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Abstract The time-evolution of continuous-time discrete-state biochemical processes
is governed by the Chemical Master Equation (CME), which describes the probabil-
ity of the molecular counts of each chemical species. As the corresponding number
of discrete states is, for most processes, large, a direct numerical simulation of the
CME is in general infeasible. In this paper we introduce the method of conditional
moments (MCM), a novel approximation method for the solution of the CME. The
MCM employs a discrete stochastic description for low-copy number species and a
moment-based description for medium/high-copy number species. The moments of
the medium/high-copy number species are conditioned on the state of the low abun-
dance species, which allows us to capture complex correlation structures arising, e.g.,
for multi-attractor and oscillatory systems. We prove that the MCM provides a gen-
eralization of previous approximations of the CME based on hybrid modeling and
moment-based methods. Furthermore, it improves upon these existing methods, as we
illustrate using a model for the dynamics of stochastic single-gene expression. This
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application example shows that due to the more general structure, the MCM allows
for the approximation of multi-modal distributions.

Keywords Continuous-time discrete-state Markov process · Chemical Master
Equation · Method of moments · Hybrid stochastic-determinstic models · Differential
algebraic equations · Gene expression

1 Introduction

Modeling of single cell dynamics has been a field of active research for several decades,
starting with the groundbreaking work of Hodgkin and Huxley (1952), who mathemat-
ically described the dynamics of individual neurons. In the course of time, modeling
entered other fields, e.g., metabolism, signal transduction, and gene regulation (Klipp et
al. 2005). Nowadays, there exists a variety of different modeling approaches which all
share two essential elements, namely, chemical species (S1, S2, . . . , Sns ) and chem-
ical reactions (R1, R2, . . . , Rnr ). A chemical species is an ensemble of chemically
identical molecular entities, such as proteins and RNA molecules, while a process,
which results in the interconversion of chemical species, is referred to as chemical
reaction (McNaught and Wilkinson 1997), e.g., synthesis, degradation, and phospho-
rylation. Accordingly, chemical reactions relate reactants and products, and can be
written as:

R j :
ns∑

i=1

ν−
i j,x Si →

ns∑

i=1

ν+
i j,x Si , j = 1, . . . , nr .

Thereby, ν−
i j,x (ν+

i j,x ) ∈ N0 denotes the stoichiometric coefficient of species i in
reaction j , defined as the number of molecules consumed (produced) when the reaction
takes place (Klipp et al. 2005). The net interconversion of species i in reaction j is
νi j,x = ν+

i j,x − ν−
i j,x . Accordingly, the stoichiometry of the j-th reaction is defined by

the vectors ν−
j,x = (ν−

1 j,x , . . . , ν
−
ns j,x ) ∈ N

ns
0 , ν+

j,x = (ν+
1 j,x , . . . , ν

+
ns j,x ) ∈ N

ns
0 , and

ν j,x = (ν1 j,x , . . . , νns j,x ) ∈ N
ns
0 . In the following we assume that all reactions are at

most bimolecular, hence, for all j,
∑ns

i=1 ν−
i j,x ≤ 2. Reactions with at most two educts

cover essentially all reactions found in nature (Gillespie 1992).
The time-evolution of the number of molecules in the chemical processes can be

modeled using different model classes. In particular models based upon the reac-
tion rate equation, the chemical Langevin equation and discrete-state continuous-time
Markov chains (CTMCs) are frequently used. Among these model classes, CTMCs
allow for the most precise description of the underlying physical process as the dis-
crete nature of molecules and reaction events is captured (Gillespie 1977). The state,
Xt ∈ N

ns
0 , of a CTMC at time t is the collection of the ensemble sizes [Si ] of the indi-

vidual chemical species at time t, Xt = (X1,t := [S1], . . . , Xns ,t := [Sns ]). The state
of a CTMC remains constant as long as no reaction takes place. If the j-th chemical
reaction, R j , takes place the ensemble sizes change according to the stoichiometry of
the reaction, Xt → Xt + ν j,x . The index j of the next reaction as well as the time to
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Method of conditional moments (MCM) for the Chemical Master Equation 689

Table 1 Propensity functions
for reactions following mass
action kinetics (Gillespie 1977)
for i, i1, i2 ∈ {1, . . . , ns } and
i1 �= i2.

Reaction type Propensity function

∅ → product a j (x) = c j

Si → product a j (x) = c j xi

Si1 + Si2 → product a j (x) = c j xi1 xi2

2Si → product a j (x) = c j
2 xi (xi − 1)

the next reaction are randomly distributed with statistics determined by the propensity
functions a j : N

ns
0 → R+ (Feller 1940). In this work we assume the propensities

a j (Xt ) follow the law of mass action with reaction rate parameters c j > 0, as pro-
vided in Table 1. Note that the associated propensities are “proper”, hence a j (Xt ) = 0
whenever ∃i ∈ {1, . . . , ns} : Xi,t � ν−

i j,x . For the latter component-wise inequality

we write in the following Xt � ν−
j,x .

A single realization of the CTMC provides one possible time-course of the stochas-
tic process Xt . The statistics of these time-courses, the probabilities p(x |t) = P(Xt =
x) that an individual cell Xt occupies a certain state x = (x1, . . . , xns ) ∈ N

ns
0 at time

t , are described by the CME (Kampen 2007),

∂

∂t
p(x |t) =

nr∑

j=1
x≥ν+

j,x

a j (x − ν j,x )p(x − ν j,x |t) −
nr∑

j=1

a j (x)p(x |t), (1)

in which the inequality constraint x ≥ ν+
j,x is required to ensure positivity.

For some CMEs closed-form solutions can be derived, e.g., for CMEs including only
monomolecular reactions (Jahnke and Huisinga 2007), however, in general, merely
a numerical approximation of the solution is feasible. Unfortunately, such numerical
approximations are difficult as the number of reachable states x is, even for systems
with only few state variables, often large or even infinite. To determine the probabil-
ity mass function p(x |t) despite the large number of states, different approximation
schemes have been introduced. In particular the finite state projection (Munsky and
Khammash 2006, 2008), the product approximation (Jahnke 2011), the approxima-
tion of the CME by the Fokker-Planck equation (Gardiner 2011; Kampen 2007), and
inexact integration methods (Mateescu et al. 2010; Sidje et al. 2007) are frequently
used. Unfortunately, these methods mostly fail if the system contains species with
low-copy numbers and species with medium/high-copy numbers. In this case, hybrid
modeling approaches have been proven to be more efficient (Hellander and Lötstedt
2007; Henzinger et al. 2010; Jahnke 2011; Menz et al. 2012).

Hybrid methods (HMs) are based on the observation that the abundance of
medium/high-copy number species often evolves almost deterministically for a given
state of the low-copy number species. Accordingly, HMs employ a stochastic descrip-
tion for species with low-copy numbers and a deterministic description for species
with medium/high-copy numbers. Based upon this intuitive concept, Hellander and
Lötstedt (2007), Jahnke (2011) and Menz et al. (2012) introduced alternative hybrid
modeling approaches. The hybrid models proposed by Menz et al. and Jahnke basi-
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cally describe the expected values of the abundance of the medium/high-copy number
species conditioned on the low-copy number species. Hellander and Lötstedt reduce
the complexity of this model further by using merely the expected value of the abun-
dance of the medium/high-copy number species, instead of the conditional expectation.
While both methods reduce the computational complexity tremendously, they rely on
the assumption that the abundance of the medium/high-copy number species evolve
deterministically or has at least negligible variance. Apparently, these methods are not
applicable if all states show a significant degree of stochasticity which manifests in
non-zero second- and higher-order moments.

Aside from methods which approximate the solution of the CME, there exists
a class of methods which merely approximate the moments of the solution of the
CME. These methods are known as methods of moments (MMs) (Engblom 2006;
Lee et al. 2009) and describe the moments using a set of ordinary differential equa-
tions (ODEs). If the system contains at most monomolecular reactions, the moment
equations provide the exact moments at a significantly reduced computational cost.
For systems involving bimolecular reactions the moment equations are not closed
but contain higher-order moments. These higher-order moments can be approximated
using moment closure techniques (Engblom 2006; Hespanha 2007; Lee et al. 2009;
Ruess et al. 2011; Singh and Hespanha 2011). It has been shown that the moment
equations provide a good approximation of the moment of the CME solution, inde-
pendent of the mean molecule numbers, if enough moments are considered and if the
moment closure is accurate (Engblom 2006). Unfortunately, if the solution of the CME
possesses several modes, the moment closure often becomes inaccurate. The discrete
decomposition into modes cannot be well represented by the moment closures.

In this work, we propose the method of conditional moments (MCM) which com-
bines ideas from hybrid methods and the method of moments, thereby overcoming the
individual shortcomings of the existing approaches. The MCM is derived in Sect. 2. It
employs a fully stochastic description for the low-copy number species and a moment-
based description for the medium/high-copy number species. The moments of the
medium/high-copy number species are conditioned on the state of the low-copy num-
ber species. The evolution equation for the marginal probabilities and for the condi-
tional moments are derived from the CME, without the need for employing a multi-
scale expansion approach (Menz et al. 2012) or van Kampen’s Ω-expansion (Kampen
2007). As the MCM is in case of bimolecular reactions not closed, like the MM, we
discuss different moment closure techniques and the numerical simulation in general.
The relation to existing models, the CME, the hybrid models by Jahnke (2011) and
Menz et al. (2012), the moment equation, and the reaction rate equation is outlined in
Sect. 3.2. In Sect. 4, we discuss the numerical properties of the conditional moment
equation and propose an approach to compute consistent initial conditions. Using
the numerical methods, in Sect. 5 we compare the MCM with the MM, the HM by
Jahnke, and solution of the CME (computed using the finite state projection). The
paper is concluded in Sect. 6.

Example In the following, we illustrate our results using a model for stochastic gene
expression (Fig. 1a). This model describes the transcription and translation of a tran-
scription factor which increases its own synthesis via a positive regulatory feedback, a
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(a) (b)

Fig. 1 Illustration of a the gene expression model with positive feedback loop and b the dynamics of
the process. The trajectories and the steady state distribution reveal the number of mRNA and proteins
correlates strongly with the DNA state. For slow switching rates τon, τoff and τ

p
on, probability distributions

become bimodal. a Schematic of stochastic gene expression model showing conversion reactions (continu-
ous arrows), production processes (dashed arrows) and regulatory interactions (dotted arrows). b Stochastic
simulation of the gene expression model (left) and steady state distribution of the stochastic process (right)
for parameters θ = (τon, τoff , kr, γr, kp, γp, τ

p
on) = (0.05, 0.05, 10, 1, 4, 1, 0.015). The contributions of

the on-state (red) and the off-state (blue) to the steady state distribution are color-coded

well known motif occurring in many gene regulatory networks. The coding DNA seg-
ment can be present in an open conformation and a closed conformation. To the open
conformation we refer as on-state (Don) and to the closed conformation as off-state
(Doff ). As we assume that the coding DNA segment is only present once in the DNA
strand, it holds that [Don] + [Doff ] = 1. In the on-state, RNA polymerase can bind to
the DNA and synthesize mRNA (R). Accordingly, in the off-state no RNA polymerase
can bind. The produced mRNA can be translated into proteins (P). Proteins and mRNA
can be degraded. Furthermore, the proteins P induce the activation of the correspond-
ing DNA sequence and establish a positive feedback loop. The corresponding system
of reactions is:

R1 : Doff
τon→ Don (DNA opening)

R2 : Don
τoff→ Doff (DNA closing)

R3 : Don
kr→ Don + R (mRNA synthesis)

R4 : R
γr→ ∅ (mRNA degradation)

R5 : R
kp→ R + P (protein synthesis)

R6 : P
γp→ ∅ (protein degradation)

R7 : P + Doff
τ

p
on→ P + Don (protein-induced DNA opening)

(2)

This simple model is a combination of the well-known Golding model (Golding et al.
2005) with protein synthesis, as modeled by Munsky et al. (2009), and an additional
feedback loop, similar to the model by Kepler and Elston (2001). It comprises several
gene expression models as special cases, e.g., (Friedman et al. 2006; Golding et al.

