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Abstract Individuals within any species exhibit differences in size, developmental
state, or spatial location. These differences coupled with environmental fluctuations
in demographic rates can have subtle effects on population persistence and species
coexistence. To understand these effects, we provide a general theory for coexistence
of structured, interacting species living in a stochastic environment. The theory is
applicable to nonlinear, multi species matrix models with stochastically varying para-
meters. The theory relies on long-term growth rates of species corresponding to the
dominant Lyapunov exponents of random matrix products. Our coexistence criterion
requires that a convex combination of these long-term growth rates is positive with
probability one whenever one or more species are at low density. When this condition
holds, the community is stochastically persistent: the fraction of time that a species
density goes below δ > 0 approaches zero as δ approaches zero. Applications to
predator-prey interactions in an autocorrelated environment, a stochastic LPA model,
and spatial lottery models are provided. These applications demonstrate that posi-
tive autocorrelations in temporal fluctuations can disrupt predator-prey coexistence,
fluctuations in log-fecundity can facilitate persistence in structured populations, and
long-lived, relatively sedentary competing populations are likely to coexist in spatially
and temporally heterogenous environments.
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1268 G. Roth, S. J. Schreiber

1 Introduction

All populations are structured and experience environmental fluctuations. Population
structure may arise to individual differences in age, size, and spatial location (Metz and
Diekmann 1986; Caswell 2001; Holyoak et al. 2005). Temporal fluctuations in environ-
mental factors such light, precipitation, and temperature occur in all natural marine,
freshwater and terrestrial systems. Since these environmental factors can influence
survival, growth, and reproduction, environmental fluctuations result in demographic
fluctuations that may influence species persistence and the composition of ecological
communities (Tuljapurkar 1990; Chesson 2000b; Kuang and Chesson 2009). Here we
present, for the first time, a general approach to studying coexistence of structured
populations in fluctuating environments.

For species interacting in an ecosystem, a fundamental question is what are the
minimal conditions to ensure the long-term persistence of all species. Historically,
theoretical ecologists characterize persistence by the existence of an asymptotic equi-
librium in which the proportion of each population is strictly positive (May 1975;
Roughgarden 1979). More recently, coexistence was equated with the existence of an
attractor bounded away from extinction (Hastings 1988), a definition that ensures pop-
ulations will persist despite small, random perturbations of the populations (Schreiber
2006, 2007). However, “environmental perturbations are often vigourous shake-ups,
rather than gentle stirrings” (Jansen and Sigmund 1998). To account for large, but rare,
perturbations, the concept of permanence, or uniform persistence, was introduced in
late 1970s (Freedman and Waltman 1977; Schuster et al. 1979). Uniform persistence
requires that asymptotically species densities remain uniformly bounded away from
extinction. In addition, permanence requires that the system is dissipative i.e. asymp-
totically species densities remain uniformly bounded from above. Various mathemat-
ical approaches exist for verifying permanence (Hutson and Schmitt 1992; Smith and
Thieme 2011) including topological characterizations with respect to chain recur-
rence (Butler and Waltman 1986; Hofbauer and So 1989), average Lyapunov func-
tions (Hofbauer 1981; Hutson 1984; Garay and Hofbauer 2003), and measure theoretic
approaches (Schreiber 2000; Hofbauer and Schreiber 2010). The latter two approaches
involve the long-term, per-capita growth rates of species when rare. For discrete-time,
unstructured models of the form xi

t+1 = fi (xt )xi
t where xt = (x1

t , . . . , xn
t ) is the

vector of population densities at time t , the long-term growth rate of species i with
initial community state x0 = x equals

ri (x) = lim sup
t→∞

1

t

t−1∑

s=0

log fi (xs).

Garay and Hofbauer (2003) showed, under appropriate assumptions, that the system
is permanent provided there exist positive weights p1, . . . , pn associated with each
species such that

∑
i pi ri (x) > 0 for any initial condition x with one or more miss-

ing species (i.e.
∏

i x i = 0). Intuitively, the community persists if on average the
community increases when rare.
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Persistence in fluctuating environments for interacting structured populations 1269

The permanence criterion for unstructured populations also extends to structured
populations. However, in this case, the long-term growth rate is more complicated.
Consider, for example, when both time and the structuring variables are discrete; the
population dynamics are given by xi

t+1 = Ai (xt )xi
t where xi

t is a vector corresponding
to the densities of the stages of species i , xt = (x1

t , . . . , xn
t ), and Ai (x) are non-

negative matrices. Then the long term growth rate ri (x) of species i corresponds to the
dominant Lyapunov exponent associated with the matrices Ai (x) along the population
trajectory:

ri (x) = lim sup
t→∞

1

t
log ‖Ai (xt−1) . . . Ai (x0)‖.

At the extinction state x = 0, the long-term growth rate ri (0) simply corresponds
to the log of the largest eigenvalue of Ai (0). For structured single-species models,
Cushing (1998) and Kon et al. (2004) proved that r1(0) > 0 implies permanence. For
structured, continuous-time, multiple species models, ri (x) can be defined in an analo-
gous manner to the discrete-time case using the fundamental matrix of the variational
equation. Hofbauer and Schreiber (2010) showed, under appropriate assumptions,
that

∑
i pi ri (x) > 0 for all x in the extinction set is sufficient for permanence. For

discrete-time structured models, however, there exists no general proof of this fact
(see, however, Salceanu and Smith 2009a,b, 2010). When both time and the struc-
turing variables are continuous, the models become infinite dimensional and may be
formulated as partial differential equations or functional differential equations. Much
work has been done is this direction (Hutson and Moran 1987; Zhao and Hutson 1994;
Thieme 2009, 2011; Magal et al. 2010; Xu and Zhao 2003; Jin and Zhao 2009). In
particular, for reaction-diffusion equations, the long-term growth rates correspond to
growth rates of semi-groups of linear operators and,

∑
i pi ri (x) > 0 for all x in the

extinction set also ensures permanence for these models (Hutson and Moran 1987;
Zhao and Hutson 1994; Cantrell and Cosner 2003).

Environmental stochasticity can be a potent force for disrupting population persis-
tence yet maintaining biodiversity. Classical stochastic demography theory for sto-
chastic matrix models xt+1 = A(t)xt shows that temporally uncorrelated fluctuations
in the projection matrices A(t) reduce the long-term growth rates of populations when
rare (Tuljapurkar 1990; Boyce et al. 2006). Hence, increases in the magnitude of these
uncorrelated fluctuations can shift populations from persisting to asymptotic extinc-
tion. Under suitable conditions, the long-term growth rate for these models is given
by the limit r = limt→∞ 1

t ln ‖A(t) . . . A(1)‖ with probability one. When r > 0, the
population grows exponentially with probability one for these density-independent
models. When r < 0, the population declines exponentially with probability one.
Hardin et al. (1988) and Benaïm and Schreiber (2009) proved that these conclusions
extend to models with compensating density-dependence. However, instead of grow-
ing without bound when r > 0, the populations converge to a positive stationary
distribution with probability one. These results, however, do not apply to models with
over-compensating density-dependence or, more generally, non-monotonic responses
of demography to density.
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1270 G. Roth, S. J. Schreiber

Environmental stochasticity can promote diversity through the storage effect (Ches-
son and Warner 1981; Chesson 1982) in which asynchronous fluctuations of favorable
conditions can allow long-lived species competing for space to coexist. The theory for
coexistence in stochastic environments has focused on stochastic difference equations
of the form xi

t+1 = xi
t fi (ξt+1, xt ) where ξ1, ξ2, . . . is a sequence of independent, iden-

tically distributed random variables (for a review see Schreiber 2012). Schreiber et al.
(2011) prove that coexistence, in a suitable sense, occurs provided that

∑
i pi ri (x) > 0

with probability for all x in the extinction set. Similar to the deterministic case, the
long-term growth rate of species i equals ri (x) = lim supt→∞ 1

t

∑t−1
s=0 log fi (xs).

Here, stochastic coexistence implies that each species spends an arbitrarily small frac-
tion of time near arbitrarily small densities.

Here, we develop persistence theory for models simultaneously accounting for
species interactions, population structure, and environmental fluctuations. Our main
result implies that the “community increases when rare” persistence criterion also
applies to these models. Our model, assumptions, and a definition of stochastic per-
sistence are presented in Sect. 2. Except for a compactness assumption, our assump-
tions are quite minimal allowing for overcompensating density dependence and cor-
related environmental fluctuations. Long-term growth rates for these models and our
main theorem are stated in Sect. 3. We apply our results to stochastic models of
predator-prey interactions, stage-structured beetle dynamics, and competition in spa-
tial heterogenous environments. The stochastic models for predator-prey interactions
are presented in Sect. 4 and examine to what extent “colored” environmental fluc-
tuations facilitate predator-prey coexistence. In Sect. 5, we develop precise criteria
for persistence and exclusion for structured single species models and apply these
results to the classic stochastic model of larvae-pupae-adult dynamics of flour bee-
tles (Costantino et al. 1995; Dennis et al. 1995; Costantino et al. 1997; Henson and
Cushing 1997) and metapopulation dynamics (Harrison and Quinn 1989; Gyllen-
berg et al. 1996; Metz and Gyllenberg 2001; Roy et al. 2005; Hastings and Botsford
2006; Schreiber 2010). We show, contrary to initial expectations, that multiplica-
tive noise with logarithmic means of zero can facilitate persistence. In Sect. 6, we
examine spatial-explicit lottery models (Chesson 1985, 2000a,b) to illustrate how
spatial and temporal heterogeneity, collectively, mediate coexistence for transitive
and intransitive competitive communities. Proofs of most results are presented in
Sect. 8.

2 Model and assumptions

We study the dynamics of m interacting populations in a random environment. Each
individual in population i can be in one of ni individual states such as their age, size, or
location. Let Xi

t = (Xi1
t , . . . , Xini

t ) denote the row vector of populations abundances
of individuals in different states for population i at time t ∈ N. Xi

t lies in the non-
negative cone R

ni+ . The population state is the row vector Xt = (X1
t , . . . , Xm

t ) that
lies in the non-negative cone R

n+ where n = ∑m
i=1 ni . To account for environment

fluctuations, we consider a sequence of random variables, ξ1, ξ2, . . . , ξt , . . . where ξt

represents the state of the environment at time t .
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Persistence in fluctuating environments for interacting structured populations 1271

To define the population dynamics, we consider projection matrices for each popu-
lation that depend on the population state and the environmental state. More precisely,
for each i , let Ai (ξ, X) be a non-negative, ni × ni matrix whose j–k-th entry cor-
responds to the contribution of individuals in state j to individuals in state k e.g.
individuals transitioning from state j to state k or the mean number of offspring in
state k produced by individuals in state j . Using these projection matrices and the
sequence of environmental states, the population dynamic of population i is given by

Xi
t+1 = Xi

t Ai (ξt+1, Xt ).

where Xi
t multiplies on the left hand side of Ai (ξt+1, Xt ) as it is a row vector. If we

define A(ξ, X) to be the n× n block diagonal matrix diag(A1(ξ, X), . . . , Am(ξ, X)),
then the dynamics of the interacting populations are given by

Xt+1 = Xt A(ξt+1, Xt ). (1)

For these dynamics, we make the following assumptions:

H1: ξ1, ξ2, . . . is an ergodic stationary sequence in a compact Polish space E (i.e.
compact, separable and completely metrizable).

H2: For each i , (ξ, X) �→ Ai (ξ, X) is a continuous map into the space of ni × ni

non-negative matrices.
H3: For each population i , the matrix Ai has fixed sign structure corresponding to

a primitive matrix. More precisely, for each i , there is a ni × ni , non-negative,
primitive matrix Pi such that the j-k-th entry of Ai (ξ, X) equals zero if and only
if j-kth entry Pi equals zero for all 1 ≤ j, k ≤ ni and (ξ, X) ∈ E × R

n+.
H4: There exists a compact set S ⊂ R

n+ such that for all X0 ∈ R
n+, Xt ∈ S for all t

sufficiently large.

Our analysis focuses on whether the interacting populations tend, in an appropriate
stochastic sense, to be bounded away from extinction. Extinction of one or more
population corresponds to the population state lying in the extinction set

S0 =
{

x ∈ S :
∏

i

‖xi‖ = 0

}

where ‖xi‖ =∑ni
j=1 xi j corresponds to the �1–norm of xi . Given X0 = x , we define

stochastic persistence in terms of the empirical measure

�x
t =

1

t

t∑

s=1

δXs (2)

where δy denotes a Dirac measure at y, i.e. δy(A) = 1 if y ∈ A and 0 otherwise for
any Borel set A ⊂ R

n+. These empirical measures are random measures describing
the distribution of the observed population dynamics up to time t . In particular, for
any Borel set B ⊂ S,
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�x
t (B) = #{1 ≤ s ≤ t |Xs ∈ B}

t

is the fraction of time that the populations spent in the set B. For instance, if we define

Sη = {x ∈ S : ‖xi‖ ≤ η for some i},

then �x
t (Sη) is the fraction of time that the total abundance of some population is less

than η given X0 = x .

Definition 2.1 The model (1) is stochastically persistent if for all ε > 0, there exists
η > 0 such that, with probability one,

�x
t (Sη) ≤ ε

for t sufficiently large and x ∈ S\S0.

The set Sη corresponds to community states where one or more populations have
a density less than η. Therefore, stochastic persistence corresponds to all populations
spending an arbitrarily small fraction of time at arbitrarily low densities.

3 Results

3.1 Long-term growth rates and a persistence theorem

Understanding persistence often involves understanding what happens to each popula-
tion when it is rare. To this end, we need to understand the propensity of the population
to increase or decrease in the long term. Since

Xi
t = Xi

0 Ai (ξ1, X0)Ai (ξ2, X1) . . . Ai (ξt , Xt−1),

one might be interested in the long-term “growth” of random product of matrices

Ai (ξ1, X0)Ai (ξ2, X1) . . . Ai (ξt , Xt−1) (3)

as t → ∞. One measurement of this long-term growth rate when X0 = x is the
random variable

ri (x) = lim sup
t→∞

1

t
log ‖Ai (ξ1, X0)Ai (ξ2, X1) . . . Ai (ξt , Xt−1)‖. (4)

Population i is tending to show periods of increase when ri (x) > 0 and asymptot-
ically decreasing when ri (x) < 0. Since, in general, the sequence

{
1

t
log ‖Ai (ξ1, X0)Ai (ξ2, X1) . . . Ai (ξt , Xt−1)‖

}∞

t=1
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Persistence in fluctuating environments for interacting structured populations 1273

does not converge, the lim supt→∞ instead of limt→∞ in the definition of ri (x) is
necessary. However, as we discuss in Sect. 3.2, the lim supt→∞ can be replaced by
limt→∞ on sets of “full measure”.

