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Abstract A disease transmission model of SEIRS type with distributed delays in
latent and temporary immune periods is discussed. With general/particular probability
distributions in both of these periods, we address the threshold property of the basic
reproduction number R0 and the dynamical properties of the disease-free/endemic
equilibrium points present in the model. More specifically, we 1. show the dependence
of R0 on the probability distribution in the latent period and the independence of
R0 from the distribution of the temporary immunity, 2. prove that the disease free
equilibrium is always globally asymptotically stable when R0 < 1, and 3. according
to the choice of probability functions in the latent and temporary immune periods,
establish that the disease always persists when R0 > 1 and an endemic equilibrium
exists with different stability properties. In particular, the endemic steady state is at least
locally asymptotically stable if the probability distribution in the temporary immunity
is a decreasing exponential function when the duration of the latency stage is fixed or
exponentially decreasing. It may become oscillatory under certain conditions when
there exists a constant delay in the temporary immunity period. Numerical simulations
are given to verify the theoretical predictions.

Keywords Disease transmission · Latent period · Temporary immune period ·
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1 Introduction

Over the last decades, infectious diseases have gained increasing recognition as a
key component in the dynamics of populations (Anderson and May 1991; Thieme
2003). Mathematical modeling can help characterize the epidemiology of infectious
diseases, and provide advise on control strategies such as the use of antiviral drugs
or quarantine strategies (Gojovic et al. 2009). The most commonly used dynamical
models of epidemics employ differential equations and the methods of analysis for such
equations have become fairly well known. For instance, SIR models are appropriate
for diseases with permanent immunity such as measles and mumps, and periodic
oscillatory behavior cannot happen in the autonomous classical SIR model (Beretta
and Takeuchi 1995). If individuals are infectious for life and never removed from the
class of infectious, such as herpes or HIV, SI model (Diekmann and Montijn 1982)
is a good choice. SIS models (Hethcote and Driessche 2000) describe the case when
individuals can recover from the disease but there is no acquired immunity, so they
return to the susceptible class: examples include sexually transmitted diseases, plague
and meningitis, in which no periodic alternation can occur (Hethcote 1976).

However, the need to model more realistic phenomenon, to include broader biolog-
ically significant effects, such as the distributions of some special periods at different
stages and the spatial dispersion in the spread of diseases, has led to models that
employ more involved formulations including integro-differential and functional dif-
ferential equations (Thieme 2003). In recent years, various extensions of the classical
SIR models have thus been constructed (see Bairagil and Chattopadhyay 2008; Cooke
and Driessche 1996; Driessche et al. 2007; Hethcote et al. 1981; Liu et al. 1987; Tay-
lor and Carr 2009; Yang and Xiao 2010 and the references therein). For example,
upon infection, it is often the case that an individual is not immediately infectious.
During this latent period, the host is no longer in the susceptible class but cannot yet
be considered to be in the infectious class, so remains in an intermediate class: in
the case of yellow fever, for instance, an appropriate SEIR model with an “exposed”
class is useful (Driessche et al. 2007; Yang and Xiao 2010). For diseases that confer
only temporary immunity, an SEIRS model provides a more appropriate description
(Genik and Driessche 1999). Temporary immunity plays a crucial role in the spread
of diseases such as cholera, pertussis, influenza and malaria, where waning immunity
and multiple strains induce the return of individuals to the susceptible class.

Distributed delays have been included in a variety of population models, e.g., white
blood cell models in Yuan and Bélair (2011), SIS and SEIS models in Busenberg
and Cooke (1980), Cooke and Yorke (1973), Greenberg and Hoppensteadt (1975).
In those disease transmission models, the disease either dies out or approaches an
endemic steady state, while in a SIRS model with time delay in a removed class
(Hethcote et al. 1989), there may exist periodic oscillations. In Yan and Feng (2010),
statistical methods are used to show that the probability distributions of the latent
period and the infectious period are primary features in an SEIR model.

In this paper, we consider an epidemic model containing both infectious latent
period and temporary immune period as an extension of the standard SEIRS frame-
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Threshold dynamics in an SEIRS model with latency and temporary immunity 877

work. By analyzing the dynamical behavior of the model with general or specific
distributions in latent and immune periods, we provide insight into the possibility that
delayed factors may have an impact on the virulence of diseases such as influenza
besides their effects on virus transmission. The article is structured as follows. In Sect.
2, we present an SEIRS model, focusing on its general structure and explaining how
the different compartments are coupled together. Dynamical properties of the disease-
free equilibrium and the existence of the endemic equilibrium are investigated with
general distribution functions in the durations of latency and temporary immunity.
Sect. 3 is devoted to the extension of this dynamical analysis with specific distribution
functions, the qualitative behavior at the endemic equilibrium point, including disease
persistence, the local/global stabilities and possible oscillations have been addressed.
Numerical simulations and epidemic interpretations are given in Sect. 4. We summa-
rize our results and give some remarks in Sect. 5.

2 A general SEIRS model

Motivated by the ideas in building the epidemiological models in Cooke and Driessche
(1996), Driessche et al. (2007), Hethcote et al. (1981), Thieme (2003), we consider a
population of constant size N divided into four disjoint classes S(t), E(t), I (t) and
R(t) representing respectively the number of susceptible, exposed (not yet infectious),
infectious and recovered individuals at time t . We take the durations of the latent (or
exposed) and temporary immunity (or recovery) stages explicitly into account. The
flow of individuals between the different classes in the population is thus given in the
diagram of Fig. 1, under the assumptions that a) all newborns are assumed susceptible
(S); b) the natural disease-independent death and birth occur at equal constant rates b;
and individuals rarely die of a certain disease (negligible disease-related death); c) the
force of infection is of the standard type (“mass action”), β I/N with infectious (I )
transmission rate (average number of contacts per infective per day) β, so that suscep-
tible are transferred at a rate βSI

N . The newly infected individuals enter the exposed
class (E), where they remain for a latent period, after the transmission of infection
from susceptible to potentially infective, but before the potential infective can transmit
infection and move into the infectious class. To allow for a general latent period, we
let P(t) be the probability of individuals remaining in the exposed class t units after
becoming exposed. An infectious individual may in due course be removed from the

ES I R
bS bE bI bR

bN

P(t)

Q(t)

SI/Nβ Iγ

Fig. 1 SEIRS model
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infectious class because of recovery or isolation, to simplify the analysis, the wait-
ing time in the infectious class is assumed to be exponentially distributed with mean
waiting time 1

γ
, although the biological realism of this assumption may be debated. If

the immunity is not permanent, the recovered (R) individuals can become susceptible
again after a certain period of time. Let Q(t) be the probability of individuals remain-
ing in the recovered class t units of time after having recovered (either by removal or
acquired immunity). According to the natural progression of the disease, we assume
that P(t), Q(t) are functions satisfying the following conditions:
(H) nonnegative, nonincreasing and piecewise continuous with

P(0+) = Q(0+) = 1, P(∞) = Q(∞) = 0. (1)

Thus the progression of an individual is from susceptible, to infectious, through an
exposed process, then to temporary recovery, and back to susceptible, recurrently.

With arbitrarily distributed latent and immune stages, the number of individuals
who become exposed (respectively, recovered) at some time u ∈ (0, t) and are still in
the E (respectively, R) class at time t is given by

E(t) =
t∫

0

β
S(u)I (u)

N
e−b(t−u)P(t − u)du

and

R(t) =
t∫

0

γ I (u)e−b(t−u)Q(t − u)du.

Rescaling the number of individuals in each class by the total population N , i.e.
S
N → Ŝ, E

N → Ê, I
N → Î and R

N → R̂ yields

Ê(t) =
t∫

0

β Ŝ(u) Î (u)e−b(t−u)P(t − u)du,

R̂(t) =
t∫

0

γ Î (u)e−b(t−u)Q(t − u)du.