123



692 J. Hasenauer et al.

2005; Peccoud and Ycart 1995; Shahrezaei and Swain 2008), and can therefore be used
in a series of applications, e.g., (Munsky et al. 2012, 2009; Raser and O’Shea 2004).
Furthermore, this systems is well suited to evaluate hybrid modeling approaches, the
Don and Doff are clearly low-copy number species, while R and P can be medium/high-
copy number species depending on the parameter values. The rich dynamics of the
process, which allows for bimodal probability distributions and strong correlation of
mRNA and protein number with the DNA states, is illustrated in Fig. 1b.

Notation The space of n-dimensional vectors of non-negative integers is denoted by
N

n
0. The space of n-dimensional vectors of non-negative real numbers is denoted by

R
n+. The vectorial inequality a ≥ b is interpreted component-wise, ∀i : ai ≥ bi .

Furthermore, a � b implies that ∃i : ai � bi .

2 Method of conditional moments

2.1 Decomposition of state space

We divide the chemical species into two classes, low- and medium/high-copy number
species. Accordingly, we decompose the Markov process Xt = (Yt , Zt ) and the state
vector x = (y, z). The vectors y = (y1, . . . , yns,y ) ∈ N

ns,y
0 and z = (z1, . . . , zns,z ) ∈

N
ns,z
0 contain the molecule number of low- and medium/high-copy number species,

respectively. Using the multiplication axiom, the probability mass function of the CME
can be restated as

p(x |t) = p(y, z|t) = p(z|y, t)p(y|t), (3)

where p(y|t) is the probability P(Yt = y) and p(z|y, t) is the conditional probability
of Zt = z given Yt = y. This formulation of p(y, z|t) as product of p(z|y, t) and
p(y|t) is essential and will be used throughout the paper.

For the abundance of the low-copy number species Yt we employ a fully stochastic
description. Hence, we consider the marginal probability

p(y|t) =
∑

z≥0

p(y, z|t). (4)

The distribution of Zt will be modeled also stochastically but using the time-dependent
conditional means and higher-order centered conditional moments,

μi,z(y, t) = Ez[Zi | y, t] =
∑

z≥0

zi p(z|y, t), (5)

CI,z(y, t) = Ez

[
(Z − μz(y, t))I

∣∣∣ y, t
]

=
∑

z≥0

(z − μz(y, t))I p(z|y, t). (6)
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Method of conditional moments (MCM) for the Chemical Master Equation 693

Here we employ the product notation

(Z − μz(y, t))I :=
ns,z∏

i=1

(Zi − μi,z(y, t))Ii , (7)

with I = (I1, . . . , Ins,z ) being a vector of non-negative integers. Moreover, let
F : N

ns,z
0 × R+ → R be a polynomial function in the first argument, Z . We write

Ez[F(Z , t)| y, t] for the conditional expectation E[F(Z , t)|Yt = y],

Ez[F(Z , t)| y, t] =
∑

z≥0

F(z, t)p(z|y, t). (8)

Note that we assume here and throughout the manuscript that the solution of the
CME is sufficiently regular in the sense that all moments, conditional moments and
conditional expectations of the considered polynomial function exist. This is indeed
the case for most CMEs used to model (bio-)chemical processes.

The description of p(z|y, t) in terms of its moments does obviously result in a loss
of information, however, the information content can be increased by increasing the
order of the employed moments.

Example For example (2) the DNA states Doff and Don might be considered as low-
copy number species, y = ([Doff ], [Don]), while mRNA and protein are medium/high-
copy number species, z = ([R], [P]), respectively. Such natural decompositions are
available for many systems, in particular for gene regulatory networks.

In the following, we derive the evolution equation for p(y|t), μi,z(y, t), and
CI,z(y, t). Therefore, we decompose the stoichiometric vectors,ν−

j,x =(ν−
j,y, ν

−
j,z), ν

+
j,x

= (ν+
j,y, ν

+
j,z) and ν j,x = (ν j,y, ν j,z), as well as the reaction propensities,

a j (Xt ) = c j g j (Yt )h j (Zt ),

in accordance with the species assignment. This decomposition is possible for any reac-
tion propensities following mass action kinetics. Using the decomposed stoichiometry
and reaction propensities, the CME (1) can be reformulated as follows:

∂

∂t
p(y, z|t) =

nr∑

j=1
y≥ν+

j,y

z≥ν+
j,z

c j g j (y − ν j,y)h j (z − ν j,z)p(y − ν j,y, z − ν j,z |t)

−
nr∑

j=1

c j g j (y)h j (z)p(y, z|t). (9)
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2.2 Evolution equation for the marginal probability p(y|t)

To derive the evolution equations for the marginal probability and the conditional
moments, we repeatedly need the following result.

Lemma 1 Let p(y, z|t) = p(z|y, t)p(y|t) satisfy a proper CME (9) (∀x � ν−
j,x :

a j (x) = 0), then

∂

∂t
(Ez[T (Z , t)| y, t] p(y|t))

=
nr∑

j=1
y≥ν+

j,y

c j g j (y − ν j,y)Ez
[
T (Z + ν j,z, t)h j (Z)

∣∣ y − ν j,y, t
]

p(y − ν j,y |t)

−
nr∑

j=1

c j g j (y)Ez
[
T (Z , t)h j (Z)

∣∣ y, t
]

p(y|t) + Ez

[
∂

∂t
T (Z , t)

∣∣∣∣ y, t

]
p(y|t)

(10)

for any polynomial test-function T : N
ns,z
0 × R+ → R.

This Lemma generalizes a result by Engblom (2006, Lemma 2.1). The proof is
provided in Appendix A.

Given Lemma 1, we obtain for the test function T (z, t) = 1 the evolution equation
for p(y|t).
Proposition 1

∂

∂t
p(y|t) =

nr∑

j=1
y≥ν+

j,y

c j g j (y − ν j,y)Ez
[
h j (Z)

∣∣ y − ν j,y, t
]

p(y − ν j,y |t)

−
nr∑

j=1

c j g j (y)Ez
[
h j (Z)

∣∣ y, t
]

p(y|t). (11)

For any proper CME the evolution equation (11) describes the dynamics of the marginal
probabilities exactly. Thus, this evolution equation describes the transition process of
the CTMC in y. It can be shown that (11) possesses all key properties of a CME:
conservation of the probability mass and positivity of the solution. Note that p(y|t)
is only influenced by reactions which actually change y, as for all other reactions the
former and the latter terms are identical but possess opposite signs.

The evolution of p(y|t) depends on the conditional expectation of the partial
reaction propensities, Ez

[
h j (Z)

∣∣ y, t
]
. These conditional expectations are in general

unknown, however, for the mass action kinetics, they can be expressed in terms of the
conditional mean and the centered conditional moments. For reactions which are at
most bimolecular, the Taylor series representation of h j (z) at μz(y, t) is
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Method of conditional moments (MCM) for the Chemical Master Equation 695

h j (z) = h j (μz(y, t)) +
ns,z∑

k=1

∂h j (μz(y, t))

∂zk
(zk − μk,z(y, t))

+1

2

ns,z∑

k,l=1

∂2h j (μz(y, t))

∂zk∂zl
(zk − μk,z(y, t))(zl − μl,z(y, t)). (12)

This representation is exact as third and higher-order derivatives of h j (z) are zero.
Given (12), the conditional expectation of h j (z) becomes

Ez
[
h j (Z)

∣∣ y, t
] = h j (μz(y, t)) + 1

2

ns,z∑

k,l=1

∂2h j (μz(y, t))

∂zk∂zl
Cek+el ,z(y, t), (13)

in which ek denotes the k-th unit vector. The second summand in (12) vanishes as
Ez

[
Zk − μk,z(y, t)

∣∣ y, t
] = 0. In case of linear propensities or vanishing higher-order

moments, we obtain Ez
[
h j (Z)

∣∣ y, t
] = h j (μz(y, t)).

Given this Taylor series representation (13), the evolution equation for the mar-
ginal probability (11) can be formulated in terms of the conditional means and the
centered conditional moments. Therefore, we substitute the conditional expectation
Ez

[
h j (Z)

∣∣ y, t
]

by (13) into (11). This yields the time-evolution of the state probability
p(y|t) as a function of the conditional moments.

Example For example (2), the marginal probability of the DNA being in the off-state is
poff(t) := p(off|t), with off = (1, 0), and the marginal probability of the DNA being
in the on-state is pon(t) := p(on|t), with on = (0, 1). According to (11) and (13), the
evolution equations for these probabilities are

∂poff

∂t
= − (

τon + τ
p
onμp,off

)
poff + τoff pon, (14)

∂pon

∂t
= (

τon + τ
p
onμp,off

)
poff − τoff pon, (15)

in which μp,off (t) = Ez[[P]| off, t] is the conditional expectation of the protein number
given that the DNA is in the off-state.

2.3 Evolution equation for the conditional mean μz(y, t)

As the time-derivative (11) of the marginal probability depends on the conditional
means and the conditional covariances, the corresponding evolution equations are
needed. In this section, we consider the conditional mean for which we obtain the
following result.
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Proposition 2

p(y|t) ∂

∂t
μi,z(y, t)

=
nr∑

j=1
y≥ν+

j,y

c j g j (y − ν j,y)
(
Ez

[
(Z − μz(y − ν j,y , t))ei h j (Z)

∣∣ y − ν j,y , t
]

+ (
μi,z(y − ν j,y , t) + νi j,z

)
Ez

[
h j (Z)

∣∣ y − ν j,y , t
])

p(y − ν j,y |t)

−
nr∑

j=1

c j g j (y)(Ez
[
(Z − μz(y, t))ei h j (Z)

∣∣ y, t
] + μi,z(y, t)Ez

[
h j (Z)

∣∣ y, t
]
)p(y|t)

−μi,z(y, t)
∂

∂t
p(y|t). (16)

Proposition 2, whose proof is stated in Appendix B, provides a description of the
dynamics of μi,z(y, t) via a differential algebraic equation (DAE). This DAE (16)
cannot be restated as an ODE because a division by p(y|t) is not possible as p(y|t)
may become zero. The treatment of the DAE is addressed in Sect. 4.

