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Abstract When we construct mathematical models to represent biological systems,
there is always uncertainty with regards to the model specification—whether with
respect to the parameters or to the formulation of model functions. Sometimes choos-
ing two different functions with close shapes in a model can result in substantially
different model predictions: a phenomenon known in the literature as structural sensi-
tivity, which is a significant obstacle to improving the predictive power of biological
models. In this paper, we revisit the general definition of structural sensitivity, compare
several more specific definitions and discuss their usefulness for the construction and
analysis of biological models. Then we propose a general approach to reveal struc-
tural sensitivity with regards to certain system properties, which considers infinite-
dimensional neighbourhoods of the model functions: a far more powerful technique
than the conventional approach of varying parameters for a fixed functional form. In
particular, we suggest a rigorous method to unearth sensitivity with respect to the local
stability of systems’ equilibrium points. We present a method for specifying the neigh-
bourhood of a general unknown function with n inflection points in terms of a finite
number of local function properties, and provide a rigorous proof of its completeness.
Using this powerful result, we implement our method to explore sensitivity in sev-
eral well-known multicomponent ecological models and demonstrate the existence of
structural sensitivity in these models. Finally, we argue that structural sensitivity is
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an important intrinsic property of biological models, and a direct consequence of the
complexity of the underlying real systems.

Keywords Structural sensitivity · Structural stability · Uncertainty ·
Local bifurcation · Sensitivity analysis · Food web models · Delay models

Mathematics Subject Classification 34 · 37 · 92

1 Introduction

When modelling the dynamics of biological systems—based on a differential equa-
tions framework, for instance—the precise constituent functions that ought to be used
are often unknown. Therefore, when constructing our models it is important to deter-
mine whether or not small changes to the models functions can result in substantial
changes to the model predictions. From a mathematical point of view, a necessary
condition for a model to be adequate for describing a real-world system is that it must
possess the fundamental property of structural stability—that is, that all sufficiently
small perturbations of the model have homeomorphic oriented trajectories, i.e. they
are topologically equivalent to the original system (Kuznetsov 2004). For instance, the
famous Lotka–Volterra predator–prey model does not possess this property: since this
model has a non-hyperbolic interior equilibrium, considering more realistic predation
terms can break the neutrally stable cycles resulting in the appearance of unwind-
ing spirals (Bazykin 1998). Checking the structural stability of a system is certainly
worthwhile, but in many sciences such as biology, economics and climate modelling,
we cannot determine our models functions with arbitrary accuracy, in which case the
structural stability of a model is not enough: since we can no longer take our pertur-
bations to be sufficiently small, we should rather require that our model predictions
are consistent for all perturbations within a small but finite magnitude determined
a priori from the accuracy of our data. Additionally, when using models to obtain
quantitative predictions, the topological equivalence of model trajectories may not
be enough—we may also require that the model dynamics are quantitatively similar.
The concept of structural sensitivity (Wood and Thomas 1999; Fussmann and Blasius
2005; Cordoleani et al. 2011; Adamson and Morozov 2013) is a way of extending
structural stability to deal with these issues.

Structural sensitivity occurs in a model M when a close model M ′ yields predictions
which are either qualitatively different, or significantly quantitatively different from
those given by M (Myerscough et al. 1996; Wood and Thomas 1999; Cordoleani et
al. 2011). Structural sensitivity differs from structural instability in the sense that we
have an a priori error value ε, and we must check all models within this distance of
M . In a sense, the existence of structural sensitivity is already tacitly acknowledged
in the modelling community, since it is quite standard for researchers to carry out a
bifurcation analysis on their models (e.g. Bazykin 1998; Berezovskaya et al. 2001;
Kooi and Boer 2001) in order to detect potential sensitivity to variation of parameters,
but models can also be sensitive with respect to the form taken by the model functions
(Gross et al. 2004)—even if the functions remain qualitatively similar (Fussmann and
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Blasius 2005). This is a particular problem in biology, when the processes modelled
are often too complex to justify a particular choice of parameterisation to represent
them—indeed, even if a particular choice of functional representation can be justified
for individuals on a laboratory scale, there is no reason the same representation should
be valid after aggregating over a heterogeneous population and scaling up to the size
of real ecosystems (Poggiale 1998; Englund and Leonardsson 2008; Morozov 2010;
Cordoleani et al. 2013). Another important factor which can potentially cause variation
in the underlying model functions is evolution of the life traits of animals, which can
take place over a relatively short period of time (Thompson 1998; Duffy and Sivars-
Becker 2007; Kinnison and Hairston 2007).

As an example of a way in which a system can be structurally sensitive, and how
we can test for this property, we can consider changes in the stability of its equilibrium
when a model function is varied:

Example 1 Sensitivity of the Stability of a Given Equilibrium

Let us consider for the sake of simplicity that we have a model in which a sin-
gle function h̃ of only one variable xi is unknown, but should be restricted to some
(undefined for now) neighbourhood of functions, Bε (M) (where M is the original
model, and ε is the radius of the neighbourhood). One way in which a system can
show structural sensitivity is through a change in the linear stability of an equilibrium
when this function is changed slightly (Fussmann and Blasius 2005). To check for this
possibility, we note that provided the equilibrium is hyperbolic (the Jacobian evaluated
at the equilibrium has no eigenvalues with real part zero), its stability is determined
by the characteristic equation of the linearised system:

λn + λn−1 Rn−1 + · · · + λ1 R1 + R0 = 0,

where the Ri are functions which are determined by computing the Jacobian matrix
of the system at this equilibrium (note that if the equilibrium is not hyperbolic, then
we necessarily have structural sensitivity since the system is not structurally stable).
With regards to our unknown function h̃, we should note that the only unknown values
that the Jacobian depends on are the coordinates of the equilibrium point, and the
values of the unknown function h̃ and its derivative at this point. Let us consider the
xi -coordinate of the equilibrium point, x∗

i , as a variable parameter of the investigation.
From the isocline equations determining the equilibrium point one can compute the
other (n-1) coordinates of the equilibrium as well as the value of the function h̃ at this
equilibrium. The coordinates of the minimal space we need to know will then include
the values x∗

i and h̃′ (x∗
i

)
. If we can determine the necessary and sufficient conditions

for a choice of these values to be taken by at least one function in the neighbourhood
Bε (M), we can project the entirety of Bε (M) from function space into a finite dimen-
sional space with coordinates x∗

i , h̃′ (x∗
i

)
, which can be covered numerically: we can

traverse the subspace, checking the necessary and sufficient conditions at each point
to determine whether the given point should be included in our projected domain (c.f.
Adamson and Morozov 2013). In this way we can determine the stability of the equi-
librium across all choices of model from the neighbourhood Bε (M): if there exist both
models which yield a stable equilibrium and those which yield an unstable one, we
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can conclude that the system exhibits structural sensitivity (practical examples using
particular models are given in Sect. 5 of this paper).

In order to carry out such an analysis of the sensitivity of equilibria as in Example 1,
it is clear that we should choose carefully how we define the neighbourhood from which
we may select valid model functions, and there are several distinct model metrics which
can be used to do this. Choosing an appropriate notion of distances between models
and their functions is extremely important since we need our framework to remain
on a sound mathematical footing, whilst taking into account biological realism and
data. Next, once we have chosen appropriate definitions and model neighbourhoods,
determining the corresponding domain in the finite-dimensional space of local function
values is generally a nonlocal problem and needs to be addressed.

The paper is organised as follows. In Sect. 2, we revisit the concept of structural
sensitivity of ODE-based models, present the definition of structural sensitivity along
with several specific model metrics, and discuss the strengths and shortcomings of
each when applied to the problem of dealing with uncertainty in both theory and
experimental data. In Sect. 3 we extend the approach of Example 1 regarding sensitivity
analysis of stationary states of the model by discussing in more detail how we can check
structural sensitivity with respect to the stability of its equilibria, and introduce a second
example whereby we can check sensitivity with respect to the number of equilibria
as well. Further, in Sect. 4 we suggest a method for projecting a neighbourhood
of a general class of functions with an arbitrary number of inflection points into a
finite-dimensional space of local function values (as in Example 1 above)—thereby
providing the required tools for structural sensitivity analysis of any model with respect
to variation of a function of this type. As a practical demonstration of the approach
developed in Sects. 3 and 4, in Sect. 5 we use it to demonstrate structural sensitivity
with respect to predation terms—of Holling type II and III, respectively—in two recent
ODE models of biological systems from highly cited papers, along with a delay-
differential equation model. We demonstrate the existence of structural sensitivity
in these models and show that conventional methods based solely on variation of
parameters will often fail to do so. Finally, in Sect. 6 we summarise the paper, discuss
extensions of the research and put forward the hypothesis that structural sensitivity is
an important and intrinsic property of biological models, which is a direct consequence
of the complexity of the underlying real systems.

2 How should we define structural sensitivity in biological models?

2.1 General definition

In this subsection we provide a formal definition of structural sensitivity in general,
and consider several more specific definitions. Our general definition is based on the
one provided in Cordoleani et al. (2011), with the important distinction that we ignore
deformation of attractors with basins of measure zero.

To better understand the formal concept of structural sensitivity, it is essential to
recall the definition of the related property of structural stability (Kuznetsov 2004):

Definition 2.1.1 (Strict structural stability) Consider a continuous-time system
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ẋ = f (x), x ∈ R
n, (2.1)

with smooth f , and a closed region� ⊂ R
n . System (2.1) is strictly structurally stable

over� if any system that is sufficiently C1-close in� is topologically equivalent in�
to (2.1).

Recall (see Kuznetsov 2004) that two systems are topologically equivalent if there is
a homeomorphism (continuous bijection with continuous inverse) mapping the orbits
of one system to those of the other whilst preserving the direction of time.

Now we define the closely related property of structural sensitivity as follows:

Definition 2.1.2 (Structural sensitivity) Let us consider two positive real numbers σ
and ε, a reference model (MR) with state space R

n , and a closed region � ⊂ R
n .

Further, let us consider a certain metric dM on the space of C1 models, (with the
model functions allowed being potentially restricted to comply with prior theoretical
knowledge). We denote by Bε (MR) the set of models (M) such that dM (MR,M) < ε

over �. For a given initial condition x ∈ R
n , we denote by ωR (x) its ω-limit in the

model (MR) and by ω (x) its ω-limit in the model (M).