(2)

To simplify the notations in the following, we use S, E, I, R to replace Ŝ, Ê, Î , R̂
respectively, by ignoring the ·̂ sign. Equation (2) can be converted (under mild con-
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ditions related to initial conditions) to the equivalent integro-differential equations
(Cooke and Driessche 1996; Driessche et al. 2007),

Ė = βS(t)I (t)− bE(t)+
t∫

0

βS(u)I (u)e−b(t−u)P ′(t − u)du,

Ṙ = γ I (t)− bR(t)+
t∫

0

γ I (u)e−b(t−u)Q′(t − u)du,

(3)

where the integral is a Stieltjes integral. Obviously, both integral terms in Eq. (3)
are negative due to the nonincreasing properties of P(t) or Q(t). Using the negative
integral term in Ė or Ṙ in Eq. (3) as the inflow to the I or S class, the SEIRS model
can be formulated as the integro-differential system,

Ṡ = b − βS(t)I (t)− bS(t)−
t∫

0

γ I (u)e−b(t−u)Q′(t − u)du,

Ė = βS(t)I (t)− bE(t)+
t∫

0

βS(u)I (u)e−b(t−u)P ′(t − u)du,

İ = −
t∫

0

βS(u)I (u)e−b(t−u)P ′(t − u)du − bI (t)− γ I (t),

Ṙ = γ I (t)− bR(t)+
t∫

0

γ I (u)e−b(t−u)Q′(t − u)du.

(4)

It is easy to see that S(t) + E(t) + I (t) + R(t) = 1, implying that the population is
demographically closed and all changes are due to the infection mechanism.

Letting t − s = u in the integral terms, we can rewrite system (4) as

Ṡ = b − βS(t)I (t)− bS(t)−
t∫

0

γ I (t − s)e−bsd Q(s),

Ė = βS(t)I (t)− bE(t)+
t∫

0

βS(t − s)I (t − s)e−bsd P(s),

İ = −
t∫

0

βS(t − s)I (t − s)e−bsd P(s)− bI (t)− γ I (t),

Ṙ = γ I (t)− bR(t)+
t∫

0

γ I (t − s)e−bsd Q(s).

(5)
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Noticing that the equations for Ṡ and İ in (5) are decoupled from the equations for Ė
and Ṙ, so we can consider the coupled equations Ṡ and İ first,

Ṡ = b − βS(t)I (t)− bS(t)−
t∫

0

γ I (t − s)e−bsd Q(s),

İ = −
t∫

0

βS(t − s)I (t − s)e−bsd P(s)− bI (t)− γ I (t).

(6)

Denoting D1 = {(S, I ) ∈ R2 : S, I ≥ 0, S + I ≤ 1} as a desired invariant region in
the (S, I ) plane, we have

Lemma 1 Let (S(0), I (0)) ∈ D1 satisfy S(0) + I (0) = 1, then System (6) has a
unique solution with (S(t), I (t)) ∈ D1 and S(t), I (t) ≥ 0 for all t ≥ 0.

Proof The existence, uniqueness and continuity of the solution of Eq. (6) can be
obtained from Miller (1971).

When I (0) = 0 and S(0) = 1, it is obvious from the initial condition S(0)+ I (0) =
1 that S(t) = 1, I (t) = 0 for all t > 0.

When I (0) > 0, then I (t), S(t) ≥ 0 for t > 0. If not, there exists a finite time
t0 > 0 such that I (t), S(t) ≥ 0 for t ∈ [0, t0] and either

(i) I (t0) = 0, I ′(t0) ≤ 0 or

(i i) S(t0) = 0, S′(t0) ≤ 0.

If (i) holds, from I ′(t) ≥ −(b + γ )I (t) for t ∈ [0, t0], we have

I (t0) ≥ I (0)e−(b+γ )t0 > 0

which contradicts the above condition (i); if (i i) holds, then since I (t) ≥ 0 for
t ∈ [0, t0], S′(t0) = b−∫ t

0 γ I (t−s)e−bsd Q(s) > 0 contradicts S′(t0) ≤ 0. Therefore,
I (t) ≥ 0 and S(t) ≥ 0 for all t > 0 in D1, i.e., D1 is positively invariant.

More specifically, if (S(0), I (0)) ∈ D1 and I (0) > 0, then I (t) > 0 and S(t) > 0
for all finite t > 0; if I (0) = 0, then S(t) = 1, I (t) = 0 for all t ≥ 0. �	

The result in Lemma 1 and Eq. (2) imply E(t) ≥ 0 and R(t) ≥ 0 for all t ≥ 0.
Let C = C((−∞, 0],R4) be the continuous functions with the norm ||φ|| =

maxθ∈(−∞,0] |φ| for φ ∈ C . For any given continuous function v = (v1, v2, v3, v4) :
(−∞, 0] −→ R

4, denote vt = (v1(t + ·), v2(t + ·), v3(t + ·), v4(t + ·)) ∈ C for all
t ∈ [0, α) with α > 0, and C+ = C((−∞, 0],R4+).
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We define F(t, φ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b − βφ1(0)φ3(0)− bφ1(0)−
t∫

0

γφ3(−s)e−bsd Q(s)

βφ1(0)φ3(0)− bφ2(0)+
t∫

0

βφ1(−s)φ3(−s)e−bsd P(s)

−
t∫

0

βφ1(−s)φ3(−s)e−bsd P(s)− (b + γ )φ3(0)

γ φ3(0)− bφ4(0)+
t∫

0

γφ3(−s)e−bsd Q(s)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

for any φ ∈ C+. Obviously, system (5) can be simply written as

v′(t) = F(t, vt ), (7)

which is a non-autonomous delayed system with delay relating to the time by τ(t) = t .
This is a very challengeable research topic and there is few result in the literature,
especially for the general forms of P and Q. First of all, we can obtain the positivity
result following the standard theorems in Miller (1971), Smith (1995), Zhao (2003),

Theorem 2 For any φ ∈ C+, system (7) (or (5)) has a unique nonnegative solution
v(t, φ) in

D2 = {(S, E, I, R) ∈ R4+ : 0 ≤ S + E + I + R ≤ 1}, (8)

with v0 = φ and vt (φ) ∈ C+ for all t ≥ 0.

We then consider the limiting system of (7) when t −→ ∞, which is

ẇ1 = b − βw1(t)w3(t)− bw1(t)−
∞∫

0

γ v3(t − s)e−bsd Q(s),

ẇ2 = βw1(t)w3(t)− bw2(t)+
∞∫

0

βw1(t − s)w3(t − s)e−bsd P(s),

ẇ3 = −
∞∫

0

βw1(t − s)w3(t − s)e−bsd P(s)− bw3(t)− γw3(t),

ẇ4 = γw3(t)− bw4(t)+
∞∫

0

γw3(t − s)e−bsd Q(s).

(9)
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From the result in Mischaikow et al. (1995), we know that, the non-autonomous
solution semi-flow of (7) is asymptotic to the autonomous solution semi-flow of (9)
on C+.

Denote P̂ = ∫ ∞
0 e−bs P(s)ds as the average time that an individual remains in

the exposed class before leaving it (by either becoming infectious or dying). It is
obvious that P̂ <

∫ ∞
0 e−bsds = 1

b . Let P∗ = − ∫ ∞
0 e−bsd P(s), we have P∗ =

1 − bP̂ ∈ (0, 1) which represents the fraction of the population surviving in the
exposed stage. Similarly, Q̂ = ∫ ∞

0 e−bs Q(s)ds < 1
b denotes the average time that

an individual remains in the removed class before losing temporary immunity, and
Q∗ = − ∫ ∞

0 e−bsd Q(s) = 1 − bQ̂ ∈ (0, 1) describes the fraction having temporary
immunity or recovery.

The steady states of (9) should therefore satisfy

b − βw1w3 − bw1 + γw3 Q∗ = 0,

βw1w3 − bw2 − βw1w3 P∗ = 0,

βP∗w1w3 − (b + γ )w3 = 0,

γw3 − bw4 − γ Q∗w3 = 0.

