The general stochastic rate matrix is

⎛
⎜⎜⎝

∗ α β β

α ∗ β β

β β ∗ γ

β β γ ∗

⎞
⎟⎟⎠ , α, β, γ ≥ 0.

Permutation basis: L(12), L(34), L(1324) + L(1423).

Model 3.4 L = 〈Bid
1 , Bid

2 , Bζ2〉
C

is a 3-dimensional Lie algebra. The stochastic cone
has 4 rays, in 3 ray-orbits: ray-orbit (1, 0, 1) = {L(13)(24) + L(14)(23)}, ray-orbit
(1, 1, 0) = {L(12)(34)}, and ray-orbit (2, 1/3, 2/3) = {R+

12, R+
34}. This is the first

model with G symmetry where the number of rays is larger than the dimension of the
model. It is also the first case where the Lie algebra L is not abelian: the Lie algebra
structure is given by

[L(13)(24) + L(14)(23), R+
i j ] = R+

kl − R+
i j , [L(12)(34), R+

i j ] = 0,

[L(13)(24) + L(14)(23), L(12)(34)] = 0, [R+
i j , R+

kl ] = R+
i j − R+

kl ,

for {i j, kl} = {12, 34}. The general stochastic rate matrix is

⎛
⎜⎜⎝

∗ α + γ β + γ β + γ

α + γ ∗ β + γ β + γ

β + δ β + δ ∗ α + δ

β + δ β + δ α + δ ∗

⎞
⎟⎟⎠ , α, β, γ, δ ≥ 0.

Permutation basis: L(12)(34), R+
12, R+

34.

Dimension Four

Lie Markov models with this dimension appear as special submodels of forthcoming
models 5.7a, 5.7b and 5.7c with decomposition 2id ⊕ sgn ⊕ ξ , when we restrict
the identity component of their Lie algebra L to a subspace 〈Bid

a,b〉C with a, b ≥ 0.
The reader can check that depending on the values of a and b the number of rays of
the cones of these models may vary.

(id⊕ sgn⊕ ζ1 ⊕ ζ2): The models with this decomposition appear as special cases
of Model 5.6a with decomposition 2id⊕ sgn⊕ ζ1 ⊕ ζ2 (see Remark 9).

(id⊕ ζ2 ⊕ ξ): Similarly, these models are special cases of the models 5.6b, 5.11a,

5.11b, 5.11c and 5.16 with decomposition 2id⊕ ζ2 ⊕ ξ . As a particular case, if we
request these models to have S4 symmetry, we obtain the restriction a = b, leading
to the model by Felsenstein (1981):

Model 4.4a L = 〈Bid, Bζ2 , Bξ
1, Bξ

2〉C is a 4-dimensional Lie algebra. The stochastic
cone has 4 rays in one single ray-orbit: (4, 1

3 , 2
3 )a = {R1, R2, R3, R4}, and the Lie

algebra structure is given by [Ri , R j ] = Ri − R j . The general stochastic rate matrix
is
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⎛
⎜⎜⎝

∗ α α α

β ∗ β β

γ γ ∗ γ

δ δ δ ∗

⎞
⎟⎟⎠ , α, β, γ, δ ≥ 0.

Permutation basis: R1, R2, R3, R4.

(2id⊕ 2ζ2): There is only one model with this decomposition.

Model 4.4b Take L = 〈Bid
1 , Bid

2 , Bζ2
1 , Bζ2

2 〉
C

. The stochastic cone has 4 rays, in 2 ray-
orbits: ray-orbit (2, 0, 1)c = {Ch12, Ch34}, and ray-orbit (2, 1, 0) = {L(12), L(34)}.
The Lie algebra is given by

[L(12), L(34)] = 0,

[L(12), Chi j ] = [L(34), Chi j ] = 0, i j ∈ {12, 34}
[Ch12, Ch34] = 2(Ch34 − Ch12) + 2(L(34) − L(12)).

The general stochastic rate matrix is

⎛
⎜⎜⎝

∗ α β β

α ∗ β β

γ γ ∗ δ

γ γ δ ∗

⎞
⎟⎟⎠ , α, β, γ, δ ≥ 0

Permutation basis: L(12), L(34), Ch12, Ch34.