An expected, yet useful property of ri (x) is that ri (x) ≤ 0 with probability one
whenever ‖xi‖ > 0. In words, whenever population i is present, its per-capita growth
rate in the long-term is non-positive. This fact follows from Xi

t being bounded above
for t ≥ 0. Furthermore, on the event of {lim supt→∞ ‖Xi

t‖ > 0}, we get that ri (x) = 0
with probability one. In words, if population i’s density infinitely often is bounded
below by some minimal density, then its long-term growth rate is zero as it is not
tending to extinction and its densities are bounded from above. Both of these facts are
consequences of results proved in the Sec. 8 (i.e. Proposition 8.10, Corollary 8.17 and
Proposition 8.19).

Our main result extends the persistence conditions discussed in the introduction
to stochastic models of interacting, structured populations. Namely, if the community
increases on average when rare, then the community persists. More formally, we prove
the following theorem in the Sec. 8.

Theorem 3.1 If there exist positive constants p1, . . . , pm such that

∑

i

pi ri (x) > 0 with probability one (5)

for all x ∈ S0, then the model (1) is stochastically persistent.

For two competing species (k = 2) that persist in isolation (i.e. r1(0) > 0 and
r2(0) > 0 with probability one), inequality (5) reduces to the classical mutual inva-
sibility condition. To see why, consider a population state x = (x1, 0) supporting
species 1. Since species 1 can persist in isolation, Proposition 8.19 implies that
r1(x) = 0 with probability one. Hence, inequality (5) for this initial condition becomes
p1r1(x) + p2r2(x) = p2r2(x) > 0 with probability one for all initial conditions
x = (x1, 0) supporting species 1. Similarly, inequality (5) for an initial condition
x = (0, x2) supporting species 2 becomes r1(x) > 0 with probability one. In words,
stochastic persistence occurs if both competitors have a positive per-capita growth rate
when rare. A generalization of the mutual invasibility condition to higher dimensional
communities is discussed at the end of the next subsection.

3.2 A refinement using invariant measures

The proof of Theorem 3.1 follows from a more general result that we now present.
For this result, we show that one need not verify the persistence condition (5) for all
x in the extinction set S0. It suffices to verify the persistence condition for invariant
measures of the process supported by the extinction set.

Definition 3.2 A Borel probability measure μ on E × S is an invariant measure for
the model (1) provided that
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(i) P[ξt ∈ B] = μ(B × S) for all Borel sets B ⊂ E , and
(ii) if P[(ξ0, X0) ∈ C] = μ(C) for all Borel sets C ⊂ E × S, then

P[(ξt , Xt ) ∈ C] = μ(C) for all Borel sets C ⊂ E × S and t ≥ 0.

Condition (i) ensures that invariant measure is consistent with the environmental
dynamics. Condition (ii) implies that if the system initially follows the distribution
of μ, then it follows this distribution for all time. When this occurs, we say (ξt , Xt )

is stationary with respect to μ. One can think of invariant measures as the stochastic
analog of equilibria for deterministic dynamical systems; if the population statistics
initially follow μ, then they follow μ for all time.

When an invariant measure μ is statistically indecomposable, it is ergodic. More
precisely, μ is ergodic if it can not be written as a convex combination of two distinct
invariant measures, i.e. if there exist 0 < α < 1 and two invariant measures μ1, μ2
such that μ = αμ1 + (1− α)μ2, then μ1 = μ2 = μ.

Definition 3.3 If (ξt , Xt ) is stationary with respect to μ, the subadditive ergodic the-
orem implies that ri (X0) is well-defined with probability one. Moreover, we call the
expected value

ri (μ) =
∫

E[ri (X0)|X0 = x, ξ1 = ξ ]μ(dξ, dx)

to be long-term growth rate of species i with respect to μ. When μ is ergodic, the sub-
additive ergodic theorem implies that ri (X0) equals ri (μ) for μ-almost every (X0, ξ1).

With these definitions, we can rephrase Theorem 3.1 in terms of the long-term
growth rates ri (μ) as well as provide an alternative characterization of the persistence
condition.

Theorem 3.4 If one of the following equivalent conditions hold

(i) r∗(μ) := max1≤i≤m ri (μ) > 0 for every invariant probability measure with
μ(S0) = 1, or

(ii) there exist positive constants p1, . . . , pm such that

∑

i

pi ri (μ) > 0

for every ergodic probability measure with μ(S0) = 1, or
(iii) there exist positive constants p1, . . . , pm such that

∑

i

pi ri (x) > 0 with probability one

for all x ∈ S0

then the model (1) is stochastically persistent.
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With Theorem 3.4’s formulation of the stochastic persistence criterion, we can
introduce a generalization of the mutual invasibility condition to higher-dimensional
communities. To state this condition, observe that for any ergodic, invariant measure
μ, there is a unique set of species I ⊂ {1, . . . , k} such that μ({x : xi j > 0 for all i ∈
I, 1 ≤ j ≤ ni }) = 1. In other words, μ supports the community I . Proposition 8.19
implies that ri (μ) = 0 for all i ∈ I . Therefore, if I is a strict subset of {1, . . . , k} i.e.
not all species are in the community I , then coexistence condition (ii) of Theorem 3.4
requires that there exists a species i /∈ I such that ri (μ) > 0. In other words, the
coexistence condition requires that at least one missing species has a positive per-
capita growth rate for any subcommunity represented by an ergodic invariant measure.
While this weaker condition is sometimes sufficient to ensure coexistence (e.g. in the
two species models that we examine), in general it is not as illustrated in Sect. 6.1.
Determining, in general, when this “at least one missing species can invade” criterion
is sufficient for stochastic persistence is an open problem.

4 Predator-prey dynamics in auto-correlated environments

To illustrate the applicability of Theorems 3.1 and 3.4, we apply the persistence criteria
to stochastic models of predator-prey interactions, stage-structured populations with
over-compensating density-dependence, and transitive and intransitive competition in
spatially heterogeneous environments.

For unstructured populations, Theorem 3.4 extends Schreiber et al. (2011)’s criteria
for persistence to temporally correlated environments. These temporal correlations can
have substantial consequences for coexistence as we illustrate now for a stochastic
model of predator-prey interactions. In the absence of the predator, assume the prey,
with density Nt at time t , exhibits a noisy Beverton-Holt dynamic

Nt+1 = Rt+1 Nt

1+ a Nt
(6)

where Rt is a stationary, ergodic sequence of random variables corresponding to the
intrinsic fitness of the prey at time t , and a > 0 corresponds to the strength of intraspe-
cific competition. To ensure the persistence of the prey in the absence of the predator,
assume E[ln R1] > 0 and E[ln R1] < ∞. Under these assumptions, Theorem 1 of
Benaïm and Schreiber (2009) implies that Nt converges in distribution to a positive
random variable N̂ whenever N0 > 0. Moreover, the empirical measures �

(N ,P)
t with

N > 0, P = 0 converge almost surely to the law ν of the random vector (N̂ , 0) i.e.
the probability measure satisfying ν(A) = P[(N̂ , 0) ∈ A] for any Borel set A ⊂ R

2+.
Let Pt be the density of predators at time t and exp(−bPt ) be the fraction of prey that

“escape” predation during generation t where b is the predator attack rate. The mean
number of predators offspring produced per consumed prey is c, while s corresponds to
the fraction of predators that survive to the next time step. The predator-prey dynamics
are

Nt+1 = Rt+1 Nt

1+ a Nt
exp(−bPt )Pt+1 = cNt (1− exp(−bPt ))+ s Pt . (7)
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To see that (7) is of the form of our models (1), we can expend the exponential term
in the second equation. To ensures that (7) satisfies the assumptions of Theorem 3.1,
we assume Rt takes values in the half open interval (0, R∗]. Since Nt+1 ≤ Rt+1/a ≤
R∗/a and Pt+1 ≤ cNt + s Pt ≤ cR∗/a + s Pt , Xt = (Nt , Pt ) eventually enters and
remains in the compact set

S = [0, R∗/a] × [0, cR∗/(a(1− s))].

To apply Theorem 3.1, we need to evaluate ri ((N , P)) for all N ≥ 0, P ≥ 0 with
either N = 0 or P = 0. Since (0, Pt ) converges to (0, 0) with probability one whenever
P0 ≥ 0, we have r1((0, P)) = E[ln Rt ] > 0 and r2((0, P)) = ln s < 0 whenever
P ≥ 0. Since �

(N ,0)
t with N > 0 converges almost surely to ν, Proposition 8.19

implies r1((N , 0)) = 0. Moreover,

r2((N , 0)) = E
[
ln
(
cbN̂ + s

)]

=
∫

ln(cbx + s)ν(dx). (8)

By choosing p1 = 1 − ε and p2 = ε > 0 for ε sufficiently small (e.g.
0.5E[ln Rt ]/(E[ln Rt ] − ln s)), we have

∑
i pi ri ((N , P)) > 0 whenever N P = 0

if and only if

E
[
ln
(
cbN̂ + s

)]
> 0. (9)

Namely, the predator and prey coexist whenever the predator can invade the prey-only
system. Since ln(cbN + s) is a concave function of the prey density and the predator
life history parameters c, b, s, Jensen’s inequality implies that fluctuations in any one
of these quantities decreases the predator’s growth rate.

To see how temporal correlations influence whether the persistence criterion (9)
holds or not, consider an environment that fluctuates randomly between good and bad
years for the prey. On good years, Rt takes on the value Rgood , while in bad years it
takes on the value Rbad . Let the transitions between good and bad years be determined
by a Markov chain where the probability of going from a bad year to a good year is
p and the probability of going from a good year to a bad year is q. For simplicity, we
assume that p = q in which case half of the years are good and half of the years are bad
in the long run. Under these assumptions, the persistence assumption E[ln R1] > 0
for the prey is ln

(
Rgood Rbad

)
> 0.

To estimate the left-hand side of (9), we consider the limiting cases of strongly
negatively correlated environments (p ≈ 1) and strongly positively correlated envi-
ronments (p ≈ 0). When p ≈ 1, the environmental dynamics are nearly periodic
switching nearly every other time step between good and bad years. Hence, one can
approximate the stationary distribution N̂ by the positive, globally stable fixed point
of
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Persistence in fluctuating environments for interacting structured populations 1277

xt+2 = Rgood xt+1

1+ axt+1

= Rgood Rbad xt/(1+ axt ))

1+ a(Rbad xt/(1+ axt ))

= Rgood Rbad xt

1+ a(1+ Rbad)xt

which is given by
Rgood Rbad−1

a(1+Rbad )
. Hence, if p ≈ 1, then the distribution ν of N̂ approxi-

mately puts half of its weight on
Rgood Rbad−1

a(1+Rbad )
and half of its weight on

Rgood Rbad−1
a(1+Rgood )

and
the persistence criterion (9) is approximately

1

2
ln

(
bc

Rgood Rbad − 1

a(1+ Rbad)
+ s

)
+ 1

2
ln

(
bc

Rgood Rbad − 1

a(1+ Rgood)
+ s

)
> 0. (10)

Next, consider the case that p ≈ 0 in which there are long runs of good years and
long runs of bad years. Due to these long runs, one expects that half time N̂ is near
the value (Rgood − 1)/a and half the time it is near the value max{(Rbad − 1)/a, 0}.
If Rbad > 1, then the persistence criterion is approximately

1

2
ln

(
bc

Rgood − 1

a
+ s

)
+ 1

2
ln

(
bc

Rbad − 1

a
+ s

)
> 0. (11)

Relatively straightforward algebraic manipulations (e.g. exponentiating the left hand
sides of (10) and (11) and multiplying by (1+ Rbad)(1+ Rgood)) show that the left
hand side of (10) is always greater than the left hand side of (11).

Biological Interpretation 4.1 Positive autocorrelations, by increasing variability in
prey density, hinders predator establishment and, thereby, coexistence of the predator
and prey. In contrast, negative auto-correlations by reducing variability in prey density
can facilitate predator-prey coexistence (Fig. 1).
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Fig. 1 Effect of temporal autocorrelations on predator-prey coexistence in a Markovian environment. a
The long-term growth rate r2((N , 0)) with N > 0 of the predator when rare is plotted as a function of
the temporal autocorrelation between good and bad reproductive years for the prey. b, c The mean and
interquartile ranges of long-term distribution of prey and predator densities are plotted as function of the
temporal autocorrelation. Parameters: Rgood = 4, Rbad = 1.1, a = 0.01, c = 1, s = 0.1, b = 0.01
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5 Application to structured single species models

For single species models with negative-density dependence, we can prove sufficient
and necessary conditions for stochastic persistence. The following theorem implies that
stochastic persistence occurs if the long-term growth rate r1(0) when rare is positive
and asymptotic extinction occurs with probability one if this long-term growth rate is
negative.

Theorem 5.1 Assume that m = 1 (i.e. there is one species), H1-H4 hold and the
entries of A(ξ, x) = A1(ξ, x) are non-increasing functions of x. If r1(0) > 0, then

Xt+1 = Xt A(ξt+1, Xt ) (12)

is stochastically persistent. If r1(0) < 0, then limt→∞ Xt = (0, 0, . . . , 0) with prob-
ability one.

Our assumption that the entries A(ξ, x) are non-increasing functions of x ensures
that r1(0) ≥ r1(x) for all x which is the key fact used in the proof of Theorem 5.1. It
remains an open problem to identify other conditions on A(ξ, x) that ensure r1(0) ≥
r1(x) for all x .

Proof The first statement of this theorem follows from Theorem 3.1.
Assume that r1(0) < 0. Provided that X0 is nonnegative with at least one strictly

positive entry, Ruelle’s stochastic version of the Perron Frobenius Theorem (Ruelle
1979b, Proposition 3.2) and the entries of A(ξ, x) being non-increasing in x imply

lim
t→∞

1

t
log ‖Xt‖ ≤ lim

t→∞
1

t
log ‖X0 A(ξt , 0) . . . A(ξ1, 0)‖ = r(0) < 0

with probability one. Hence, limt→∞ Xt = (0, . . . , 0) with probability one. �

Theorem 5.1 extends Theorem 1 of Benaïm and Schreiber (2009) as it allows for

over-compensating density dependence and makes no assumptions about differentia-
bility of x �→ A(ξ, x). To illustrate its utility, we apply this result to the larvae-pupue-
adult model of flour beetles and a metapopulation model.