(10)

Let R0 = βP∗
b+γ = β(1−bP̂)

b+γ be the average number of effective contacts of an infective
during the infectious period, which is the basic reproduction number. We can show,
from (10), that there is a disease-free equilibrium (DFE) E P0 = (1, 0, 0, 0) which
is the only equilibrium when R0 < 1, whereas when R0 > 1, there is an additional,
unique endemic equilibrium (EE) point E P∗ = (w∗

1, w
∗
2, w

∗
3, w

∗
4) which is given in

terms of the basic reproduction number R0, as

w∗
1 = b + γ

βP∗ = 1

R0
,

w∗
2 = (R0 − 1)[β − (b + γ )R0]

R0(β − γ R0 Q∗)
,

w∗
3 = b(1 − w∗

1)

βw∗
1 − γ Q∗ = b(R0 − 1)

β − γ R0 Q∗ ,

w∗
4 = γw∗

3(1 − Q∗)
b

= γ (1 − Q∗)(R0 − 1)

β − γ R0 Q∗ .

(11)

It is easy to verify that β − γ R0 Q∗ > 0 always holds since 0 < P∗, Q∗ < 1.
The stability of the disease-free equilibrium E P0 is described in the following

result.

Theorem 3 (i) (1, 0, 0, 0) is globally asymptotically stable in (9) if R0 < 1 and
unstable if R0 > 1.

(ii) When R0 < 1, all the solutions in (7), denoted by v(t) = (v1(t), v2(t), v3(t),
v4(t)), converge to (1, 0, 0, 0) as t −→ ∞.
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Proof At first, we consider the decoupled equations ẇ1 and ẇ3 from (9).

ẇ1 = b − βw1(t)w3(t)− bw1(t)−
∞∫

0

γ v3(t − s)e−bsd Q(s),

ẇ3 = −
∞∫

0

βw1(t − s)w3(t − s)e−bsd P(s)− bw3(t)− γw3(t).

(12)

At the trivial equilibrium point E = (1, 0) in (12), the corresponding characteristic
equation is

�0(λ) = (λ+ b)(λ+ b + γ + A(λ)) = 0,

where A(λ) = β
∫ ∞

0 e−(b+λ)sd P(s). Since λ = −b < 0, it suffices to consider
h0(λ) = λ+ b + γ + A(λ) = 0. From

h0(0) = b + γ + β

∞∫

0

e−bsd P(s) = b + γ − βP∗ = (b + γ )(1 − R0),

we see that if R0 < 1, then h0(0) > 0, implying λ = 0 is not a root of the characteristic
equation.

Assume now that λ = μ+ iv does satisfy h0(λ) = 0 with μ ≥ 0. From

|λ+ b + γ | = | − A2(λ)| ≤ βP∗,

we have

(μ+ b + γ )2 + v2 ≤ β2 P∗2 ≤ (b + γ )2 (13)

since R0 = βP∗
b+γ < 1. Obviously, Eq. (13) cannot hold for μ ≥ 0. Therefore when

R0 < 1, E = (1, 0) is locally asymptotically stable in (12).
When R0 > 1, h0(0) < 0. Since limλ→+∞ h0(λ) = +∞, there exists a positive

λ̄ > 0, such that h0(λ̄) = 0 due to the continuity of h0(λ)with respect to λ. Therefore
E = (1, 0) is unstable in system (12).

Consequently, the local stability and unstability of (1, 0, 0, 0) in (9) with respect to
R0 < 1 and R0 > 1 follow.

Furthermore, we can prove the global attractivity of (1, 0, 0, 0) in (9) when R0 < 1.
Indeed, define X∞ = limt→∞ sup X (t). From Lemma 1, we know thatw1(t), w3(t) ∈
[0, 1], so w∞

1 , w
∞
3 (defined similarly as X∞) ∈ [0, 1]. There thus exists a sequence

tn → ∞ such that w3(tn) → w∞
3 and w′

3(tn) → 0 as n → ∞. From

w′
3(t) = −

∞∫

0

βw1(t − s)w3(t − s)e−bsd P(s)− (b + γ )w3(t),
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it follows that

(b + γ )w∞
3 ≤ sup

⎛
⎝−

∞∫

0

βw1(tn − s)w3(tn − s)e−bsd P(s)

⎞
⎠ ≤ βw∞

1 w
∞
3 P∗.

If w∞
3 > 0, then w∞

1 ≥ b+γ
βP∗ = 1

R0
> 1, giving a contradiction. Hence w∞

3 = 0

and w∞
1 = 1. From Eqs. (2) and (9), we have w∞

2 = βw∞
1 w

∞
3 P̂ = 0 and w∞

4 =
γw∞

3 Q̂ = 0. Therefore, w2(t), w3(t), w4(t) → 0 and w1(t) → 1 as t → ∞,
indicating that the disease-free equilibrium point (1, 0, 0, 0) is globally asymptotically
stable if R0 < 1. This completes the proof in (i).

Now we define M = C((−∞, 0],R2+) and

ω = {(ψ1, ψ3) ∈ M : lim
n−→∞(v1(t + ·), v3(t + ·)) = (ψ1, ψ3) for some tn −→ ∞}.

In view of Theorem 2, it is easy to see that ω is a nonempty and compact subset of
M and the solutions in (12) are uniformly bounded and ultimately bounded in M .
By the continuous-time version of Zhao (2003)(Lemma 1.2.2), it follows that ω is
an internally chain transitive set for the solution semi-flow of (12) on the positively
invariant set M .

When R0 < 1, from the above analysis, we have W s(E) = M , where W s(E) is the
stable set of E = (1, 0) for the solution semi-flow of (12), and hence ω∩ W s(E) �= ∅.
Therefore ω = E follows from Zhao (2003) (Theorem 1.2.1). Consequently,

lim
t−→∞ v2(t) = 0, lim

t−→∞ v4(t) = 0.

Hence, all the solutions in (7) are convergent to (1, 0, 0, 0) as t −→ ∞. This is the
conclusion in (ii). �	

The results in Theorem 3 show that there is a sharp threshold associated with R0.
When R0 < 1, the disease disappears as time advances, and when R0 > 1, the disease
becomes endemic. Although we cannot provide rigorous proof about the persistence
of the disease in the general model (5) or (7), due to the time-dependent delay, the
threshold value of the basic reproduction number R0 is an important index relating to
the epidemic potential of an infectious disease, which is a key epidemiological quantity
in determining whether or not an infectious disease can spread through a population.
The value of R0 is directly proportional to P∗, the fraction of individuals surviving
the latent period. From P∗ = 1 − bP̂ , P̂ is the mean sojourn time (death-adjusted)
in the exposed stage, we understand that longer mean sojourn time P̂ will reduce the
magnitude of disease transmission. In other words, if the latency period is long many
infected people will die before they would have become infectious, so this should
reduce R0. On the other hand, R0 is independent of the probability distribution in the
temporary recovery period, implying that changes in the distribution of the immunity
period do not give rise to a disease outbreak, but influence the strength of the infectious
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Threshold dynamics in an SEIRS model with latency and temporary immunity 885

class. In other words, since initially only few will be infectious or recovered, it doesn’t
matter if they return quickly to the susceptible state or not.

Although we already know the existence of the endemic equilibrium E P∗ in (9)
when R0 > 1, the dynamics of the original non-autonomous system (5) and the limiting
system (9) at the unique E P∗ cannot be readily determined due to the complexity of the
non-autonomous system with arbitrary probability functions P and Q. In the following
section, we focus on the situation when R0 > 1, and present some dynamical analysis
for special probability distributions in the two different stages.