We say that (MR) is ε-structurally σ -sensitive in � if there exists (M) ∈ Bε (MR)

such that one of the following conditions is fulfilled:

(i) (M) is not strictly structurally stable, as in Def 2.1.1;
(ii) there exists a set X ⊆ R

n of positive measure, such that given any initial con-
dition x0 ∈ X , then for all x ∈ � satisfying ωR (x0) = ωR (x), we have
dH (ωR (x), ω (x)) ≥ σ , where dH is the Hausdorff distance.

In other words, (MR) is structurally sensitive if there is either a structurally unstable
model in the vicinity of (MR), or if a small size perturbation of (MR) can sufficiently
deform at least one attractor of the resulting model (M). The values ε and σ are
parameters which can be interpreted as the accuracy of available data and the desired
tolerance of our model predictions, respectively. We should emphasize again the dif-
ferences between structural sensitivity and structural instability (cf. Definition 2.1.1).
Condition (i) is similar to structural instability, but there is an important difference:
the term sufficiently C1-close in the definition of structural stability. For structural sen-
sitivity we consider every system within a fixed distance, ε. We should also note that it
may be of interest to consider the case when transient dynamics differ by a sufficiently
large distance, in which case we would need to modify Defn 2.1.2 (ii) to consider
deformation of the orbits of a positive-measure set across the entire time interval,
although we shall not consider such a modification here for the sake of brevity.

2.2 Notions of model distance and structural sensitivity

The question remains as to what constitutes a suitable metric dM . There are several
common metrics used in the literature, precise definitions of which are provided in
Appendix A. Here we shall briefly discuss and critique some of them.

By far the main approach used in modelling literature is to consider sensitivity
of model outputs to the variation of parameters values for fixed model functions. In
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this case, dM is only defined for two models with the same parameterisation of the
model functions, and would simply be given by a metric on the space of parameter
sets. The main drawback of this notion of distance is that even in fairly simple models,
robustness of the results to variation of parameters for fixed functions does not indicate
that the model is not sensitive to small variations of the functional forms themselves
(Myerscough et al. 1996; Wood and Thomas 1999; Fussmann and Blasius 2005; Cor-
doleani et al. 2011; Adamson and Morozov 2013). The most common approach used
in dynamical systems theory, on the other hand is to consider the C1-metric: distance is
measured in terms of the maximum distance between the model functions and between
their derivatives across the whole domain. Use of the C1-metric ensures that all possi-
ble model perturbations are considered, so no viable systems are missed, but this can
be rather a disadvantage in sensitivity investigations since the perturbations considered
may include models which are meaningless with respect to the original problem. Also,
with the C1-metric close models must have model functions with close derivatives, but
obtaining an accurate estimate of derivatives from empirical data is usually impossible
so we cannot justify the derivative of our original model (Bendoricchio and Jorgensen
2001).

In Adamson and Morozov (2013) the dQ-distance between model functions was
introduced (Appendix A, Definitions 7.3 and 7.4). With this metric we do not consider
all possible variations of the model functions, but only those which conserve certain
generic properties determined by biological theory or ‘common sense’. If we can then
choose an initial model which fits the available data, and construct the neighbourhood
Bε

(
M; dQ

)
—with the radius ε being determined by the accuracy of the experimental

data—then it will contain all viable models and nothing more. For this reason, we shall
suggest the definition of structural sensitivity based on the dQ-distance to be the most
natural when modelling biological systems and shall hereon explore the sensitivity of
models considering the dQ-distance only.

3 General approach of investigation

We consider a continuous-time system (M) given by the differential equations:

ẋ = G
(

g1(x), . . . , gm(x), h̃1(x), . . . , h̃ p(x)
)
, x ∈ R

n,

where g1, . . . , gm, h̃1, . . . , h̃ p ∈ C1 (Rn). Here G : R
m+p → R

n is a linear function
representing the overall ‘structure’ of the model (M) in terms of the various model
functions, detailing how the growth rates, mortality terms, functional responses, etc. are
used to build the full model. Of these model functions, we assume that g1, . . . , gm are
of known analytical form, and so only require a choice of parameters to be fully deter-
mined, while we assume that

{
h̃1 (x) , . . . , h̃ p (x)

}
is the set of functions with unknown

parameterisations. Usually we have some prior theoretical or experimental knowledge
concerning this set of functions, and so we can use this knowledge to specify a class of
function sets Q = {

Q1, . . . , Q p
}
, Qi ⊂ C1 (Rn) which

{
h̃1 (x) , . . . , h̃ p (x)

}
must

belong to, and therefore eliminate any irrelevant choices of functions. In this way we
define (M) as a ‘partially specified model’ (Wood 2001).
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To complete our model (M), we first need to make an arbitrary initial choice of
parameterisation of the functions h̃1, . . . , h̃ p, which we shall denote by h1, . . . , h p.
We call these functions the ‘base functions’, and their exact form does not matter,
provided that they are taken from Q and are fitted to available experimental data. To
fully determine whether or not (M) is ε-structurally σ -sensitive or not (for the given
base functions), we first need to obtain values for ε and σ (ε being the accuracy of the
available experimental data, and σ set to the desired precision of our model predic-
tions), and then check the entirety of Bε

(
M; dQ

)
for models which predict behaviour

that differs either qualitatively or quantitatively by at least σ from the behaviour pre-
dicted by (M). The main difficulty in such an investigation is the requirement that we
cover all functions of Bε

(
M; dQ

)
: since this is generally infinite dimensional—it is

the space of function sets in Q that take values within ε of those of the base function
set—it is obviously impossible to directly check this neighbourhood as can be done
in variation-of-parameters investigations. However, as an alternative to considering
neighbourhoods in function space directly, we note that several properties of a dynam-
ical system are completely determined by a few specific values of the model functions
and their derivatives, rather than the entire functions. The main idea of the general
structural sensitivity analysis is to project the initial infinite dimensional neighbour-
hoods in functional space onto the finite dimensional space with coordinates consisting
of the specific required values of the functions h̃i and their derivatives. By thoroughly
exploring the projected space, we will be able to make exhaustive conclusions about
the presence or absence of structural sensitivity.

One example of this approach was presented in Example 1 in the Introduction. We
shall now consider another important example to further illustrate the general idea of
the above approach. Notation is the same as in Example 1.

Example 2 Sensitivity of the Number of Equilibria in the System

Let us again consider the case that we have a single unknown function of one
variable. Structural sensitivity can also take place in this case through a change in the
number of equilibria in the system when the function is changed slightly. To check
for this possibility, we can try to find the equilibria of the system by considering the
isocline equations, bearing in mind that since we have an unspecified function, the
system of these equations will be underdetermined, because the value h̃

(
x∗

i

)
taken

by the unknown function at the equilibrium will be an additional unknown. We can
proceed, as in Example 1, by choosing the equilibrium value x∗

i as a parameter of the
investigation, and rearranging the isocline equations to obtain the value of the function
h̃

(
x∗

i

)
at the equilibrium in terms of this equilibrium value parameter (as given, for

example, by the green curve in Fig. 3a). By doing so, we obtain for the value of h̃
(
x∗

i

)
:

h̃
(
x∗

i

) = l, x∗
i ∈ � :

∥∥∥h̃
(
x∗

i

) − h
(
x∗

i

)∥∥∥ < ε, where h is the base function.

The curve l(x∗
i ) is the solution of the equation G

(
. . . , h̃

(
x∗

i

)
, . . .

) = 0: all points
corresponding to a system equilibrium must be located on l. Note that the choice of
a particular function h̃ in the model will define all equilibrium points x∗

i since these
points will be given by intersections between the curve l and h̃

(
x∗

i

)
.
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We can then introduce an additional equilibrium coordinate y∗
i as a further parameter

(again, this equilibrium should lie on l) and for each choice of two equilibrium points
x∗

i and y∗
i , we can check whether it is possible to have a valid function h̃ such that these

values are the only solutions to its equilibrium equation (i.e. the intersection between
h̃ and F). In the case we are able to find such a function h̃ in Bε

(
M; dQ

)
we shall have

sensitivity of the model with respect to the number of stationary states. Further, it is
possible to add a third equilibrium, a fourth etc, until we reach the maximum number
of equilibria possible (note that our requirements that the second derivatives of our
functions be within some bounds will ensure that the number of possible equilibria
is bounded). If we can show that there are functions taking at least two different
numbers of equilibria, then we can conclude that the system is structurally sensitive
in this regard.

In both Examples 1 and 2 the problem of covering the neighbourhood Bε
(
M; dQ

)

in function space is reduced to the problem of determining whether or not a function in
Bε

(
M; dQ

)
exists which, when added to the model, will yield certain values, specif-

ically certain equilibrium values, and values taken by the function and its derivative
at these equilibria. These are nontrivial problems, and depend on the base functions
used in the model (M): using the dQ distance requires that functions taking the given
set of local values must also be within a distance ε of the base function set across the
entire domain �, and therefore the problem is a nonlocal one. However, once these
problems have been solved the rest of the analysis is straightforward, and so methods
for constructing the necessary and sufficient conditions for the existence of functions
taking a given set of local values whilst remaining in Bε

(
M; dQ

)
are very powerful

tools for structural sensitivity analysis.
In the current paper, as in (Adamson and Morozov 2013), we shall consider Exam-

ple 1—detecting structural sensitivity with respect to the stability of a given equilib-
rium. In the previous paper, the necessary and sufficient conditions for the existence of
a function h̃ in Bε

(
M; dQ

)
yielding certain equilibrium values P∗ and taking values

h̃ (P∗) and h̃′ (P∗) were found for the cases where the base function is positive and
monotonically increasing (e.g. functional response of Holling type II) and when it is
monotonically decreasing (such as a logistic growth function). In the next section, we
expand on these results, and present a general method for obtaining such conditions
in the case that our base function has n inflection points.

4 Determining the εQ-neighbourhood for a function with n known inflection
points

In a wide variety of cases, we require processes to be modelled by one-dimensional
functions which are convex/concave over several ranges, and therefore possess a cer-
tain set of inflection points—for example, sigmoid functions, or in the most basic case,
saturating functions such as a Holling type II functional response. The requirement
for a function to be concave up/down over certain domains can be deduced either
from theoretical reasoning or—to a basic extent—from experimental data. We show
an example of such a function as the base function in Fig. 1, with six inflection points
denoted as a1, . . . , a6. The main goal of this section is to provide a tool to be able to
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0
a1 a2 a3 a4 a5 a6

x

h(
x)

h -

h

LowX,hX,DH(x)

UppX,hX,DH(x)

X

hX

xmax

Fig. 1 The εQ -neighbourhood of a base function h with six inflection points a1, . . . , a6, together with
the upper and lower bounds UppX,hX,DH (x) and LowX,hX,DH (x) of any functions satisfying conditions
(i)–(iii) in Sect. 4. The base function is shown in black, while the upper and lower bounds hε+ and hε− are
shown in red and UppX,hX,DH (x) and LowX,hX,DH (x) are shown in blue (color figure online)

check for a given value of a function, h̃ (x∗), at an equilibrium point x∗ and for a given
value h̃′ (x∗) of the derivative at this point, whether or not there exists at least one
function passing through this point and remaining in the neighbourhood Bε

(
M; dQ

)
.