(2id⊕ sgn⊕ ζ2): There is only one model with this decomposition.

Model 4.5a L = 〈Bid
1 , Bid

2 , Bsgn, Bζ2〉
C

is a 4-dimensional Lie algebra. The stochas-
tic cone has five rays spanned, in three ray-orbits: (1, 1, 0), (2, 0, 1)a and (2, 1

3 , 2
3 ).

The general stochastic rate matrix is

⎛
⎜⎜⎝

∗ α + δ β + δ γ + δ

α + δ ∗ γ + δ β + δ

β + ε γ + ε ∗ α + ε

γ + ε β + ε α + ε ∗

⎞
⎟⎟⎠ , α, β, γ, δ, ε ≥ 0.

Permutation basis: R+
12, R+

34, L(13)(24), L(14)(23).

(2id⊕ ζ1 ⊕ ζ2): There is only one model with this decomposition.

Model 4.5b L = 〈Bid
1 , Bid

2 , Bζ1 , Bζ2〉
C

is a 4-dimensional Lie algebra. The stochastic
cone has five rays, in three ray-orbits: (1, 1, 0), (2, 0, 1)b and (2, 1

3 , 2
3 ). Then, the

general stochastic rate matrix is

⎛
⎜⎜⎝

∗ α + δ β + δ γ + δ

α + δ ∗ γ + δ β + δ

γ + ε β + ε ∗ α + ε

β + ε γ + ε α + ε ∗

⎞
⎟⎟⎠ , α, β, γ, δ, ε ≥ 0.
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Permutation basis: R+
12, R+

34, L(1324), L(1423).

The remaining models, with dimensions 5–12, are presented in the Table 6, with
a complete list in explicit form available as Supplementary Material online. The first
column of the table gives the name of the model and the second column gives a basis
for the corresponding Lie subalgebra. The third column gives the ray-orbits for the
stochastic cone of that Lie subalgebra.

5.1 Some remarks

We conclude with some remarks and comments about the previous models.

Remark 10 – Model 5.6b can be regarded as the vector sum of the model by Kimura
(1980) and the model by Felsenstein (1981).

– Model 6.7a already appeared as a model with S4 symmetry under the name
K 3ST + F81 (see Example3). A permutation basis consistent with the symmetry
S4 is given by the vectors Wi j of Example 5 above (see Sumner et al. 2012a).
Another permutation basis for this model is {L(13)(24), L(14)(23), R1, R2, R3, R4},
which is not invariant under the action of S4.

– Model 9.20b is actually invariant under the action of the whole symmetric group
S4, with Schur decomposition {4} ⊕ {22} ⊕ {31} ⊕ {212}. However, it did not
appeared in the list of Lie Markov models with S4 symmetry given in Sumner et
al. (2012a) as it does not have a permutation basis for that group (see Definition
3). This model is obtained by taking the set of all doubly stochastic (but otherwise
unrestricted) rate matrices.

– Of course, Model 12.12 is the general Markov model and we include it in the list
for completion.

�

Remark 11 The reader may notice the resemblance of Model 5.6b with the model by
Hasegawa et al. (1988):

Q5.6b =

⎛
⎜⎜⎝

∗ a + x b + x b + x
a + y ∗ b + y b + y
b + z b + z ∗ a + z
b + t b + t a + t ∗

⎞
⎟⎟⎠ Q H K Y =

⎛
⎜⎜⎝

∗ πAα πAβ πAβ

πGα ∗ πGβ πGβ

πCβ πCβ ∗ πCα

πT β πT β πT α ∗

⎞
⎟⎟⎠ ,

where πA + πC + πG + πT = 1, and all these parameters are non-negative. Although
the rates of these models depend on the parameters in a different way, the rate-matrices
Q H K Y and Q5.6b have the same structure. It is interesting to notice that the form of
the non-diagonal entries of Q5.6b arises from the corresponding entries in Q H K Y just
by applying minus the logarithm, producing the following correspondence between
the parameters of both models

x = − log(πA), y = − log(πG), z = − log(πC ), t = − log(πT ),

a = − log(α), b = − log(β).
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Table 6 List of Lie Markov models with purine/pyrimidine symmetry for dimension 5, 6, 8, 9, 10 and 12
(the Lie Markov models with dimension 1 to 4 are described within the text)