3 The model with particular probability distributions

The general probabilities P(s) and Q(s) in (5) relate to the rate of removal from the
latent or immune class at stage age s by natural progression of the disease. It should
be mentioned that, some particular forms of probability functions, such as the weak
kernel function k1(s) and the uniform distribution k2(s), satisfy the assumption (H ),
where

k1(s) = e−ωs (ω > 0), k2(s) =
{

1 s ∈ [0, l]
0 s ≥ l

. (14)

We will show that, with such ki , (i = 1, 2), the general system (5) becomes a system
of ordinary differential equations (ODEs) (with k1) or delay differential equations
(DDEs) (with k2). In fact, depending on the probability density in the process, for
example, in Blyuss and Kyrychko (2010), the authors choose the probability function
g(ξ) of taking time ξ to lose acquired immunity with

∫ ∞
0 g(s)ds = 1 and g ≥ 0, so that

the probability of still having immunity s time units after acquiring it is 1−∫ s
0 g(ξ)dξ

which corresponds to Q(s) in (5) satisfying Q′(s) = −g(s). In this way, if g(s) is
taken as the general γ -distribution, we have the related distribution Q(s). e.g., if g(s)
is the strong kernel, g(s) = ω2se−ωs , then Q(s) = (ωs + 1)e−ωs . With such Q(s),
R(t) in Eq. (2) becomes

R(t) =
t∫

0

γ I (u)e−(b+ω)(t−u)[ω(t − u)+ 1]du,

then

R′(t) = γ I (t)− (b + ω)R(t)+
t∫

0

γωI (u)e−(b+ω)(t−u)du

is a non-autonomous equation. Note that the strong kernel function g(s) does not
satisfy the condition (H). Similarly, if we take the probability function as a modified

uniform distribution P(t) =
{

1 − mt, t ∈ [0, τ ]
0 t > τ

(τ = 1
m ) in Bhattacharya and Adler
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(2012) (or more generally P(t) =
{

1 − m1t, t ∈ [0, τ ]
1 − m2t t > τ

), then when t < τ , E ′(t) =
βS(t)I (t)− bE(t)− ∫ t

0 mβe−b(t−u)S(u)I (u)du; whileas when t > τ ,

E ′(t) = βS(t)I (t)− bE(t)−
t∫

t−τ
mβe−b(t−u)S(u)I (u)du

is not an autonomous system either.
Therefore, in this section, we study the qualitative properties of the SEIRS model

(5) when R0 > 1, in four cases where the latent and immune periods are characterized
by particular and commonly used probability distributions ki (t), (i = 1, 2) given
in (14).

Case (i): P(t) = e−ω1t , Q(t) = e−ω2t

With both exponential distributions, E(t) = ∫ t
0 βS(u)I (u)e−(b+ω1)(t−u)du, and

thus E ′(t) = βS(t)I (t) − (b + ω1)E(t). Similarly, R′(t) = γ I (t) − (b + ω2)R(t).
Hence, system (5) becomes a system of ODEs

Ṡ = b − βS(t)I (t)− bS(t)+ ω2 R(t),

Ė = βS(t)I (t)− (b + ω1)E(t),

İ = ω1 E(t)− (b + γ )I (t),

Ṙ = γ I (t)− (b + ω2)R(t),

(15)

with

P̂ = 1

b + ω1
, P∗ = ω1

b + ω1
; Q̂ = 1

b + ω2
, Q∗ = ω2

b + ω2
.

The basic reproduction number R0 becomes R0 = βω1
(b+γ )(b+ω1)

, where ω1
ω1+b corre-

sponds to the fraction of individuals surviving in the latent class.
System (15) is a special case studied in Hethcote and Driessche (1991), Li et al.

(1999) with linear incidence. We summerize the stability result in the following.

Theorem 4 When R0 > 1, the system (15) is uniformly persistent in the sense that,
there exists a constant 0 < ε0 < 1 such that limt→∞ S(t)(E(t), I (t), R(t)) > ε0.
Moreover, the endemic equilibrium point E P∗ is always locally asymptotically stable,
and under either of the conditions, i) γω2 < ε0(βε0 + γ + b)(βε0 + ω2 + b) or ii)
ω1 −γ − b < ω2, it is also globally asymptotically stable in D2 \ {(1, 0, 0, 0)}, where
D2 is given in (8).

Theorem 4 implies that, in the SEIRS model without time delay, when the basic
reproduction number R0 > 1, the disease is not only uniformly persistent, but also
convergent to a constant when the average immunity period is sufficiently small or
sufficiently large. In such circumstances, oscillations cannot occur in the system,
and outbreak of the disease is possible if there is no intervening treatment such as
vaccination.
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Case (ii): P(t) = e−ωt , Q(t) =
{

1 t ∈ [0, τ ]
0 t > τ

With an average latency time of 1
ω

and a constant period τ of temporary immunity,
we have

E(t) =
t∫

0

βS(u)I (u)e−(b+ω)(t−u)du.

When t ∈ [0, τ ],

R(t) =
t∫

0

γ I (u)e−b(t−u)Q(t − u)du =
t∫

0

γ I (u)e−b(t−u)du,

and if t > τ , R(t) = ∫ t
t−τ γ I (u)e−b(t−u)du.

We therefore obtain the following systems: when 0 ≤ t < τ ,

Ṡ = b − βS(t)I (t)− bS(t),

Ė = βS(t)I (t)− (b + ω)E(t),

İ = ωE(t)− (b + γ )I (t),

Ṙ = γ I (t)− bR(t) ;

(16)

and when t > τ ,

Ṡ = b − βS(t)I (t)− bS(t)+ γ e−bτ I (t − τ),

Ė = βS(t)I (t)− (b + ω)E(t),

İ = ωE(t)− (b + γ )I (t),

Ṙ = γ I (t)− γ e−bτ I (t − τ)− bR(t).

(17)

the latter being a system of DDEs with a constant delay τ . From the biological inter-
pretation, the delay is assumed to be finite. Once the initial condition (I.C.) in (16) is
given, the I.C. needed for (17) is indeed given by the solution of (16) for t ∈ [0, τ ].
The basic reproduction number R0 = βω

(b+γ )(b+ω) is identical to that in Case (i), which
is independent of the temporary immunity period τ .

The existence of the endemic equilibrium E P∗ in System (17) is consistent with
that in (9) with the components shown in (11). Adapting ideas from Lou and Zhao
(2011), Wang and Zhao (2006), we can study the persistence of the disease when
R0 > 1. We only need to consider the decoupled equations ,

Ė = β(1 − E(t)− I (t)− R(t))I (t)− (b + ω)E(t),

İ = ωE(t)− (b + γ )I (t),

Ṙ = γ I (t)− γ e−bτ I (t − τ)− bR(t),

(18)
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from (17) and S(t) = 1 − E(t)− I (t)− R(t). Let

D3 = {(E, I, R) ∈ R
3+ : 0 ≤ E + I + R ≤ 1},

X = {φ = (φ1, φ2, φ3) ∈ C([−τ, 0], D3)}

and the solution semi-flow�(t)φ = ut (φ), φ ∈ X, t ≥ 0. From the result in Theorem
2, we know that every solution (E(t, φ), I (t, φ), R(t, φ))withφ ∈ X eventually enters
into X . Thus the solution semi-flow is point dissipative on X and �(t) : X → X is
compact for each t > τ . From (Hale 1988, Theorem 3.4.8), �(t) admits a global
attractor which attracts every bounded set in X .

The following result shows that the disease is persistent if R0 > 1.

Theorem 5 When R0 > 1, the disease is uniformly persistent in the sense that
there is a positive number η such that every solution (E(t), I (t), R(t)) in System
(18) with R(0) ≥ 0 and E(0) > 0, I (0) > 0 satisfies limt→∞ inf E(t) ≥ η and
limt→∞ inf I (t) ≥ η.

Proof In order to use persistence theory, we define

X1
0 = {φ ∈ X, φ1(0) > 0, φ2(0) > 0},

∂X1
0 = X\X1

0 = {φ ∈ X, φ1(0) = 0 or φ2(0) = 0},

and

M1
∂ = {φ ∈ ∂X1

0 : �(t)φ ∈ ∂X1
0, t ≥ 0}.