Here we provide such a tool, which is formulated by Theorem 1.
Mathematically speaking, given a base function h : R → [0, xmax], and values

X, hX and DH (see the definitions below), we want to determine whether or not there
exists a function h̃ : R → [0, xmax] with continuous derivative that satisfies the
following criteria:

(i) ∃ a partition 0 < a1 < · · · < an < xmax such that either:

0 < h̃′′ (x) < A2 for x ∈ [0, a1) ∪ (a2, a3) ∪ · · · ∪ (a2k, a2k+1) ∪ · · ·
and A1 < h̃′′ (x) < 0 for x ∈ (a1, a2) ∪ (a3, a4) ∪ · · · ∪ (a2k+1, a2k+2) ∪ · · · ,

or

A1 < h̃′′ (x) < 0 for x ∈ [0, a1) ∪ (a2, a3) ∪ · · · ∪ (a2k, a2k+1) ∪ · · ·
and 0 < h̃′′ (x) < A2 for x ∈ (a1, a2) ∪ (a3, a4) ∪ · · · ∪ (a2k+1, a2k+2) ∪ · · ·,

(ii) h̃ (X) = hX and h̃′ (X) = DH,
(iii) h̃ (0) = 0,

which is in the ε-neighbourhood of the base function h, defined in terms of either
absolute or relative distance. That is, if hε+ and hε− are the functions giving the
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upper and lower boundaries of the ε-neighbourhood of h [if we are using the absolute
definition of distance, hε+ (x) = h (x) + ε and hε− = h (x) − ε, while if we are
using the relative definition of distance, hε+ (x) = h(x)

1−ε and hε− = (1 − ε) h(x)] then

hε− (x) ≤ h̃ (x) ≤ hε+ (x) ∀x ∈ [0, xmax]. We note that the base function h should
also satisfy conditions (i) and (iii): these define the function class Q from which we
should choose any appropriate base function. In practice, X will usually denote a
parameter corresponding to an equilibrium point, and condition (ii) simply states that
hX corresponds to the value taken by the unknown function at this equilibrium point
and that DH corresponds to the value taken by its derivative at this point. Condition
(i) states that we want our function to be alternatingly concave up and concave down
across the given partition, which forms the set of the function’s inflection points.
Condition (iii) simply states that the function should pass through the origin—as is
required for most functions (growth rates, for example) to make biological sense.

In order to determine the existence of such a function, we note that given any
function g that satisfies criteria (i), (ii) and (iii) and that at some point y ∈ (ak, ak+1)

assumes the value g (y) with derivative g′ (y), the upper and lower bounds of this
function can be defined across the entire domain [0, xmax] as follows (see the blue
curves in Fig. 1 for an example):

(1) If criterion (i) requires 0 < h̃′′ (x) < A2 for x ∈ [
ak, ak+1

]
, as is the case

in Fig. 1, then the upper bound of g across
[
ak, ak+1

]
is given by g(x) ≤

Uppy,g(y),g′(y)(x) = g(y)+ g′(y)(x − y)+ A2
2 (x − y)2—i.e. the parabola with

maximal second derivative A2 tangent to g at y—and the lower bound of g across
the same interval is given by g(x) ≥ Lowy,g(y),g′(y)(x) = g(y)+ g′(y)(x − y)—
i.e. g must lie above its own tangent at y since it is concave up over this inter-
val. Similarly, if criterion (i) requires A1 < h̃′′ (x) < 0 for x ∈ (ak, ak+1),
then the upper bound of g across

[
ak, ak+1

]
is given by Uppy,g(y),g′(y)(x) =

g(y) + g′(y)(x − y) and the lower bound is given by Lowy,g(y),g′(y)(x) =
g(y)+ g′(y)(x − y)+ A1

2 (x − y)2. Furthermore, these bounds are strict except
at y itself.

(2) We now extend our upper and lower boundaries to the adjacent intervals
[
ak−1, ak

]

and
[
ak+1, ak+2

]
. Consider

[
ak−1, ak

]
, and assume that we have the case where

0 < h̃′′ (x) < A2 for x ∈ (ak, ak+1), as in Fig. 1. We already have a value for the
upper bound at ak : U ppy,g(y),g′(x)(ak) = g(y)+ g′(y)(ak − y)+ A2

2 (ak − y)2,
so we can continue the upper bound by following step 1), replacing y, g (y) and
g′ (y) with ak,Uppy,g(y),g′(y) (ak) and Upp′ (ak), where Upp′ (ak) = g′(y) +
A2(ak − y) is the (right) derivative of the curve Uppy,g(y),g′(y) (x) at ak . Since

in this case, A1 < h̃′′ (x) < 0 for x ∈ (ak−1, ak), we can define Uppy,g(y),g′(y)
across

[
ak−1, ak

]
as the tangent line to Uppy,g(y),g′(y) (ak). In a similar way, we can

continue the lower bound across this interval, starting from Lowy,g(y),g′(y)(ak) =
g(y)+ g′(y)(ak − y) and Low′ (ak) = g′y, and following the parabola of second
derivative A1 that is tangent to Lowy,g(y),g′(y) (ak). Essentially we are proceeding
exactly as per step 1), but using Uppy,g(y),g′(y) (ak) and its right-derivative as
initial values. This can be seen clearly from Fig. 1, where the upper and lower
bounds over [a2, a3] are the line and parabola, respectively, continuing from the
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upper and lower bounds already defined over [a3, a4]. We use exactly the same
approach over

[
ak+1, ak+2

]
, and the alternative case, in which A1 < h̃′′ (x) < 0

over the original interval x ∈ [
ak, ak+1

]
, can be dealt with in a similar manner.

(3) Using the values and derivatives of Uppy,g(y),g′(y) and Lowy,g(y),g′(y) at ak−1
and ak+2, we can extend Uppy,g(y),g′(y) and Lowy,g(y),g′(y) in the same way
over the intervals

[
ak−2, ak−1

]
and

[
ak+2, ak+3

]
. We can then proceed to define

Uppy,g(y),g′(y) and Lowy,g(y),g′(y) inductively across the whole of the domain
[0, xmax].

To derive conditions for the existence of a function h̃ satisfying (i), (ii) and (iii) in
the ε-neighbourhood of h, we must first create the Uppy,g(y),g′(y) and Lowy,g(y),g′(y)
functions using steps (1)–(3), starting with y = X, g (y) = hX and g′(y) = DH. This
will give us the upper and lower bounds for any viable function h̃. We now put forward
the following:

Theorem 1 There exists a function h̃ : R → [0, xmax] that satisfies criteria (i), (ii)
and (iii) if and only if:

UppX,hX,DH (x) > hε− (x) ∀x ∈ [0, xmax] ,UppX,hX,DH (0) ≥ 0, (9)

and LowX,hX,DH (x) < hε+ (x) ∀x ∈ [0, xmax], LowX,hX,DH (0) ≤ 0,
where UppX,hX,DH and LowX,hX,DH are the upper and lower bound functions defined
in steps (1)–(3) above �

The proof of this theorem can be found in Appendix B. Using this result, we
can determine a projection of the εQ-neighbourhood of h from function space into
a space composed of the values X = x∗, hX = h̃ (x∗) and DH = h̃′ (x∗), but we
need to know the inflection points a1, . . . , an beforehand. In practice, however, we
are rarely sure of the exact value of the inflection points—even if we can theoretically
justify their existence and number. Because of this, we should add the inflection points
themselves as parameter values of our sensitivity investigation. From here we can either
consider these n inflection values as extra dimensions in the finite-dimensional space
(already consisting of the values X = x∗, hX = h̃ (x∗) and DH = h̃′ (x∗)) in which
we will conduct our investigation, or we can simply consider our overall projected
εQ-neighbourhood in the original (X, hX,DH)-space as the union of the projected
neighbourhoods in (X, hX,DH)-space over all possible sets of inflection points. The
latter approach has the advantage that it is more computationally efficient and much
easier to visualise, but does carry the risk that some information will be lost when it
comes to computing the volume of regions in the neighbourhood, as is necessary if
we wish to quantify the sensitivity of a system.

In order to demonstrate how to use the result of Theorem 1 to investigate structural
sensitivity in biological models, we shall next consider three different complex models
from the literature, and explore the structural sensitivity of these models.

5 Structural sensitivity analysis at work

We now demonstrate the approach outlined in Sects. 3 and 4 by implementing such a
test on several mathematical models taken from the literature.
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5.1 Age-structured predator–prey model in a chemostat with nutrient

We consider the four dimensional system modelling predator–prey-nutrient dynamics
in a chemostat from (Fussmann et al. 2000):

dN

dt
= δ (Ni − N )− F̃c (N )C, (5.1)

dC

dt
= F̃c (N )C − FB (C) B

e
− δC, (5.2)

dR

dt
= FB (C) R − (δ + m + λ) R, (5.3)

dB

dt
= FB (C) R − (δ + m) B. (5.4)

Here N is the nutrient concentration, C is the concentration of a unicellular green
algae, R is the concentration of planktonic rotifer that is still of reproductive age,
and B is the total concentration of the planktonic rotifer. F̃C (N ) and FB (C) are the
functional responses of the algae and the rotifer, respectively, which Fussmann et al.
consider to be Monod functions F̃C (N ) := bC N

KC +N and FB (C) := bB C
K B+C . See Fussmann

et al. (2000) for full explanation of the model parameters and discussion of the model’s
dynamical behaviour. The key bifurcation parameter in the system is the dilution rate δ.