2id⊕ sgn⊕ ξ

5.7a 〈Bid1 , Bid2 , Bsgn, Bξ
1, Bξ

2〉
C

(1, 1, 0), (2, 0, 1)a, (4, 1
3 , 2

3 )d

5.7b 〈Bid1 , Bid2 , Bsgn, Bξ
3, Bξ

4〉
C

(1, 1, 0), (2, 0, 1)a, (4, 1
3 , 2

3 )e

5.7c 〈Bid1 , Bid2 , Bsgn, Bξ
5, Bξ

6〉
C

(1, 1, 0), (2, 0, 1)a, (4, 1
3 , 2

3 ) f

2id⊕ sgn⊕ ζ1 ⊕ ζ2

5.6a 〈Bid1 , Bid2 , Bsgn, Bζ1 , Bζ2
1 〉

C
(2, 0, 1)a, (2, 0, 1)b, (2, 1, 0)

2id⊕ ζ2 ⊕ ξ

5.6b 〈Bid1 , Bid2 , Bζ2 , Bξ
1, Bξ

2〉
C

(1, 0, 1), (1, 1, 0), (4, 1
3 , 2

3 )a

5.16 〈Bid1 , Bid2 , Bζ2 , Bξ
5, Bξ

6〉
C

(1, 0, 1), (1, 1, 0), (2, 1
3 , 2

3 ), (4, 1
7 , 6

7 ),

(4, 1
3 , 2

3 ) f, (4, 3
5 , 2

5 )

5.11a 〈Bid1 , Bid2 , Bζ2
1 , Bξ

1, Bξ
2〉

C
(1, 0, 1), (2, 1, 0), (4, 1

3 , 2
3 )d, (4, 1

5 , 4
5 )a

5.11b 〈Bid1 , Bid2 , Bζ2
1 , Bξ

3, Bξ
4〉

C
(1, 0, 1), (2, 1, 0), (4, 1

3 , 2
3 )e, (4, 1

5 , 4
5 )b

5.11c 〈Bid1 , Bid2 , Bζ2
1 , Bξ

5, Bξ
6〉

C
(1, 0, 1), (2, 1, 0), (4, 1

3 , 2
3 ) f, (4, 1

5 , 4
5 )c

2id⊕ sgn⊕ ζ1 ⊕ 2ζ2

6.6 〈Bid1 , Bid2 , Bsgn, Bζ1 , Bζ2
1 , Bζ2

2 〉
C

(2, 1, 0), (4, 0, 1)e

2id⊕ sgn⊕ ζ2 ⊕ ξ

6.7a 〈Bid1 , Bid2 , Bsgn, Bζ2 , Bξ
1, Bξ

2〉
C

(1, 1, 0), (2, 0, 1)a, (4, 1
3 , 2

3 )a

6.17a 〈Bid1 , Bid2 , Bsgn, Bζ2 , Bξ
5, Bξ

6〉
C

(1, 1, 0), (2, 0, 1)a, (2, 1
3 , 2

3 ), (4, 1
7 , 6

7 ),

(4, 1
3 , 2

3 ) f, (4, 3
5 , 2

5 )

2id⊕ ζ1 ⊕ ζ2 ⊕ ξ

6.7b 〈Bid1 , Bid2 , Bζ1 , Bζ2 , Bξ
1, Bξ

2〉
C

(1, 0, 1), (2, 0, 1)b, (4, 1
3 , 2

3 )a

6.17b 〈Bid1 , Bid2 , Bζ1 , Bζ2 , Bξ
5, Bξ

6〉
C

(1, 1, 0), (2, 0, 1)b, (2, 1
3 , 2

3 ),

(4, 1
7 , 6

7 ), (4, 1
3 , 2

3 ) f, (4, 3
5 , 2

5 )