Let ω(φ) be the omega limit set of the orbit γ+(φ) = {�(t)φ : ∀t ≥ 0}, and set
M1 = (0, 0, 0). ¿From (18), we have, E ′(t) ≥ −(b + ω)E(t) and I ′(t) ≥ −(b +
γ )I (t). For any given φ ∈ X1

0, it is obvious that E(t) ≥ φ1(0)e−(b+ω)t > 0 and
I (t) ≥ φ2(0)e−(b+γ )t > 0, that is, �(t)X1

0 ⊂ X1
0. For any given ψ ∈ M1

∂ , we have
�(t)ψ ∈ ∂X1

0 for t ≥ 0, that is, for each t > 0, E(t, ψ) ≡ 0 or I (t, ψ) ≡ 0. If
E(t, ψ) ≡ 0, then in view of the equations İ , Ṙ in System (18), limt→∞ I (t, ψ) =
0, limt→∞ R(t, ψ) = 0 follow. In the case of I (t, ψ) ≡ 0, then from the equations
Ė, Ṙ, limt→∞ E(t, ψ) = 0, limt→∞ R(t, ψ) = 0. Therefore ω(ψ) = {M1} for
ψ ∈ M1

∂ .
Further, we have the following claim:

Claim limt→∞ ||�(t)(φ)− M1|| ≥ ε for all φ ∈ X1
0.

By contradiction, suppose that limt→∞ ||�(t)(φ)− M1|| < ε for some φ0 ∈ X1
0.

Then there exists t0 > 0 such that E(t, φ0) < ε/3, I (t, φ0) < ε/3, R(t, φ0) < ε/3
and S(t, φ0) > 1 − ε for t > τ + t0.

Now from the linearization of (18) at (0, 0, 0), we consider

Ė = β I (t)− (b + ω)E(t),

İ = ωE(t)− (b + γ )I (t).
(19)
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It is easy to check that, if R0 > 1, the principle eigenvalue λ1 > 0 in (19), and
the corresponding eigenfunction is positive. Due to the continuity of λ, there exists a
sufficiently small positive number ε such that λ1(ε) > 0.

If φ1(0) > 0, φ2(0) > 0, in view of the equations for Ė, İ in System (18), we have

Ė ≥ β(1 − ε)I (t)− (b + ω)E(t),

İ = ωE(t)− (b + γ )I (t).

In the following ODEs system

u̇1 = β(1 − ε)u2(t)− (b + ω)u1(t),

u̇2 = ωu1(t)− (b + γ )u2(t),

there exists a solution u(t) = eλ1(ε)tφ0, where φ0 is the positive eigenfunction asso-
ciated with λ1(ε), u and φ0 are vectors with two components.

Since E(t, φ0) >> 0, I (t, φ0) >> 0 for all t > 0, the comparison theory implies
that there exists a small ξ > 0 such that (E(t, φ0), I (t, φ0))

T ≥ ξeλ1(ε)tφ0 for all
t ≥ t0. Thus limt→∞(E(t, φ0), I (t, φ0))

T = ∞ because of λ1 > 0, which is a
contradiction. Thus the claim holds.

Define a continuous function p : X → R+ by p(φ) = min{φ1(0), φ2(0)} for any
φ ∈ X . It is clear that p−1(0,∞) ⊂ X1

0 and if p(φ) > 0 then p(�(t)φ) > 0 for
all t > 0. Note that any forward orbit of �(t) in M1

∂ converges to M1. The above
claim indicates that M1 is isolated in X and W s(M1)

⋂
X1

0 = ∅, here W s(M1) is
the stable set of M1. Moreover, there is no cycle in M1

∂ from M1 to M1. Thus from
the result in Smith and Zhao (2001), we know that, in the case of φ1(0) < φ2(0),
there exists an η1 > 0 such that min{p(ψ) : ψ ∈ ω(φ)} > η1 for any φ ∈ X1

0,
and so limt→∞ E(t, φ) = limt→∞ inf p(�(t)φ) ≥ η1. Consequently, by solv-
ing the equation İ in (18) using the variation-of-constant method, we can obtain
limt→∞ I (t, φ) ≥ η2 for any φ ∈ X1

0 and some η2 > 0. Whileas if φ1(0) > φ2(0),
we have similar result with limt→∞ I (t, φ) = limt→∞ inf p(�(t)φ) ≥ η1 and
limt→∞ E(t, φ) ≥ η2 as well. Letting η = min{η1, η2} finishes the proof. �	

To examine the local stability at E P∗, we can consider only the first three coupled
equations in the system. The corresponding characteristic equation is

�2(λ) = λ3 + a21λ
2 + a22λ+ a0 − βγw∗

3ωe−(λ+b)τ = 0

with

a21 =βw∗
3 +3b+ω+γ, a22 =(b+βw∗

3)(2b+γ+ω), a0 =βw∗
3(b+ω)(b+γ ).

Since

�2(0) = a0 − βγw∗
3ωe−bτ = βw∗

3[ωγ (1 − e−bτ )+ b(ω + γ + b)] > 0,

λ = 0 is not a root of �2(λ) = 0.
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When τ = 0, we can obtain that E P∗ is locally asymptotically stable by the Routh-
Hurwitz criterion since a21 > 0, a22 > 0, a0 − βγωw∗

3 = bβw∗
3(b + ω + γ ) > 0

and

a21a22 − (a0 − βγωw∗
3) = (βw∗

3 + 2b + ω + γ )[βw∗
3(2b + ω + γ )

+b(3b + ω + γ )] > 0.

For τ > 0, if we assume that λ = iν is a root of �2(λ) = 0, then

(a0 − a21ν
2)2 + ν2(a22 − ν2)2 = (βγw∗

3ω)
2e−2bτ .

Let μ = ν2 and define

h1(μ) = μ3 + (a2
21 − 2a22)μ

2 + (a2
22 − 2a0a21)μ+ a2

0 − (βγw∗
3ω)

2e−2bτ = 0,

(20)

where

a2
21 − 2a22 = w∗

3β(w
∗
3β + 2b)+ b(5b + 4ω + 4γ )+ (ω + γ )2 > 0,

a2
0 − (βγw∗

3ω)
2e−2bτ = (w∗

3β)
2[ω2γ 2(1 − e−2bτ )+ b(b + ω + γ )

× (b(b + ω + γ )+ 2ωγ )] > 0,

a2
22 − 2a0a21 = (w∗

3β)
2[ω2 + γ 2 + 2b(b + ω + γ )] + 2w∗

3β

×[b3 − ωγ (3b + ω + γ )]
+ b2(2b + ω + γ )2.

For the distribution of the roots in a third-order polynomial P3(x) = x3 + l1x2 + l2x +
l3 = 0, by using basic algebra, one can verify that:

(a) if all the coefficients li , (i = 1, 2, 3) are positive, then there is no positive real
zero of P3(x);

(b) if l1 > 0, l2 < 0 and

0 < l3 ≤ −x̄(x̄2 + l1 x̄ + l2), (21)

there exists one or two positive real roots of P3(x) = 0, where one root is asso-

ciated with the equality sign, x̄ =
√

l2
1−3l2−l1

3 .

Since the sign of a2
22 − 2a0a21 in (20) can be negative, it is possible for h1(μ) = 0

to have one or two positive real roots, implying that there may exist purely imaginary
roots of �2(λ) = 0. Therefore, for system (17), there are circumstances under which
oscillations or stability switches may take place provided the transversality condition
is satisfied.