5.1 A stochastic Larvae-Pupae-Adult model for flour beatles

An important, empirically validated model in ecology is the “Larvae-Pupae-Adult”
(LPA) model which describes flour beetle population dynamics (Costantino et al. 1995;
Dennis et al. 1995; Costantino et al. 1997). The model keeps track of the densities
�t , pt , at of larvae, pupae, and adults at time t . Adults produce b eggs each time step.
These eggs are cannibalized by adults and larvae at rates cea and cel , respectively. The
eggs escaping cannibalism become larvae. A fraction μl of larvae die at each time step.
Larvae escaping mortality become pupae. Pupae are cannibalized by adults at a rate
cpa . Those individuals escaping cannibalism become adults. A fraction μa of adults
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survive through a time step. These assumptions result in a system of three difference
equations

�t+1 = bat exp(−cel�t − ceaat )

pt+1 = (1− μl)�t

at+1 =
(

pt exp(−cpaat )+ (1− μa)at
)

(13)

Environmental fluctuations have been included in these models in at least two
ways. Dennis et al. (1995) assumed that each stage experienced random fluctuations
due to multiplicative factors exp(ξ l

t ), exp(ξ
p

t ), exp(ξa
t ) such that ξ i

t for i = l, p, a
are independent and normally distributed with mean zero i.e. on the log-scale the
average effect of environmental fluctuations are accounted for by the deterministic
model. Alternatively, Henson and Cushing (1997) considered periodic fluctuations in
cannibalism rates due to fluctuations in the size Vt of the habitat i.e. the volume of
the flour. In particular, they assumed that ci = κi/Vt for i = ea, el, pa, for positive
constants κi . If we include both of these stochastic effects into the deterministic model,
we arrive at the following system of random difference equations:

�t+1 = bat exp(−κel�t/Vt+1 − κeaat/Vt+1 + ξ l
t )

pt+1 = (1− μl)�t exp(ξ
p

t )

at+1 =
(

pt exp(−κpaat/Vt+1)+ (1− μa)at
)

exp(ξa
t ).

(14)

We can use Theorem 3.4 to prove the following persistence result. In the case of
ξ i

t = 0 with probability one for i = l, p, a, this theorem can be viewed as a stochastic
extension of Theorem 4 of Henson and Cushing (1997) for periodic environments.

Theorem 5.2 Assume ci > 0 for i = ea, el, pa, μi ∈ (0, 1) for i = l, a, ξ l
t , ξ

p
t , ξa

t ,
and Vt are ergodic and stationary sequences such that ξ i

t , log Vt ∈ (−M, M) for
i = l, p, a, t ≥ 0 and some M > 0, and (1−μa) exp(ξa

t ) ∈ [0, 1− δ] for some δ > 0
with probability one. Then there exists a critical birth rate bcrit > 0 such that

Extinction: If b < bcrit , then Xt = (�t , pt , at ) converges almost surely to (0, 0, 0) as
t →∞.

Stochastic persistence: If b > bcrit , then the LPA model is stochastically persistent.

Moreover, if ξ l
t = ξa

t = ξ
p

t with probability one and E[ξ l
t ] = 0, then bcrit = μa/

(1− μl).

Remark The assumption that ξ i
t are compactly supported formally excludes the normal

distributions used by Dennis et al. (1995). However, truncated normals with a very
large M can approximate the normal distribution arbitrarily well. The assumption
(1 − μa) exp(ξa

t ) ∈ [0, 1 − δ] for some δ > 0 is more restrictive. However, from a
biological standpoint, it is necessary as this term corresponds to the fraction of adults
surviving to the next time step. None the less, we conjecture that the conclusions of
Theorem 5.2 hold when ξ i

t are normally distributed with mean 0.
Theorem 5.2 implies that including multiplicative noise with log-mean zero has no

effect on the deterministic persistence criterion when ξ l
t = ξ

p
t = ξa

t with probability
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Fig. 2 Effects fluctuations in
fecundity and larval survival on
the critical birth rate b required
for persistence. (ξ l

t ) are normally
distributed with mean 0 and
variance one, ξa

t = ξ
p
t = 0 for

all t and μa = 0.1034 (the value
found in Table 1D in Costantino
et al. (1995))
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one. However, when these random variables are not perfectly correlated, we conjecture
that this form of multiplicative noise always decreases the critical birth rate (Fig. 2).
To provide some mathematical evidence for this conjecture, we compute a small noise
approximation for the per-capita growth rate r1(δ0) when the population is rare (Ruelle
1979b; Tuljapurkar 1990). Let

Bt =
⎛

⎝
0 (1− μl) exp(ξ

p
t ) 0

0 0 exp(ξa
t )

b exp(ξ l
t ) 0 (1− μa) exp(ξa

t )

⎞

⎠

be the linearization of the stochastic LPA model (14) at (L , P, A) = (0, 0, 0). Assume
that ξ i

t = εZi
t where E[Zi

t ] = 0 and E[(Zi
t

)2] = 1. Ruelle (1979b, Theorem 3.1)
implies that r1(0) is an analytic function of ε. Therefore, one can perform a Taylor’s
series expansion of r1(0) as function of ε about the point ε = 0. As we shall shortly
show, the first non-zero term of this expansion is of second order. Expanding Bt to
second order in ε yields

Bt ≈
⎛

⎝
0 (1− μl) 0
0 0 1
b 0 (1− μa)

⎞

⎠

︸ ︷︷ ︸
=B

(
I+ε diag{Zl

t , Z p
t , Za

t }+ε2diag{Zl
t , Z p

t , Za
t }2/2

)
.

The entries of the second order term are positive due to the convexity of the exponential
function. Hence, Jensen’s inequality implies that fluctuations in Zi

t increase the mean
matrix E[Bt ]. This observation, in and of itself, suggests that fluctuations in Zi

t increase
r1(0). However, to rigorously verify this assertion, let v and w be the left and right
Perron-eigenvectors of B such that

∑
i vi = 1 and

∑
i viwi = 1. Let r0 be the

associated Perron eigenvalue of B. Provided the Zi
t are independent in time, a small

noise approximation for the stochastic growth rate of the random products of Bt is
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r∗(δ0) ≈ log r0 + ε2

2

⎛

⎝E

[
∑

i

viwi

(
Zi

t

)2
]
− E

⎡

⎣
(
∑

i

viwi Z i
t

)2
⎤

⎦

⎞

⎠ . (15)

Since the function x �→ x2 is strictly convex and
∑

i viwi (Zi
t )

2 is a convex com-
bination of (Zl

t )
2, (Z p

t )2, and (Za
t )2, Jensen’s inequality implies

(
∑

i

viwi Z i
t

)2

≤
∑

i

viwi

(
Zi

t

)2
.

Therefore

E

⎡

⎣
(
∑

i

viwi Z i
t

)2
⎤

⎦ ≤ E

[
∑

i

viwi

(
Zi

t

)2
]

.

It follows that the order ε2 correction term in (15) is non-negative and equals zero if
and only if Zl

t = Z p
t = Za

t with probability one. Therefore, “small” multiplicative
noise (with log-mean zero) which isn’t perfectly correlated across the stages increases
the stochastic growth rate and, therefore, decreases the critical birth rate bcrit required
for stochastic persistence.

Biological Interpretation 5.3 For the LPA model, there is a critical mean fecundity,
above which the population persists and below which the population goes asymptot-
ically to extinction. Fluctuations in the log survival rates decrease the critical mean
fecundity unless the log survival rates are perfectly correlated.

Proof of Theorem 5.2 We begin by verifying H1–H4. H1 and H2 follow from our
assumptions. To verify H3, notice that the sign structure of the nonlinear projection
matrix At (ξ, X) for (14) is given by

C =
⎛

⎝
0 1 0
0 0 1
1 0 1

⎞

⎠ .

Since

C4 =
⎛

⎝
1 1 1
1 1 2
2 1 3

⎞

⎠

At (ξ, X) has the sign structure of the primitive matrix C for all ξ, X and t . Finally, to
verify H4, define

K = be2M−1/κea
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Then

�t+1 ≤ bat exp(−κeaat/Vt+1 + ξ l
t ) ≤ bat exp(−κeaat exp(−M)+ M) ≤ K

for all t ≥ 0. Therefore, �t ≤ K for t ≥ 1 and

pt ≤ �t−1eM ≤ K eM

for all t ≥ 2. Hence,

at+1 ≤ pt e
M + (1− δ)at

for all t ≥ 2 which implies at ≤ K e3M/δ for t sufficiently large. The compact forward
invariant set S = [0, K ] × [0, K eM ] × [0, K e3M ]/δ satisfies H4.

At low density we get

Bt = A(ξt , 0) =
⎛

⎝
0 (1− μl) exp(ξ

p
t ) 0

0 0 exp(ξa
t )

b exp(ξ l
t ) 0 (1− μa) exp(ξa

t )

⎞

⎠ .

Define r(b) to be the dominant Lyapunov exponent of the random products of
B1, B2, . . . . Note that with the notation of Theorem 3.4, r(b) = r1(0). Theorem
3.1 of Ruelle (1979b) implies that r(b) is differentiable for b > 0 and the derivative
is given by (see, e.g., section 4.1 of Ruelle 1979b)

r ′(b) = E

[
vt (b)E31wt+1(b)

vt (b)Bt (b)wt+1(b)

]
> 0

where vt (b), wt (b) are the normalized left and right invariant sub-bundles associated
with Bt (b) and E31 is the matrix with exp(ξ l

t ) in the 3−1 entry and 0 entries otherwise.
Since the numerator and denominators in the expectation are always positive, r(b) is
a strictly increasing function of b. Since limb→0 r(b) = −∞ and limb→∞ r(b) = ∞,
there exists bcrit > 0 such that r(b) < 0 for b < bcrit and r(b) > 0 for b > bcrit .

If b > bcrit , then r(b) > 0 and Theorem 5.1 implies that (14) is stochastically
persistent. On the other hand, if b < bcrit , then r(b) < 0 and Theorem 5.1 implies
that (�t , pt , at ) converges to (0, 0, 0) with probability one as t →∞.

The final assertion about the stochastic LPA model follows from observing that if
ξa

t = ξ l
t = ξa

t with probability one for all t , then

Bt =
⎛

⎝
0 (1− μl) 0
0 0 1
b 0 (1− μa)

⎞

⎠ exp(ξ l
t )

123



Persistence in fluctuating environments for interacting structured populations 1283

with probability one. Hence, r(b) = log r0(b) + E[ξ l
t ] where r0(b) is the dominant

eigenvalue of the deterministic matrix

⎛

⎝
0 (1− μl) 0
0 0 1
b 0 (1− μa)

⎞

⎠ .

Therefore, if E[ξ l
t ] = 0, then r(b) = log r0(b). Using the Jury conditions, Henson

and Cushing (1997) showed that r0(b) > 1 if b > μa/(1 − μl) and r0(b) < 1 if
b < μa/(1 − μl). Hence, when ξ l

t = ξ
p

t = ξa
t with probability one and E[ξ l

t ] = 0,
bcrit equals μa/(1− μl) as claimed. �


5.2 Metapopulation dynamics

Interactions between movement and spatio-temporal heterogeneities determine how
quickly a population grows or declines. Understanding the precise nature of these
interactive effects is a central issue in population biology receiving increasing attention
from theoretical, empirical, and applied perspectives (Petchey et al. 1997; Lundberg et
al. 2000; Gonzalez and Holt 2002; Schmidt 2004; Roy et al. 2005; Boyce et al. 2006;
Hastings and Botsford 2006; Matthews and Gonzalez 2007; Schreiber 2010).

A basic model accounting for these interactions considers a population living in an
environment with n patches. Let Xr

t be the number of individuals in patch r at time
t . Assuming Ricker density-dependent feedbacks at the patch scale, the fitness of an
individual in patch r is λr

t exp(−αr Xr
t ) at time t , where λr

t is the maximal fitness and
αr > 0 measures the strength of infraspecific competition. Let drs be the fraction of
the population from patch r that disperse to patch s. Under these assumptions, the
population dynamics are given by

Xr
t+1 =

n∑

s=1

dsrλ
s
t Xs

t exp(−αs Xs
t ) r = 1, . . . , n. (16)

To write this model more compactly, let F(Xt , λt ) be the diagonal matrix with diagonal
entries λ1 exp(−α1 X1

t ), . . . , λn exp(−αn Xn
t ), and D be the matrix whose i- j th entry

is given by di j . With this notation, (16) simplifies to

Xt+1 = Xt F(Xt , λt )D.

If λr
t are ergodic and stationary, λr

t take values in a positive compact interval
[λ∗, λ∗] and D is a primitive matrix, then the hypotheses of Theorem 5.1 hold. In
particular, stochastic persistence occurs only if r1(0), corresponding to the domi-
nant Lyapunov exponent of the random matrix product F(0, λt )D . . . F(0, λ1)D, is
positive.
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When populations are fully mixing (i.e. drs = vs for all r, s), Metz et al. (1983)
derived a simple expression for r1(0) given by

r1(0) = E

[
log

(
n∑

r=1

vrλ
r
t

)]
(17)

i.e. the temporal log-mean of the spatial arithmetic mean. Owing to the concavity of
the log function, Jensens inequality applied to the spatial and temporal averages in
(17) yields

log

(
n∑

r=1

vr E[λr
t ]
)

> r1(0) >

n∑

r=1

vr E[log λr
t ]. (18)

The second inequality implies that dispersal can mediate persistence as r1(0) can be
positive despite all local growth rates E[log λr

t ] being negative. Hence, populations
can persist even when all patches are sinks, a phenomena that has been observed
in the analysis of density-independent models and simulations of density-dependent
models (Jansen and Yoshimura 1998; Bascompte et al. 2002; Evans et al. 2013). The
first inequality in equation (18), however, implies that dispersal-mediated persistence
for well-mixed populations requires that the expected fitness E[λr

t ] is greater than one
in at least one patch.

For partially mixing populations for which drs = vs + εδrs , Schreiber (2010)
developed first-order approximation of r1(0) with respect to ε. This approximation
coupled with Theorem 5.1 implies that temporal autocorrelations for partially mixing
populations can mediate persistence even when the expected fitness E[λr

t ] is less
than one in all patches, a finding related to earlier work by Roy et al. (2005). This
dispersal mediated persistence occurs when spatial correlations are sufficiently weak,
temporal fluctuations are sufficiently large and positively autocorrelated, and there are
sufficiently many patches.

Biological Interpretation 5.4 Metapopulations with density-dependent growth can
stochastically persist despite all local populations being extinction prone in the
absence of immigration. Temporal autocorrelations can enhance this effect.