2id⊕ 2ζ2 ⊕ ξ

6.8a 〈Bid1 , Bid2 , Bζ2
1 , Bζ2

2 , Bξ
1, Bξ

2〉
C

(2, 0, 1)c, (2, 1, 0), (4, 1
3 , 2

3 )a

6.8b 〈Bid1 , Bid2 , Bζ2
1 , Bζ2

2 , Bξ
5, Bξ

6〉
C

(2, 0, 1)c, (2, 1, 0), (4, 1
3 , 2

3 )b

2id⊕ 2ζ2 ⊕ 2ξ

8.8 〈Bid1 , Bid2 , Bζ2
1 , Bζ2

2 , Bξ
1, Bξ

2, Bξ
3, Bξ

4〉
C

(4, 0, 1)c, (4, 1, 0)a

8.16 〈Bid1 , Bid2 , Bζ2
1 , Bζ2

2 , Bξ
1, Bξ

2, Bξ
5, Bξ

6〉
C

(2, 0, 1)c, (2, 1, 0), (4, 0, 1)a,

(4, 1
3 , 2

3 )a, (4, 1
3 , 2

3 )b

Actually, this map induces a bijection between the Lie algebraL5.6b=〈Bid
1 , Bid

2 , Bζ2〉
C
,

Bξ
1, Bξ

2 and the set of (not necessarily stochastic) rate matrices of HKY model. The
inverse is given by

Q =
∑
i �= j

qi j Li j �→
∑
i �= j

e−qi j Li j .

However, these two models have different essential properties. For instance, while
Model 5.6b is given by the linear variety L5.6b, it can be seen that the set of rate
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Table 6 continued

2id⊕ sgn⊕ ζ1 ⊕ 2ζ2 ⊕ ξ

8.10a 〈Bid1 , Bid2 , Bsgn, Bζ1 , Bζ2
1 , Bζ2

2 , Bξ
1, Bξ

2〉
C

(2, 1, 0), (4, 0, 1)e, (4, 1
3 , 2

3 )a

8.10b 〈Bid1 , Bid2 , Bsgn, Bζ1 , Bζ2
1 , Bζ2

2 , Bξ
5, Bξ

6〉
C

(2, 1, 0), (4, 0, 1)e, (4, 1
3 , 2

3 )b

2id⊕ sgn⊕ ζ2 ⊕ 2ξ

8.17 〈Bid1 , Bid2 , Bsgn, Bζ2 , Bξ
1〉

C
, Bξ

2, Bξ
3, Bξ

4 (1, 1, 0), (4, 0, 1)d, (4, 1
3 , 2

3 )a,

(4, 1
2 , 1

2 )a, (4, 3
5 , 2

5 )