To discuss possible oscillations or stability switches with respect to the immune
period τ analytically, we can use methods similar to the ones in Beretta and Kuang
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(2002), although the present case is much more involved because w∗
3 = b(R0−1)

β−γ R0e−bτ

depends on τ . Substituting w∗
3 into�2(λ) = 0 and ignoring constant factors, we have

�̃2(λ) = P1(λ, τ )+ P2(τ )e
−λτ = 0,

where P1(λ, τ ) = p1(τ )λ
3 + p2(τ )λ

2 + p3(τ )λ + p4(τ ), the real number P2(τ ) =
bγωe−bτ ((b + γ )(b + ω)− βω) < 0 since R0 = βω

(b+γ )(b+ω) > 1. Here, pi (τ ), (i =
1, · · · , 4) are differentiable functions which we omit for simplicity. Assuming that
�̃2(iν) = 0, ν > 0, and letting

G(ν, τ ) = |P1(iν, τ )|2 − P2
2 = (p4 − p2ν

2)2 + ν2(p3 − p1ν
2)2 − P2

2 ,

we can separate the real and imaginary parts of �̃2(iν) = 0 and obtain

tan ντ = ν(p3 − ν2 p1)

p2ν2 − p4
, (22)

and

p2
1μ

3 + (p2
2 − 2p1 p3)μ

2 + (p2
3 − 2p2 p4)μ+ p2

4 − P2
2 = 0, (23)

where ν must satisfy G(ν, τ ) = 0 and μ = ν2.
The positive critical values of τ ∗ and ν∗ could be found from (22) and (23), when

all the other parameters are fixed. With an argument similar to that in Beretta and
Kuang (2002), we have the following result.

Theorem 6 Assume that ν∗(τ ∗) = √
μ∗(τ ∗), τ ∗ and ν∗ (or μ∗(τ ∗)) are positive real

roots of (22) and (23). Then a pair of simple conjugate pure imaginary roots λ(τ ∗) =
±iν∗(τ ∗) exists which crosses the imaginary axis from left to right if δ(τ ∗) > 0 and
crosses the imaginary axis from right to left if δ(τ ∗) < 0, where

δ(τ ∗) = sign

{
ν∗G ′

ν − τ ∗G ′
τ

2
+ P ′

1I τ P ′
1Rν − b[τ ∗(P2

1R + P2
1I )

+P1R P ′
1Iν − P1I P ′

1Rν]
}
,

P1(iν∗, τ ∗) = P1R(iν∗, τ ∗)+ I P1I (iν∗, τ ∗), G ′
ν(G

′
τ , P ′

1Rν, P ′
1Iν) is the partial deriv-

ative of G(P1R, P1I ) at (ν∗, τ ∗).

Remark 1 (i) From the discussion of the roots in h1(μ) = 0, we know that it is
possible to have one or more positive roots ν∗ and τ ∗ in Eqs. (22) and (23). When
only one positive ν∗ exists, stability switches occur only at the corresponding τ ∗,
E P∗ losses its stability and periodic solutions bifurcate via a Hopf bifurcation. If
two positive ν∗

1 , ν
∗
2 are feasible, then the stability switches may depend on all real

roots in τ ∗
i . For instance, E P∗ may be stable for τ in one of a number of finite

intervals (τ ∗
i , τ

∗
i+1) and unstable for other values of τ .
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(ii) Due to the complexity of the system, the conditions given in this subsection
become quite involved, and we seek appropriate conditions for oscillatory behav-
ior by numerical methods.

It is interesting to notice that in both Cases (i) and (ii), with the same latency
period, but different immunity period, the endemic equilibrium point has significantly
different dynamical properties. With the decreasing exponential probability as the
immunity period, E P∗ is at least locally asymptotically stable and oscillations are
excluded for small or large average immune time, the disease approaches a stable
state and remains present in the population. With the probability distribution taken as
a step-function, i.e. individuals remain in the removed class for a fixed period of time
τ , oscillations become possible. This provides an additional example to support the
conjecture in Hethcote et al. (1981): a constant-parameter epidemic model can have
periodic solutions for some parameter values if and only if the model is cyclic and
involves temporary immunity through which individuals can be significantly delayed
in the immune class.

The above analysis shows that an immune period may lead to instability of the
endemic equilibrium and, via Hopf bifurcation, to periodic oscillations of the disease
dynamics. In Taylor and Carr (2009), the authors use asymptotic methods to find
conditions for periodic outbreaks in a SIRS model, while in Hethcote et al. (1981), a
delay was introduced into an integro-differential SIRS model to induce oscillations.
Oscillations are also presented in Genik and Driessche (1999) for an embedded SIRS
model.

Case (iii) P(t) =
{

1 t ∈ [0, τ ]
0 t > τ

, Q(t) = e−ωt

If the latency period is assumed to be a constant τ , with 0 < t < τ ,

E(t) =
t∫

0

βS(u)I (u)e−b(t−u)du, then E ′(t) = βS(t)I (t)− bE(t) ;

while for t > τ , E(t) = ∫ t
t−τ βS(u)I (u)e−b(t−u)du yields

E ′(t) = βS(t)I (t)− βe−bτ S(t − τ)I (t − τ)− bE(t).

Having the average recovery time 1
ω

, R′(t) = γ I (t) − (b + ω)R(t) follows from

R(t) = ∫ t
0 γ I (u)e−(b+ω)(t−u)du.

When t > τ , therefore, we are led to the DDEs system

Ṡ = b − βS(t)I (t)− bS(t)+ ωR(t),

Ė = βS(t)I (t)− βe−bτ S(t − τ)I (t − τ)− bE(t),

İ = βe−bτ S(t − τ)I (t − τ)− (b + γ )I (t),

Ṙ = γ I (t)− (b + ω)R(t).

(24)
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For this case, P∗ = e−bτ and Q∗ = ω
b+ω .

The basic reproduction number is R0 = βe−bτ

b+γ , where e−bτ is the fraction surviving
the latent class, indicating that the latency time τ will affect the value of R0. With
short latency period, say τ < τ̂ , where the critical value τ̂ is,

τ̂ = 1

b
ln

β

b + γ
, (25)

we have R0 > 1, hence the endemic equilibrium exists. Similar to Case (ii), we
consider the coupled equations related to S, I, R in System (24),

Ṡ = b − βS(t)I (t)− bS(t)+ ωR(t),

İ = βe−bτ S(t − τ)I (t − τ)− (b + γ )I (t),

Ṙ = γ I (t)− (b + ω)R(t).

(26)

We obtain the following persistence result.

Theorem 7 When R0 > 1, the disease is uniformly persistent in the sense that there
is a positive number η such that every solution (S(t), I (t), R(t)) in (24) with S(0) ≥
0, R(0) ≥ and I (0) > 0 satisfies limt→∞ inf I (t) ≥ η.

Proof The proof is analogous to that in Theorem 5 by replacing X1
0, ∂X1

0,M1
∂ ,M1

with X2
0, ∂X2

0,M2
∂ ,M2 and the continuous function p(φ) = φ2(0), where

X2
0 = {φ ∈ X, φ2(0) > 0}, ∂X2

0 = X\X0 = {φ ∈ X, φ2(0) = 0},

and

M2
∂ = {φ ∈ ∂X2

0 : �(t)φ ∈ ∂X2
0, t ≥ 0}, M2 = (1, 0, 0).

�	
To discuss the stability at EP∗, we know the corresponding characteristic equation

in (26),

�3(λ) = λ3 + a31λ
2 + a32λ+ a33 − (b2λ

2 + b1λ+ b0)e
−τ(b+λ) = 0

where

a31 = βw∗
3 + 3b + ω + γ, a32 = ω(βw∗

3 + 2b + γ )+ βw∗
3(2b + γ )

+ b(3b + 2γ ),

a33 = (b + γ )(b + ω)(b + βw∗
3), b2 = βw∗

1,

b1 = βw∗
1(2b + ω), b0 = β[bw∗

1(b + ω)+ w∗
3γω].

Since �3(0) = a33 − b0e−bτ = βw∗
3[b(b + ω + γ )+ ωγ (1 − e−bτ )] > 0, λ = 0 is

not a root of �3(λ) = 0.
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When τ = 0, �3(λ) = λ3 + (a31 − b2)λ
2 + (a32 − b1)λ+ a33 − b0 = 0 with

a31 − b2 = 2b + ω + βw∗
3 > 0, a32 − b1 = βw∗

3(2b + γ + ω)+ b(b + ω) > 0,

a33 − b0 = βbw∗
3(b + γ + ω) > 0, and

(a31 − b2)(a32 − b1)− (a33 − b0)

= (b + ω + βw∗
3)× [βw∗

3(2b + ω + ω)+ b(2b + ω)] > 0.