The dynamics of μi,z(y, t) are determined by two types of reaction fluxes: fluxes
associated to reactions conserving and changing y, respectively. The former results
only in a net change of the abundance of medium/high-copy number species. These
reactions contribute the reaction flux +νi j,zc j g j (y)Ez

[
h j (Z)

∣∣ y, t
]

p(y|t), which are
similar to fluxes found when using the MMs (Engblom, 2006, Proposition 2.2). For
reactions which change y, the reaction flux takes the general form found on the right-
hand side of (16). The complexity arises from the balance between influx and outflux
which results in a net change of the conditional expectation μi,z(y, t).

The evolution equation (16) reveals that the dynamics of μi,z(y, t) depend as we
expect on conditional moments of h j (z). This dependency can be avoided by employ-
ing the Taylor series representation of h j (z). Using (12), the conditional moment
Ez

[
(Z − μz(y, t))I h j (Z)

∣∣ y, t
]

can, for any I ≥ 0, be expressed in terms of the
conditional mean and the centered conditional moments.

Lemma 2

Ez

[
(Z − μz(y, t))I h j (Z)

∣∣∣ y, t
]

= h j (μz(y, t))CI,z(y, t)

+
ns,z∑

k=1

∂h j (μz(y, t))

∂zk
CI+ek ,z(y, t)

+1

2

ns,z∑

k,l=1

∂2h j (μz(y, t))

∂zk∂zl
CI+ek+el ,z(y, t).

(17)

By substituting (17) into the evolution equation (16) for μi,z(y, t), we obtain an equa-
tion which depends merely on p(y|t), μi,z(y, t) and CI,z(y, t). Still, CI,z(y, t) is
unknown, therefore, we study in the next section the dynamics of CI,z(y, t).
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Method of conditional moments (MCM) for the Chemical Master Equation 697

Example For example (2), the conditional means are the mean mRNA number in
the off-state, μr,off (t) = Ez[[R]| off, t], the mean protein number in the off-state,
μp,off(t) = Ez[[P]| off, t], the mean mRNA number in the on-state, μr,on(t) =
Ez[[R]| on, t], and the mean protein number in the on-state, μp,on(t) = Ez[[P]| on, t].
Following Proposition 2, we obtain the evolution equations

poff
∂μr,off

∂t
= (

μr,on − μr,off
)
τoff pon − τ

p
onCrp,off poff − γrμr,off poff , (18)

poff
∂μp,off

∂t
= (

μp,on − μp,off
)
τoff pon − τ

p
onCp2,off poff

+ (
kpμr,off − γpμp,off

)
poff , (19)

pon
∂μr,on

∂t
= (

μr,off − μr,on
) (

τon + τ
p
onμp,off

)
poff + τ

p
onCrp,off poff

+ (
kr − γrμr,on

)
pon, (20)

pon
∂μp,on

∂t
= (

μp,off − μp,on
) (

τon + τ
p
onμp,off

)
poff + τ

p
onCp2,off poff

+ (
kpμr,on − γpμp,on

)
pon, (21)

in which Cp2,off(t) = Ez
[
([P] − μp,off)

2
∣∣ off, t

]
is the variance of the protein number

in the off-state and Crp,off (t) = Ez
[
([R] − μr,off)([P] − μp,off)

∣∣ off, t
]

is the covari-
ance of protein number and mRNA number in the off-state. To obtain (18)–(21) we
substituted the term ∂

∂t p(y|t) in (16) by (14) or (15), depending on the equation.
We note that the evolution Eqs. (18)–(21) possess similar structures. To elucidate

the structure, we considered the right-hand side of poff
∂μr,off

∂t which possesses the
summands (μr,on − μr,off)τoff pon,−τ

p
onCrp,off poff , and −γrμr,off poff . The first two

summands describe the change of μr,off due to transitions between different DNA
states. For zeroth and first order reactions (here R1 and R2) merely the influxes into
the node change the mean. This change is the influx rate, τoff pon, times the differ-
ence in the means of the mRNA amounts in the two DNA states, μr,on − μr,off . For
higher-order reactions which result in transition of y (here R7), higher-order terms are
necessary to describe the changes in the mean, −τ

p
onCrp,off poff . The third summand,

−γrμr,off poff , describes the dynamics caused by reactions which preserve the DNA
state. We emphasize that this structure is similar for all evolution equations.

2.4 Evolution equation for the centered conditional moments CI,z(y, t)

To derive the centered conditional moments CI,z(y, t), where I encodes which cen-
tered moment we considered (7), we introduce the vectorial binomial coefficient,

(
I
k

)
:=

ns,z∏

i=1

(
Ii

ki

)
=

ns,z∏

i=1

Ii !
(Ii − ki )!ki !
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and the product ν I
j,z = ∏ns,z

i=1 ν
Ii
i j,z . I ∈ N

ns,z
0 and k ∈ N

ns,z
0 denote integer-valued

vectors. Using these notations, we state our result for the centered conditional moments
CI,z(y, t).

Proposition 3

p(y|t) ∂

∂t
CI,z(y, t)

=
nr∑

j=1
y≥ν+

j,y

c j g j (y−ν j,y)Ez

[
(Z +ν j,z − μz(y, t))I h j (Z)

∣∣∣ y − ν j,y, t
]

p(y − ν j,y |t)

−
nr∑

j=1

c j g j (y)Ez

[
(Z − μz(y, t))I h j (Z)

∣∣∣ y, t
]

p(y|t)

−
ns,z∑

i=1
Ii ≥1

Ii CI−ei ,z(y, t)p(y|t) ∂

∂t
μi,z(y, t) − CI,z(y, t)

∂

∂t
p(y|t), (22)

with

Ez

[
(Z + ν j,z − μz(y, t))I h j (Z)

∣∣∣ y − ν j,y, t
]

=
∑

0≤k≤I

(
I
k

) (
μz(y − ν j,y, t) − μz(y, t) + ν j,z

)I−k

· Ez

[
(Z − μz(y − ν j,y, t))kh j (Z)

∣∣∣ y − ν j,y, t
]
. (23)

The proof of this proposition is provided in Appendix C.
Proposition (3) provides an evolution equation for CI,z(y, t). To state these

dynamics in terms of the marginal probabilities, the conditional means and the
centered conditional moments, the expectations Ez

[
(Z − μz(y, t))I h j (z)

∣∣ y, t
]

and
Ez

[
(Z − μz(y − ν j,y, t))kh j (Z)

∣∣ y − ν j,y, t
]

can be substituted with corresponding
Taylor series representation (17). Furthermore, ∂

∂t p(y|t) can replaced by (11).

Example To illustrate the structure of the evolution equation (22), we return to
example (2). As the equations are lengthy, we state merely the evolution equa-
tion for the variance in the mRNA abundance in the off-state, Cr2,off(t) =
Ez

[
([R] − μr,off )

2
∣∣ off, t

]
,

poff
∂Cr2,off

∂t
=

(
Cr2,on − Cr2,off + (

μr,on − μr,off
)2

)
τoff pon

−τ
p
onCr2p,off poff + γr

(
μr,off − 2Cr2,off

)
poff ,

in which Cr2p,off(t) = Ez
[
([R] − μr,off)

2([P] − μp,off)
∣∣ off, t

]
. The first summand

describes the first order approximation of the influx in the off-state, τoff pon, times the
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changes of the variance due to differences, Cr2,on(t)−Cr2,off(t), and due to differences

in the means,
(
μr,on(t) − μr,off (t)

)2, in the two discrete states. The second summand
describes additional changes of the variance due to transitions resulting from second
order reactions. The last summand describes the dynamics of the variance within the
considered mode.

2.5 Conditional moment equation

In the previous sections we derived evolution equations for the marginal probabilities,
the conditional means and the centered conditional moments. By combining these
equations we obtain the conditional moment equation.

Theorem 1 (Conditional moment equation) Let p(y, z|t) = p(z|y, t)p(y|t) satisfy a
proper CME (9), an exact evolution equation for the marginal probabilities p(y|t) and
the conditional moments μi,z(y, t) = ∑

z≥0 zi p(z|y, t) and CI,z(y, t) = ∑
z≥0(z −

μz(y, t))I p(z|y, t) is given by the system

∂

∂t
p(y|t) =

nr∑

j=1,y≥ν+
j,y

c j g j (y − ν j,y)Ez
[
h j (Z)

∣∣ y − ν j,y , t
]

p(y − ν j,y |t)

−
nr∑

j=1

c j g j (y)Ez
[
h j (Z)

∣∣ y, t
]

p(y|t)

p(y|t) ∂

∂t
μi,z(y, t) =

nr∑

j=1,y≥ν+
j,y

c j g j (y−ν j,y)Ez
[
(Z − μz(y − ν j,y , t))ei h j (Z)

∣∣ y − ν j,y , t
]

p(y − ν j,y |t)

+
nr∑

j=1,y≥ν+
j,y

c j g j (y − ν j,y)(μi,z(y − ν j,y , t) + νi j,z)

· Ez
[
h j (Z)

∣∣ y − ν j,y , t
]

p(y − ν j,y |t)

−
nr∑

j=1

c j g j (y)
(
Ez

[
(Z − μz(y, t))ei h j (Z)

∣∣ y, t
]

+μi,z(y, t)Ez
[
h j (Z)

∣∣ y, t
] )

p(y|t) − μi,z(y, t)
∂

∂t
p(y|t)

p(y|t) ∂

∂t
CI,z(y, t) =

nr∑

j=1,y≥ν+
j,y

c j g j (y − ν j,y)
∑

0≤k≤I

(
I
k

) (
μz(y − ν j,y , t)

−μz(y, t) + ν j,z
)I−k

Ez

[
(Z − μz(y − ν j,y , t))k h j (Z)

∣∣∣ y − ν j,y , t
]

p(y − ν j,y |t)

−
nr∑

j=1

c j g j (y)Ez

[
(Z − μz(y, t))I h j (Z)

∣∣∣ y, t
]

p(y|t)

−
ns,z∑

i=1
Ii ≥1

Ii CI−ei ,z(y, t)p(y|t) ∂

∂t
μi,z(y, t) − CI,z(y, t)

∂

∂t
p(y|t),

(24)
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with Ez

[
(Z −μz(y, t))I h j (Z)

∣∣∣ y, t
]
=h j (μz(y, t))CI,z(y, t)+

∑ns,z

k=1

∂h j (μz(y, t))

∂zk

CI+ek ,z(y, t) + 1
2

∑ns,z
k,l=1

∂2h j (μz(y,t))
∂zk∂zl

CI+ek+el ,z(y, t).