8.18 〈Bid1 , Bid2 , Bsgn, Bζ2 , Bξ
1, Bξ

2, Bξ
3, Bξ

4〉
C

(2, 0, 1)a, (4, 0, 1)b,

(4, 1
3 , 2

3 )a, (4, 1
3 , 2

3 )b,

(4, 1, 0)b
2id⊕ sgn⊕ ζ1 ⊕ ζ2 ⊕ 2ξ

9.20a 〈Bid1 , Bid2 , Bsgn, Bζ1 , Bζ2
1 , Bξ

1, Bξ
2, Bξ

3, Bξ
4〉

C
(4, 1, 0)a, (2, 0, 1)a, (2, 0, 1)b,

(4, 0, 1)b, (8, 0, 1)b

9.20b 〈Bid1 , Bid2 , Bsgn, Bζ1 , Bζ2
2 , Bξ

3, Bξ
4, Bξ

5, Bξ
6〉

C
(2, 0, 1)b, (2, 1, 0), (4, 0, 1) f,

(4, 1
2 , 1

2 )b, (8, 1
3 , 2

3 )b
2id⊕ sgn⊕ ζ1 ⊕ 2ζ2 ⊕ 2ξ

10.12 〈Bid1 , Bid2 , Bsgn, Bζ1 , Bζ2
1 , Bζ2

2 , Bξ
1, Bξ

2, Bξ
3, Bξ

4〉
C

(4, 0, 1)c, (4, 0, 1)e, (4, 1, 0)a

10.34 〈Bid1 , Bid2 , Bsgn, Bζ1 , Bζ2
1 , Bζ2

2 , Bξ
1, Bξ

2, Bξ
5, Bξ

6〉
C

(2, 1, 0), (4, 0, 1)d, (4, 0, 1)e,
(4, 1

3 , 2
3 )a, (4, 1

3 , 2
3 )b,

(8, 1
3 , 2

3 )a, (8, 1, 1)

2id⊕ sgn⊕ ζ1 ⊕ 2ζ2 ⊕ 3ξ

12.12 LG M (4, 1, 0)a, (8, 0, 1)a

The first column gives the name of the model, while the second and the third column provide a basis of
the corresponding Lie subalgebra and the ray-orbits of the corresponding stochastic cone, respectively (see
Table 8)

matrices of HKY model describes a variety that is not linear and contains singular
points. The deep connection between Lie Markov models and submodels of the general
time reversible model appears as a beautiful line of research that will deserve some
attention from the authors in the future. �
Remark 12 As already noted in Remark 4, a number of models in the above list have
more symmetries than those requested by the group G, and they already appeared as
Lie Markov models with S4 symmetry (see Sumner et al. 2012a). For those models,
the decomposition into irreducible representations of G can be obtained from the
decomposition into irreducible representations of S4 by applying the branching rule
of Table 3 (cf. Sumner et al. 2012a, Table 2). Since there are no subgroups between
G and S4, we can conclude that the rest of models listed here do not have further
symmetries. �
Remark 13 A vector subspace L in LG M is a matrix algebra if its multiplicatively
closed, that is, if the product XY lies in L for any couple X, Y ∈ L. Of course, this
condition is stronger than that of a Lie algebra. The reader may wonder which of the
models in the above list are actually algebras. The authors were surprised to find that
the only Lie algebras which are not algebras correspond to the Lie Markov models
that appear in families depending on some parameters a, b in the sense of Remark 9,
that is, the Lie Markov models corresponding to the following decompositions:

123



Lie Markov models with purine/pyrimidine symmetry 887

id (for dimension 1);
id⊕ sgn, id⊕ ζ1 and id⊕ ζ2 (for dimension 3);
id⊕ ζ2 ⊕ ξ, id⊕ sgn⊕ ξ, id⊕ sgn⊕ ζ1 ⊕ ζ2 (for dimension 4); and
id⊕ sgn⊕ ζ1 ⊕ ζ2 ⊕ ξ (for dimension 8).

Notice that these decompositions correspond exactly to the decompositions of Table 4,
that is, the irreducible permutation representations 〈G/H〉C for a subgroup H of G.

�
Remark 14 The reader may notice that not all decompositions listed in Table 5 give rise
to Lie Markov models. Although, there exists Lie subalgebras of the general Markov
model that decompose according to 2id⊕ sgn⊕ ζ1 and 2id⊕ sgn⊕ ζ1 ⊕ ξ , their
relative position to the positive orthant causes a drop in the dimension of the convex
polyhedral cone obtained when imposing the stochastic restrictions (namely, non-
diagonal rates have to be non-negative). Such situations are not desired as explained
in Remark 2 and do not correspond to our definition of Lie Markov model.

6 Discussion

Following the ideas of our previous work (Sumner et al. 2012a), in this paper we have
discussed Lie Markov models with purine/pyrimidine symmetry. This symmetry was
mathematically expressed by taking the group of nucleotide permutations

G = {e, (AG), (CT ), (AG)(CT ), (AC)(GT ), (AT )(GC), (ACGT ), (AT GC)}.