Thus E P∗ is locally asymptotically stable when τ = 0 .
When τ > 0, letting λ = iν, from �3(iν) = 0 we have

| − iν3 − a31ν
2 + ia32ν + a33| = |(−b2ν

2 + ib1ν + b0)e
−τ(b+iν)|.

Denoting ν2 = μ yields

h2(μ) = μ3+(a2
31−2a32 − e−2τbb2

2)μ
2 + [a2

32 − 2a33a31 − e−2τb(b2
1 − 2b0b2)]μ

+a2
33 − b2

0e−2τb def= μ3 + c2μ
2 + c1μ+ c0 = 0,

in which, after a direct but tedious computation, we have

c2 = (b + βw∗
3)

2 + (b + ω)2,

c1 = b2(b + ω)2 + 2βw∗
3γω(b + γ )e−bτ + βw∗

3(2b + βw∗
3)[(b + ω)2 + (b + γ )2]

c0 = βw∗
3{βw∗

3b(b + ω + γ )(2γω + bγ + bω + b2)+ 2b3[ω2 + (b + γ )2 + 2bω]
+ (ωγ )2βw∗

3(1 − e−2bτ )+ 2bωγ [(2 − e−bτ )b(γ + ω)

+ (1 − e−bτ )γω + (4 − e−bτ )b2]}.

Obviously, all the coefficients ci (i = 0, 1, 2) are positive, so there is no positive
root of h2(μ) = 0, implying that there is no purely imaginary root of �3(λ) = 0
when τ > 0. Therefore, E P∗ is stable and the variation of the time delay τ in a
feasible region cannot destroy this stability. Moreover, from numerical simulations,
we conjecture that E P∗ is globally asymptotically stable with R0 > 1.

We can thus see the critical differences between the delays in the latency and
the immunity periods. In Cases (i) and (iii), without delay in the temporary immune
stage, the endemic equilibrium E P∗ is at least locally asymptotically stable and no
oscillations can arise; if there is a delay in the immune period, then oscillations become
possible.

Case (iv) P(t) =
{

1 t ∈ [0, τ1]
0 t > τ1

, Q(t) =
{

1 t ∈ [0, τ2]
0 t > τ2

For the case when two stages have fixed durations, we have P∗ = e−bτ1 and

Q∗ = e−bτ2 . The basic reproduction number R0 = βe−bτ1

b+γ is the same as that in Case
(iii). Combining the information obtained in Cases (ii) and (iii), we have the following
systems with different time intervals. When t ≤ min{τ1, τ2}, the system is an ODEs
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system,

Ṡ = b − βS(t)I (t)− bS(t),

Ė = βS(t)I (t)− bE(t),

İ = −(b + γ )I (t),

Ṙ = γ I (t)− bR(t).

When min{τ1, τ2} < t ≤ max{τ1, τ2}, the system becomes a DDEs system with one
delay min{τ1, τ2}. Without loss of generality, we assume τ1 < τ2, so the system is,

Ṡ = b − βS(t)I (t)− bS(t),

Ė = βS(t)I (t)− βe−bτ1 S(t − τ1)I (t − τ1)− bE(t),

İ = βe−bτ1 S(t − τ1)I (t − τ1)− (b + γ )I (t),

Ṙ = γ I (t)− bR(t).

When t > max{τ1, τ2}, the SEIRS model becomes a DDEs with two delays τ1 and τ2,

Ṡ = b − βS(t)I (t)− bS(t)+ γ e−bτ2 I (t − τ2),

Ė = βS(t)I (t)− βe−bτ1 S(t − τ1)I (t − τ1)− bE(t),

İ = βe−bτ1 S(t − τ1)I (t − τ1)− (b + γ )I (t),

Ṙ = γ I (t)− γ e−bτ2 I (t − τ2)− bR(t). (27)

To investigate the long-time behavior near the endemic equilibrium point E P∗ in
(27), we notice first that E P∗ only exists when the latency time is short enough, say
τ1 < τ̂ (where τ̂ is given in (25) which yields R0 > 1). Secondly, from the decoupled
equations

Ṡ = b − βS(t)I (t)− bS(t)+ γ e−bτ2 I (t − τ2),

İ = βe−bτ1 S(t − τ1)I (t − τ1)− (b + γ )I (t), (28)

we can obtain the persistent result parallel to that in Cases (ii) and (iii),

Theorem 8 When τ1 < τ̂ , the disease is uniformly persistent in the sense that there is
a positive number η such that every solution (S(t), I (t)) in System (28) with S(0) ≥ 0
and I (0) > 0 satisfies limt→∞ inf I (t) ≥ η.

The proof is analogous to that in Case (iii) with X = {φ = (φ1, φ2) ∈
C([−τ, 0], D2}, where τ = max{τ1, τ2} and M3 = (1, 0).

Thirdly, since the characteristic equation in (28) is

�4(λ) = λ2 + (2b + γ + βw∗
3)λ+ (b + βw∗

3)(b + γ )− βw∗
1e−τ1(λ+b)(λ+ b)

−βγw∗
3e−(τ1+τ2)(b+λ)] = 0,
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so

�4(0) = βw∗
3[(1 − e−b(τ1+τ2))γ + b] > 0

from S1 = 1
R0

= b+γ
βe−bτ1

, implying that λ = 0 is not the root of �4(λ) = 0.

When both delays are zero,�4(λ) = (λ+βw∗
3)(λ+b). It is clear that E P∗ is then

locally asymptotically stable. When τ2 = 0 and τ1 > 0, a discussion similar to that
in Case (iii) can show that E P∗ is locally asymptotically stable, which is consistent
with the result in Cooke and Driessche (1996). When τ1 = 0 and τ2 > 0, periodic
oscillations and stability switches are possible, as in Case (ii) above. With general
τ1 > 0, τ2 > 0, assuming there exists ω > 0, such that �4(iω) = 0, we can obtain

the following relation, by noting that w∗
3 = b(βe−bτ1−b−γ )

β(b+γ−γ e−b(τ1+τ2)) depends on τ1 and τ2:

− ω2 + A2(τ1, τ2)+ A3 cos τ1ω + A4ω sin τ1ω = −A5(τ1, τ2) cos(τ1 + τ2)ω,

A1(τ1, τ2)ω − A3 sin τ1ω + A4ω cos τ1ω = A5(τ1, τ2) sin(τ1 + τ2)ω,

(29)

where

A1(τ1, τ2) = 2b + γ + βw∗
3, A2(τ1, τ2) = (b + βw∗

3)(b + γ ),

A3 = −b(b + γ ), A4 = −(b + γ ), A5(τ1, τ2) = −βγw∗
3e−(τ1+τ2)b.

Equation (29) are relatively complicated to tackle analytically. Using the DDE-
BIFTOOL software package, we can present numerically obtained stability bound-
aries with respect to the two delays, all other parameters being kept constant. Through
this Fig. 2, we can see that the stability at the endemic equilibrium is preserved for
small values of the delay τ2, and that stability switches are possible ; as this value
is increased, oscillations become possible, and there may be multiple resonant oscil-
lations within feasible delays. As β is increased, the possible dynamical behavior
becomes more complicated and the stability region becomes involved, as is expected
in delay equations with two discrete time delays (Bélair and Campbell 1994).
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Fig. 2 Stability switch boundaries for Eq. (29) with the parameters b = 0.00004, γ = 0.143
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4 Numerical simulation

To illustrate the results obtained in the previous section, we perform numerical simula-
tions using the parameter values in Liu et al. (1987), namely b = 0.00004, γ = 0.143
which imply an average life span of 68.5 years, and average infectious period of 7
days.

Since Case (i) has been studied by numerous investigators, we just want to point out
the difference when using the probability functions P1(s) = e−ω1s, Q1(s) = e−ω2s

and P2(s) = (ω1s +1)e−ω1s, Q2(s) = (ω2s +1)e−ω1s related to the weak and strong
kernel functions, respectively.