In this case, we shall check for structural sensitivity in this system with respect to
the functional response of the algae, F̃c (N ), so we assume that the parameterisation
of the functional response of the rotifer is fixed as FB (C) := bB C

K B+C . We require that

F̃c be a function satisfying the following conditions:

(i) F̃c (0) = 0, (5.5)

(ii) F̃c
′ (N ) > 0 ∀N ∈ [0, Nmax] , (5.6)

(iii) A < F̃ ′′
C (N ) < 0 ∀N ∈ [0, Nmax] . (5.7)

That is, F̃c is a functional response of Holling type II: an increasing, saturating
function passing through the origin. We take the base function of F̃c as FC (N ) :
= bC N

KC +N , with the same parameters, bC = 3.3 and KC = 4.3, as are used in the
previously cited paper, and consider only functions that are within an absolute distance
ε of this base function FC , that is:

∣∣
∣F̃c (N )− FC (N )

∣∣
∣ < ε ∀N ∈ [0, Nmax] .

This can also be expressed as F̃c (N ) < Fε+c (N ) = FC (N ) + ε, and F̃c (N ) <
Fε−c (N ) = FC (N )− ε.

Now finding an equilibrium of system (5.1–5.4) is an underdetermined problem,
since it entails solving four isocline equations for five unknowns, N∗,C∗, R∗, B∗ and
FN—where F N = F̃c (N∗)—so we let N∗ follow�, an unspecified parameter of our
investigation. Given a choice of �, we can then substitute in N∗ = � into (5.1–5.4),
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and then determine the values C∗, R∗, B∗ and FN. Similarly, when performing a linear
stability analysis, the unknown value F̃ ′

C (N
∗) will feature in the Jacobian matrix of

(5.1–5.4) at (N∗,C∗, R∗, B∗), so we let this value follow the parameter DF. Once a
value of DF is chosen, we can set F̃ ′

C (N
∗) = DF, and conditions for the eigenvalues

of the Jacobian to have negative real parts can be derived analytically to determine
whether (N∗,C∗, R∗, B∗) is a stable equilibrium or not.

Now we need to derive the necessary and sufficient conditions for there to exist
a function F̃c : [0, Nmax] → R satisfying conditions (5.5–5.7) such that N∗ = �

and F̃ ′
C (N

∗) = DF hold for a given point (�, dF). These specific conditions were
previously derived and proved in (Adamson and Morozov 2013), but can also be
derived from Theorem 1 in the case that there is no inflection point: since a Holling-
type II function is concave down across the whole domain, the proof remains valid.

In this case, the upper and lower bounds of F̃c are as follows:

Upp�,FN,DF (N ) = F N + DF (N −�),

Low�,FN,DF (N ) = F N + DF (N −�)+ 1

2
A (N −�)2,

and by Theorem 1 the conditions for the existence of such a function F̃c are:

F N + DF (N −�) > Fε−c (N ) ∀N ∈ [0, Nmax] ,

F N + DF (N −�)+ 1

2
A (N −�)2 < Fε+c (N ) ∀N ∈ [0, Nmax] ,

F N −� DF > 0 and , F N −� DF + 1

2
A�2 < 0

We now proceed by scanning the (�, DF)-space, and using these conditions to
check each point for the existence of a corresponding function satisfying (i)–(iii), as
well as using the Jacobian to check whether or not the interior equilibrium in the system
with such a function would be stable or unstable. The results of such investigations
are shown in Fig. 2b–d constructed for three values of the chemostat dilution rate, δ.
In Fig. 2a we show the base function, the lower and upper bounds as well as the curve
F̃c (�) showing the dependence of F̃c (N∗) on the parameter �—since this curve has
negative derivative, it is clear that we can only have a single equilibrium value N∗ for a
given functional response, since all functional responses have positive derivative. The
parameters used are identical to those found in Fussmann et al. (2000) except for the
maximum per-capita algae-consumption rate of the rotifer, bB , which we change from
bB = 2.25 to bB = 1.95—since with the original parameters there is little structural
sensitivity present for us to discuss. We note, however, that the new parameters are
still well within the values reported in the literature (e.g. Halbach and Halbach-Keup
1974). With the new parameter set, we see that when δ = 0.175 the system exhibits
very little structural sensitivity (Fig. 2b), as almost the entire domain is covered by the
region of stability, but we see that for intermediate values of δ, shown in Fig. 2c for
δ = 0.5, there are significant regions of both stability and instability in the (�, DF)
domain. In this figure, the fact that the azure region is located entirely within the
domain of instability indicates that fixing F̃c = bC N

KC +N and varying the parameters bC
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Fig. 2 A structural sensitivity investigation of the nutrient-algae-reproducing rotifer-total rotifer system

(5.1–5.4). a The base function FC (N ) := bC N
KC +N and its ε-neighbourhood. FC is given by the red curve,

while the boundaries of its ε-neighbourhood are given by the blue curves. The green curve is derived from
isocline analysis of the system, and gives us the equilibrium value F̃C

(
N∗)

, as a function of the equilibrium
parameter �. b–d Stability portraits of the εQ -neighbourhood of the base functional response of the algae,
FC , divided into regions of stability and instability of the interior equilibrium point, for three different values
of the chemostat dilution rate, δ. The green regions consist of points that correspond to a system with stable
equilibrium, and the red regions of points which correspond to a system with unstable equilibrium. Dark
blue indicates that there is no valid model function in the εQ -neighbourhood of FC such that the system
with this function has equilibrium values N∗ = � and F ′

C

(
N∗) = DF . Azure regions indicate that the

point (�, DF) can be covered by keeping the formulation of the base function and varying its parameters.
The parameters are Ni = 80; K B = 15; bB = 1.95; ε = 0.25; m = 0.055; λ = 0.4. The dilution rate δ
takes the values: b δ = 0.175, c δ = 0.5, d δ = 0.75 (color figure online)

and KC will give the misleading impression that the interior equilibrium is unstable
for all possible functional responses. In Fig. 2d we see the domain with δ = 0.7
is once again dominated by the stable region. Overall, with the formulation of the
functional response fixed as a Monod function, a variation-of-parameters investigation
will uncover a pair of forward and backwards supercritical Hopf bifurcations with
respect to the parameter δ, but the continued presence of a green domain indicates that
there may well be a different functional response parameterisation which is just as
valid as the original function with regards to qualitative properties and data fitting, but
for which the interior equilibrium is stable for all values of δ. Thus for some functional
responses, variation in the dilution rates will not result in a Hopf bifurcation, which
was originally suggested in Fussmann et al. (2000). In Sect. 6 we provide a different
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interpretation of the experimental results of Fussmann et al. (2000) based on structural
sensitivity of the system.

5.2 Nutrient-phytoplankton–zooplankton model with detritus

We consider the nutrient-phytoplankton–zooplankton-detritus model given by:

d N

dt
= − N

(e + N )

a

(b + cP)
P + βh̃ (P) Z +γ d Z2+ϕD + k (N0 − N ), (5.8)

d P

dt
= N

(e + N )

a

(b + cP)
P − r P − h̃ (P) Z − (s + k) P, (5.9)

d Z

dt
= αh̃ (P) Z − d Z2, (5.10)

d D

dt
= r P + (1 − α − β) h̃ (P) Z − (φ + ψ + k) D, (5.11)

where the state variables N , P, Z and D represent the concentrations of nutrient,
phytoplankton, zooplankton and detritus in the well-mixed upper layer of the ocean
respectively, as first proposed in Edwards (2001), where a detailed description of the
model and its parameters can be found. In particular, we are interested in the function
h̃ (P), which is the functional response of the zooplankton—i.e. the per-capita rate at
which zooplankton consume phytoplankton as a function of phytoplankton density.
We take the precise formulation of this function to be unknown, but require it to be
a C1-function having the following properties (based on the classical definition of
Holling type III in the literature, see Gentleman et al. 2003):

(i) h̃ (0) = 0
(ii) h̃′ (P) > 0 ∀P ∈ [0, Pmax]

(iii) ∃P0 ∈ (0, Pmax) such that 0 < h̃′′ (P) < A1 ∀ P ∈ [0, P0]

and A2 < h̃′′ (P) < 0 ∀ P ∈ [P0, Pmax].
That is, h̃ is an increasing sigmoid function over [0, xmax] that passes through the

origin; A1 and A2 are parameters characterizing the values of the second derivative
(these can be estimated based on the base function, but several values should be
considered). We further require that h̃ be an absolute distance of less than ε from the
base function h (P), which we take to be the functional response used in Edwards
(2001): h (P) = λP2

μ2+P2 , with λ = 0.6 and μ = 0.035. That is:

h̃ (P)− h (P) < ε ∀P ∈ [0, Pmax]

Now, finding the equilibrium densities in (5.8–5.11) requires us to solve a system of
four equations for five unknown variables, so we allow the equilibrium density of the
prey, P∗, to follow P∗ = �, where� is a parameter of the investigation, and then we
can solve the four equations for N∗, Z∗, D∗ and h P—where h P = h̃ (P∗) denotes
the value of the functional response at the equilibrium—in the usual way. Figure 3a
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Fig. 3 A structural sensitivity investigation of the nutrient-phytoplankton–zooplankton-detritus system

(5.8–5.11). a The base function h (P) = λP2

μ2+P2 and its ε-neighbourhood. h is given by the red curve,

while the boundaries of its ε-neighbourhood are given by the blue curves. The green curve is derived from
isocline analysis of the system, and gives us the equilibrium value h̃

(
P∗)

, as a function of the equilibrium
parameter �. b–d Stability portraits of the εQ -neighbourhood of the base functional response, h, divided
into regions of stability and instability of a specific equilibrium point, for three different values of the
zooplankton predation rate, d. The green regions consist of points that correspond to a system with stable
equilibrium, and the red regions of points which correspond to a system with unstable equilibrium. Dark
blue indicates that there is no valid model function in the εQ -neighbourhood of h such that the system with
this function has equilibrium values P∗ = � and h′′. Azure regions indicate that the point (�,DH) can
be covered by keeping the formulation of the base function and varying its parameters. The parameters are
e = 0.03; a = 0.2; b = 0.2; c = 0.4;β = 0.33; γ = 0.5;φ = 0.1; k = 0.05; r = 0.15; s = 0.04;α =
0.25;ψ = 0.08 and N0 = 0.6. The zooplankton predation rate in each figure is: B d = 1.0, C d = 1.7, d
d = 2.1 (color figure online)

shows the base functional response in red and the upper and lower limits—in blue—of
any viable function h̃, together with the curve showing the dependence of h P on the
parameter � (n.b.-this should not be confused with the dependence of h̃ (P) on P ,
which remains unspecified throughout).