Our main motivation is that this symmetry may be of special interest to the biolo-
gist who wishes to deal with evolutionary models preserving the specific grouping
of nucleotides into purines and pyrimidines. In Sect. 2 we recalled some of the basic
definitions on Lie Markov models and the required tools arising from representation
theory of groups. We also show that any rate-matrix model being locally multiplica-
tively closed is necessarily a Lie Markov model. Also in this section, we introduce
a new concept which is the stochastic cone of a Lie Markov model, being the set of
stochastic rate matrices of the Lie Markov model. In Sect. 3 we explained how to
derive Lie Markov models with prescribed symmetry and discussed the geometry of
the corresponding cone of stochastic rate matrices. In Sect. 4 we took the permutation
group G and decomposed the space of all rate matrices into irreducible modules of G
and provided a basis consistent with this decomposition. In Sect. 5 we gave the full
list of all Lie Markov models with G symmetry, arranged by their dimension.

From an applied point of view, a natural question is which Lie Markov models
are biologically interesting. This is a crucial point that will deserve special attention
from the authors. Computer simulations to compare phylogenetic estimation using Lie
Markov models with other evolutionary models are being designed and will appear in
a future publication. At the same time, this leads to more theoretical questions as the
connection between well-established evolutionary models and Lie Markov models,
like the HKY model and the Lie Markov model 5.6b (see Remark 11).

We have considered models from a rate matrix perspective as some well-defined
subset L of the space LG M of all rate matrices. We could have adopted a more algebraic
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Table 7 The Lie brackets of the basis {B∗
j } of LG M

Bid1 Bid Bsgn Bζ1 Bζ2
1 Bζ2 Bξ

1 Bξ
2 Bξ

3 Bξ
4 Bξ

5 Bξ
6

Bid1 0 0 0 0 0 0 −2Bξ
1 −2Bξ

2 −2Bξ
3 −2Bξ

4 2Bξ
5 2Bξ

6

Bid 0 0 0 0 −4Bζ2 −4Bξ
1 −4Bξ

2 0 0 0 0

Bsgn 0 4 Bζ2
1 4 Bζ1 0 2Bξ

2 2Bξ
1 −2Bξ

4 −2Bξ
3 2Bξ

6 2Bξ
5

Bζ1 0 4 Bsgn 0 −2Bξ
2 2Bξ

1 2Bξ
4 −2Bξ

3 2Bξ
6 −2Bξ

5

Bζ2
1 0 0 −2Bξ

1 2Bξ
2 −2Bξ

3 2Bξ
4 2Bξ

5 −2Bξ
6

Bζ2 0 0 0 4 Bξ
1 −4Bξ

2 0 0

Bξ
1 0 0 0 0 2Bζ2 0

Bξ
2 0 0 0 0 −2Bζ2

2

Bξ
3 0 0 E3,5 E3,6

Bξ
4 0 E4,5 E4,6

Bξ
5 0 0

Bξ
6 0

The entries not included are easily determined by applying the rule [X, Y ] = −[Y, X ]
Here we use the notation E3,5 := −6Bid1 +2Bid2 −2Bζ2

1 , E3,6 := −2Bsgn−2Bζ1 , E4,5 := −2Bsgn+
2Bζ1 , E4,6 := −6Bid1 + 2Bid2 + 2Bζ2

1

perspective and deal with the substitution matrices instead, and keeping in mind the
importance of substitution matrices being multiplicatively closed (see Sumner et al.
2012a), define “evolutionary model” as some well-defined groups M of matrices in
Mn(R). Then, when we restrict to the stochastic setting, we would be led to consider
the intersection of M with the stochastic polytope:

Psto :=
{

M = (mi j ) ∈ M : mi j ≥ 0,
∑

i

mi j = 1

}
.