6 Applications to competing species in space

The roles of spatial and temporal heterogeneity in maintaining diversity is a funda-
mental problem of practical and theoretical interest in population biology (Chesson
2000a,b; Loreau et al. 2003; Mouquet and Loreau 2003; Davies et al. 2005). To examine
the role of both forms of heterogeneity in maintaining diversity of competitive com-
munities, we consider lottery-type models of m competing populations in a landscape
consisting of n patches. For there models, competition for vacant space determines the
within patch dynamics, while dispersal between the patches couples the local dynam-
ics. After describing a general formulation of these models for an arbitrary number of
species with potentially frequency-dependent interactions, we illustrate how to apply
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our results to case of two competing species and three competing species exhibiting
an intransitive, rock-paper-scissor like dynamic.

6.1 Formulation of the general model

To describe the general model, let Xir
t denote the fraction of patch r occupied by

population i at time t . At each time step, a fraction ε > 0 of individuals die in each
patch. The sites emptied by the dying individuals get randomly assigned to progeny in
the patch. Birth rates within each patch are determined by local pair-wise interactions.
Let ξ

i j
t (r) be the “payoff” to strategy i interacting with strategy j in patch r at time t .

Let

�t (r) =
(
ξ

i j
t (r)

)

1≤i, j≤m
(19)

be the payoff matrix for patch r . The total number of progeny produced by an individual
playing strategy i in patch r is

∑
j ξ

i j
t X jr

t . Progeny disperse between patches with dsr

the fraction of progeny dispersing from patch s to patch r . Under these assumptions,
the spatial-temporal dynamics of the competing populations are given by

Xir
t+1 = ε

∑
s dsr

∑
j ξ

i j
t (s)X js

t Xis
t

∑
s dsr

∑
j,l ξ

l j
t (s)X js

t Xls
t

+ (1− ε)Xir
t . (20)

Let Ai (ξ, X) be the matrix whose s − r entry is given by

ε
dsr

∑
j ξ i j (s)X js

∑
s′ ds′r

∑
j,l ξ l j (s′)X js′Xls′

for r �= s, and

ε
dsr

∑
j ξ i j (s)X js

t∑
s′ ds′r

∑
j,l ξ l j (s′)X js′Xls′ + 1− ε

for r = s. With these definitions, (20) takes on the form of our model (1).
To illustrate the insights that can be gained from a persistence analysis of these

models, we consider two special cases. The first case is a spatially explicit version of
Chesson and Warner (1981)’s lottery model. The second case is a spatial version of
a stochastic rock-paper-scissor game. For both of these examples, we assume that a
fraction d of all progeny disperse randomly to all patches and the remaining fraction
1 − d do not disperse. Under this assumption, we get dsr = d/(m − 1) for s �= r
and dss = 1 − d. These populations are fully mixing when d = m−1

m in which case
dsr = 1

m for all s, r .
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6.2 A spatially-explicit lottery model

The lottery model of Chesson and Warner (1981) assumes that the competing popula-
tions do not exhibit frequency dependent interactions. More specifically, the “payoffs”
ξ

i j
t (r) = ξ i

t (r) for all i, j are independent of the frequencies of the other species. Con-
sequently, the model takes on a simpler form

Xir
t+1 = ε

∑
s dsr ξ

i
t (s)Xis

t∑
s dsr

∑
j ξ

j
t (s)X js

t

+ (1− ε)Xir
t (21)

where dsr = d
m−1 for r �= s and dss = 1− d.

For two competing species (i.e. m = 2), the population states z1 = (1, . . . , 1, 0,

. . . , 0) and z2 = (0, . . . , 0, 1, . . . , 1) correspond to only species 1 and only species 2
occupying the landscape, respectively. The extinction set is S0 = {z1, z2}. Theorem 3.1
implies that a sufficient condition for stochastic persistence is the existence of positive
weights p1, p2 such that

p1r1(z1)+ p2r2(z1) > 0 and p1r1(z2)+ p2r2(z2) > 0.

Proposition 8.19 implies that the long-term growth rate of any invariant measure, with
a support bounded away from the extinction set, is equal to zero. In particular, this
proposition applies to the subsystems of species 1 and 2, and to the Dirac measures
δz1 and δz2 , respectively. Therefore r1(z1) = r2(z2) = 0 with probability one. This
implies that r1(z1) = r2(z2) = 0. Hence, the persistence criterion simplifies to

r1(z2) > 0 and r2(z1) > 0.

In other words, persistence occurs if each species has a positive invasion rate.
To get some biological intuition from the mutual invasibility criterion, we consider

the limiting cases of relatively sedentary populations (i.e. d ≈ 0) and highly dispersive
populations (i.e. d ≈ 1). In these cases, we get explicit expressions for the realized
per-capita growth rates ri (z j ) that simplify further for short-lived (i.e. ε ≈ 1) and
long-lived (i.e. ε ≈ 0) species. Our analytical results are illustrated numerically in
Fig. 3.

6.2.1 Relatively sedentary populations

When populations are completely sedentary (i.e. d = 0 ), the projection matrix
A2(ξ, z1) corresponding to species 2 trying to invade a landscape monopolized by
species 1 reduces to a diagonal matrix whose r -th diagonal entry equals

ε
ξ2

t (r)

ξ1
t (r)
+ 1− ε.
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Fig. 3 Effects of dispersal and survival on coexistence of two species. The log-fecundities ξ i are indepen-
dent and normally distributed with means μ1 = (5, 0, 5, 0, . . . , 0), μ2 = (0, 5, 0, . . . , 0) and variances
σ 2

1 = σ 2
2 = (1, . . . , 1) for (I) and (3, . . . , 3) for (II). The white lines correspond to the zero-lines of the

respective Lyapunov exponents

The dominant Lyapunov exponent in this limiting case is given by

r2(z1) = max
r

E

[
log

(
ε
ξ2

t (r)

ξ1
t (r)
+ 1− ε

)]
.

Proposition 3 from Benaïm and Schreiber (2009) implies that r2(z1) is a continu-
ous function of d. Consequently, r2(z1) is positive for small d > 0 provided that

E

[
log

(
ε

ξ2
t (r)

ξ1
t (r)
+ 1− ε

)]
is strictly positive for some patch r . Similarly, r1(z2) is pos-

itive for small d > 0 provided that E

[
log

(
ε

ξ1
t (r)

ξ2
t (r)
+ 1− ε

)]
is strictly positive for

some patch r . Thus, coexistence for small d > 0 occurs if

max
r

E

[
log

(
ε
ξ2

t (r)

ξ1
t (r)
+ 1− ε

)]
> 0 and max

r
E

[
log

(
ε
ξ1

t (r)

ξ2
t (r)
+ 1− ε

)]
> 0.

When ε ≈ 1 or ε ≈ 0, we get more explicit forms of this coexistence condition.
When the populations are short-lived (ε ≈ 1), the coexistence condition simplifies
to E[log ξ1

t (r)] > E[log ξ2
t (r)] and E[log ξ2

t (s)] > E[log ξ1
t (s)] for some patches

r �= s. Coexistence requires that each species has at least one patch in which they have
a higher geometric mean in their reproductive output.

When the populations are long lived (ε ≈ 0) and relatively sedentary (d ≈ 0), the
coexistence condition is

E

[
ξ2

t (r)

ξ1
t (r)

]
> 1 and E

[
ξ1

t (s)

ξ2
t (s)

]
> 1
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for some patches r, s. Unlike short-lived populations, it is possible that both inequal-
ities are satisfied for the same patch. For example, when the log-fecundities log ξ i

t (r)

are independent and normally distributed with mean μi (r) and variance σ 2
i (r), the

coexistence conditions is

μ2(r)− μ1(r)+ σ 2
1 (r)+ σ 2

2 (r)

2
> 1

for some patch r and

μ1(s)− μ2(s)+ σ 2
1 (s)+ σ 2

2 (s)

2
> 1

for some patch s. Both conditions can be satisfied in the same patch r provided that
σ1(r) or σ2(r) is sufficiently large.

Biological Interpretation 6.1 For relatively sedentary populations, coexistence
occurs if each species has a patch it can invade when rare. If the populations are
also short-lived, coexistence requires that each species has a patch in which it is com-
petitively dominant. Alternatively, if populations are also long-lived, regional coex-
istence may occur if species coexist locally within a patch due to the storage effect.
For uncorrelated and log-normally distributed fecundities, this within-patch storage
effect occurs if the difference in the mean log-fecundities is sufficiently smaller than
the net variance in the log-fecundities.

6.2.2 Well-mixed populations

For populations that are highly dispersive (i.e. d = m−1
m ), the spatially explicit Lottery

model reduces to a spatially implicit model where

r1(z2) = E

[
log

(
ε

∑
r ξ1

t (r)
∑

r ξ2
t (r)
+ 1− ε

)]
and

r2(z1) = E

[
log

(
ε

∑
r ξ2

t (r)
∑

r ξ1
t (r)
+ 1− ε

)]
.

For short lived populations (ε = 1), these long-term growth rates simplify to

r1(z2) = E

[
log

∑

r

ξ1
t (r)

]
− E

[
log

∑

r

ξ2
t (r)

]
and

r2(z1) = E

[
log

∑

r

ξ2
t (r)

]
− E

[
log

∑

r

ξ1
t (r)

]
.

Since r1(z2) = −r2(z1), the persistence criterion that r1(z2) > 0 and r2(z1) > 0 is
not satisfied generically.
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Alternatively, for long-lived populations (ε ≈ 0), the invasion rates of well-mixed
populations becomes to first-order in ε > 0:

r1(z2) ≈ ε

(
E

[∑
r ξ1

t (r)
∑

r ξ2
t (r)

]
− 1

)
and

r2(z1) ≈ ε

(
E

[∑
r ξ2

t (r)
∑

r ξ1
t (r)

]
− 1

)
.

We conjecture that this coexistence condition is less likely to be met than the coex-
istence condition for relatively sedentary populations. To see why, consider a small
variance approximation of these invasion rates. Assume that ξ i

t = ξ̄ i + ηZi
t (r) where

Zi
t (r) are independent and identically distributed in i, r and E[Zi

t (r)] = 0 for all i, r .
Let σ 2 = E[(Zi

t (r))2]. A second order Taylor’s approximation in η yields the follow-
ing approximation of the (rescaled) long-term growth rates for well-mixed populations

E

[∑
r ξ1

t (r)
∑

r ξ2
t (r)

]
− 1 ≈ ξ̄1

ξ̄2
+ ξ̄1σ 2/n

(ξ̄2)3
− 1 (22)

and the following approximation for relatively sedentary populations

max
r

E

[
ξ1

t (r)

ξ2
t (r)

]
− 1 ≈ ξ̄1

ξ̄2
+ ξ̄1σ 2

(ξ̄2)3
− 1. (23)

Since (23) is greater than (22), persistence is more likely for relatively sedentary
populations in this small noise limit.

Biological Interpretation 6.2 Short-lived and highly dispersive competitors do not
satisfy the coexistence condition. Long-lived and highly-dispersive competitors may
coexist. However, coexistence appears to be less likely than for sedentary populations
as spatial averaging reduces the temporal variability experienced by both populations
and, thereby, weakens the storage effect.

6.3 The rock-paper-scissor game

In the last few years the rock-paper-scissor game, which might initially seem to be of
purely theoretical interest, has emerged as playing an important role in describing the
behavior of various real-world systems. These include the evolution of alternative male
mating strategies in the side-blotched lizard Uta Stansburiana (Sinervo and Lively
1996), the in vitro evolution of bacterial populations (Kerr et al. 2002; Nahum et al.
2011), the in vivo evolution of bacterial populations in mice (Kirkup and Riley 2004),
and the competition between genotypes and species in plant communities (Lankau and
Strauss 2007; Cameron et al. 2009). More generally, the rock-scissors-paper game –
which is characterized by three strategies R, P and S, which satisfy the non-transitive
relations: P beats R (in the absence of S), S beats P (in the absence of R), and R
beats S (in the absence of P) – serves as a simple prototype for studying the dynamics
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of more complicated non-transitive systems (Buss and Jackson 1979; Paquin and
Adams 1983; May and Leonard 1975; Schreiber 1997; Schreiber and Rittenhouse
2004; Vandermeer and Pascual 2005; Allesina and Levine 2011). Here, we examine a
simple spatial version of this evolutionary game in a fluctuating environment.

Let x1
t (r), x2

t (r), and x3
t (r) be the frequencies of the rock, paper, and scissor strate-

gies in patch r , respectively. All strategies in patch r receive a basal payoff of ar
t at

time t . Winners in an interaction in patch r receive a payoff of br
t while losers pay a

cost cr
t . Thus, the payoff matrix (19) for the interacting populations in patch r is

�t (r) = ar
t +

⎛

⎝
0 −cr

t br
t

br
t 0 −cr

t
−cr

t br
t 0

⎞

⎠ .

We continue to assume that the fraction of progeny dispersing from patch s to patch
r equals d/(m − 1) for s �= r and 1− d otherwise.

Our first result about the rock-paper-scissor model is that it exhibits a hetero-
clinic cycle in S0 between the three equilibria E1 = (1, . . . , 1, 0, . . . , 0, 0, . . . , 0),
E2 = (0, . . . , 0, 1, . . . , 1, 0, . . . , 0) and E3 = (0, . . . , 0, 0, . . . , 0, 1, . . . , 1). For two
vectors x = (x1, . . . , xn), y = (y1, . . . , yn), we write x > y if xi ≥ yi for all i with
at least one strict inequality.

Proposition 6.3 Assume d, ε ∈ (0, 1] and ar
t > cr

t , log ar
t , log cr

t , log br
t ∈ [−M, M]

with probability one for some M > 0. If x1
0 > (0, . . . , 0) and x2

0 > (0, . . . , 0) and
x3

0 = (0, . . . , 0), then limt→∞ xt = E2 with probability one. If x1
0 > (0, . . . , 0) and

x3
0 > (0, . . . , 0) and x2

0 = (0, . . . , 0), then limt→∞ xt = E1 with probability one. If
x2

0 > (0, . . . , 0) and x3
0 > (0, . . . , 0) and x1

0 = (0, . . . , 0), then limt→∞ xt = E3
with probability one.