The conditional moment equation follows directly from the Propositions 1, 2 and 3.
It provides an exact description for the stochastic evolution of Yt and the moments of
Zt .

As we expected, the conditional moment equation is in general not closed. The
evolution equations for moments of order m depend on moments of order > m. For
the moment equation by Engblom (2006), closure could be shown for processes which
contain only reactions with affine propensities (Engblom, 2006, Proposition 2.10),
i.e. zero and first order reactions. A careful study reveals that this is different for
the conditional moment equation. The conditional moment equation is closed if all
reactions possess mass action kinetics and belong to one of the following reaction
classes:

• Class 1 Reactions which have only low-copy number species (Si,y, i =
1, . . . , ns,y) as educts,

R j :
ns,y∑

i=1

ν−
i j,y Si,y →

ns,y∑

i=1

ν+
i j,y Si,y +

ns,z∑

i=1

ν+
i j,z Si,z .

• Class 2 First order reactions of high-copy number species (Si,z, i = 1, . . . , ns,z)
producing only high-copy number species,

R j : Si ′,z →
ns,z∑

i=1

ν+
i j,z Si,z .

For reactions R j of class 1 it holds that h j (Z) = 1, Ez
[
h j (Z)

∣∣ y, t
] = 1 and

Ez
[
(Z − μz(y, t))I h j (Z)

∣∣ y, t
] = Ez

[
(Z − μz(y, t))I

∣∣ y, t
]
, thus the moment order

is conserved. For reactions of class 2 we have h j (Z) = Z ′
i and moments of order

m + 1 appear in the evolution equations for p(y, t), μi,z(y, t) and CI,z(y, t). Indeed,
the same moment of order m + 1 enters in each evolution equation twice, in the first
and in the second summation over the reactions ( j). As these moments of order m + 1
possess opposite signs and are conditioned on the same low-copy number state y, since
νi j,y = 0 for reactions of class 2, they cancel. This is similar to the effect observed
for the moment equation (Engblom 2006).

For all reactions not belonging to class 1 and 2 we can construct simple examples
for which the conditional moment equation is not closed. One class of such reactions
are first order reactions which convert a high-copy number species into one or more
low-copy number species. For this class of reactions the moment equation is closed but
the conditional moment equation is not closed. On the other hand, for any bimolecular
reactions belonging to class 1, the conditional moment equation is closed while the
moment equation is not closed.
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For processes that include arbitrarily zero, first and second order reactions, the
moment equation contains moments of order ≤ m + 1. For the conditional moment
equation (17) indicates that also moments of order m + 2 appear. This is indeed the
case if low-copy number species can be produced from high-copy number species via
bimolecular reactions, e.g., Si1,z + Si2,z → ∑ns,y

i=1 ν+
i j,y Si,y . In this case the covari-

ance CI+ei1+ei2 ,z enters in the evolution equation for CI,z . This is different for the
MM (Engblom 2006), which contains for truncation index m moments of at most
order m + 1.

Example The conditional moment equation for example (2) is not closed because
reaction R7 does not belong to any of the above mentioned classes. If the reaction R7
is removed, the system is closed and the conditional moment equation is exact.

2.6 Moment closure techniques

The dependence of the evolution equations for moments of order m on moments of
order m +1 and m +2 prohibits the numerical simulation and establishes the need for
approximation methods. In the context of the MM, these approximation methods are
known as moment closures. The basic idea is to truncate the moments at order m, and to
express the moments of order > m as a function of the lower-order moments (Hespanha
2008).

For the uncentered moment equation a variety of different closure schemes have
been proposed. Most of these schemes employ distributional assumptions, e.g., that
the underlying probability distribution is normal (Whittle 1957), log-normal (Singh
and Hespanha 2006), beta-binomial (Krishnarajah et al. 2005), and a mixture of dis-
tributions (Krishnarajah et al. 2005). Other approaches employ assumptions about
the cumulants of the distribution (Matis and Kiffe 1999, 2002) or perform derivative
matching (Hespanha 2007; Singh and Hespanha 2011). In a recent study a stochas-
tic closure method has been introduced, which is based on a combination of SSA
simulations and Kalman filtering (Ruess et al. 2011).

All moment closure methods developed for uncentered moment equations can in
principle also be applied to centered moment equations. Nevertheless, we find that for
centered moment equations (Engblom 2006; Lee et al. 2009) mostly the low dispersion
closure (Hespanha 2008) is employed. Here the assumption is that the distribution is
tightly clustered around the mean, thus the higher-order centered moments are close
to zero. Thus, if only centered moments up to order m are included (CI,z(y, t) for
all I with

∑ns,z
i=1 Ii ≤ m), the moments of order m + 1 and m + 2 are replaced by

zero (Engblom 2006; Lee et al. 2009). Hence, for m = 1 the variances and covariances
are replaced by zero. For m = 2 the third-order moments, that describe the skewness
of the distribution, are replaced by zero, which is similar to an approximation using
the (multivariate) normal distribution.

As the conditional moment equations have been expressed in terms of the centered
moments, in the following we also use the low dispersion closure. For any CI,z with∑ns,z

i=1 Ii > m we employ the approximation

∀y, t : CI,z(y, t) = 0. (25)
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Clearly, by increasing the truncation order m, the approximation quality can be
increased as the underlying distribution is described more precisely. However, this
increase comes at the cost of an increased computational effort. The number of con-
ditional moments for a given state y is

m∑

k=1

(
ns,z + k − 1

k

)
, (26)

with ns,z being the number of medium/high-copy number species. Thus, the number of
equations increases rapidly with m. Additional assumptions about the co-dependence
of elements of z might be employed to eliminate conditional moments and to slow
down this increase (Menz et al. 2012). We also experienced numerical problems for
m � 1, establishing an additional limitation.

Example In example (2), the low dispersion closure with m = 1 yields the approxi-
mation Crp,off = Cp2,off = 0. For m = 2 we get Cr2p,off = Crp2,off = Cp3,off = 0.

For bi- and multi-modal distributions p(x |t), moment closure methods often
provide only unsatisfactory approximations of the higher-order moments. This
is due to the complex structure which does in general not allow for a reli-
able estimation of the moments of order > m using moments of order ≤ m.
This problem can be partially circumvented using the conditional moment equa-
tion, if the full distribution p(x |t) is bi- or multi-modal but the conditional
distribution p(z|y, t) is not. In this case, the modes of p(x |t) are associated
with different low-copy number states. As for the conditional moment equa-
tion the approximation of the moments of the unimodal conditional distribution
p(z|y, t) is sufficient, and also low-order closure schemes are often appropri-
ate.

Despite this improvement, moment closures merely approximate the moments
of the CME solution. For the moment equation it is well-known that these
approximations can cause divergence (Singh and Hespanha 2011). Similar prob-
lems can also occur for the conditional moment equation. For truncation orders
m ≥ 2, the non-negativity of the conditional means μz(y, t) and the higher-
order conditional moments CI,z(y, t) cannot be guaranteed as Ez

[
h j (Z)

∣∣ y, t
]

and
Ez

[
(Z − μz(y, t))I h j (Z)

∣∣ y, t
]

may become negative. If the non-negativity of mole-
cule numbers (e.g., μz(y, t)) or probabilities (e.g., p(y|t)) is violated, the approxi-
mation of the CME solution is implausible and the state of the conditional moment
equation often diverges.

To avoid negativity of solutions and divergence, the moment closure has to be cho-
sen carefully and specifically according to the problem. In this work we merely use
the low dispersion moment closure, however, any closure schemes developed for the
moment equation are appropriate. The use of more sophisticated closure methods can
avoid divergence problems and further improve the approximation achieved by the
conditional moment equation.
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3 Comparison of the method of conditional moments with the method
of moments and hybrid methods

In the last sections we introduced the conditional moment equation and outlined
moment closure methods. The former provides a hybrid stochastic moment descrip-
tion for the time-evolution of the CME solution. The question which remains open is
how the conditional moment equation relates to existing hybrid approximations and
moment-based descriptions of the CME. In the following, we compare our method
to the hybrid methods introduced by Menz et al. (2012), Jahnke (2011), Henzinger
et al. (2010) and Mikeev and Wolf (2012). Moreover, we analyze the relationship
to the centered moment equations by Engblom (2006), whose derivations have been
restated by Lee et al. (2009). Our analysis reveals that the MCM essentially provides
a generalization to these approaches.

3.1 Relation between the conditional moment equation and moment equation

As discussed earlier, the moment equation describes the evolution of the statistical
moments of the solution of the CME. In contrast to the conditional moment equation,
the moment equation by Engblom (2006) does not decompose the species into two
different classes. Instead, the distribution of all species is described using the cor-
responding moments. In terms of the conditional moment equation this means that
ns,y = 0 and ns,z = ns . Thus, z = x, ν j,y = ∅, ν j,z = ν j,x , and g j (y) = 1. Fur-
thermore, the marginal probability is one, p(y|t) = 1, the conditional moments are
equal to the (unconditional) moments, μi,z(y, t) = μ̄i (t) and CI,z(y, t) = C̄I (t), and
the conditional expectation Ez[T (Z , t)| y, t] becomes the expectation E[T (Z , t)|t].
When inserting all this in the evolution equation (24), we obtain

∂

∂t
μ̄i (t) =

nr∑

j=1

c jνi j,xE
[
h j (Z)|t] (27)

and

∂

∂t
C̄I (t) =

nr∑

j=1

c j

∑

0≤k<I

(
I
k

)
ν I−k

j,x E

[
(Z − μ̄(t))kh j (Z)|t

]

−
ns∑

i=1

Ii E

[
(Z − μ̄(t))I−ei |t

] ∂

∂t
μ̄i (t) (28)

with

E

[
(Z − μ̄(t))I h j (Z)|t

]
= h j (μ̄(t))C̄I (t) +

ns∑

k=1

∂h j (μ̄(t))

∂zk
C̄I+ek (t)

+1

2

ns∑

k,l=1

∂2h j (μ̄(t))

∂zk∂zl
C̄I+ek+el (t).
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This result is equivalent to the result of Lee et al. (2009, Equation (6) and (8)), which
is a reformulation of the result by Engblom (2006, Equation (2.46)).

Beyond the expected result that the moment equation is a special case of the con-
ditional moment equation, the means μ̄i (t) = E[xi |t] and the centered moments
C̄I (t) = E

[
(X − μ̄(t))I |t] can be computed from the conditional moments for any

assignment to low- and medium/high-copy number species, Xt = (Yt , Zt ).

Proposition 4 For Xt = (Yt , Zt ), the conditional moment equation (24) describes
the evolution of the population mean,

μ̄i (t) =

⎧
⎪⎪⎨

⎪⎪⎩

μ̄i,y(t) =
∑

y≥0

yi p(y|t) for i ∈ {1, . . . , ns,y}

μ̄ j,z(t) =
∑

y≥0

μ j,z(y, t)p(y|t) for i ∈ {ns,y + 1, . . . , ns},
(29)

where j = i − ns,y , and the centered moments,

C̄I (t) =
∑

y≥0

(y − μ̄y(t))
Iy

∑

0≤k≤Iz

(
Iz

k

)
(μz(y, t) − μ̄z(t))

Iz−kCk,z(y, t)p(y|t)

(30)

with I = (Iy, Iz) and μ̄y(t) = (
μ̄1(t), . . . , μ̄ns,y (t)

)
.