In order to find the stability of the equilibrium point (N∗, P∗, Z∗, D∗), we can carry
out the usual linear stability analysis by calculating the Jacobian from (5.8–5.11) at
(N∗, P∗, Z∗, D∗) and checking the sign of the real parts of its eigenvalues, but the
Jacobian depends on the value h̃′ (P∗), which is unknown, and so we allow this value
to follow h̃′ (P∗) = DH, where DH is another investigation parameter. Further, we
note that the inflection point of our sigmoid function h̃ is unknown, and so needs
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to be treated as a further parameter of our investigation,P0, as was discussed in the
concluding paragraph of Sect. 4. In this instance, we shall consider a wide range of
values of P0 and superimpose the resulting projected εQ-neighbourhoods to obtain
the total εQ-neighbourhood.

It is easy to obtain the necessary and sufficient conditions for there to exist a
sigmoid function in the εQ-neighbourhood corresponding to the given values (�,DH),
although for the sake of brevity we move this to Appendix C. Once these conditions
are obtained, we can cover the (�− DH) parameter space numerically, checking the
conditions to determine whether each point (�,DH) has a corresponding sigmoid
function in the εQ-neighbourhood of h with an equilibrium and derivative taking
these values. At the same time, if (�,DH) does correspond to such a function, we can
numerically check the real parts of the eigenvalues of the Jacobian to determine the
stability of the corresponding equilibrium point (N∗, P∗, Z∗, D∗).

Such an investigation, using the necessary and sufficient conditions provided in
Appendix C, gives us portraits as in Fig. 3b–d. Here the dark blue regions give us
the domain for which there is no function h̃ ∈ εQ (h) such that the resulting sys-
tem satisfies P∗ = � with h̃′ (P∗) = DH. The remaining region—the projection of
the εQ-neighbourhood of h onto (� − DH) space—is divided into areas in which
the equilibrium is stable (green) and unstable (red). The overlying azure region is
the range across which a function h̃ of the same form as the base function corre-
sponds to the point (�,DH)—i.e. this is the region which can be covered by fixing
the parameterization as h̃ (P) = λP2

μ2+P2 , and simply varying the parameters λ and
μ.

The figure shows us the results of a structural sensitivity analysis for the system
with three different choices of the parameter d-the rate of predation on zooplankton
by higher trophic levels. For d = 1.0 (Fig. 3b), we see that the azure region entirely
overlies the green stability region, indicating that the conventional parameter variation
approach used in Edwards (2001) would indicate no structural sensitivity for this
system. However, our analysis reveals that there is still a significant region of instability
in the system, which would be missed by the conventional approach. As d is increased
to 1.7, the azure region moves to straddle the bifurcation line (Fig. 3c), but when it is
increased further to 2.1 the azure region moves back towards the stability domain. In the
system with fixed base function h (P) = λP2

μ2+P2 , this behaviour is shown to manifest
itself as a pair of forward and backward Hopf bifurcations (Edwards 2001), but we can
see from Fig. 3d that when all possible parameterisations are taken into consideration,
in fact the ratio between the areas of the stable and unstable regions remains relatively
unchanged, which was somewhat overlooked in the initial publication by Edwards
(2001). However, we note that since the azure region straddles the bifurcation line
in this instance, a full variation of the parameters λ and μ would also reveal this
possibility to an extent.

5.3 Tri-trophic food chain model with time delay

As an example of how the structural sensitivity analysis framework can work on
delay-differential equation models, we consider the following system:
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dx1

dt
= x1 (t) (1 − x1 (t))− ax1 (t) x2 (t), (5.12)

dx2

dt
= −bx2 (t)+ cx1 (t − τ) x2 (t)− h̃ (x2 (t)) x3 (t)− j x2 (t)

2, (5.13)

dx3

dt
= − f x3 (t)+ kh̃ (x2 (t − τ)) x3 (t)− lx3 (t)

2, (5.14)

representing a tri-trophic food chain model. Here xi is the density of the species in
the trophic level i . A time delay takes place when food consumed by a predator is
converted into its biomass, and, as in most time-delay systems, the length of this
delay is a crucial bifurcation parameter. For details see (Kar et al. 2012). Notably, we
allow the functional response of species x3, h̃, to be an unspecified Holling type II
function [i.e., it satisfies conditions (5.5–5.7) from Sect. 5.1], within a distance ε of the
base function given by the Monod parameterisation h (x2) := dx2

x2+e . We shall check for
structural sensitivity in terms of the stability of a nontrivial equilibrium with respect to
variation of this functional response. Finding the equilibria of system (5.12–5.13) is an
underdetermined problem, as we need to solve three equations with four unknowns:
x∗

1 , x∗
2 , x∗

3 and hX, where hX = h̃
(
x∗

2

)
, so we let x∗

2 follow �, a parameter of our
investigation. Given any choice of �, we can substitute x∗

2 = � into (5.12–5.13)
and the values x∗

1 and x∗
3 will be uniquely determined, while possible values hX will

be given by the positive roots of a quadratic equation (in all cases considered here,
there is only one such positive root). Similarly, since h̃′ (x∗

2

)
is unspecified, we let

it follow the parameter DH so that we can carry out linear stability analysis. Once
we have the equilibrium point

(
x∗

1 , x∗
2 , x∗

3

)
and the values h̃

(
x∗

2

)
and h̃′ (x∗

2

)
, we can

use the standard approach for evaluating the stability of an equilibrium point of a
delay-differential equation. Details of this stability analysis are provided in Appendix
D. Finally, we note that, by Theorem 1, the necessary and sufficient conditions for
there to exist a function h̃ : [0, x2max] → R satisfying conditions (5.5–5.7) such that
x∗

2 = �, and h̃′ (x∗
2

) = DH are the same as the conditions found in Sect. 5.1:

hX + DH (x2 −�) > h (x2)− ε ∀x2 ∈ [0, x2max] ,

hX + DH (x2 −�)+ 1

2
A (x2 −�)2 < h (x2)+ ε ∀x2 ∈ [0, x2max] ,

hX −� · DH > 0 and hX −� · DH + 1

2
A ·�2 < 0.

We can now carry out our approach by scanning the valid range of (�− DH) space,
using the above criteria to determine whether each point corresponds to a valid function
h̃, and then finding the stability of the positive interior equilibrium for these values.
The results of this analysis for several values of the time delay τ are shown in Fig. 4.
We see that, when τ is around 0.5, almost the entire domain exhibits a stable interior
equilibrium, but as τ is increased the region of instability begins to grow until it
occupies most of the domain at around τ = 1. This is consistent with the findings of
Kar et al. (2012) who obtained a critical value of τ0 ≈ 0.9 for the system with the
Monod functional response as a base function.
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Fig. 4 A structural sensitivity investigation of the tri-trophic model with delay given by (5.12–5.14). a The

base function h (x2) = dx2
x2+e and its ε-neighbourhood. h is given by the red curve, while the boundaries

of its ε-neighbourhood are given by the blue curves. The green curve is derived from isocline analysis
of the system, and gives us the equilibrium value h̃

(
x∗

2
)
, as a function of the equilibrium parameter �.

b–d Stability portraits of the εQ -neighbourhood of the base functional response, h, divided into regions
of stability and instability of a specific equilibrium point, for three different values of the time delay,
τ . The green regions consist of points that correspond to a system with stable equilibrium, and the red
regions of points which correspond to a system with unstable equilibrium. Dark blue indicates that there
is no valid model function in the εQ -neighbourhood of h such that the system with this function has
equilibrium values x∗

2 = � and h′(x∗
2 ) = DH . Azure regions indicate that the point (�,DH) can be

covered by keeping the formulation of the base function and varying its parameters. The parameters are
a = 1.5; b = 1.5; c = 3; f = 0.2; g = 2; j = 0.1; m = 0.6 and d = 0.8; e = 1.1. The time-delay τ in
each figure is: b τ = 0.5, c τ = 0.8, d τ = 1.0 (color figure online)

One can see that in the case of a model with delay, the sensitivity analysis can be
completed in a similar straightforward way as for systems without delay. Moreover,
two things are of note with respect to the structural sensitivity of the particular model.
Firstly, although the system clearly exhibits structural sensitivity for values of τ around
0.8, the range of values of τ for which we have structural sensitivity, i.e. between 0.5
and 1.15, is quite small. Secondly, in all cases where we have structural sensitivity,
the region of the εQ-neighbourhood which can be explored by varying the parameters
of the base function actually crosses the bifurcation line, and therefore any structural
sensitivity in the system can be detected by a simple variation of parameters approach.
This situation is therefore more favourable than the two examples previously discussed:
it shows us that we don’t always have extensive structural sensitivity around a local
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bifurcation point, and that it can be detected by parameter-based analysis in some
cases, although we stress that this should not be taken for granted.

6 Discussion and conclusions

The fact that biological models can be sensitive with respect to the choice of their
constituting functions is well known in the literature, with a large number of exam-
ples provided (Myerscough et al. 1996; Wood and Thomas 1999; Gross et al. 2004;
Fussmann and Blasius 2005; Gross and Edwards 2009; Poggiale et al. 2010; Anderson
and Gentleman 2010; Cordoleani et al. 2011; Gonzalez-Olivares et al. 2011; Adam-
son and Morozov 2013). Critically, however, this type of sensitivity—which we refer
to as structural sensitivity—can be largely overlooked when using the conventional
approach to sensitivity analysis based only on a variation of parameters for fixed math-
ematical formulations of the functions (e.g. Bendoricchio and Jorgensen 2001). On
the other hand, checking for sensitivity by choosing a few concrete parameterizations
of model functions and comparing the resultant outcomes in each case (e.g. Wood
and Thomas 1999; Fussmann and Blasius 2005) is a more thorough approach, but
can still be a rather subjective method, since it largely depends on the choice of the
mathematical forms that are to be compared. In this paper we suggest a substantially
new approach to address this problem.

6.1 Summary of the framework

In Sect. 2 of this paper we suggest a rigorous mathematical definition of sensitivity,
which can be further used in models’ investigation. In fact, we propose several partic-
ular definitions of structural sensitivity and the main difference between them is that
they use different concepts of the model ε-neighbourhood, i.e. which perturbations
of the initial model we should consider when exploring its sensitivity and robustness.
We strongly endorse the use of the dQ-metric to determine the distance between two
models of biological systems when considering structural sensitivity. With this met-
ric, we need to consider only those perturbations in the ε-neighbourhood which will
preserve the generic qualitative properties of those functions. For this reason, any ε-
neighbourhood of a model defined under this metric will only contain functions which
are appropriate to the system being modelled. Further, the use of a concrete base func-
tion to determine our εQ-neighbourhood allows us to investigate how sensitivity of the
system changes with the parameters of the general function—even without specifying
a parameterisation (see Section 3b of Adamson and Morozov 2013, where the paradox
of enrichment is investigated even though the logistic growth function is unspecified).
Note that results of sensitivity analysis have been shown to be robust with respect to
the choice of base function, provided that the distance between the base functions is
kept small relative to ε (Adamson and Morozov 2013).