This is a compact polytope with the identity matrix in one of the vertices. This polytope
is cut into several connected components by the algebraic hypersurface of equation
det(M) = 0. We are mainly interested in the connected component that contains the
identity matrix. This is because, by continuity arguments, this connected component
contains the exponential of the stochastic rate matrices of the model. In this paper,
we have preferred to introduce evolutionary models from the point of view of rate
matrices because both the definition of Lie Markov models and the procedure to
construct them appear in a natural way in this setting. However, the connection between
rate matrices and substitution models is not completely clear, and it deserves further
attention. For example, it is known that the image of the exponential map restricted
to the stochastic cone does not cover in general the whole connected component of
the identity. These issues are related to the convergence of the Baker–Campbell–
Hausdorff formula (Blanes and Casas 2004) and the Elfving’s “embedding problem”
(Davies 2010): given a Markov matrix M , there exists a matrix Q such that M = eQ
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Table 8 Ray-orbits of the Lie Markov models with G symmetry with the corresponding generators

Orbit Matrices Dec. as an abstract
set / dec. in LG M

(1, 1, 0) L(12)(34) id

(1, 0, 1) L(13)(24) + L(14)(23) id

(1, 1
3 , 2

3 ) L(12)(34) + L(13)(24) + L(14)(23) id

(2, 0, 1)a L(13)(24), L(14)(23) id⊕ sgn

(2, 0, 1)b L(1324), L(1423) id⊕ ζ1

(2, 0, 1)c Ch12, Ch34 id⊕ ζ2

(2, 1, 0) L(12), L(34) id⊕ ζ2

(2, 1
3 , 2

3 ) R+
12, R+

34 id⊕ ζ2

(4, 0, 1)a V1 + H2 − 2L12, V2 + H1 − 2L12, V3 + H4 − 2L34, V4
+ H3 − 2L34

id⊕ ζ2 ⊕ ξ / id⊕ ξ

(4, 0, 1)b H+
13 − (L21 + L43), H+

14 − (L21 + L34), H+
23 − (L12

+ L43), H+
24 − (L12 + L34)

id⊕ ζ2 ⊕ ξ / id⊕ ξ

(4, 0, 1)c L13 + L14, L23 + L24, L31 + L32, L41 + L42 id⊕ ζ2 ⊕ ξ

(4, 0, 1)d L13 + L42, L23 + L41, L31 + L24, L32 + L14 id⊕ sgn⊕ ξ

(4, 0, 1)e L13 + L24, L23 + L14, L31 + L42, L32 + L41 id⊕ sgn⊕ ζ1 ⊕ ζ2

(4, 0, 1) f L(13), L(14), L(23), L(24) id⊕ ζ2 ⊕ ξ

(4, 1, 0)a L12, L21, L34, L43 id⊕ ζ2 ⊕ ξ / id⊕ ξ

(4, 1, 0)b L12 + L34, L12 + L43, L21 + L34, L21 + L43 id⊕ ζ2 ⊕ ξ / id⊕ ξ

(4, 1
3 , 2

3 )a R1, R2, R3, R4 id⊕ ζ2 ⊕ ξ / id⊕ ξ

(4, 1
3 , 2

3 )b V1, V2, V3, V4 id⊕ ζ2 ⊕ ξ / id⊕ ξ

(4, 1
3 , 2

3 )c H1, H2, H3, H4 id⊕ ζ2 ⊕ ξ / id⊕ ξ

(4, 1
3 , 2

3 )d R+
13, R+

14, R+
23, R+

24 id⊕ sgn⊕ ξ / id⊕ ξ

(4, 1
3 , 2

3 )e H+
13, H+

14, H+
23, H+

24 id⊕ sgn⊕ ξ / id⊕ ξ

(4, 1
3 , 2

3 ) f V +
13, V +

14, V +
23, V +

24 id⊕ sgn⊕ ξ / id⊕ ξ

(4, 1
7 , 6

7 ) V1 + Ch12, V2 + Ch12, V3 + Ch34, V4 + Ch34 id⊕ ζ2 ⊕ ξ / id⊕ ξ

(4, 1
2 , 1

2 )a R+
13 − (L14 + L32), R+

14 − (L13 + L42),

R+
23 − (L24 + L31), R+

24 − (L23 + L41)