Proof It suffices to prove the assertion for the case in which x1
0 > (0, . . . , 0) and

x2
0 > (0, . . . , 0) and x3

0 = (0, . . . , 0). Let 1 = (1, . . . , 1) ∈ R
n . Our assumptions

br
t > 0 and ar

t > cr
t > 0 imply there exists η > 0 such that A2(ξt+1, Xt ) �

exp(η)A1(ξt+1, Xt ) with probability one. It follows that

lim sup
t→∞

1

t
log ‖X1

t ‖ = lim sup
t→∞

1

t
log ‖X1

0 A1(ξ1, X0) . . . A1(ξt , Xt−1)‖

≤ lim sup
t→∞

1

t
log ‖X1

0 A2(ξ1, X0) . . . A2(ξt , Xt−1)‖ − η

= lim sup
t→∞

1

t
log ‖1A2(ξ1, X0) . . . A2(ξt , Xt−1)‖ − η

≤ −η

where the last two lines follow from Proposition 8.16 and its Corollary 8.17. Hence,
limt→∞ ‖X1

t ‖ = 0 as claimed. �

Proposition 6.3 implies that for any x ∈ S0 and 1 ≤ i ≤ 3, ri (x) = ri (E j ) for some

1 ≤ j ≤ 3. Hence, the persistence criterion of Theorem 3.1 requires p1, p2, p3 > 0
such that
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∑

i

pi ri (E j ) > 0 for all 1 ≤ j ≤ 3.

A standard algebraic calculation shows that this persistence criterion is satisfied if and
only if

r2(E1)r3(E2)r1(E3) > −r3(E1)r1(E2)r2(E3)

i.e. the product of the positive invasion rates is greater than the absolute value of the
product of the negative invasion rates. The symmetry of our model implies that all the
positive invasion rates are equal and all the negative invasion rates are equal. Hence,
coexistence requires

r2(E1) > −r3(E1).

As for the case of two competing species, we can derive more explicit coexistence
criteria when the populations are relatively sedentary (i.e. d ≈ 0) or the populations are
well-mixed (i.e. d = m

m−1 ). For relatively sedentary populations, coexistence requires

max
r

E

[
log

(
1− ε + ε

ar
t + br

t

ar
t

)]
> −max

r
E

[
log

(
1− ε + ε

ar
t − cr

t

ar
t

)]
.

For long-lived populations, this coexistence criterion simplifies further to

max
r

E

[
br

t

ar
t

]
> min

r
E

[
cr

t

ar
t

]
.

Alternatively, when the populations are well-mixed, coexistence requires

E

[
log

(
1− ε + ε

∑
r ar

t + br
t∑

r ar
t

)]
> −max

r
E

[
log

(
1− ε + ε

∑
r ar

t − cr
t∑

r ar
t

)]
.

For long-lived populations, this coexistence criterion simplifies further to

E

[∑
r br

t∑
r ar

t

]
> min

r
E

[∑
r cr

t∑
r ar

t

]
.

Biological Interpretation 6.4 For relatively sedentary populations, coexistence only
requires that average benefits (relative to the base payoff) in one patch is greater than
the average costs (relative to the base payoff) in another patch. Negative correlations
between benefits br

t and basal payoffs ar
t promote coexistence. For highly dispersive

species whose base payoffs are constant in space in time (i.e. ar
t = a for all t, r),

coexistence requires the spatially and temporally averaged benefits of interactions
exceed the spatially and temporally averaged costs of interactions.
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7 Discussion

Understanding the conditions that ensure the long-term persistence of interacting pop-
ulations is of fundamental theoretical and practical importance in population biology.
For deterministic models, coexistence naturally corresponds to an attractor bounded
away from extinction. Since populations often experience large perturbation, many
authors have argued that the existence of a global attractor (i.e. permanence or uni-
form persistence) may be necessary for long-term persistence (Hofbauer and Sigmund
1998; Smith and Thieme 2011). Most populations experience stochastic fluctuations
in their demographic parameters (May 1973) which raises the question (May 1973,
p. 621) “How are the various usages of the term [persistence] in deterministic and
stochastic circumstances related?” Only recently has it been shown that the determin-
istic criteria for permanence extend naturally to criteria for stochastic persistence in
stochastic difference and differential equations (Benaïm et al. 2008; Schreiber et al.
2011). These criteria assume that the populations are unstructured (i.e. no differences
among individuals) and environmental fluctuations are temporally uncorrelated. How-
ever, many populations are structured as highlighted in a recent special issue in The-
oretical Population Biology (Tuljapurkar et al. 2012) devoted to this topic. Moreover,
many environmental factors such as temperature and precipitation exhibit temporal
autocorrelations (Vasseur and Yodzis 2004). Here, we prove that by using long-term
growth rates when rare, the standard criteria for persistence extend to models of inter-
acting populations experiencing correlated as well as uncorrelated environmental sto-
chasticity, exhibiting within population structure, and any form of density-dependent
feedbacks. To illustrate the utility of these criteria, we applied them to persistence
of predator-prey interactions in auto-correlated environments, structured populations
with overcompensating density-dependence, and competitors in spatially structured
environments.

Mandelbrot (1982) proposed that environmental signals commonly found in nature
may be composed of frequencies f that scale according to an inverse power law 1/ f β .
With this scaling, uncorrelated (i.e. white) noise corresponds to β = 0, positively
auto-correlated (i.e. red or brown) noise corresponds to β > 0, and negatively auto-
correlated (e.g. blue) noise corresponds to β < 0. Many environmental signals impor-
tant to ecological processes including precipitation, mean air temperature, degree days,
and seasonal indices exhibit positive β exponents (Vasseur and Yodzis 2004). Consis-
tent with prior work on models with compensating density dependence (Roughgarden
1975; Johst and Wissel 1997; Petchey 2000), we found that positive autocorrelations
in the maximal per-capita growth rate of species increases the long-term variability
in their densities. If this species is the prey for a predatory species, we showed that
this increased variability in prey densities reduced a predator’s realized per-capita
growth rate when rare. Hence, positive autocorrelations may impede predator-prey
coexistence. In contrast, negative autocorrelations, possibly due to a biotic feedback
between the prey species and its resources, may facilitate coexistence by reducing vari-
ation in prey densities and, thereby, increase the predator’s growth rate when rate. These
results are qualitatively consistent with prior results that positive-autocorrelations in
predator-prey systems can increase variation in prey and predator densities when they
coexist (Collie and Spencer 1994; Ripa and Ives 2003). Specifically, in a simulation

123



Persistence in fluctuating environments for interacting structured populations 1293

study of predator-prey interactions in pelagic fish stocks, Collie and Spencer (1994)
found reddened noise resulted in predator-prey densities “to shift between high and
low equilibrium levels” and, thereby, increase variability in their abundances. Sim-
ilarly, using linear approximations, Ripa and Ives (2003) found that environmental
autocorrelations increased the amplitude of populations cycles. All of these results,
however, stem from the per-capita growth rate of the predator being an increasing,
concave function of prey density. Changes in concavity (e.g. a type-III functional
response) could produce an opposing result: increased variability in prey densities
may facilitate predator invasions. A more detailed analysis of this alternative is still
needed.

Classical stochastic demography theory (Tuljapurkar 1990; Boyce et al. 2006) con-
siders population growth rates in the absence of density-dependent feedbacks. Our
results for populations experiencing negative-density dependence show that stochas-
tic persistence depends on the population’s long-term growth rate r(0) when rare.
Hence, applying stochastic demography theory to r(0) provides insights into how
environmental stochasticity interacts with population structure to determine stochas-
tic persistence. For example, a fundamental result from stochastic demography is that
positive, within-year correlations between vital rates decreases r(0) and thereby may
thwart stochastic persistence, a result consist with our analysis of the stochastic LPA
model for flour beetle dynamics. Stochastic demography theory also highlights that
temporal autocorrelations can have subtle effects on r(0). In particular, for a density-
independent version of the metapopulation model considered here, Schreiber (2010)
demonstrated that positive temporal autocorrelations can increase the metapopulation
growth rate r(0) when rare for partially mixing populations, a prediction consistent
with laboratory experiments (Matthews and Gonzalez 2007) and earlier theoretical
work (Roy et al. 2005). In contrast, Tuljapurkar and Haridas (2006) found that neg-
ative temporal autocorrelations between years with and without fires increased the
realized per-capita growth rate r(0) for models of the endangered herbaceous peren-
nial Lomatium bradshawii. Our results imply that these results also apply to models
accounting for density-dependence.

Spatial heterogeneity of populations has been shown theoretically and empirically
to have an effect on coexistence of competitive species (see e.g. Amarasekare (2003)
or Chesson (2000b) for a review). Coexistence requires species to exhibit niche differ-
entiation that decrease the interspecific competition (Chesson 2000a). In a fluctuating
environment, these niches can arise as differential responses to temporal variation
(McGehee and Armstrong 1977; Armstrong and McGehee 1980; Chesson 2000a,b),
spatial variation (May and Hassell 1981; Chesson 2000a,b; Snyder and Chesson 2003),
or a combination of both forms of variation (Chesson 1985; Snyder 2007, 2008). For
the spatial lottery model where species disperse between a finite number of patches
and compete for micro sites within these patches, our coexistence criterion applies,
and reduces to the mutual invasibility criterion. Although Chesson (1985) proved this
result in the limit of an infinite number of patches with temporally uncorrelated fluctu-
ations, our result is less restrictive as the number of patches can be small and temporal
fluctuations can be autocorrelated. Using this mutual invasibility criterion, we derive
explicit coexistence criteria for relatively sedentary populations and highly disper-
sive populations. In the former case, coexistence occurs if each species has a patch

123



1294 G. Roth, S. J. Schreiber

it can invade when rare. For short-lived populations, coexistence requires that each
species has a patch in which it is competitively dominant. Alternatively, for long-lived
populations, regional coexistence may occur if species coexist locally within a patch
due to the storage effect (Chesson and Warner 1981; Chesson 1982, 1994) in the
one patch case. For highly dispersive populations, the coexistence criterion is only
satisfied if populations exhibit overlapping generations, a conclusion consistent with
(Chesson 1985). By providing the first mathematical confirmation of the mutual inva-
sibility criterion for the spatial lottery model with spatial and temporal variation, our
result opens the door for mathematically more rigorous investigations in understand-
ing the relative roles of temporal variation, spatial heterogeneity, and dispersal on
coexistence.

For lottery models with three or more species, persistence criteria are more subtle
and invasibility of all sub communities isn’t always sufficient (May and Leonard 1975).
For example, in rock-paper-scissor communities where species 2 displaces species 1,
3 displaces 2 , and 1 displaces 3, all sub communities which consist of a single
species are invasible by another, but coexistence may not occur (Hofbauer and Sigmund
1998; Schreiber and Killingback 2013). For the deterministic models, coexistence
requires that the geometric mean of the benefits of pair-wise interactions exceeds the
costs of these interactions (Schreiber and Killingback 2013). Schreiber et al. (2011)
and Schreiber and Killingback (2013) studied these interactions in models separately
accounting for temporal fluctuations or spatial heterogeneity. In both cases, temporal
heterogeneity or spatial heterogeneity can individually promote coexistence . Here we
extend these result to intransitive communities experiencing both spatial heterogeneity
and temporal fluctuations, thereby unifying this prior work. Our persistence criterion
reduces to: the geometric mean of the positive long-term, low-density growth rates of
each species (e.g. invasion rate of rock to scissor) is greater than the geometric mean of
the absolute values of the negative, long-term, low-density growth rates (e.g. invasion
rate of rock to paper). For relatively sedentary populations, coexistence only requires
that average benefits (relative to the base payoff) in one patch is greater than the
average costs in another patch. Moreover, negative correlations between benefits and
basal payoffs promote coexistence. For highly dispersive species, coexistence requires
the spatially and temporally averaged benefits of interactions exceed the spatially and
temporally averaged costs of interactions, assuming that base payoffs are constant in
space and time.

The theory of stochastic population dynamics is confronted with many, exciting
challenges. First, our persistence criterion requires every sub community (as repre-
sented by an ergodic invariant measure supporting a subset of species) is invasible by
at least one missing species. While this invasibility condition in general isn’t suffi-
cient for coexistence, understanding when it is sufficient remains a challenging open
question. For example, it should be sufficient for most food chain models (see the
argument for deterministic models in Schreiber 2000), non-interacting prey species
sharing a common predator (see the argument for deterministic models in Schreiber
2004), and species competing for a single resource species. However, finding a simple
criterion underlying these examples is lacking. Second, while we have provided a
sufficient condition for stochastic persistence, it is equally important to develop suf-
ficient conditions for the asymptotic exclusion of one or more species with positive
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probability. In light of the deterministic theory, a natural conjecture in this direction
is the following: if there exist non-negative weights p1, . . . , pk such that

∑

i

pi ri (x) < 0

for every population state x in the extinction set S0, then there exist positive ini-
tial conditions such that Xt asymptotically approaches S0 with positive probability.
Benaïm et al. (2008) proved a stronger version of this conjecture for stochastic dif-
ferential equation models where the diffusion term is small and the populations are
unstructured. However, it is not clear whether there methods carry over to models
with “large” noise or population structure. Another important challenge is relaxing
the compactness assumption H4 for our stochastic persistence results. While this
assumption is biologically realistic (i.e. populations always have an upper limit on
their size), it is theoretically inconvenient as many natural models of environmen-
tal noise have non-compact distributions (e.g. log-normal or gamma distributions).
One promising approach developed by Benaïm and Schreiber (2009) for structured
models of single species is identifying Lyapunov-like functions that decrease on aver-
age when population densities get large. Finding sufficient conditions for “stochastic
boundedness” is only half of the challenge, extending the stochastic persistent results
to these “stochastically bounded” models will require additional innovations. Finally,
and most importantly, there is a desperate need to develop more tools to analytically
approximate or directly compute the long-term growth rates ri (μ) when rare. One
promising approach is Pollicott (2010)’s recently derived power series representation
of Lyapunov exponents.

8 Proof of Theorems 3.1 and 3.4

This Section proves Theorem 3.4 from which Theorem 3.1 follows. Sections 8.1 and
8.2 lead to the statement of Theorem 8.11 which is equivalent to Theorem 3.4. The
rest of the section is dedicated to the proof of Theorem 8.11. More specifically, in
Sect. 8.1, we recast our stochastic model (1) and our main hypothesis in Arnold’s
framework of random dynamical system (Arnold 1998; Bhattacharya and Majumdar
2007). The purpose of this recasting is to write explicitly the underlying dynamics
of the matrix products (3) in order to use the Random Perron-Frobenius Theorem
(Ruelle (1979a)), a key element in the proof of Theorem 3.4. The Random Perron-
Frobenius Theorem requires this underlying dynamics to be invertible which is, a
priori, not the case here. Therefore, in Sect. 8.2, we extend the underlying dynamics
to an invertible dynamic on the trajectory space and state Theorem 8.11 which is
equivalent to Theorem 3.4. Working in the Arnold’s framework and extending the
dynamic to the trajectory space requires three forms of notation (i.e. main text, random
dynamical system and trajectory space) that are summarized in Table 1. In Sect. 8.3, we
prove basic results about the average per-capita growth rates ri . In Sect. 8.4, we prove
several basic results about occupational measures and their weak* limit points. These
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Table 1 Notation for the probabilistic, RDS, and trajectory space formulations of the population dynamics

Probabilistic
formulation

RDS formulation Trajectory space
formulation

Environmental state space
E , a Polish space � = EZ, the space

of all sequences
of environment
state.