Based on the introduced definitions, and using the dQ-metric for model distance,
we have provided a general approach for detecting structural sensitivity with respect to
certain properties of a model when a certain model function is unspecified. We focused
on exploring sensitivity of the number and stability of equilibria of ODE-based models
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with respect to small but finite perturbations of model functions. The main idea of our
method is projecting the infinite dimensional space of model functions onto a space
with a finite number of dimensions, consisting of values of those functions as well
as their derivatives at some particular points. A large part of structural sensitivity
analysis consists of determining an appropriate neighbourhood in function space for
our functions to belong to—or, as is done in the method here, finding an equivalent
neighbourhood in a more manageable finite dimensional space—and this is essentially
a non-local problem. We have extended the results of our earlier work in (Adamson
and Morozov 2013), by providing and proving a general theorem which gives us such
a projected neighbourhood for a function with n inflection points—a common class
of functions in biological modelling—when the concept of the dQ-distance is used to
defined the functional neighbourhood.

Our approach can, in fact, be characterized as a quantitative version of Kol-
mogorov’s approach to investigating ecological models with general functions (e.g.
Kuang and Freedman 1988; Truscott and Brindley 1994). We first obtain the criti-
cal conditions for a bifurcation in a model with some unspecified functions (which
belong to a certain class of functions) using any necessary values determined by those
functions as parameters. After this, we verify whether or not model functions can
take the given bifurcation values and still remain in the ε-neighbourhood of the ini-
tial base functions. In the case where we have bifurcation values remaining in the
ε-neighbourhood of the base functions we conclude that our model is sensitive. To
demonstrate the framework, we have used it to investigate structural sensitivity in two
ODE models, as well as a model with delay. We showed that sensitivity takes place
in these models within a large range of parameters, which can’t always be observed
using the conventional parameter-based analysis. Note that along with the models
described in Sect. 5 we have revealed sensitivity of the stability of model equilibria
in some other well-known models (e.g. Butler and Wolkowicz 1986; Hastings and
Powell 1991; Muller et al. 2009; Eichinger et al. 2009).

6.2 Quantification of sensitivity and bifurcation theory

A crucial extension of this work concerns the quantification of structural sensitivity
in models. For instance, in the case where we reveal that the use of some functions
can result in shifting stability or changing the number of equilibria in a system, can
we somehow determine the ‘relative proportion’ of the functions yielding certain sta-
bility/equilibrium number predictions? We need to somehow quantify the uncertainty
in the model outcomes in the case we use different parameterizations. To address
this important issue we need to introduce a ‘degree of structural sensitivity’. With
regards to the stability of a given equilibrium, such a degree was introduced in Adam-
son and Morozov (2013) and was defined as the probability of two model functions
taken at random from the εQ-neighbourhood yielding different stability predictions
for the equilibrium at hand. If the distribution of functions across the projected εQ-
neighbourhood is represented by a probability density function ρ, then the degree of
sensitivity is related to the relative proportion occupied by the domains of stability
and instability in Figs. 2, 3, 4. Mathematically this can be expressed as (Adamson and
Morozov 2013):
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� : =4 ·
∫

V1
ρdV

∫
Vε
ρdV

·
(

1 −
∫

V1
ρdV

∫
Vε
ρdV

)

, (6.1)

where V1 is the volume of the stability domain and Vε is the total volume of the εQ-
neighbourhood. Thus, the largest degree of sensitivity, � = 1, would correspond to
the maximal degree of uncertainty in the system: where the areas corresponding to
instability and stability are equal to each other. In this case it is impossible to make
any precise predictions based on the particular model: without more data concerning
the unknown model functions, the model essentially gives us no information about the
stability of the chosen equilibrium.

However, in general we cannot justify defining the probability distribution of the
function on the projected neighbourhood, rather than defining it in the region of func-
tion space beforehand, but since there isn’t even a simple extension of volume to
infinite-dimensional function spaces this is difficult, and even then we must still find
a way to link this measure to regions in the finite-dimensional space of local values
in which we investigate structural sensitivity. For this reason, specifying a probability
distribution directly on the space of local values is more straightforward. Unfortu-
nately, this question of assigning some probability distribution to the space of model
functions which are unknown is by no means a simple one. It has generally been
neglected in the literature, and should be given much more thought.

The existence of structural sensitivity may require revisiting the entire concept
of bifurcation analysis of biological models. Indeed, in such structurally sensitive
systems, even in the case of variation of a well-defined model parameter (such as the
dilution rate in the chemostat model in Sect. 5.1), there is no particular value of this
parameter for which a bifurcation occurs: the use of different functions will result in
different bifurcation parameters. In this case we can describe the model behaviour in
terms of the probability of having a bifurcation. This idea can be illustrated using the
stability diagrams in Figs. 2, 3, 4: for instance, we can consider that a Hopf bifurcation
in models occurs when the area corresponding to instability/stability exceeds a certain
limit. The occurrence of a bifurcation may be described in this way based on the degree
of sensitivity (6.1). Thus, in the chemostat model (5.1–5.4) proposed in (Fussmann
et al. 2000), as opposed to the crossing of a Hopf bifurcation referenced in the title
of the cited paper, it would be more correct to say that variation of the dilution rate δ
shifts the system into a region where the probability of having oscillations becomes
high compared to other ranges of δ.

6.3 Ecological modelling consequences of structural sensitivity

Structural sensitivity in biological models allows another important interpretation: this
kind of sensitivity may explain the apparent irregularity in the oscillations of species
densities observed both in nature and in some experiments (e.g. Nicholson 1957; Wolda
1988; Giller and Doube 1994; Smayda 1998; Philippart et al. 2000; Guo et al. 2002;
Valdes 2007 and many other references). In mathematical models, such irregularity is
usually described using either the deterministic chaos framework or by including some
effects of external forcing by environmental noise. The existence of structural sensitiv-
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ity in models can provide a new framework for describing these irregular oscillations:
one can assume that the expressions of the model functions (e.g. functional response,
growth rates, mortalities, etc) are not ‘frozen’ but slightly change in the course of
time—even in the case that the environmental properties are constant. This may be a
consequence of the fact that our models describe systems using a limited number of
state variables, whereas the true relationships in the functions can depend on a large
number of hidden variables which do not remain constant, changing the shape of our
model functions. Variation of model functions may also take place through processes
of fast evolution and adaptation (Thompson 1998; Duffy and Sivars-Becker 2007; Kin-
nison and Hairston 2007). This permanent variation can be visualized as an on-going
random walk in the space of functions, which may translate itself into a large variation
of the model outcomes due to the structural sensitivity of the system, and manifest
as irregularity in the species population sizes. We should emphasize that this kind of
behaviour would usually occur within a large range of model parameters (and not only
around a bifurcation point) since this is an inherent property of structural sensitivity.

To illustrate the above idea we show in Fig. 5 how slight temporal variation in
the functional response FC for the phytoplankton in model (5.1–5.4) can engender
irregular oscillations in the system. The functional response FC is varied in the same
ε-neighbourhood as in Fig. 2, with the dilution rate consider to be δ = 0.65 (for a
fixed base function we would have an unstable interior stationary state). The details
regarding the procedure of variation of FC can be found in Appendix E. One can
see from the figure that slight variation of FC can cause irregular oscillations in the
nutrient concentration (as well as the species densities) and along with periods of large
oscillations there are periods of almost stationary dynamics. This means that in the
stability diagram the point (�,DF) corresponding to the current functional response
should cross the Hopf bifurcation curve several times. Interestingly, this pattern of
behaviour occurs across a large range of the parameter δ. We should make clear that
these are only preliminary results and more investigation will be needed to reveal the
full influence of the rate of variation of FC (t).
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Fig. 5 Temporal dynamics of concentration of nutrient N in system (5.1–5.4) in the case of slight variation
of the functional response of phytoplankton FC = FC (t). We consider that FC always belongs to the same
εQ -neighbourhood as in Fig. 2 with ε = 0.1. The details on variation of FC (t) are provided in Appendix
D. We consider δ = 0.6; the other model parameter are the same as in Fig. 2
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As a consequence of this mechanism, even simple 2–3 component classical eco-
logical models may be able possess a large degree of complexity-which is encoded
in terms of structural sensitivity-this complexity will largely become hidden when
one uses only fixed parameterizations of model functions. We propose that structural
sensitivity in our models may be strongly related to the complexity of the underlying
real biological systems whose behaviour we wish to mimic. From this point of view
we should not consider structural sensitivity in our models as a nuisance, but rather
as a fundamental property of biological models, with the presence of structural sen-
sitivity in a model making its behaviour richer and more realistic. Bearing the above
in mind, it is extremely important to focus more attention on exploring the phenom-
enon of structural sensitivity in biological models, alongside the traditional studies
of model complexity based either on deterministic chaos frameworks or stochastic
perturbations.
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Appendix A: Distances between systems

We have introduced the general definition of structural sensitivity in Sect. 2.1, but in
practice there are several particular definitions arising from this general definition:
choosing various metrics dM will determine different types of structural sensitivity.
In dynamical systems theory, the most commonly found such metric is the following
(Kuznetsov 2004):

Definition 7.1 (general C1-distance)
Consider two continuous-time systems:

ẋ = f (x), x ∈ R
n, (7.1)

and ẋ = f (x), x ∈ R
n, (7.2)

where f, g : R
n → R

n are C1. The C1-distance between (7.1) and (7.2) over a closed,
bounded, region � ⊂ R

n is the positive number given by:

d1:= sup
x∈�

{
‖ f (x)− g (x)‖ +

∥∥
∥∥

d f (x)

dx
− dg (x)

dx

∥∥
∥∥

}

where ‖ f (x)− g (x)‖ and
∥
∥∥ d f (x)

dx − dg(x)
dx

∥
∥∥ denote a vector and a matrix norm, respec-

tively.
In a large number of biological models, f and g are composed of linear combina-

tions of potentially non-linear model functions, some of which have parameterisations
we are certain of, through theoretical reasoning or established laws. In such a situation,
it makes little sense to consider a distance over the space of all systems, but only those
systems which fix the model functions we are sure of:
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Definition 7.2 (Fixed function C1-distance)
Consider two continuous-time systems:

ẋ = G
(
g1 (x) , . . . , gm (x) , h1 (x) , . . . , h p (x)

)
, x ∈ R

n, (7.3)

and ẋ = G
(

g1 (x) , . . . , gm (x) , h̃1 (x) , . . . , h̃ p (x)
)
, x ∈ R

n, (7.4)

where G : R
m+p → R

n is linear and g1, . . . , gm, h1, . . . , h p, h̃1, . . . , h̃ p ∈ C1 (Rn).
We define the fixed function C1-distance between (7.3) and (7.4) as the C1-distance
defined only on the specific set of systems with the model functions g1 (x) , . . . , gm (x)
being fixed.