id⊕ ζ2 ⊕ ξ

(4, 1
2 , 1

2 )b L(1234), L(1243), L(1324), L(1342) id⊕ sgn⊕ ξ

(4, 1
5 , 4

5 )a 2R1 + Ch34, 2R2 + Ch34, 2R3 + Ch12, 2R4 + Ch12 id⊕ ζ2 ⊕ ξ

(4, 1
5 , 4

5 )b 2H1 + Ch34, 2H2 + Ch34, 2H3 + Ch12, 2H4 + Ch12 id⊕ ζ2 ⊕ ξ

(4, 1
5 , 4

5 )c 2V1 + Ch12, 2V2 + Ch12, 2V3 + Ch34, 2V4 + Ch34 id⊕ ζ2 ⊕ ξ

(4, 3
5 , 2

5 ) V1 + L(34), V2 + L(34), V3 + L(12), V4 + L(12) id⊕ ζ2 ⊕ ξ

(8, 0, 1)a L13, L14, L23, L24, L31, L32, L41, L42 id⊕ sgn⊕ ζ1 ⊕ ζ2 ⊕ 2ξ

(8, 0, 1)b L(13)(24) − L13 + L23, L(13)(24) − L24
+ L14, L(13)(24) − L31 + L41, L(13)(24) − L42
+ L32, L(14)(23) − L14 + L24, L(14)(23) − L23
+ L13, L(14)(23) − L32 + L42, L(14)(23) − L41 + L31

id⊕sgn⊕ ζ1 ⊕ ζ2 ⊕ 2ξ

/ id⊕ sgn⊕ ζ1 ⊕ ξ

(8, 1
3 , 2

3 )a R1 − L14 + L41, R1 − L13 + L31, R2 − L24
+ L42, R2 − L23 + L32, R3 − L31
+ L13, R2 − L32 + L23, R4 − L41
+ L14, R4 − L42 + L24

id⊕sgn⊕ ζ1 ⊕ ζ2 ⊕2ξ /
id⊕ ζ1 ⊕ ζ2 ⊕ 2ξ
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Table 8 continued

Orbit Matrices Dec. as an abstract
set / dec. in LG M

(8, 1
3 , 2

3 )b L(123), L(124), L(132), L(134), L(142), L(143),

L(234), L(243)

id⊕ sgn⊕ ζ1 ⊕ ζ2
⊕ 2ξ /
id⊕ ζ1 ⊕ ζ2 ⊕ 2ξ

(8, 1
2 , 1

2 ) L12 + L34 + 2L13, L12 + L34 + 2L31, L12
+ L43 + 2L14, L12 + L43 + 2L41, L21
+ L34 + 2L23, L21 + L34 + 2L32, L21
+ L43 + 2L24, L21 + L43 + 2L42

id⊕ sgn⊕ ζ1 ⊕ ζ2
⊕ 2ξ /
id⊕ ζ1 ⊕ ζ2 ⊕ 2ξ

The 3rd column describes the decomposition into irreducible representations of both the abstract set gener-
ated by these orbits and the subspace of LG M spanned by them (see Remark 8). When both decompositions
are equal, we write it down only once

and et Q is a Markov matrix for all t ≥ 0. We want to explore this question in the
future to clarify the connection between substitution and rate matrices of evolutionary
models.

Although we have kept the original definition of symmetry for a Lie Markov model
from Sumner et al. (2012a), an interesting question arises if one tries to expand this defi-
nition. Namely, we could investigate evolutionary models which are invariant under the
action of some permutation subgroup G of S4 without the additional request that they
have a permutation basis. From an applied point of view, we do not find any particular
reason not to consider this expanded definition, which would lead to a huge number
of possible models. For example, under this expanded definition, we would admit the
complex span of the ray-orbits (4, 1

3 , 2
3 )d : L = 〈R+

13, R+
14, R+

23, R+
24〉C, (4, 1

3 , 2
3 )e :

L = 〈H+
13, H+

14, H+
23, H+

24〉C and (4, 1
3 , 2

3 ) f : L = 〈V +
13, V +

14, V +
23, V +

24〉C (see Table 8)
as models with symmetry G and decomposition id⊕ ξ (note that this decomposition
does not appear in the list of Table 5). More interestingly, as noted in Remark 10, the
set of doubly stochastic rate matrices has S4 symmetry under this expanded definition,
and moreover they form a Lie algebra. The authors keep back this line of research for
future publication.
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