�

ξt ∈ E , the
environment
state at time t

ω = (. . . ,

ω−1, ω0, ω1, . . . ) ∈
� is a sequence
of environment
states, i.e.
et = ξt

ω = (. . . , ω−1,

ω0, ω1, . . . )

State space
R

n+ ← �× R
n+ ← �+ ⊂ �× (Rn+)Z

x0 = p2(ω, x0) p2 (ω, x0) = π0(γ ) π0 γ = (ω, {xt }t∈Z)

Dynamics
For one time step:

X1 = x0 A(ξ1, x0) �(ω, x0) =
(θ(ω), x0 A(ω0, x0))

�, the shift
operator on �+

For t time steps:
Xt = x0 A(ξ1, x0)

· · · A(ξt , Xt−1) “=” p2(�t (ω, x0)) = p2(π0(�t (γ )))

Empirical measures
�x

t �t (ω, x) �̃t (γ )

For a Borel set
B ∈ R

n+:
�

x0
t (B) “=” �t (ω, x0)(�, B) = π∗0 (�̃t (γ ))(�, B)

Invariant measures
Inv := { μ

satisfying
Def. 3.2 }

← I nvQ(�) ← InvQ(�)

h(μ) h μ = π∗0 (μ̃) π∗0 μ̃

h−1(Inv) = InvQ(�)(�× V ) ⊃ π∗0 (InvQ(�)(�+))

Long-term growth rates
ri (x0) “=” ri (ω, x0) = ri (γ )

For μ ∈ Inv: For μ ∈ InvQ(�): For μ̃ ∈ InvQ(�):
ri (h(μ)) = ri (μ) = ri (μ̃)

“=” denotes equivalence when ω is randomly drawn from �

basic results are proven for the extended state space. Proposition 8.10 and Lemma 8.20
translate these results to non-extended state space. A proof of Theorem 8.11 is provided
in Sect. 8.5.

8.1 Random dynamical systems framework

To prove our main result, it is useful to embed (1) and assumptions H1-H4 within
Arnold’s general framework of random dynamical systems. Let � = EZ be the
set of possible environmental trajectories, F = EZ be the product σ -algebra on �,
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θ : � �→ � be the shift operator defined by θ({ωt }t∈Z) = {ωt+1}t∈Z, and Q be the
probability measure on � satisfying

Q({ω ∈ � : ωt ∈ E0, . . . , ωt+k ∈ Ek}) = P(ξ0 ∈ E0, . . . , ξk ∈ Ek)

for any Borel sets E0, . . . , Ek ⊂ E . Since E is a Polish space, the space � endowed
with the product topology is Polish as well. Therefore, by the Kolmogorov consistency
theorem, the probability measure Q is well defined, and by a theorem of Rokhlin
(1964), θ is ergodic with respect to Q. Randomness enters by choosing randomly a
point ω = {ωt }t∈Z ∈ � with respect to the probability distribution Q and defining the
environmental state at time t as ωt .

In this framework, the dynamics (1) takes on the form

{
Xt+1(ω, x) = Xt (ω, x)A(ωt , Xt (ω, x))

X0(ω, x) = x ∈ S.
(24)

We call (24), the random dynamical system determined by (θ, P, A).
Define the skew product

� : �× R
n+ → �× R

n+
(ω, x) �→ (θ(ω), x A(ω0, x))

associated with the dynamics (24) and define the projection maps p1 : �× R
n → �

and p2 : � × R
n → R

n by p1(x, ω) = ω and p2(x, ω) = x . Let �t denote the
composition of � with itself t times, for t ∈ N. Remark 1.1.8 in Arnold (1998)
implies that the random dynamical system (24) is characterized by the skew product
� and vice versa. In particular, note that Xt+1(ω, x) = p2 ◦ �t+1(ω, x) for x ∈ S
and ω ∈ �. Working with � allows the use of the discrete dynamical system theory.

Definition 8.1 A compact set K ⊂ �×R
n+ is a global attractor for � if there exists

a neighborhood V of K such that

(i) for all (ω, x) ∈ �×R
n+, there exist T ∈ N such that �t (ω, x) ∈ V for all t ≥ T ;

(ii) �(V ) ⊂ V and K =⋂t∈N �t (V ).

In this random dynamical systems framework, our assumptions H1 and H4 take on
the form

H1’: � is a compact space, Q is a Borel probability measure, and θ is an invertible
map that is ergodic with respect to Q, i.e. for all Borel set B ⊂ �, such that
θ−1(B) = B, we have Q(B) ∈ {0, 1}.

H4’: There exists a global attractor K ⊂ �× R
n+ for �.

Assumptions H2–H3 do not need to be rewritten in the new framework. Since every
ergodic stationary processes on a Polish space can be described as an ergodic measure
preserving transformation (Kolmogorov consistency theorem and Rokhlin theorem),
assumption H1’ is less restrictive than H1. Assumption H4’ is simply restatement of
assumption H4 in the random dynamical systems framework.
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1298 G. Roth, S. J. Schreiber

To state Theorem 3.4 in this random dynamical systems framework, we define
invariant measures for the random dynamical system (24). We follow the definition
given by Arnold (1998). First, recall some useful definitions and notations. Let M
be a metric space, and let P(M) be the space of Borel probability measures on M
endowed with the weak∗ topology. If M ′ is also a metric space and f : M → M ′ is
Borel measurable, then the induced linear map f ∗ : P(M)→ P(M ′) associates with
ν ∈ P(M) the measure f ∗(ν) ∈ P(M ′) defined by

f ∗(ν)(B) = ν( f −1(B))

for all Borel sets B in M ′. If θ : M → M is a continuous map, a measure ν ∈ P(M)

is called θ -invariant if ν(θ−1(B)) = ν(B) for all Borel sets B ∈ M . A set B ⊂ M
is positively invariant if θ(B) ⊂ B. For every positively invariant compact set B, let
Inv(θ)(B) be the set of all θ -invariant measures supported on B.

Definition 8.2 A probability measure μ on �×R
n+ is invariant for the random dynam-

ical system (24) if

(i) μ ∈ Inv(�)(�× R
n+),

(ii) p∗1(μ) = Q, i.e. for all Borel sets D ⊂ �, μ(D × R
n+) = Q(D).

For any positively invariant set �× C where C ⊂ R
n+ is compact, InvQ(�)(�× C)

is the set of all measures μ satisfying (i) and (ii) such that μ(�× C) = 1.

In words, a probability measure μ is invariant for the random dynamical system
(24) if it is invariant for the skew product � and if its first marginal is the probability
Q on �.

The following result is a consequence of Theorem 1.5.10 in Arnold (1998). In fact,
the topology defined in his definition 1.5.3 is finer than the weak∗ topology on the set
of all probability measures on �× C .

Proposition 8.3 If C ⊂ R
n+ is a positively invariant compact set, then InvQ(�)(�×

C) is a nonempty, convex, compact subset of P(�× R
n+).

The main assumption in Theorem 3.4 deals with the long-term growth rates which
characterize, in some sense, the long-term behavior of random matrix products (see
Definition 3.3). In order to define those products in the new framework, let Md(R) be
the set of all d × d matrices over R and consider the maps Ai : � × S → Mni (R),
defined by

Ai (ω, x) = Ai (ω0, x).

While our choice of notation here differs slightly from the main text, this choice
simplifies the proof. We write

At
i (ω, x) := Ai (ω, x)Ai (�(ω, x)) · · · Ai (�

t−1(ω, x)), (25)

with the convention that A0
i (ω, x) = id, the identity matrix.
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Then, for each i ∈ {1, . . . , m}, the asymptotic growth rate of the product (25)
associated with (ω, x) ∈ �× R

n+ is

ri (ω, x) := lim sup
t→∞

1

t
ln ‖At

i (ω, x)‖,

which is finite, due to assumptions H3 and H4’. According to Definition 8.2, the
invasion rate of species i with respect to an invariant measure μ ∈ InvQ(�) is

ri (μ) :=
∫

�×R
n+

ri (ω, x)μ(dω, dx).

Remark 8.4 Note that for any x ∈ R
n+, the random variable ri (x) defined by (4) is

equal in distribution to the random variable ri (·, x). Also by definition of Q and � there
is a bijection, say h, between the set InvQ(�)(�×R

n+) and the set of measures defined
in Definition 3.2. Moreover the invasion rate with respect to an invariant measure is
invariant by h, i.e. for all μ ∈ InvQ(�), ri (μ) = ri (h(μ)).

Given a point (ω, x) ∈ � × R
n+, let �t (ω, x) denote the empirical occupation

measure of the trajectory {Xs(ω, x)}s≥0 at time t defined by

�t (ω, x) := 1

t

t−1∑

s=0

δXs (ω,x).

For each Borel set B ⊂ R
n+, the random variable �x

t (B) given by (2) is equal in
distribution to the random variable �t (·, x)(B).

For all η > 0, recall that Sη := {x ∈ R
n+ : ‖xi‖ ≤ η for some i}. We can now

rephrase Theorem 3.4 in the framework of random dynamical systems.

Theorem 8.5 If one of the following equivalent conditions hold

(i) r∗(μ) := max0≤i≤m ri (μ) > 0 for every probability measure μ ∈ InvQ(�)(�×
S0), or

(ii) there exist positive constants p1, . . . , pm such that

∑

i

pi ri (μ) > 0

for every ergodic probability measure μ ∈ InvQ(�)(�× S0), or
(iii) there exist positive constants p1, . . . , pm such that

∑

i

pi ri (ω, x) > 0

for every x ∈ S0 and Q-almost all ω ∈ �,
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then for all ε > 0, there exists η > 0 such that

lim sup
t→∞

�t (ω, x)(Sη) ≤ ε for Q-almost all ω,

whenever x ∈ R
n+\S0.

Remark 8.4 implies that Theorem 8.5 and Theorem 3.4 are equivalent. The remain-
der of the section is devoted to prove Theorem 8.5.

8.2 Trajectory space

The key element of the proof of Theorem 8.5 is Proposition 8.13 due to Ruelle (1979a)
in which it is crucial that the map � is an homeomorphism. However, the map � is, a
priori, not invertible. To circumvent this issue, we extend the dynamics induced by �

to an invertible map on the space of possible trajectories. Then, we state an equivalent
version of Theorem 8.5 in this larger space that we prove in Sect. 8.5.

By definition of the global attractor K , there exist a neighborhood V of p2(K ) in
R

n+ such that �(� × V ) ⊂ � × V . By continuity of �, this inclusion still holds for
the closure V of V , i.e.

�(�× V ) ⊂ �× V .

This inclusion implies that, for every point (ω, x) ∈ �×V , there exists a sequence

{xt }t∈N ⊂ V
N

such that x0 = x , and (θ t+1(ω), xt+1) = �(θ t (ω), xt ) for all t ≥ 0.
The sequence {(θ t (ω), xt )}t≥0 is called a � -positive trajectory. Note that the first
coordinate of a �-positive trajectory is characterized by ω and θ . Therefore a �-
positive trajectory can be seen as a couple (ω, {xt }t≥0). In order to create a past for
all those �-positive trajectories, let us pick a point x∗ ∈ S\(V ∪ S0), and consider
the product space T := � × (V ∪ {x∗})Z endowed with the product topology, and
the homeomorphism � : T → T defined by �(ω, {xt }t∈Z) = (θ(ω), {xt+1}t∈Z) and
called the shift operator. Since both � and V ∪ {x∗} are compact, the space T is
compact as well.

Every �-positive trajectory can be realized as an element of T by creating a fixed
past (i.e. xt = x∗ for all t < 0). Then, define

� =
⋃

t∈Z
�t {γ ∈ T : γ is a �-positive trajectory}.

In words, � is the adherence in T of the set of all shifted (by �t for some t ∈ Z)
�-positive trajectories. Since � is a closed subset of the compact T, it is compact as
well. Moreover � is invariant under �, which implies that the restriction �|� of � on
� is well-defined. To simplify the presentation we still denote this restriction by �.
The projection map π0 : � → � × V ∪ {x∗} is defined by π0(γ ) = (ω, x0) for all
γ = (ω, {xt }t ) ∈ �. By definition, the map π0 is continuous and surjective. For now
on, when we write γ ∈ �, we mean γ = (ω, {xt }t∈Z).
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Define the compact set of all �-total trajectories as

�+ := π−1
0 (�× V ),

and the compact set of �-total-solution trajectory on the extinction set S0 as

�0 := π−1
0 (�× S0).

The dynamic induced by � on �× V is linked to the dynamic induced by � on �+
by the following semi conjugacy

π0 ◦� = � ◦ π0. (26)

Thus, the map � on �+ can be seen as the extension of the map � on �× V .
In order to write an equivalent statement of Theorem 8.5 with respect to the dynam-

ics of �, we consider a subset of the invariant measures of � consistent with the set
InvQ(�)(�×S) in the sense of Corollary 8.8 below. For B ⊂ � positively �-invariant
and compact, define

InvQ(�)(B) := {μ̃ ∈ Inv(�)(B) : p∗1 ◦ π∗0 (μ̃) = Q}.

Proposition 8.6 InvQ(�)(�+) and InvQ(�)(�0) are compact and convex subsets of
P(�).

Proof Since �+ and �0 are positively invariant compacts, Inv(�)(�+) and Inv(�)(�0)

are non empty, compact and convex subsets of P(�). Then, since p∗1 ◦π∗0 is continuous,
InvQ(�)(�+) (resp. InvQ(�)(�0)) is compact as closed subset of Inv(�)(�+) (resp.
Inv(�)(�0)). The convexity of InvQ(�)(�+) and InvQ(�)(�0) is a consequence of
the convexity of Inv(�)(�+) and Inv(�)(�0), and the linearity of p∗1 ◦ π∗0 . �


As a consequence of equation (26), we have

Proposition 8.7 For every �-invariant measure μ̃ supported on �+, π∗0 (μ̃) is �-
invariant.