To determine the statistical moments (29) and (30) we assess the overall statistics of
the mixture defined by the discrete states and the corresponding conditional moments.
The derivation of Proposition (4) can be found in Appendix D.

Example For the gene expression model (2), Proposition 4 states that the means are
μ̄off(t) = poff(t), μ̄on(t) = pon(t), μ̄r(t) = μr,off (t)poff(t) + μr,on(t)pon(t) and
μ̄p(t) = μp,off(t)poff(t) + μp,on(t)pon(t). For the variances and covariances we
obtain, for instance,

C̄r2(t) =
((

μr,off(t) − μ̄r(t)
)2 + Cr2,off(t)

)
poff(t)

+
((

μr,on(t) − μ̄r(t)
)2 + Cr2,on(t)

)
pon(t). (31)

3.2 Relation between the conditional moment equation and hybrid methods

Similar to the conditional moment equation, the hybrid methods by Menz et al. (2012),
Jahnke (2011), Henzinger et al. (2010), and Mikeev and Wolf (2012) rely on the
assignment of species to two groups. Low-copy number species are modeled stochas-
tically, while medium/high-copy number species are modeled deterministically but
conditioned on the state of the low-copy number species. This deterministic modeling
considers merely the mean concentration and relies on the assumption that the vari-
ance in the abundance of the medium/high-copy number species is zero. Indeed, if
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we use the truncation index m = 1 and the trivial moment closure CI (y, t) = 0, the
conditional moment equation simplifies to

∂

∂t
p(y|t) =

nr∑

j=1
y≥ν+

j,y

c j g j (y − ν j,y)h j (μz(y − ν j,y, t))p(y − ν j,y |t)

−
nr∑

j=1

c j g j (y)h j (μz(y, t))p(y|t) (32)

and

p(y|t) ∂

∂t
μi,z(y, t) =

nr∑

j=1
y≥ν+

j,y

c j
(
μi,z(y − ν j,y, t) + νi j,z

)

·g j (y − ν j,y)h j (μz(y − ν j,y, t))p(y − ν j,y |t)

−
nr∑

j=1

c j g j (y)μi,z(y, t)h j (μz(y, t))p(y|t)

−μi,z(y, t)
∂

∂t
p(y|t), (33)

which corresponds to the hybrid model by Jahnke (2011, Equation (5.8) and (5.9)).
The conditional moment equation with m = 1 (32)–(33) is also closely related
to the hybrid model by Menz et al. (2012, Equation (3.46) and (3.47)). Indeed,
we can establish equivalence if (1) the partial means used by Menz et al. are
expressed as product of conditional means and marginal probabilities and (2) the
“discrete reactions” defined by Menz et al. do not change medium/high-copy number
species.

We note that (32)–(33) is not equivalent to the hybrid simulation methods used
by Henzinger et al. (2010, Equation (11)–(15)) and by Mikeev and Wolf (2012,
Equation (6) and (7)). These methods rely on an ad hoc derivation which results
in a slightly different description of the coupling of discrete states y. The cou-
pling terms are similar to the exact coupling terms derived here, but they are not
identical.

Example Note that for example (2), the corresponding hybrid model by Jahnke (2011)
is given by (14)–(15), (18)–(21) with Cp2,off(t) ≡ Crp,off (t) ≡ 0.

3.3 The conditional moment equation as a unifying modeling framework

The findings of the previous sections imply that the moment equation (Engblom 2006;
Lee et al. 2009) and the hybrid systems (Jahnke 2011; Menz et al. 2012) are special
cases of the conditional moment equation. For m = 1 in combination with a low
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Fig. 2 Illustration of the properties of five model classes, Chemical Master Equation, conditional moment
equation, moment equation, hybrid models, and reaction rate equation, in terms of the set of discrete states
y and the truncation order m. The vector x contains all species, while y and z contain those defined as
low-copy number species and the medium/high-copy number species, respectively

dispersion closure (25) we obtain the hybrid models (Jahnke 2011; Menz et al. 2012).
The moment equation (Engblom 2006; Lee et al. 2009) arises when y = ∅, z = x
and m ∈ N. For y = ∅, z = x, m = 1 and a low dispersion moment closure we
even get the reaction rate equation. Thus, these three model classes are subsets of the
conditional moment equation (24).

Indeed, if we choose y = x , we even recapture the CME. Strictly speaking, the
class of CMEs is therefore a subset of the class of conditional moment equations. In
this work the conditional moment equation is however merely used to approximate the
statistical properties of a given CME. An overview about the different model classes
and the dependencies is provided in Fig. 2.

4 Simulation of the conditional moment equation

To analyze the conditional moment equation, its properties, and to compare it with
existing methods, we employ in the following simulation-based methods. As the
conditional moment equation is a DAE, the numerical treatment is however non-
trivial (Ascher and Petzold 1998). DAEs allow for a much richer dynamic behavior
than ODEs, including discontinuities. While general purpose solvers are available
for DAEs with arbitrary DAE indexes, e.g., Hindmarsh et al. (2005), all of them
require initial values for the state variables and their time-derivatives (Brown et al.
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1998). Hence, we have to compute p(y|0), ṗ(y|0), μi,z(y, 0), μ̇i,z(y, 0), CI,z(y|0),
and ĊI,z(y|0) from the initial distribution p(x |0) = p(y, z|0).

4.1 Construction of initial conditions

At a first glance, the assignment of initial conditions might seem to be straight forward,
but it is indeed challenging. We face the problem that for y with p(y|0) = 0 the
conditional probabilities p(z|y, 0) are not determined as

∀y with p(y|0) = 0 : p(y, z|0) = p(z|y, 0)p(y|0) = p(z|y, 0) · 0 = 0.

This indeterminacy of p(z|y, 0) complicates the calculation of initial moments and
their derivatives. However, this indeterminacy is no disadvantage of the conditional
moment equation as these state do not contribute to the distribution. Furthermore, we
will present a method to construct a consistent initialization.

To elucidate the problem and the solution procedure, we first have a look at our
example.

Example To illustrate the calculation of initial conditions for states y with p(y|0) = 0,
we consider example (2). At t = 0 we assume that the DNA is with probability ξoff in
the off-state and with probability (1 − ξoff) in the on-state. In both, on- and off-state,
mRNA and protein numbers follow independent Poisson distributions. This yields the
initial condition

p(y, z|0) =
{

ξoff Pois(z1|λr,off )Pois(z2|λp,off ) for y = off,
(1 − ξoff)Pois(z1|λr,on)Pois(z2|λp,on) for y = on,

(34)

with distribution parameters λr,off , λr,on, λp,off and λp,on. Pois(zi |λ) = λzi e−λ

zi ! denotes
the Poisson distribution which possesses mean and variance λ.

Given p(y, z|0) we calculate now the initial conditions. Thereby we distinguish
two cases: ξoff ∈ (0, 1) (Case 1) and ξoff ∈ {0, 1} (Case 2). To keep the example brief
we merely provide equations for the marginal probabilities and the conditional means.

• Case 1: For ξoff ∈ (0, 1) the initial marginal probabilities are poff(0) = ξoff and
pon(0) = 1 − ξoff . This yields the conditional probabilities

p(z|off, 0) = p(off, z|0)

ξoff
= Pois(z1|λr,off )Pois(z2|λp,off ),

p(z|on, 0) = p(on, z|0)

1 − ξoff
= Pois(z1|λr,on)Pois(z2|λp,on),

from which we deduce via (5) that μr,off (0) = λr,off , μr,on(0) = λr,on, μp,off (0) =
λp,off and μp,on(0) = λp,on. To determine the initial derivatives we evaluate
the evolution equations at t = 0. From (14) and (15) it follows that ṗoff(0) =
− (

τon + τoff + τ
p
onλp,off

)
ξoff + τoff and ṗon(0) = (

τon + τoff + τ
p
onλp,off

)
ξoff −
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τoff , while (18)-(21) yield μ̇r,off(0) = (λr,on −λr,off)τoff
1−ξoff
ξoff

−γrλr,off , et cetera.
The initial conditions for the higher-order moments can be computed accordingly.

• Case 2: For ξoff ∈ {0, 1}, the initialization is more difficult. To illustrate the
problem and a solution we consider ξoff = 0. In this case, the initial marginal
probabilities are poff(0) = 0 and pon(0) = 1. Their derivatives ṗoff(0) = τoff and
ṗon(0) = −τoff are found by evaluating (14) and (15), respectively. Furthermore,
the initial conditions for the on-state can be assessed as before, yielding μr,on(0) =
λr,on, μp,on(0) = λp,on, μ̇r,on(0) = kr −γrλr,on, and μ̇p,on(0) = kpλr,on −γpλp,on.
The conditional moments in the off-state pose problems as we cannot solve
p([1, 0], z|0) = p(z|[1, 0], 0)p([1, 0]|0) for p(z|[1, 0], 0) because p([1, 0]|0) =
0. Thus, we can neither evaluate (5) to get a μr,off and μp,off , nor use (18)
and (19) to determine the initial derivatives. To circumvent these problems we
note that the evolution equation for μr,off (18) evaluated at t = 0 is 0 =(
μr,on(0) − μr,off(0)

)
τoff . Thus, the evolution equation does not define the initial

derivative of μr,off , μ̇r,off (0), but the initial value μr,off(0) = μr,on(0) = λr,on.
Similarly we evaluate the evolution equation for μp,off (19) at t = 0 to find
μp,off(0) = μp,on(0) = λp,on.
To determine the initial derivative of μr,off and μp,off we compute the partial
derivative of the corresponding evolution equations with respect to t and evaluate
it at t = 0. For μr,off the partial derivative of the evolution equation is

∂poff

∂t

∂μr,off

∂t
+ poff

∂2μr,off

∂t2

= τoff

((
∂μr,on

∂t
− ∂μr,off

∂t

)
pon + (

μr,on − μr,off
) ∂pon

∂t

)

−τ
p
on

(
∂Crp,off

∂t
poff + Crp,off

∂poff

∂t

)
− γr

(
∂μr,off

∂t
poff + μr,off

∂poff

∂t

)
,

which for t = 0 simplifies to

τoff μ̇r,off(0) = τoff
(
kr − γrλr,on − μ̇r,off (0)

) − τoffτ
p
onCrp,off (0) − τoffγrλr,on.