In many practical cases when the exact formulation of a model function is unknown,
we have no information regarding the derivatives of the unknown functions (e.g. all
the information we have is given by data points from experiments). In such a case,
use of a C1-metric may be impractical, and we may wish to use the following metrics
(see Adamson and Morozov 2013):

Definition 7.3 (Absolute dQ-distance)
Consider two continuous-time systems:

ẋ = G
(
g1 (x) , . . . , gm (x) , h1 (x) , . . . , h p (x)

)
, x ∈ R

n, (7.5)

and ẋ = G
(

g1 (x) , . . . , gm (x) , h̃1 (x) , . . . , h̃ p (x)
)
, x ∈ R

n, (7.6)

where G : R
m+p → R

n is linear, g1, . . . , gm ∈ C1 (Rn), and
{
h1, . . . , h p

}
,{

h̃1, . . . , h̃ p
} ∈ Q = {

Q1, . . . , Q p
}

where the Qi � C1 (Rn) are classes of func-
tions satisfying certain specific conditions, including bounded second derivatives. The
absolute dQ-distance between (7.5) and (7.6) over a closed, bounded, region� ⊂ R

n

is given by:

dQ : = sup
x∈�

√(
h1 (x)− h̃1 (x)

)2 + · · · +
(

h p (x)− h̃ p (x)
)2
.

Remark The system may be sensitive to the choice of linear composition of nonlinear
terms, i.e. if G is replaced by some G̃ and the nonlinear terms changed accordingly.
However, we can usually justify our choice of model composition to an extent—e.g.
G representing a breakdown of the functional operator into average per-capita growth
rates, mortality terms, functional responses, etc. and, as with the use of C1-metrics,
allowing variation of the linear composition makes the model potentially unrealistic,
and a sensitivity analysis difficult to interpret. For these reasons, we consider this dis-
cussion to be beyond the scope of this paper, although it should certainly be considered
elsewhere.

Definition 7.4 (Relative dQ-distance)
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The relative dQ-distance between (7.5) and (7.6) over region � ⊂ R
n is given by:

dQ := sup
x∈Q

√√√√√√

∥∥∥h1(x)− h̃1(x)
∥∥∥

2 + · · · +
∥∥∥h p(x)− h̃ p(x)

∥∥∥
2

max
{

h1(x)2 + · · · + h p(x)2, h̃1(x)2 + · · · + h̃ p(x)2
}

Note that the requirement that the second derivatives of all functions belonging to the
class Q must vary within certain limits is vital: it ensures that the Jacobian matrices of
two close systems cannot be arbitrarily far apart. In this sense the absolute and relative
dQ-distances can be considered to be implicitly C1-metrics, rather than C0-metrics as
it initially seems.

Finally, in terms of practical tests for structural sensitivity, the most common
approach (Janssen et al. 1994; Bendoricchio and Jorgensen 2001) is to choose a fixed
parameterisation of all model functions, and check for sensitivity to variation of para-
meters of these model functions.

Definition 7.5 (Parameter variation distance)
Consider two systems composed of the same parameterised function with different

parameters:

ẋ = f (x, α1, . . . , αm) , x ∈ R
n, α ∈ � ⊂ R

m (7.7)

and ẋ = f
(
x, α̂1, . . . , α̂m

)
, x ∈ R

n, α̂ ∈ � ⊂ R
m (7.8)

The parameter variation distance between (7.7) and (7.8) over � ⊂ R
n is given

by:

d4 := sup
x∈�

∥∥ f (x, α1, . . . , αm)− f
(
x, α̂1, . . . , α̂m

)∥∥,

where ‖‖ denotes a vector norm in R
n .

Appendix B: Proof of Theorem 1

Clearly such a function cannot exist unless the conditions are satisfied, and so they are
necessary conditions, but it remains to be proved that they are sufficient conditions for
the existence of such a function. In order to do this, we shall construct a valid function
assuming only these conditions. To follow the proof, it is helpful to refer to Fig. 1,
which shows an example base function and its ε-neighbourhood (red boundaries)
together with the corresponding UppX,hX,DH and LowX,hX,DH (blue curves).

We first choose some 0 < δ < ε which is sufficiently close to ε that the condition
UppX,hX,DH (x) > hδ− (x) and LowX,hX,DH (x) < hδ+ (x) ∀x ∈ [0, xmax] still
holds, and some 0 < γ << 1 such that if we construct UppX,hX,DH and LowX,hX,DH

using slightly relaxed bounds on the second derivative, γ < h̃′′ (x) < A2 − γ and
A1 + γ < h̃′′ (x) < −γ instead of 0 < h̃′′ (x) < A2 and A1 < h̃′′ (x) < 0, then
conditions (1) are still satisfied, and furthermore, that the second derivatives of hδ− and
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hδ+ are still within these new bounds. It is easy to verify that such δ and γ must exist
through the continuity of the construction of hδ+, hδ−,UppX,hX,DH and LowX,hX,DH.
Hereon, whenever we talk of Uppy,g(y),g′(y) and Lowy,g(y),g′(y), we shall refer to the
upper and lower bounds constructed using the slightly modified limits of the second
derivative.

Initially, we define h̃ about X by choosing it to follow UppX,hX,DH (x). We note
that, by the 3 steps of construction, Uppy,g(y),g′(y) (x) and Lowy,g(y),g′(y) (x) are
both continuous with respect to the initial values y, g (y) and g′ (y). Therefore
at every point x over which we’ve already defined h̃, the new upper and lower
bounds formed by starting from x, h̃ (x) and h̃′ (x) vary continuously, and we
can use this fact to construct a valid h̃ piece by piece without violating any of
the conditions it must satisfy. Let us initially consider the interval [0, X ]. Since
LowX,hX,DH (x) < hδ+ (x), and LowX,hX,DH (0) ≤ 0, then if we check Lowx,h̃(x),h̃′(x)
at each point of h̃ (x)=UppX,hX,DH (x), then there must come a point x1 ∈ [0, X ]
for which either Lowx1,h̃(x1),h̃′(x1)

(0) = 0 whilst Lowx1,h̃(x1),h̃′(x1)
remains below

hδ+ over [0, x1], or at which Lowx1,h̃(x1),h̃′(x1)
is tangent to hδ+ at some point

x2. In the first case, we note that Lowx1,h̃(x1),h̃′(x1)
cannot pass below hδ− in

the interval (0, x1], because hδ− (0) ≤ 0 and the curve of Lowx1,h̃(x1),h̃′(x1)
is

everywhere more concave than that of hδ− by definition—if Lowx1,h̃(x1),h̃′(x1)
does

pass beneath hδ− at a point in this interval, it must remain so across the whole
domain, which contradicts Lowx1,h̃(x1),h̃′(x1)

(x1) = UppX,hX,DH (x1) > hδ− (x1).

Therefore we can let h̃ (x) = Lowx1,h̃(x1),h̃′(x1)
(x) for x ∈ [0, x1], and we

will have successfully defined h̃ over [0, X ]. In the second case, we let h̃ fol-
low hδ+ for values below x1, noting that regardless of our definition of distance,
hδ+ and hδ− both satisfy condition (i) since h does. If we are using Defini-
tion 7.4 of distance between functions (i.e. relative error), then hδ+ (0) = 0 and
we are done. If we are using Definition 7.3 (absolute error), we note that again,
since the construction of Lowy,g(y),g′(y) (x) is continuous, there must be a point
x3 such that Lowx3,hδ+(x3),h′

δ+(x3)
(0) = 0. Lowx2,hδ+(x2),h′

δ+(x2)
(x) cannot pass

below hδ− over the interval (0, x2], again because it is everywhere more concave
than hδ−, so assuming otherwise would cause a contradiction, so therefore we let
h̃ (x) := Lowx3,hδ+(x3),h′

δ+(x3)
(x) ∀ x ∈ [0, x2], and we have successfully defined h̃

over [0, X ].
We define h̃ across the interval [X, xmax] in a similar way. With h̃ initially following

UppX,hX,DH (x), we check Lowx,h̃(x),h̃′(x) at each point, and note that there must come
a point x4 at which either Lowx4,h̃(x4),h̃′(x4)

(x) lies tangent to hδ+ at some further
point x5, or Lowx4,h̃(x4),h̃′(x4)

(xmax) < hδ+ (xmax). Either way, we note that as before,
Lowx4,h̃(x4),h̃′(x4)

(x) must lie above hδ− over the interval [x4, xmax], so in the latter

case, we can let h̃ follow Lowx4,h̃(x4),h̃′(x4)
over the interval [x4, xmax], and we are

done. In the former case, we let h̃ follow Lowx4,h̃(x4),h̃′(x4)
over the interval [x4, x5],

and then follow hδ+ over the interval (x5, xmax], and we are done.
We have successfully proved that, provided that conditions (9) are satisfied, it

is always possible to construct a C1 function satisfying criterion (i), (ii) and (iii).
Therefore conditions (9) are precisely the necessary and sufficient conditions for there
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to exist at least one function in the ε-neighbourhood of h that satisfies criterion (i),
(ii), and (iii) �

Appendix C: Application of Theorem 1 to System (5.8–5.11)

Following the process outlined in Sect. 4, for given values �,� and P0, we can
compute the upper and lower bounds of our sigmoid function as follows.