Proof Let μ̃ be a �-invariant measure supported on �+. Then the measure π∗0 (μ̃) is
supported by �× V . Let B ⊂ �× V be a Borel set. We have

π∗0 (μ̃)(�−1(B)) = μ̃(π−1
0 (�−1(B)))

= μ̃(π−1
0 (�−1(B)) ∩�× V )

= μ̃((�
∣∣
�×V ◦ π0)

−1(B))

= μ̃((π0 ◦�
∣∣
�+)
−1(B))

= μ̃(π−1
0 (B))

= π∗0 (μ̃)(B).
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The second equality follows from the fact that the support of μ̃ is included in �+, and
the fourth is a consequence of the conjugacy (26). �

Corollary 8.8 π∗0 (InvQ(�)(�+)) is a compact and convex subset of InvQ(�)(�×V ).

Proof Since π∗0 is continuous and linear, Proposition 8.6 implies that
π∗0 (InvQ(�)(�+)) is compact and convex. Proposition 8.7 implies that
π∗0 (InvQ(�)(�+)) ⊂ InvQ(�)(�× V ). �

Remark 8.9 The definition of � and assumption H3 imply that the sets �0 and �+\�0
are both positively �-invariant. Therefore every �-invariant measure μ̃ on �+ can be
written as a convex combination of two �-invariant measures ν̃0 and ν̃1 such that
ν̃0(�0) = 1 and ν̃1(�+\�0) = 1.

In order to restate Theorem 8.5 in the space of trajectories, the random matrix
products (25) over � have to be rewritten as products over �. For each i ∈ {1, . . . , m},
define the maps Ai : �→Mni (R) by

Ai (γ ) =
{

Ai (ω, x∗) if x0 = x∗
Ai (ω, x0) either.

As (25), we write

At
i (γ ) := Ai (γ ) · · · Ai (�

t−1(γ )). (27)

The conjugacy (26) implies that for all (ω, x) ∈ � × V and all γ ∈ π−1
0 (ω, x), we

have

At
i (γ ) = At

i (ω, x), (28)

for all t ≥ 0.
Then the long-term growth rates for the product (28) is

ri (γ ) := lim sup
t→∞

1

t
ln ‖At

i (γ )‖,

and, for a �-invariant measure μ̃, the long-term growth rates is

ri (μ̃) =
∫

�

ri (γ )dμ̃.

The following proposition shows that the long-term growth rates for the product
(28) defined on the trajectory space are consistent with those for the product (25)
defined on �× V .

Proposition 8.10 For all species i , we have

(i) ri (ω, x) = ri (γ ), for all (ω, x) ∈ �× V and for all γ ∈ π−1
0 (ω, x),
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(ii) for all μ̃ ∈ InvQ(�)(�+), π∗0 (μ̃) ∈ InvQ(�)(�× V ), and

ri (μ̃) = ri (π
∗
0 (μ̃)).

Proof Assertion (i) is a consequence of equality (28), and assertion (ii) is a conse-
quence of Corollary 8.8. �


We can now state an equivalent version of Theorem 8.5 on the space of trajectories�.

Theorem 8.11 If one of the following equivalent conditions hold

(a) r∗(μ̃) := max0≤i≤m ri (μ̃) > 0 for every probability measure μ̃ ∈ InvQ(�)(�0),
or

(b) there exist positive constants p1, . . . , pm such that

∑

i

pi ri (μ̃) > 0

for every ergodic probability measure μ̃ ∈ InvQ(�)(�0), or
(c) there exist positive constants p1, . . . , pm such that

∑

i

pi ri (ω, x) > 0

for every x ∈ S0 and Q-almost all ω ∈ �,

then for all ε > 0, there exists η > 0 such that

lim sup
t→∞

�t (ω, x)(Sη) ≤ ε for Q-almost all ω,

whenever x ∈ R
n+\S0.

Remark 8.12 Condition (c) of Theorem 8.11 and (iii) Theorem 8.5 are equivalent, and
the implications from conditions (iii) to (ii) and (ii) to (i) of Theorem 8.5 are direct. The
proof of Theorem 8.11 (see Sect. 8.5) shows that (a), (b) and (c) of Theorem 8.11 are
equivalent. Finally, condition (i) of Theorem 8.5 implies condition (a) of Theorem 8.11
as a direct consequence of assertion (ii) of Proposition 8.10. Hence, Theorems 8.5 and
8.11 are equivalent.

8.3 Random Perron-Frobenius Theorem and long-term growth rates

In this section, we first state Proposition 3.2 of Ruelle (1979a) (which we call the
Random Perron-Frobenius Theorem) in its original framework, and extend it to ours.
We use this extension to deduce some properties on the long-term growth rates which
are crucial for the proof of Theorem 8.11. Let int R

d+ = {x ∈ R
d+ :

∏
i xi > 0} be the

interior of R
d+.
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Proposition 8.13 (Ruelle 1979a) Let � be a compact space, � : � → � be an
homeomorphism. Consider a continuous map T : �→Md(R) and its transpose T ∗
defined by T ∗(ξ) = T (ξ)∗. Write

T t (ξ) = T (ξ) · · · T (� t−1ξ),

and assume that

A: for all ξ ∈ �, T (ξ)(Rd+) ⊂ {0} ∪ int R
d+.

Then there exist continuous maps u, v : � → R
d+ with ‖u(ξ)‖ = ‖v(ξ)‖ = 1 such

that

(i) the line bundles E (resp. F) spanned by u(·) (resp. v(·)) are such that R
d =

E
⊕

F⊥ where b ∈ F(ξ)⊥ if and only if 〈b(ξ), v(ξ)〉 = 0.
(ii) E (resp. F) is T, �-invariant (resp. T ∗, �−1-invariant), i.e. E(�(ξ)) =

E(ξ)T (ξ) and F(�ξ)T ∗(�ξ) = F(ξ), for all ξ ∈ �;
(iii) there exist constants α < 1 and C > 0 such that for all t ≥ 0, and ξ ∈ �,

‖bT (ξ) · · · T (� t−1ξ)‖ ≤ Cαt‖aT (ξ) · · · T (� t−1ξ)‖,

for all unit vectors a ∈ E(ξ), b ∈ F(ξ)⊥.

Our choice to called Proposition 8.13 the Random Perron-Frobenius Theorem is
motivated by the following remark.

Remark 8.14 Assume that the map T : � → Md(R) is constant, i.e. there exists
B ∈Md(R) a positive matrix such that T (ξ) = B for all ξ ∈ �. Then Proposition 8.13
can be restated as follows: there exist u, v ∈ R

d+ such that u(ξ) = u and v(ξ) = v for
all ξ ∈ �; the positive vectors u and v∗ are respectively the right and left eigenvector
of B associated to its dominant eigenvalue (also called Perron eigenvalue) r > 0;
assertion (iii) can be restated as the strong ergodic theorem of demography. That is

lim
t→∞ Bt x/r t = v∗xu,

for all x ∈ int R
d+. Since Bt x is the population at time t with an initial population x , the

interpretation of this theorem is that the eigenvector u represents the stable population
structure, and the coefficients of v are the reproductive values of the population.

In Proposition 8.13, the stable population structure and the reproductive values can
not be fixed vectors whereas long-term dynamics of the population depends on the
sequence of the environment incapsulated in ξ . Therefore, they have to be functions
of the environment, i.e. u, v : �→ R

d+. To interpret those functions, we look at the
following consequence of assertion (iii)

lim
t→∞

xT t (�−tξ)

‖xT t (�−tξ)‖ = u(ξ), (29)
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and its dual version

lim
t→∞

T t (ξ)y∗

‖T t (ξ)y∗‖ = v(ξ)∗. (30)

The former equation appears in the proof of Proposition 8.15 as equation (31). For
the sake of interpretation, assume that the environment along time has been fixed
(here . . . , �−1ξ, ξ,�1ξ, . . . ). Then (29) is interpreted as follows: whatever was the
population a long time ago (here x), its structure today is given by u(ξ). For equation
(30), the interpretation is: whatever we assume to be the reproductive values in a long
time (here y), the reproductive values at time t = 0 is given by v(ξ).

In applications, the environment is represented by a stationary and ergodic process
(Et ). Here ξ represents itself a realization of this process, i.e. a possible trajectory
of the environment. Therefore, there exist two stationary and ergodic processes (Ut )

and (Vt ) such that respectively u(ξ) and v(ξ) are realizations of them. Then equations
(29) and (30) can be interpreted as for any initial population, in a long-term, the stage
structure are given by a version of the process (Ut ) and the reproductive values are
given by a version of (Vt ).

Since assumption H2 does not directly imply assumption A for the map Ai (·, ·),
we need to extend Ruelle’s proposition to the case where

A1’: for all ξ ∈ �, T (ξ) int R
d+ ⊂ int R

d+, and
A2’: there exists s ≥ 1 such that, for all ξ ∈ �, T (ξ) · · · T (�s−1ξ)(Rd+) ⊂ {0} ∪

int R
d+.

Proposition 8.15 The conclusions of Proposition 8.13 still hold under assumptions
A1’–A2’.

Proof Define the continuous map T ′ : �→ �×Md(R) by

T ′(ξ) = T (ξ) · · · T (�s−1(ξ)).

By assumption A2’, T ′(ξ)Rd+ ⊂ {0} ∪ int R
d+. Therefore, Proposition 8.13 applies

to the map T ′ and to the homeomorphism �s which give us maps u, v : �→ R
d+ with

‖u(ξ)‖ = ‖v(ξ)‖ = 1, their respective vector bundles E(·), F(·), and some constants
C, α verifying properties (i), (ii), and (iii).

The vector bundles E(·), F(·) are our candidate bundles for T . We need only to
check properties (ii) and (iii) for the map T as property (i) is immediate.

We claim that

lim
t→∞

xT t (�−tξ)

‖xT t (�−tξ)‖ = u(ξ), (31)

uniformly on all compact subsets of R
d+ \{0}. The motivation of equation (31) follows

from assumption A2’ which implies that the positive cone is contracted after every
interval of time of length s. For an interpretation of (31), see Remark 8.14. Before we
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prove (31), we show property (ii), i.e. E(·) is T, �-invariant, is a consequence (31).
Let y ∈ int R

d+ \ {0}, and ξ ∈ �. Continuity of T and equality (31) applied to y imply

u(ξ)T (ξ) = lim
t→∞

yT t (�−tξ)

‖yT t (�−tξ)‖T (ξ)

= lim
t→∞

yT (�−tξ)T t (�−t (�ξ))

‖yT t (�−tξ)‖
= u(�ξ) lim

t→∞
‖yT (�−tξ)T t (�−t (�ξ)‖

‖yT t (�−tξ)‖ ,

where the final line follows from (31) with ξ = �ξ and x = yT (�−tξ)/‖yT (�−tξ)‖
which belongs to the compact {z ∈ R

d+ : ‖z‖ = 1} for all t ≥ 0. This proves property
(ii) for E . The same argument for the transpose T ′∗ implies property (ii) for F .

Now we prove (31). Let x ∈ R
d+\{0} with ‖x‖ = 1. For every t ≥ 0, define

st := t − [ ts ]s where [q] is the integer part of q. We have

xT t (�−tξ) = xT st (�−tξ)T ′[
t
s ](�−t+st ξ).

Since st ≤ s for all t ≥ 0, continuity of T , and assumption A1’ imply that there is
a compact H ⊂ R

d+\{0} independent of x such that xT st (�−tξ) ∈ H for all t > 0.
Then, (31) is a consequence of inclusion (3.2) in the proof of Proposition 3.2 in Ruelle
(1979a) applied to the map T ′.

It remains to check property (iii): show that there exist α′, C ′ > 0 such that

‖bT t (ξ)‖ ≤ C ′α′t‖u(ξ)T t (ξ)‖ for all t ≥ s, ξ ∈ �, b ∈ F(ξ)⊥.

We have

bT t (ξ) = bT st (ξ)T ′[
t
s ](�st ξ).

Since F(·) is T ∗-invariant, bT st (ξ) ∈ F(�st ξ)⊥ and property (iii) for T ′ implies

1

‖bT st (ξ)‖‖bT st (ξ)T ′[
t
s ](�st ξ)‖ ≤ C(α

1
s )t

‖u(ξ)T st (ξ)‖‖u(ξ)T st (ξ)T ′[
t
s ](�st ξ)‖.

The continuity of T and u(·), and assumption A1’ imply that there exist a constant
R ≥ 0 such that

max{‖wT k(ξ)‖ : ‖w‖ = 1}
min{‖u(ξ)T k(ξ)‖ : ξ ∈ �} ≤ R,

for all k ≤ s and all ξ ∈ �. Then property (iii) is verified with C ′ = C R and α′ = α
1
s .
�
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Assumptions H2-H3 imply that each continuous map Ai : � → Mni (R) satisfies
assumptions A1’–A2’. Hence Proposition 8.15 applies to each continuous map Ai ,
and to the homeomorphism � on the compact space �. Then, for each of those maps,
there exist row vector maps ui (·), vi (·), their respective vector bundles Ei (·), Fi (·),
and the constant Ci , αi > 0 satisfying properties (i), (ii), and (iii) of Proposition 8.15.

For each i ∈ {1, . . . , m}, define the continuous map ζ i : �→ R by

ζ i (γ ) := ln ‖ui (γ )Ai (γ )‖.

In the rest of this subsection, we deduce from Proposition 8.15 some crucial prop-
erties of the invasions rates.

Proposition 8.16 For all γ ∈ � and every population i , ri (γ ) satisfies the following
properties:

(i)

ri (γ ) = lim sup
t→∞

1

t
ln ‖vAt

i (γ )‖,

for all v ∈ R
ni+\{0} and

(ii)

ri (γ ) = lim sup
t→∞

1

t

t−1∑

s=0

ζ i (�
s(γ )).

The proof of this proposition follows the ideas of the proof of Proposition 1 in
Hofbauer and Schreiber (2010).

Proof Let γ ∈ � be fixed. To prove the first part, we start by showing that

ri (γ ) = lim sup
t→∞

1

t
ln ‖ui (γ )At

i (γ )‖. (32)

Let v ∈ R
ni , v �= 0. Since R

ni = Ei (γ )
⊕

F⊥i (γ ), there exist a constant a ∈ R and
a vector w ∈ F⊥i (γ ) such that v = aui (γ )+ w. Then, by Proposition 8.15, we have

‖vAt
i (γ )‖ ≤ a‖ui (γ )At

i (γ )‖ + ‖wAt
i (γ )‖

≤ ‖ui (γ )At
i (γ )‖ (a + Ciα

t
i ‖w‖

)
.