When solving the latter equation for μ̇r,off(0) we obtain

μ̇r,off(0) = kr

2
− γrλr,on − τ

p
on

2
Crp,off (0).

Thus, using the first derivative of the evolution equation, we can determine the
initial derivative μ̇r,off (0). The unknown Crp,off (0) can be computed from the
evolution equation for Crp,off or might, for truncation index m = 1, be set to zero.
By applying the same procedure to (19), we obtain

μ̇p,off(0) = kpλr,on − γpλp,on − τ
p
on

2
Cp2,off(0),

with Cp2,off(0) being determined by the evolution equation of Cp2,off .
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The derivation of μr,off(0), μp,off (0), μ̇r,off (0) and μ̇p,off(0) concludes Case 2. A
similar procedure can be used to determine the initial conditions for ξoff = 1.

The example shows that the calculation of the initial condition might be non-trivial
for some setups, however, the partial derivatives of the evolution equation define the
initial conditional moments and their initial derivatives. In the following, we introduce
an initialization scheme for the conditional moment equation. Given an initial prob-
ability distribution p(y, z|0), we first state the initial condition for all states y with
p(y|0) = ∑

z≥0 p(y, z|0) > 0. Afterwards, we propose an initialization scheme for
states y with p(y|0) = 0.

States y with p(y|0) > 0: For states y with p(y|0) > 0 the initial conditions for
the conditional moments follow from (5) and (6), yielding

μi,z(y, 0) =
∑

z≥0

zi p(z|y, 0) =
∑

z≥0

zi
p(y, z|0)

p(y|0)
, (35)

CI,z(y, 0) =
∑

z≥0

(z − μz(y, t))I p(z|y, 0) =
∑

z≥0

(z − μz(y, t))I p(y, z|0)

p(y|0)
.

(36)

The initial derivatives are defined by the evolution equations (11), (16), and (22)
evaluated for t = 0.

States y with p(y|0) = 0: For states y with p(y|0) = 0, the initial conditional
probability p(z|y, 0) is undetermined. Thus, (35) and (36) cannot be evaluated. In
addition, the derivative μ̇i,z(y, 0) remains undefined as at time t = 0 it is, in (16),
multiplied by p(y|0) = 0 and vanishes. The same holds true for ĊI,z(y, 0). Merely,
ṗ(y|0) can be computed directly by evaluating (11), yielding

ṗ(y|0) =
nr∑

j=1
y≥ν+

j,y

c j g j (y − ν j,y)Ez
[
h j (Z)

∣∣ y − ν j,y, 0
]

p(y − ν j,y |0), (37)

with Ez
[
h j (Z)

∣∣ y−ν j,y, 0
]

defined according to (13). Fortunately, ṗ(y|0) only
depends on states with non-zero marginal probabilities for which Ez

[
h j (Z)

∣∣ y−ν j,y, 0
]

is known.
To determine μi,z(y|0), μ̇i,z(y, 0), CI,z(y|0), and ĊI,z(y, 0), we employ deriva-

tives of the evolution equations (16) and (22). The differentiation order depends on
the system structure, the state y, and the initial condition p(y, z|0). In Appendix E
(Proposition 5) we show that the (Ky −1)-th derivative of the evolution equations (16)
and (22), with

∀k ∈ {1, . . . , Ky − 1} : ∂k
t p(y|0) = 0 and ∂

Ky
t p(y|0) �= 0, (38)

is necessary to determine μi,z(y|0) and CI,z(y|0). To assess μ̇i,z(y, 0) and ĊI,z(y, 0),
we need the Ky-th derivative. In favor of readability we skip the precise formulae for
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the initial conditional moments and their derivatives. Therefore we refer to Appendix E,
which provides the detailed derivation.

Note that from (38) it follows that Ky is the minimal number of reactions which
have to take place to reach state y from a state ỹ with p(ỹ|0) > 0. If there does not
exist a reaction path with non-zero probability which leads from a state ỹ with p(ỹ|0)

to y, Ky does not exist as all derivatives of the marginal probability p(y|t) are zero.
Thus, for certain tuples of systems and initial conditions, the initial condition of the
conditional moment equations remains partially undefined.

States y with zero marginal probability for all t do not influence and are not influ-
enced by other states. Thus, these states y can be eliminated from the system for the
given initial condition. This represents an exact model reduction for this initial condi-
tion. We emphasize that for altered initial conditions the differentiation order Ky has
to be reevaluated and a reduction might not be possible.

4.2 Numerical simulation of DAE systems

Given consistent initial conditions, available DAE methods can be used to simulate the
conditional moment equation. The most common methods rely on the Taylor series
expansion (Pryce 1998) or on sophisticated, adaptive discretization schemes paired
with solvers for nonlinear algebraic equations (Brown et al. 1994).

Taylor series based solvers employ the expansion of the DAE solution at each
integration step (Nedialkov and Pryce 2007). Therefore, symbolic differentiation is
employed. Existing solvers such as DAETS can handle “moderate stiffness well, but
is unsuitable for highly stiff problems” (Nedialkov and Pryce 2007). Because of this
stiffness constraint and the need for symbolic differentiation, we employed in this work
the SUNDIALS toolbox IDAS (Hindmarsh et al. 2005) which employs variable-order,
variable-coefficient backward differentiation formulas (Byrne and Hindmarsh 1975).
The resulting nonlinear algebraic system is solved using Newton iterations, e.g., based
on Krylov methods (Brown et al. 1994). The SUNDIALS toolbox IDAS (Hindmarsh
et al. 2005) and the alternative implementation DASPK (Brown et al. 1994) have been
assessed using a variety of nonlinear DAEs. They are applicable to stiff problems with
arbitrary DAE index.

We emphasize that the combination of IDASwith a consistent initialization scheme
allows for consistent numerical treatment and has advantages compared to the methods
proposed by Menz et al. (2012) and Jahnke (2011). The formulation of the hybrid
stochastic-deterministic model introduced by Menz et al. (2012, Equation (3.46) and
(3.47)) requires the division by p(y|t). As this division is numerically unstable for
p(y|t) ≈ 0 and impossible for p(y|t) = 0, the authors instead divide by p(y|t) + δ,
with δ being a small positive number. This alters the dynamics as we illustrate in
Appendix F for example (2). Also Jahnke (2011) chose an ODE formulation but
circumvented the division by p(y|t) using a dynamic state truncation. Merely the
time evolution of states with p(y|t) > ε is considered, which generates the need for
extrapolating the solution. While these methods provide good results for the example
considered by Menz et al. (2012) and Jahnke (2011), we are not aware of general
convergence results. Furthermore, the DAE solvers implemented in IDAS have been
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proven appropriate in many different situations and we show in the following section
that they work well in situations where p(y|t) ≈ 0 and p(y|t) = 0, and, for different
truncation orders m. The regime m ≥ 2 has not been entered by existing hybrid
models.

5 Application examples: Stochastic gene expression

In the previous sections, we illustrated our theoretical findings using the gene expres-
sion model described by (2). In this section, we will compare the properties of the
conditional moment equation with the moment equation and the hybrid model by
Jahnke (2011) for this model using numerical simulations.

5.1 Model and scenarios

We consider two different scenarios:

• fast switching between DNA states, τon = τoff = 1 h−1, and
• slow switching between DNA states, τon = τoff = 0.05 h−1.

For both scenarios we assume mRNA and proteins half-life times of roughly 45 min,
thus γr = γp = 1 h−1. Furthermore, we choose kr = 10 h−1, kp = 4 h−1 and
τ

p
on = 0.015 h−1. This yields on average ≈ 7 mRNAs and ≈ 25 proteins in the

stationary distribution. These parameters are within the biologically plausible range,
see, e.g., (Munsky et al. 2012; Shahrezaei and Swain 2008; Taniguchi et al. 2010) and
references therein.

To simulate the process for the two parameterizations,

• θ(1) = (1, 1, 10, 1, 4, 1, 0.015) (fast switching) and
• θ(2) = (0.05, 0.05, 10, 1, 4, 1, 0.015) (slow switching),

we employ the finite state projection (Munsky and Khammash 2006). As state space
of the FSP we use

ΩFSP =
{

x ∈ N
4
0|x1, x2 ∈ {0, 1} ∧ x3 ∈ {0, . . . , 40} ∧ x4 ∈ {0, . . . , 200}

}
.

For the initial conditions (34) we use in the remainder,

ξoff = 0.7, λr,off = λr,on = 4, and λp,off = λp,on = 10,

the chosen state space ΩFSP ensures a projection error < 10−6 for t ∈ [0, 100] h.
For our purposes, this error is negligible and the time interval is sufficiently long as
for t = 100 h the process almost reaches its steady state. We chose here the FSP
instead of extensive Gillespie simulations, as for this system the FSP simulation is
computationally more efficient.

Simulation results for θ(1) and θ(2) are shown in Fig. 3. While for θ(1), mRNA and
proteins distributions in off- and on-state are alike, for θ(2) we observe a separation in
state space. In the off-state, mRNA and protein numbers are low, while in the on-state
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Fig. 3 Probability distribution of mRNA and protein numbers for parameters θ(1) and θ(2). The contribution
of the off-state (blue area) and the on-state (red area) to the overall distribution (solid black line) is color-
coded. a For fast switching between DNA states, θ(1), the mRNA and protein distributions in off- and
on-state are quite similar. b In case of slow switching rates, θ(2), the distributions associated to off- and
on-state are different. In this case the number of mRNA and proteins found in the off-state are on average
much smaller than those found in the on-state. a mRNA distribution and protein distribution for θ(1). Total
probability distribution (solid black line), and conditional probability distributions in the on-state (red area)
and in the off-state (blue area) are shown. b mRNA distribution and protein distribution for θ(2). Total
probability distribution (solid black line), and conditional probability distributions in the on-state (red area)
and in the off-state (blue area) are shown (color figure online)

mRNA and proteins numbers are relatively high. This yields bimodal distributions
as discussed by Munsky et al. (2012) and experimentally observed by Gandhi et al.
(2011). The qualitative differences observed for θ(1) and θ(2) render the parameter
vectors suited for a comparison of hybrid models, the method of moments and the
method of conditional moments. For this comparison we employ the low dispersion
moment closure (MM and MCM) and y = ([Doff ], [Don]) (HM and MCM). While
different hybrid models exist, we restrict ourself to the model introduced by Jahnke
(2011), which is equivalent to the conditional moment equation of order m = 1.

For the simulation of the different models we employed sophisticated numerical
solvers contained in the SUNDIALS package. The FSP and the moment equation are
simulated using CVODES. For the hybrid model and the conditional moment equation
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we employed IDAS. Relative and absolute error tolerances are set to 10−6 to ensure
small numerical errors. All other options are set to the default values.

5.2 DNA states as low-copy number species

In the first part of this example we consider only the DNA states, Doff and Don, as
low copy number species, yielding y = ([Doff ], [Don]) and z = ([R], [P]). This is the
case for which the conditional moment equations have been provided in the previous
sections. For this setting we analyze the approximation quality and the convergence
properties with respect to the truncation order m.

5.2.1 Comparison of hybrid model, moment equation (order 2) and conditional
moment equation (order 2)

To assess the approximation properties of the different methods we study the short-
time dynamics, t ∈ [0, 10], and the long-term dynamics, t ∈ [90, 100]. For both
time intervals, we compute the overall moments μ̄i (t) and C̄I (t), whose evolution is
described by the MM and which can also be evaluated using the HM and MCM using
Proposition (4). To evaluate the variances and covariances C̄I (t) for HM we employ
the moment closure and set all second order centered moments to zero.