It is interesting to note, in Fig. 3, that with the weak kernel probability distributions
in both latent and immune periods, when β = 0.198, R0 < 1, so the disease-free
equilibrium point is globally attractive (Fig. 3a); while with the same parameters, there
exists a stable non-trivial steady state when the probability distributions are related to
strong kernel functions (Fig. 3b). This observation implies that the non-autonomous
system may produce significant change in the basic reproduction number, a theoretical
observation we do not pursue further.

For Case (ii), we choose ω = 1 and when β = 0.198, R0 ≈ 1.384 > 1. We expect
that E P∗ keeps its stability for small τ , then becomes unstable as τ is increased, and a
periodic solution bifurcates from EP∗ via a Hopf bifurcation. In fact, with the chosen
parameter values, when τ = 60, we have l1 ≈ 1.307, l2 ≈ −0.002, l3 ≈ 0.0001 and
x̄ = 0.0007 in (21), the difference l3 −[−x̄(x̄2 + l1 x̄ + l2)] ≈ −6.3×10−7 is negative
and very close to zero, implying the occurrence of periodic solutions. Figure 4 depicts
the corresponding trajectories with different values of τ . When τ = 20, Fig. 4a shows
that the system approaching the endemic equilibrium point E P∗ quickly; when τ
is increased to τ = 40, the stability of EP∗ remains through a damped oscillation
(Fig. 4b); with further increases in τ , EP∗ becomes unstable and stable oscillations
appear in Fig. 4c when τ = 60. It is interesting to observe that as τ is increased, the
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t
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Fig. 3 Solution curves obtained by choosing β = 0.198, ω1 = 1, ω2 = 0.0106 in Case (i). a P1(s) =
e−ω1s and Q1(s) = e−ω2s ; b P2(s) = (ω1s + 1)e−ω1s and Q2(s) = (ω2s + 1)e−ω1s
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Fig. 4 Solution curves with β = 0.198 in Case (ii). a τ = 20, b τ = 40, c τ = 60

epidemic spike spreads quickly due to the increase of the infectious strength which
leads to recurrent epidemic outbreaks like seasonal variation in per capita infection
rate.

To capture the effect of the transmission rate β, we increase the value of β to β =
0.398, which produces R0 = 2.782 > 1. Comparing with Fig. 4, the corresponding
trajectories with different τ are given in Fig. 5 with the same initial conditions.

It is observed from Figs. 4 and 5 that, with increasing β, the basic reproduction
number R0 increases. When the steady-state is stable, (see (a)), the number of suscep-
tible individuals decreases, and the number of infectious individuals increases, which
sounds reasonable because more individuals are moved into the infectious class. Com-
paring (c) in Figs. 4 and 5, we can see that, when the system exhibits an oscillation, the
infectious strain spreads rapidly and depletes the susceptible population; with fewer
individuals available to become sick, the compartment regenerates faster, leading to a
subsequent spike occurring sooner, so the frequency increases. Focusing on (b), at an
intermediate value of τ , the steady state can remain stable for small values of β and
lose stability for large β. We notice that R0 ≈ 1.384 is considered to be of moderate
transmissibility which is close to the value in the influenza Asian A (H2N2) pandemic
of 1957–1958 and Hong Kong A (H3N2) of 1968–1969; while R0 = 2.782 is consid-
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Fig. 5 Solution curves with β = 0.398 in Case (ii). a τ = 20, b τ = 40, c τ = 60

ered to be highly transmissible which is close to the value in the influenza A (H1N1)
of 1918–1919 (Boëlle et al. 2009).

For Case (iii), the theoretical result predicts that, when R0 > 1, with exponentially
decreasing probability distribution in the temporary immunity stage, the disease is
persistent independently of the length in the fixed latency period and E P∗ is at least
locally asymptotically stable. The numerical simulation results (Fig. 6) show very
good agreement with this statement. From the epidemiological point of view, when
the period of temporary immunity is distributed decreasingly, no matter how long
the fixed latent period is, the disease remains if no preventive or control measure is
implemented.

For Case (iv), from Fig. 2, we observe that, with two delays in both latent and
temporary immune periods, when the period of immunity is short (small τ2), the
endemic equilibrium point is stable over a range of τ1; with relative long period of
immunity (large τ2), even when the latent period (τ1) is very short, oscillations can
occur. To confirm the different dynamical behaviors shown in Fig. 2, we first fix the
value of τ2 at τ2 = 80, then fix τ1 = 160. Following the lines given in Fig. 2b with
β = 0.398, when τ2 = 80, we can observe stability switches for different values of
τ1 in Fig. 7, while for a fixed value of τ1 = 160, it is also possible to observe stability
switches. The numerical simulations with different values of τ2 are given in Fig. 8.
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Fig. 6 Solution curves with β = 0.398 in Case (iii). a τ = 20, b τ = 40, c τ = 60

It is interesting to note, from Fig. 7, that with τ2 = 80, when τ1 is small (τ1 = 5),
there is oscillation; as τ1 is increased, stability switches can occur, the oscillations
become damped, and approach the endemic equilibrium with τ1 = 50, and appear
again with τ1 = 110. The steady state can regain stability with long latency period
(τ1 = 180). From Fig. 8, we can observe that, with fixed latent period τ1 = 160, when
the period of immunity is short (τ2 = 40), the endemic equilibrium point is stable; as
τ2 is increased, oscillations and stability switches can occur as well.

5 Conclusion and remarks

In this paper, we have analyzed an SEIRS model with distributed delays in latent and
temporary immune periods. The integrative approach allows us to consider the inter-
active effect of the time duration in the stages of latency and temporary immunity,
helping us to understand the epidemic patterns. With general distributed time delays
in these two stages, the system becomes non-autonomous. By analyzing the limiting,
autonomous system with infinite delays, we have shown that the basic reproduction

number R0 = β(1−bP̂)
b+γ depends on the latent period only through the mean P̂ , sug-

gesting that the distribution of the latent period is the primary factor in controlling the
spread of the disease, regardless of the distribution in the temporary immunity period.
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Fig. 7 Solution curves in Case (iv) with fixed τ2 = 80 and different τ1. The left column is S(t) and right
one is I (t)
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Fig. 8 Solution curves in Case (iv) with fixed τ1 = 160 and different τ2. The left column is S(t) and right
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Furthermore, when R0 < 1, the disease free equilibrium in the limiting system attracts
all the solutions in the original non-autonomous system. When R0 > 1, the endemic
equilibrium exists in the limiting system with infinite delays and its stability depends
on the distribution functions at each stage. When the distribution functions are taken
as ki (t)(i = 1, 2) in (14), the original non-autonomous system becomes a system of
ODEs or DDEs with one or two delays. In the four particular cases, we have proven
that the disease is always persistent, and the endemic equilibrium point is at least
locally asymptotically stable when the duration of the temporary immunity follows
an exponentially decreasing distribution. If the immunity period is fixed as a constant,
oscillations might occur. This significant difference confirms that the different distri-
butions of immune period qualitatively alter the dynamical behavior of the disease
transmission process; the delay in the removed class gives rise to oscillations, but
adding an exposed class does not induce qualitatively different features to the system
dynamics. We have shown that the value of the reproduction number R0 determines
the existence of endemic equilibrium which is independent of the distribution in the
temporary immunity stage; once the endemic equilibrium exists, then the dynamical
behavior is determined by the distribution of the immunity duration and independent
of the distribution in the latency duration.

It is well known that, to control the outbreak of an infectious disease, the value of the
basic reproduction number R0 must be reduced below one. The World Health Orga-
nization (WHO) recommends reducing it by avoiding gatherings, closing schools,
restaurants, cinemas, etc. These actions result in decreasing the maximum number
of infected individuals, and the delay of the epidemic peak. Mathematically, they
are related to decreasing the contact rate β and increasing the recovery rate γ .
Besides these sanitary measures, our results show that the extension of the latent
period (e.g., by vaccination) can be used to control the outbreak as well. Understand-
ing the extents to which the interactive impact among the compartments affect the
spread of disease in the population may have important implications for public health
policies.
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