If � ≥ P0:

U pp (P) :=
{

h P + DH · (P −�)+ A1
2 (P − P0)

2

h P + DH · (P −�)

: P ∈ [0, P0]
: P ∈ [P0, Pmax]

,

and

Low (P)

:=
{

h P + DH · (P −�)+ A2

(
1
2 (P −�)2 + (P0 −�) (P − P0)

)

h P + DH · (P −�)+ A2
2 (P −�)2

: P ∈ [0, P0]
: P ∈ [P0, Pmax]

,

If � < P0:

U pp (P)

:=
{

h P + DH · (P −�)+ A1
2 (P −�)2 : P ∈ [0, P0]

h P + DH · (P −�)+ A1 (P0 −�)
(
P − 1

2 (P0 +�)
) : P ∈ [P0, Pmax]

,

and

Low (x) :=
{

h P + DH · (P −�) : P ∈ [0, P0]
h P + DH · (P −�)+ A2

2 (P − P0)
2 : P ∈ [P0, Pmax]

From Theorem 1, we can obtain the necessary and sufficient conditions for values �
and dH to correspond to a valid function h̃ to be as follows:

If � ≥ P0:

h P + DH · (P −�)+ A1

2
(P − P0)

2 > hε− (P) ∀P ∈ [0, P0] ;
h P + DH · (P −�) > hε− (P) ∀P ∈ [P0, Pmax] ;
h P + DH · (P −�)+ A2

(
1

2
(P −�)2 + (P0 −�) (P − P0)

)

< hε+ (P) ∀ P ∈ [0, P0] ;
h P + DH · (P −�)+ A2

2
(P −�)2 < hε+ (P) ∀P ∈ [P0, Pmax] ;

h P − DH ·�+ A1

2
P2

0 > 0,

and h P − DH ·�+ A2
( 1

2�
2 − P0 · (P0 −�)

)
< 0.
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If � < P0:

h P + DH · (P −�)+ A1

2
(P −�)2 > hε− (P) ∀P ∈ [0, P0] ;

h P+DH · (P −�)+ A1 (P0 −�)

(
P− 1

2
(P0+�)

)
>hε− (P) ∀P ∈ [P0, Pmax] ;

h P + DH · (P −�) < hε+ (P) ∀P ∈ [0, P0] ;
h P + DH · (P −�)+ A2

2
(P − P0)

2 < hε+ (P) ∀P ∈ [P0, Pmax] ;

h P − DH ·�+ A1

2
�2 > 0,

and h P − DH ·� < 0.

Appendix D: Stability Analysis of System (5.12–5.14)

Here we describe an approach to check the linear stability of an equilibrium of the
system of delay-differential equations (5.31–5.33). Hereon we denote xi (t) by xi , and
xi (t − τ) by xiτ for simplicity. We implement a standard technique of stability analysis
of ODEs with delay (Dieudonne 1960; Bairagi et al. 2008). We can let x = x∗ + δx,
where δx is a small magnitude perturbation from the equilibrium x∗, then use Taylor’s
theorem to obtain the linearization of the system:

δ̇x ≈ J0δx + Jτ δxτ , (10.1)

where J0 is the Jacobian matrix with respect to x and Jτ is the Jacobian matrix with
respect to xτ . If we assume that (10.1) has exponential solutions, we can write δx =
Aeλt and substitute this solution into (10.1) gives us λAeλt = J0Aeλt + JτAeλ(t−τ).
Dividing by eλt yields:

λA = (
J0 + e−λτJτ

)
A. (10.2)

Since λ is therefore an eigenvalue of the matrix
(
J0 + e−λτJτ

)
, we know from the

theory of linear algebra that (10.2) holds if and only if the following holds:

∣∣J0 + e−λτJτ − λI
∣∣ = 0, (10.3)

where I is the three-dimensional identity matrix. (10.3) is called the characteristic
equation of system (5.12–5.14), and can be calculated in this case as:
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λ3 + Pλ2 + Qλ+ (Sλ+ M) e−λτ + N = 0, (10.4)

where P = (c − 1) x∗
1 − 2 j x∗

2 −
(

H̃ ′ (x∗
2

) + h
)

x∗
3 − b;

Q = (
x∗

1 + hx∗
3

) (
b − cx∗

1 + H̃ ′ (x∗
2

)
x∗

3 + 2 j x∗
2

)
+ hx∗

1 x∗
3 ;

S = k · H̃
(
x∗

2

)
H̃ ′ (x∗

2

)
x∗

3 + acx∗
1 x∗

2 ;
M = x∗

1 x∗
3

(
k · H̃

(
x∗

2

)
H̃ ′ (x∗

2

) + achx∗
2

)
, and

N = hx∗
1 x∗

3

(
b − cx∗

1 + H̃ ′ (x∗
2

)
x∗

3 − 2 j x∗
2

)
.

Unlike the case of ODE systems, equation (10.3) is not a polynomial over the
complex numbers, but rather a quasi-polynomial: since the e−λτ term is periodic
with respect to the complex part of λ, (10.3) must have infinitely many complex
solutions. Therefore the usual approach of directly finding the eigenvalues of (10.3)
and determining the conditions under which they all have negative real part cannot be
used here. Instead, we need to choose a certain parameter—in this paper, we choose the
time delay, τ—and determine the critical values for which the real part of λ changes
sign in order to detect bifurcations with respect to this parameter. At these critical
values, the eigenvalues will take the form λ = i · ω for some real ω (we assume,
without loss of generality, that ω > 0). Substituting λ = i · ω into the characteristic
equation (10.4) and separating the real and imaginary parts yields:

Pω2 − N = Mcos(ωτ)+ Sωsin(ωτ), ω3 − Qω = Sωcos(ωτ)− Msin(ωτ).

(10.5)

Squaring both equations and summing them results in:

ω6 +
(

P2 − 2Q
)
ω4 +

(
Q2 − 2N P − S2

)
ω2 + N 2 − M2 = 0 (10.6)

which has at least one positive, real solution provided N 2 < M2, since this implies
the polynomial is negative at ω = 0, while it tends to positive infinity as ω → ∞.
Therefore, we can solve (10.6) as a cubic equation with variable ω2 and take the
positive roots of these solutions to obtain at most three positive roots of (10.6). If we
let ω0 denote any given positive root of (10.6), then by rearranging both equations of
(10.5) in terms of sinωτ and equating them, and then substituting inω = ω0, we obtain:

cosω0τC = Sω4
0 + (M P − QS) ω2

0 − M N

S2ω2
0 + M2

, (10.7)

where τC are the critical values of the time delay, at which the real parts of λ disappear.
Therefore we obtain a countable family of critical time delays for each ω0:
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τcm = 1

ω0
cos−1

(
Sω4

0 + (MP − QS) ω2
0 − MN

S2ω2
0 + M2

)

+ m2π

ω0
, m ∈ Z

Now we note that Re (λ) = 0 is a necessary, but not sufficient condition for a
stability change to take place. To prove that there will be such bifurcations at our
critical values τCm , it is sufficient to prove that:

dRe (λ)

dτ
|λ=iω0 �= 0,

n.b. This is not to say that dRe(λ)
dτ |λ=iω0 �= 0 and Re (λ) = 0 are necessary and

sufficient conditions for a bifurcation at τCm : the sign of Re (λ) can still change when
dRe(λ)

dτ |λ=iω0 = 0.

Note that sign
{

dRe(λ)
d τ |λ=iω0

}
= sign

{
Re

(( dλ
dτ

)−1 |λ=iω0

)}
. Now by differen-

tiating (10.4) with respect to τ , rearranging, substituting in λ = iω0, taking the real
part and simplifying, we obtain:

sign

{
dRe (λ)

dτ
|λ=iω0

}
= sign

{(
Q − 3ω2

0

) (
ω2

0 − Q
) (

S2ω2
0 + M2

)

− 2P
(

Pω2
0 + N

) (
S2ω2

0 + M2
)

− S2
(

Q − 3ω2
0

) (
ω2

0 − Q
)

− 2P S2
(

Pω2
0 + N

)}

Provided that ω0 is not a root of this polynomial, there will be a bifurcation at each of
the critical time delays, τCm , that are related to it, and this can easily be checked by
substituting each of the ω0 into the polynomial.

Finally, once we have determined the bifurcation values of the time-delay, τCm , it is
simple to check how many such bifurcations take place between τ = 0 and a specified
time-delay τ , so we can determine the stability of our equilibrium for the system with
this time-delay by computing the stability of the system in the case τ = 0 (i.e. by
using the standard stability analysis in the ODE case). If an equilibrium in the system
without time-delay is stable, then it will be stable in the system with time-delay τ if
#

{
τCm |τCm ∈ (0, τ )} is even, and unstable if it is odd. If the equilibrium is unstable

in the system without delay, this situation is reversed.

Appendix E: Algorithm for Temporal Variation of System (5.1–5.4)

Here we describe the algorithm for temporal variation of the function response F̃c in
model (5.1–5.4) used to produce Fig. 5. Recall that we require F̃c to always satisfy
conditions (5.5–5.7) and to belong to the ε-neighbourhood of the base function given
by the Monod parameterisation Fc (N ) := bc N

Kc+N .

We consider that the functional response F̃c has a piece-wise second derivative:
F̃ ′′

c
(x) ≡ Ai <0 for xi ≤ x ≤ xi+1. In this paper, we consider n = 6 intervals of
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unequal length: 0 ≤ x < 3; 3 ≤ x < 6; 6 ≤ x < 12; 12 ≤ x < 18; 18 ≤ x <

32; 32 ≤ x < 80 = Nmax. We assume that for each interval
[
xi , xi+1

]
, the magnitude

of the second derivative satisfies |Ai | < 1. For a given set {Ai }n
i=1, the functional

response can be obtained by piece-wise double integration of the second derivatives
and using the condition that F̃c (0) = 0. There is no particular restriction of the initial
slope F̃ ′

c (0) except that it should be positive and that for a given F̃ ′
c (0) , F̃c should

belong to the ε-neighbourhood of the base function.
At the initial moment of time t = 0 we choose an arbitrary set of {Ai }n

i=1 and
F̃ ′

c (0) in such a way that F̃c belongs to the ε-neighbourhood of the base function and
satisfies conditions (5.5–5.7). At the next step of integration of the system of differential
equations (5.1–5.4) we slightly change the values of the second derivatives Ai and the
slope at the origin in the following way:

Ai (t +�t) = Ai (t)+ σi , (11.1)

F̃c′ (0, t +�t) = F̃c′ (0, t)+ ρ, (11.2)

where σi and ρ are uncorrelated random noise processes (we consider Brownian
motion);�t is the time step of integration. By considering different amplitudes σi one
can vary the rate of change of the functional response with time.

For each step of integration of (5.1–5.4), we modify Ai and F̃ ′
c (0) according to

(11.1–11.2). In the case where the resultant functional response F̃c does not belong to
the ε-neighbourhood of Fc or it does not satisfy conditions (5.5–5.7), then we consider
a new realisation of noise, i.e. a new σi and ρ and repeat the procedure until the above
requirements are satisfied, and then move forwards.
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