Figure 4 depicts the moments computed using the moment equation for m = 2, the
hybrid model by Jahnke (2011), and the conditional moment equation for m = 2. As
reference solution we plot the moments computed from the FSP solution, which are
assumed to be exact. We find that for θ(1) all three methods provide a good description
of the means. Concerning second order moments, here illustrated using the time-
dependent 1-σ interval (mean ± standard deviation), the MM and the MCM perform
much better than the HM. In particular for mRNA and protein, the HM underestimates
the variances significantly. This is a result of the moment closure for m = 1, which
assumes the conditional variances in on- and off-state to be zero, a very rough approx-
imation (Fig. 5a, b). The non-zero overall variance follows from (31) and is a result
of the differences in the means of the on- and off-state.

For the slow switching scenario, θ(2), an accurate approximation is more difficult to
achieve. The MM of order 2 and the HM fail to capture the long-term behavior of means
and variances. The reason for the non-satisfying performance of the MM and the HM
is the complex distribution arising from the CME for this parameterization. Figure 3b
shows that the underlying distributions are multi-modal, posing severe problems for
any moment closure scheme and thus limiting the accuracy of the MM. In addition, the
correlation structures between mRNA and protein number is pronounced and different
for the two DNA states (Fig. 5c, d), causing problems for the HM.

Both methods, the MM and the HM, are outperformed by the MCM for θ(2). The
conditional moment equation can better resolve the structure of the solution, as it
combines the discreteness of the DNA state, causing the bimodality, with informa-
tion about moments of the high-copy species conditioned on the discrete states. This
allows a better approximation of the overall distribution. In that respect, the conditional
moment equation can also be interpreted as a sophisticated closure scheme.
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Fig. 4 Time courses of the statistics of pon, poff , [R], and [P] computed using the finite state projection
(grey solid line), the method of moments (green solid line), the hybrid stochastic-deterministic model
proposed by Jahnke (2011) (red solid line), and the method of conditional moments (blue solid line). Solid
lines provide mean and dashed lines indicate the 1-σ interval (mean ± standard deviation). For the selected
truncation level, the FSP error is < 10−6. Therefore, the mean and the 1-σ interval (gray shading) computed
from the FSP is employed as reference solution to evaluate the approximation quality of the other methods.
Simulation results are depicted for a θ(1) and b θ(2). For θ(1) all methods perform well, providing a good
approximation of the means. All variances are described well by the method of moments and the method
of conditional moments while the hybrid method fails to describe the variance in [R] and [P]. For θ(2) the
method of conditional moments outperforms the method of moments and the hybrid method in particular
for t � 1. a Time-dependent means and 1-σ intervals for θ(1). b Time-dependent means and 1-σ intervals
for θ(2) (color figure online)
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Fig. 5 Joint probability of mRNA and protein numbers at time t = 5 h conditioned on the DNA state.
Probability distributions for parameters θ(1) in a off-state and b on-state exhibit a pronounced but similar
correlation structure. For parameters θ(2) the correlation structure in c off-state and d on-state is also
pronounced and depends strongly on the DNA state. a Conditional probability of mRNA and protein
numbers in off-state for θ(1). b Conditional probability of mRNA and protein numbers in on-state for θ(1).
c Conditional probability of mRNA and protein numbers in off-state for θ(2). d Conditional probability of
mRNA and protein numbers in on-state for θ(2)

Note that the improved approximation of the conditional moment equation com-
pared to the moment equation can be achieved by a minor increase in the model size.
Employing the conservation law for the DNA states, the moment equation of order 2
possesses 9 state variables (3 means, 3 variances and 3 covariances). The conditional
moment equation of order 2 possesses 12 state variables (for each of the two discrete
states 1 marginal probability, 2 means, 2 variances and 1 covariances). Hence, merely
3 states have to be added to achieve a better resolution of the distribution.

5.2.2 Convergence with respect to truncation order

As mentioned earlier, the conditional moment equation outperforms for θ(2) and m = 2
the other methods. However, for the overall moments, μ̄i (t) and C̄I (t) (Fig. 4b),
as well as for the conditional moments, μi,z(y, t) and CI,z(y, t), and the marginal
probabilities, p(y|t) (Fig. 6a) there are still significant discrepancies between the
solution of the conditional moment equation and the FSP. The main sources of these
discrepancies are the skewness of the distribution of mRNA and proteins number in
the off-state (Fig. 3b) and the nonlinear correlation of mRNA and proteins number
(Fig. 6b). These third and higher-order effects can already be described well with a
conditional moment equation of order 3. Figure 6b shows that for m = 3 the conditional
moment method closely matches the FSP solution.
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Fig. 6 Marginal probabilities and conditional moments computed using the method of conditional moments
for parameters θ(2) with a truncation order m = 2 and b truncation order m = 3. For m = 2 we find
small errors in the trajectories of the marginal probabilities and the protein distributions. These errors
significantly decrease for m = 3, indicating that the skewness of mRNA and protein distribution is
non-negligible. a Marginal probabilities and conditional moments for θ(2) and truncation order m = 2.
b Marginal probabilities and conditional moments for θ(2) and truncation order m = 3
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Fig. 7 Relative errors in means and second order central moments computed using the method of moments
(green), the hybrid stochastic-deterministic model proposed by Jahnke (2011) (red), and the method of
conditional moments (blue). The relative errors eμ(T ) and eC,2(T ) are shown for parameters θ(2) and for
T = 100 h, a time point at which the state of the system is numerically indistinguishable from the steady
state. As the HM is a special case of the MCM for the considered selection of Yt and Zt , the relative error
can be reduced by increasing the truncation order m. Compared to the MM, the MCM has a smaller offset
at m = 1 and a steeper slope (MM ≈ −0.1; MCM ≈ −0.55). In log-scale the approximation quality of
means and second order central moments shows a similar behavior, but differs roughly by a factor of 6
(color figure online)

To evaluate the convergence with respect to the truncation order m more carefully
we evaluate the relative error of the means,

eMCM
μ (T ) =

n∑

i=1

∣∣∣∣∣
μ̄MCM

i (T ) − μ̄FSP
i (T )

μ̄FSP
i (T )

∣∣∣∣∣ ,

and of the variances and covariances,

eMCM
C,2 (T ) =

n∑

i1=1

i1∑

i2=1

∣∣∣∣∣
C̄MCM

ei1+ei2
(T ) − C̄FSP

ei1+ei2
(T )

C̄FSP
ei1+ei2

(T )

∣∣∣∣∣ ,

for T = 100 h. μ̄MCM
i (T ) (C̄MCM

ei1+ei2
(T )) and μ̄FSP

i (T ) (C̄FSP
ei1+ei2

(T )) denote the means
(variances) at time T determined using the MCM and the FSP, respectively. The same
errors, namely eMM

μ (T ) and eMM
C,2 (T ), can of course be defined for the MM.

The error measures eμ(T ) and eC,2(T ) allow for a quantitative assessment of the
approximation performances for large times. Figure 7 depicts eμ(T ) and eC,2(T ) for
the moment equations and the conditional moment equations with truncation orders
m ∈ {1, . . . , 6}, for θ(2). Apparently, the error in the first and second order moments
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strongly depends on the truncation order m. The error in the mean, eμ(T ), for the
hybrid stochastic-deterministic model (MCM with m = 1) is roughly twice the error
for the MCM with m = 2, and roughly six times the error for the MCM with m = 3.
Furthermore, for all truncation orders m, the MCM outperforms the MM. The error
eμ(T ) for m = 1 is 1.5 times smaller and the error decreases more rapidly for increas-
ing moment orders m. For the moment equation the error decreases exponentially with
an exponent of ≈ −0.1, whereas for the conditional moment equation the exponent is
≈ −0.55. Comparing MM and MCM, we find that even for m = 6, the error for the
MM is approximately 0.1, a level which we reach with the MCM already for m = 2.

The errors in the variances and covariances, eMCM
C,2 (T ) behave similar to the errors

in the means eμ(T ). An increase of m results in a decrease of the error, and, MCM
outperforms the MM by far. The key difference is that the improvement when going
from hybrid stochastic-deterministic model (MCM with m = 1) to the MCM with
m = 2 is more pronounced. This more significant improvement is expected as for
m = 1 the variances and covariances are merely computed from the means of the
individual low-copy number states (mixture of delta-distributions), while for m = 2
the model also accounts for the variance within the low-copy number states.

The size of the moment equation and the conditional moment equation for different
truncation orders m is shown in Table 2. For m < 4 the moment equations has fewer
states than the conditional moment equation, however, this turns around for m ≥ 4.
If we assume that the cardinality of the set of low-copy number states is finite it can
actually be shown that there exists a truncation level above which the moment equation
has more states than the conditional moment equation. This is due to the faster growth
of the number of moments in the MM compared to the MCM. Apparently, for low
truncation orders m, the moment equation will always posses fewer states than the
conditional moment equation.

5.3 DNA states and mRNA as low-copy number species

The treatment of the DNA states as low-copy number species allows for the assessment
of the statistics of mRNA and protein numbers, however, the precise distribution
remains hidden. For this reason, we consider now in addition to Doff and Don also
the mRNA, R, as low-copy number species. This is in particular interesting because
the mean mRNA number is low (≈ 7). Furthermore, for y = ([Doff ], [Don], [R]) and
z = [P] the set of low-copy number states is no longer finite. Hence, the numerics of
the DAE can be assessed for p(y|t) ≈ 0.

Table 2 Number of state variables of the moment equation and the conditional moment equation for
different truncation orders m for the 3-stage gene expression example, with DNA states as low-copy number
species

Moment order m 1 2 3 4 5 6

Moment equation 3 9 19 34 55 83

Conditional moment equation 6 12 20 30 42 56
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In the following we consider only scenario 2 (slow switching, θ(2)) as for this case
the dynamics of the system are more involved and the probability distributions are
more complex. Similar to the CME, we use a finite state projection for the conditional
moment equation with

ΩMCM =
{

y ∈ N
3
0|y1, y2 ∈ {0, 1} ∧ y3 ∈ {0, . . . , 40}

}
.

The marginal probabilities of states y /∈ ΩMCM are set to zero. For the simulation
we employ as before the IDAS solver of the SUNDIALS package. Although the
marginal probabilities p(y|t) quickly approach zero for y3 > 20—some marginal
probabilities are actually below 10−25—the solver yields numerically stable results.
Thus, approximations of the dynamical systems as proposed by Menz et al. (2012) are,
at least for this example, not necessary. An assessment of different numerical schemes
can be found in Appendix F.