Hence,

lim sup
t→∞

1

t
ln ‖vAt

i (γ )‖ ≤ lim sup
t→∞

1

t
ln ‖ui (γ )At

i (γ )‖

for all v ∈ R
ni \{0}. Since ‖At

i (γ )‖ = sup‖v‖=1 ‖vAt
i (γ )‖, the last inequality implies

that
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ri (γ ) ≤ lim sup
t→∞

1

t
ln ‖ui (γ )At

i (γ )‖ ≤ ri (γ ),

which proves the equality (32).
Now, we consider positive vector v ∈ R

ni+\{0}. We show that the equality (32) is
also satisfied for v. We write v = aui (γ )+w with a > 0 and w ∈ F⊥i (γ ). Proposition
8.15 implies

‖vAt
i (γ )‖ ≥ a‖ui (γ )At

i (γ )‖ − ‖wAt
i (γ )‖

≥ ‖ui (γ )At
i (γ )‖ (a − Ciα

t
i ‖w‖

)
.

Since a > 0,

ri (γ ) ≥ lim sup
t→∞

1

t
ln ‖vAt

i (γ )‖ ≥ lim sup
t→∞

1

t
ln ‖ui (γ )At

i (γ )‖ = ri (γ ),

which completes the proof of assertion (i).
The second assertion results directly from the first assertion and the following

equalities:

ln ‖ui (γ )At+1
i (γ )‖ = ln ‖ui (γ )At

i (γ )Ai (�
t (γ ))‖

= ln
∥∥ui (�(γ )t )Ai (�

t (γ ))
∥∥ ∥∥ui (γ )At

i (γ )
∥∥

= ζ i (�
t (γ ))+ ln

∥∥ui (γ )At
i (γ )

∥∥ .

The second step is a consequence of the invariance of the line bundle Ei . �

Recall that �+ = π−1

0 (�× V ) and �0 = π−1
0 (�× S0).

Corollary 8.17 For all γ ∈ �+\�0, and every i ∈ {1, . . . , m},

ri (γ ) ≤ 0.

Proof Fix i ∈ {1, . . . , m}, and γ ∈ �+\�0 with (ω, x) := π0(γ ). By definition of
�+\�0, xi ∈ R

ni+ and xi �= 0. We have

xi At
i (γ ) = xi Ai (γ ) · · · Ai (�

t−1γ )

= xi Ai (ω, x) · · · Ai (�
t−1(ω, x))

= p2(�
t (ω, x)),

where the second equality is a consequence of (28), and the third one follows from
the definition of the cocycle �. Assumption H4’ implies that there exists T > 0 such
that p2(�

t (ω, x)) belongs to the compact set V for all t ≥ T , which implies that there
exists R > 0 such that ‖xi At

i (γ )‖ ≤ R for all t ≥ T . Assertion (i) of Proposition 8.16
applied to v = xi concludes the proof. �
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Now we give some properties of the invasion rate with respect to a �-invariant
probability measure.

Proposition 8.18 The invasion rate of each population i with respect to an �-
invariant measure μ̃ satisfies the following property:

ri (μ̃) =
∫

�

ζ i (γ )dμ̃.

Proof This result is a direct consequence of property (ii) of Proposition 8.16 and the
Birkhoff’s Ergodic Theorem applied to the continuous maps � and ζ . �


Proposition 8.19 Let μ̃ be a �-invariant measure. If μ̃ is supported by �+\�0, then
ri (μ̃) = 0 for all i ∈ {1, . . . , m}.

Proof Let μ̃ be such a probability measure. Fix i ∈ {1, . . . , m}, and define the set
�i,η := {γ ∈ �+ : ‖p2(π0(�

t (γ )))i‖ > η}. By assumption on the measure μ̃, there
exists a real number η∗ > 0 such that μ̃(�i,η) > 0 for all η < η∗.

The Poincaré recurrence theorem applies to the map �, and implies that for each
η < η∗,

μ̃({γ ∈ �i,η| �t (γ ) ∈ �i,η infinitely often }) = 1. (33)

Recall that the conjugacy (26) implies that for every γ ∈ �+ with π0(γ ) = (ω, x) ∈
�× V \S0, we have

p2(π0(�
t (γ )))i = p2(�

t (π0(γ )))i

= xi At
i (γ ).

Then, equality (33) means that for μ̃-almost all γ ∈ �i,η with 0 < η < η∗,
‖xi At

i (γ )‖ > η infinitely often. Therefore, Proposition 8.16 (i), applied to v = xi ,
implies that ri (γ ) = lim supt→∞ 1

t ln ‖xi At
i (γ )‖ ≥ 0 for μ̃-almost all γ ∈ �i,η, with

η < η∗. Hence ri (γ ) ≥ 0 for μ̃-almost all γ ∈ ⋃n≥ 1
η∗

�i,1/n = �+\�0. Corollary

8.17 completes the proof. �


8.4 Properties of the empirical occupation measures

Given a trajectory γ ∈ �+, the empirical occupation measure at time t ∈ N of
{�s(γ )}s≥0 is

�̃t (γ ) := 1

t

t−1∑

s=0

δ�s (γ ),
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and given a point (ω, x) ∈ � × V , the empirical occupation measure at time t ∈ N

of {�s(ω, x)}s≥0 is

�t (ω, x) := 1

t

t−1∑

s=0

δ�s (ω,x).

In this way, �t (ω, x)(� × B) = �t (ω, x)(B) for every Borel subset B ⊂ V , and
x ∈ V .

The dynamics � and � being semi-conjugated by π0, their respective empirical
occupation measures are semi-conjugated by π∗0 as follows.

Lemma 8.20 Let γ ∈ �+. Then for all t ≥ 0 we have

π∗0 (�̃t (γ )) = �t (π0(γ )).

Proof Let B ⊂ �× V be a Borel set, and γ ∈ �+. Then we have

π∗0 (�̃t (γ ))(B) = �̃t (γ )(π−1
0 (B))

= 1

t

t−1∑

s=0

δ�s (γ )(π
−1
0 (B))

= 1

t

t−1∑

s=0

δ�s (π0(γ ))(B)

= �t (π0(γ ))(B).

The third equality is a consequence of the semi conjugacy (26). �

Proposition 8.21 There exists �̃ with Q(�̃) = 1 such that for all γ ∈ π−1

0 (�̃× V ),
the set of all weak∗ limit point of the family of probability measures {�̃t (γ )}t∈N is a
non-empty subset of InvQ(�)(�+).

Proof Since Q is ergodic (assumption H4’), Birkhoff’s Ergodic Theorem implies that
there exists a subset �̃ ⊂ � such that Q(�̃) = 1, and for all ω ∈ �̃,

lim
t→∞

1

t

t−1∑

s=0

δθ s (ω) = Q (34)

(in the weak∗ topology). Let (ω, x) ∈ �̃×V and γ ∈ π−1
0 (ω, x) ⊂ �+. For all t ∈ N,

we have

p∗1 ◦ π∗0 (�̃t (γ )) = 1

t

t−1∑

s=0

δθ s (ω). (35)
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Since �+ is positively �-invariant and compact, the set of all weak∗ limit point of the
family of probability measures {�̃t (γ )}t∈N is a non-empty subset of P(�+). Since the
maps p1 and π0 are continuous, equalities (34) and (35) imply that p∗1 ◦ π∗0 (μ̃) = Q.
Moreover, Theorem 6.9 in Walters (1982) implies that μ̃ is �-invariant. Therefore,
μ̃ ∈ InvQ(�)(�+), which concludes the proof. �


Recall that Sη = {x ∈ S : ‖xi‖ ≤ η for some i}, and define the subset �η :=
π−1

0 (�× Sη).

Proposition 8.22 If conation (a) of Theorem 8.11 is satisfied, then for all ε > 0 there
exists η∗ > 0 such that

μ̃(�η) < ε,

for all η < η∗ and all μ̃ ∈ InvQ(�)(�+\�0).

Proof If false, there exist ε > 0 and a sequence of measures {μ̃n}n∈N ⊂
InvQ(�)(�+\�0) such that μ̃n(�1/n) > ε for all n ≥ 1. By Proposition 8.6, let
μ̃ ∈ InvQ(�)(�+) be a weak∗ limit point of the sequence {μ̃n}n∈N. Proposition 8.19
implies that r∗(μ̃n) = 0 for all n ≥ 0. Proposition 8.18 and weak∗ convergence imply
that 0 = limn→∞ ri (μ̃n) = ri (μ̃) for all i . Hence, r∗(μ̃) = 0. The Portmanteau
theorem (see e.g. Theorem 2.1. in Billingsley (1999)) applied to the closed set �1/n

implies that for all n ≥ 1,

μ̃(�1/n) ≥ lim inf
m→∞ μ̃m(�1/n)

≥ lim inf
m→∞ μ̃m(�1/m)

≥ ε.

Therefore μ̃(�0) = μ̃(∩n�1/n) ≥ ε. Remark 8.9 implies there exist α > 0 such
that μ̃ = αν̃0 + (1 − α)ν̃1 where ν̃ j are �-invariant probability measures satis-
fying ν̃0(�0) = 1 and ν̃1(�+\�0) = 1. By Proposition 8.19, ri (ν̃1) = 0 for all
i ∈ {1, . . . , k}. Condition (a) implies that r∗(ν̃0) > 0, in which case 0 = r∗(μ̃) =
αr∗(ν̃0) > 0 which is a contradiction. �


8.5 Proof of Theorem 8.11

First, we show that condition (a) of Theorem 8.11 implies that for all ε > 0, there
exists η > 0 such that

lim sup
t→∞

�t (ω, x)(Sη) ≤ ε for Q-almost all ω,

whenever x ∈ R
n+\S0. Second, we prove the equivalence of conditions (a), (b) and

(c).
Let �̃ ⊂ � be defined as in Proposition 8.21. Choose (ω′, x ′) ∈ �̃ × R

n+\S0. By
definition of the set V , there exists a time T ≥ 0 such that �t (ω′, x ′) ∈ � × V , for
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1312 G. Roth, S. J. Schreiber

all t ≥ T . Choose γ ∈ π−1
0 (�T (ω′, x ′)) ⊂ �+\�0. Since μ is a weak∗ limit point of

the family {�t (�
T (ω′, x ′))}t≥0 if and only if it is a weak∗ limit point of the family

{�t (ω
′, x ′)}t≥0, we do not loss generality by considering {�t (�

T (ω′, x ′))}t≥0. Since
�×V is compact, the set of all weak∗ limit points of the family of probability measures
{�t (�

T (ω′, x ′))}t∈N is a non-empty subset of P(�×V ). Let μ = limk→∞�tk (ω, x)

be such a weak∗ limit point. Since �+ is positively �-invariant and compact, passing
to a subsequence if necessary, there exists μ̃ = limk→∞ �̃tk (γ ) ∈ P(�+). By Propo-
sition 8.21, μ̃ ∈ InvQ(�)(�+). Furthermore by Lemma 8.20 and continuity of π0,
π∗0 (μ̃) = μ. Hence, Proposition 8.18, the continuity of the map ζ , and property (ii)
of Proposition 8.16, imply the following equalities for all i :

ri (μ̃) =
∫

�

ζ (η)dμ̃(η)

= lim
k→∞

1

tk

tk−1∑

s=0

ζ (�s(γ ))

≤ ri (γ ).

Hence, by Corollary 8.17,

ri (μ̃) ≤ 0, for all i.

Remark 8.9 implies there exists α ≥ 0 such that μ̃ = αν̃0 + (1 − α)ν̃1 where ν̃ j

are invariant probability measure satisfying ν̃0(�0) = 1 and ν̃1(�+\�0) = 1. By
Proposition 8.19, ri (ν̃1) = 0 for all i ∈ {1, . . . , k}. Condition (a) implies r∗(ν̃0) > 0.
Therefore α must be zero, i.e. μ̃(�+\�0) = 1. Fix ε > 0. By Proposition 8.22 there
exists η∗ > 0 such that

μ̃(�η) < ε, ∀η < η∗,

which implies

μ(�× Sη) < ε, ∀η < η∗.

Since η∗ does not depend on μ, we have

lim sup
t→∞

�t (ω
′, x ′)(�× Sη) < ε, ∀η < η∗,

for all x ′ ∈ R
n+\S0 and ω′ ∈ �̃, which concludes the first part of the proof.

Next, we show the equivalence of conditions (a) and (b). We need the following
version of the minimax theorem (see, e.g., Simmons 1998):

Theorem 8.23 (Minimax theorem) Let A, B be Hausdorff topological vector spaces
and let L : A × B → R be a continuous bilinear function. Finally, let E and F be
nonempty, convex, compact subsets of A and B, respectively. Then
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min
a∈E

max
b∈F

L(a, b) = max
b∈F

min
a∈E

L(a, b).

We have that

min
μ̃

max
i

ri (μ̃) = min
μ̃

max
p

∑

i

pi ri (μ̃)

where the minimum is taken over μ̃ ∈ InvQ(�)(�0) and the maximum over p ∈
� := {p ∈ R

m+ :
∑

i p1 = 1}. Define A to be the dual space to the space of bounded
continuous functions from �0 to R and define B = R

m . Let E = �, and D =
InvQ(�)(�0) ⊂ A which is nonempty, convex and compact by Proposition 8.6. Let
L : A× B → R the bilinear function defined by L(μ̃, p) :=∑i pi ri (μ̃). Proposition
8.18 implies that L is continuous. With these choices, the Minimax theorem implies
that

min
μ̃

max
i

ri (μ̃) = max
p∈� min

μ̃

∑

i

pi ri (μ̃) (36)

where the minimum is taken over μ̃ ∈ InvQ(�)(�0). By the ergodic decomposition
theorem for random dynamical systems (see Lemma 6.19 in Crauel (2002)), the min-
imum of the right hand side of (36) is attained at an ergodic probability measure with
support in �0. Thus, the equivalence of the conditions is established.

Finally, we show the equivalence of condition (b) and (c). As a direct consequence of
assertion (i) of Proposition 8.10, condition (c) implies (b). To prove the other direction,
let �̃ ⊂ � be defined as in the proof of Proposition 8.21. Choose (ω′, x ′) ∈ �̃× S0.
By the same arguments as above, there exist T > 0, γ ∈ π−1

0 (�T (ω′, x ′)) ⊂ �0 and
μ̃ ∈ InvQ(�)(�0) such that

ri (μ̃) =
∫

�

ζ (η)dμ̃(η)

= lim
k→∞

1

tk

tk−1∑

s=0

ζ (�s(γ ))

≤ ri (γ ).

Assertion (i) of Proposition 8.10 implies that ri (γ ) = ri (�
T (ω′, x ′)). Since�T (ω′, x ′)

is on the same trajectory that (ω′, x ′), ri (μ̃) ≤ ri (�
T (ω′, x ′)) = ri (ω

′, x ′). Writing
μ̃ as a convex combination of ergodic probability measures, condition (b) implies∑

i pi ri (ω
′, x ′) > 0. �
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