Figures 8, 9, 10, 11 and 12 depict different aspects of the simulation results for the
MCM, the approximation properties of the hybrid model by Jahnke (2011) (MCM
with m = 1) and the MCM with m = 2. Figure 8 shows that both, the HM and
the MCM with m = 2, yield visually similar results for the marginal probabili-
ties of the mRNA numbers p([R]|t). When comparing the marginal probabilities,
pHM([R]|t) and pMCM([R]|t), with the marginal probabilities computed using the
FSP, pFSP([R]|t), we however find that the error of the HM,

|pHM([R]|t) − pFSP([R]|t)| ,

is much larger than the error of the MCM with m = 2,

|pMCM([R]|t) − pFSP([R]|t)| .
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Fig. 8 Probability distribution of mRNA numbers for scenario 2, θ(2), computed using a the HM by Jahnke
(2011) and b the MCM with m = 2. The contribution of the off-state (blue area) and the on-state (red area)
to the overall distribution (black solid line) is color-coded. a HM by Jahnke (2011) (MCM with m = 1). b
MCM with m = 2 (color figure online)
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Fig. 9 Error of the marginal probabilities for scenario 2, θ(2), computed using a the HM by Jahnke (2011)
and b the MCM with m = 2. The error is evaluated with respect to the FSP solution of the CME, which is
assumed to be exact. The individual lines represent the errors in the marginal probabilities in the off-state
(blue solid line), in the on-state (red solid line), and in the overall marginal probabilities (solid line). a HM
by Jahnke (2011) (MCM with m = 1). b MCM with m = 2 (color figure online)
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Fig. 10 Conditional mean of protein number for scenario 2, θ(2), computed using a the HM by Jahnke
(2011) and b the MCM with m = 2. The individual lines represent the conditional means in the off-state
(blue solid line), in the on-state (red solid line), and the overall conditional mean (black solid line). a HM
by Jahnke (2011) (MCM with m = 1). b MCM with m = 2 (color figure online)

This is shown in Fig. 9. Thus, taking the second-order moments of high-copy number
species into account improves the approximation of the marginal probabilities of low-
copy number states.

The analysis of the mean protein number for a given mRNA number establishes a
similar picture. The simulation results for HM and MCM with m = 2 are shown in
Fig. 10a, b, respectively. A visual assessment reveals no obvious differences between
both simulations. The evaluation of the error with respect to the FSP simulation same
definition as above shows however that the error for the HM (Fig. 11a) is more than
one order of magnitude larger than the error for the MCM with m = 2 (Fig. 11b).

In addition to the accurate approximation of the marginal probabilities and the
conditional mean of the protein number, the MCM with m = 2 also provides an
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Fig. 11 Error of the conditional mean of protein number for scenario 2, θ(2), computed using a the HM by
Jahnke (2011) and b the MCM with m = 2. As ground truth we considered the solution of the FSP of the
CME. The individual lines represent the errors in the conditional means in the off-state (blue solid line),
in the on-state (red solid line), and in the overall marginal probabilities (black solid line). a HM by Jahnke
(2011) (MCM with m = 1). b MCM with m = 2 (color figure online)

accurate approximation of the conditional variances of the protein number. This is
shown in Fig. 12, which depicts mean and 1-σ interval of the protein numbers, [P], in
off- and on-state for (a) different mRNA numbers at time t = 5 h and (b) the mean
mRNA number in the steady state ([R] = 7) at different time points. The gray shaded
areas represent values computed using the FSP, while the lines represent the results for
the MCM with m = 2. As shown earlier in Figs. 8, 9, 10, and 11, already the hybrid
method provides a reasonable approximation of the mean, however, the variances are
underestimated (results not shown) and the consideration of the variances improves
the result further.

Beyond the comparison of HM and MCM with m = 2, we also studied the dis-
tribution of mRNA and protein numbers. The most surprising finding was that the
conditional mean of the protein number for a given mRNA number is higher in the
off-state than in the on-state, ∀[R] : μp,off([R], t) ≥ μp,on([R], t) (Fig. 10). We actu-
ally expected a higher-conditional mean in the on-state, as observed in Fig. 6 for
μp,off(t) and μp,on(t). This expectation is not met because when a transition from the
on-state to the off-state occurs the mRNA synthesis is switched off but the high protein
numbers are still likely even for states with low mRNA values. On the other hand,
a transition from the off-state to the on-state causes an mRNA number increase but
the protein number might still be low. Both phenomena are due to the delay between
changes in the mRNA number and changes in the protein number. Marginalizing over
the mRNA number, we find here that μp,off(t) ≤ μp,on(t) because the marginal proba-
bility distributions of off- and on-states are different, resulting in a different weighting
of μp,off([R], t) and μp,on([R], t), respectively.

To summarize the example, the MCM can improve upon the MM and the HM if
the probability distribution possesses a complex shape. To achieve this improvement,
the MCM requires often more states. For low truncation orders m the MM has the
smallest number of states, followed by the HM and the MCM. All three models have
in general fewer states than the CME.
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Fig. 12 Mean and variance of the protein abundance for different DNA states, mRNA numbers, and time
points computed using the MCM with truncation order m = 2. a Conditional moments of protein number
for the different low-copy number states at time t = 5. b Time-dependence of conditional moments of
protein number in off-state and on-state for the stationary mean of the mRNA number, [R] = 7. The solid
lines show the mean concentration, and the dashed lines correspond to 1-σ intervals (mean ± standard
deviation). Gray shaded area represents the 1-σ intervals according to FSP simulation. The conditional
moments for the off-state (left, blue) and on-state (right, red) are plotted individually. a Mean and variance
of protein number for different mRNA numbers in off-state (left) and on-state (right) at t = 5 h. b Time-
dependent mean and variance of protein number for mRNA number [R] = 7 in off-state (left) and on-state
(right) (color figure online)

6 Summary and conclusion

In this paper we introduced the method of conditional moments. The MCM pro-
vides an approximation of the statistics (mean, variances and higher-order centered
moments) of the solution of the CME based on a hybrid modeling framework. Low-
copy number species are modeled as discrete stochastic entities, whereas the distribu-
tion of medium/high-copy number species is modeled using statistical moments. The
conditional moment equation shares many properties with the moment equation and
with similar equations for hybrid stochastic-deterministic models. Indeed, we proved
that it generalizes the moment equation (Engblom 2006; Lee et al. 2009) and hybrid
stochastic-deterministic methods (Jahnke 2011; Menz et al. 2012). Due to its gen-
erality, the conditional moment equation overcomes shortcomings of these previous
methods. In particular it allows for the accurate statistical modeling of multi-modal
distributions with complex correlation structures. This is illustrated using a model of
stochastic gene expression which exhibits a bimodal distribution. In future work this
has to be assessed for multi-attractor models (Strasser et al. 2012).
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In addition to the better approximation of multi-modal distributions, the approxima-
tion of marginal probabilities and conditional moments is often improved compared
to standard methods. This is achieved by introducing higher-order moments, however,
these higher-order moments are more than auxiliary variables. There are many bio-
logical applications in which not only the mean but also the population heterogeneity
is of interest [see, e.g., (Munsky et al. 2012, 2009; Zechner et al. 2012) and references
therein]. In these manuscripts the authors show that information about higher-order
moments are often helpful or even necessary to infer the parameters and/or the structure
of stochastic biochemical processes.

In this manuscript we formulated the MCM for reactions with zero, one, or two
educts whose reaction propensities follow the law of mass action. The restriction to this
class of reactions and reaction propensities can probably be relaxed, e.g., by avoiding
the assumption that the propensities can be separated, a j (Yt , Zt ) = c j g j (Yt )h j (Zt ).
The problem of generalizing the MCM has to be approached in future work.

The conditional moment equation is, like the moment equation, not closed if the
reaction system contains nonlinear propensity functions. For this case we propose the
low dispersion moment closure, which is easily applied as we formulated the con-
ditional moment equation in terms of conditional means and higher-order centered
conditional moments. In the future we are going to study more sophisticated closure
methods based upon the log-normality assumption (Singh and Hespanha 2006) or
derivative matching (Singh and Hespanha 2011). This is necessary as the approxima-
tion properties of the MCM strongly depend on the appropriateness of the moment
closure schemes. An unfortunate choice can actually cause the divergence of the con-
ditional moment equation, as it is also the case for the moment equation (Singh and
Hespanha 2011). Beyond the evaluation of different moment closures, we will evaluate
the convergence properties for increasing truncation order m.

The closed version of the conditional moment equation is a DAE system, whose
initial conditions cannot be determined easily. In this paper we introduce a scheme for
the consistent initialization of this DAE, which can also be used for the hybrid models
introduced by Jahnke (2011). Furthermore, we discuss different solution schemes for
the resulting DAE. We remark that this numerical scheme cannot be directly applied
to the hybrid model by Menz et al. (2012), which is formulated in terms of partial
moments. However, we think that the formulation in terms of the conditional moments
is nevertheless favorable. This formulation does, in contrast to the formulation by Menz
et al. (2012), not require the division by p(y|t), and hence no substitution of p(y|t)
by p(y|t) + δ, δ ∈ R+ with δ � 1, which clearly alters the solution as we show in
Appendix F, is necessary for the numerical simulation.

An important question for the application of any hybrid modeling approach is
clearly how the species should be assigned to the different groups. Unfortunately, this
question is difficult and the answer has to be expected to be highly problem-specific.
Our example revealed that even the distribution of species with in average seven
copies, the mRNA, can be modelled successfully using conditional moments. This
will however not hold in general. To ensure a certain approximation accuracy a priori
or a posteriori error estimators would be necessary. For the product approximation
and the Hellander-Lötstedt model a posteriori error estimators already exist (Jahnke
2011), and a generalization to hybrid models would be of general interest. Besides the

123



724 J. Hasenauer et al.

verification of a certain approximation quality, an error estimator would enable the
development of guaranteed parameter estimation and optimization methods (Hase-
nauer et al. 2012).

Even though no error estimates exist, hybrid models and moment equations have
been proven to be valuable tools for parameter estimation of stochastic processes.
Milner et al. (2012) and Zechner et al. (2012) showed recently that parameters of
stochastic processes can be inferred using the moment equation. For hybrid systems
the same has been shown by Mikeev and Wolf (2012). As the MCM allows for a
better description of stochastic dynamics than the HM and the MM, also parameter
estimation methods employing the conditional moment equation are promising. The
resulting parameter estimates are potentially more precise, as the model is closer to
the CME, and allows for the consideration of discrete copy-number information for
low abundance species. By extending the MCM to allow for parameter variability,
similar to (Hasenauer et al. 2011a,b; Koeppl et al. 2012; Zechner et al. 2012), also the
parameter estimation procedures for heterogeneous cell populations can be improved.

Summing up, the method of conditional moments that we introduced in this
manuscript provides a unifying framework for the approximation of the Chemi-
cal Master Equation. Due to its generality the MCM is of great interest in several
fields beyond mathematical, computational and systems biology and for a variety of
applications.
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Appendix A: Proof of Lemma 1

The differentiation of Ez[T (Z , t)| y, t] p(y|t) results in

∂

∂t
(Ez[T (Z , t)| y, t] p(y|t)) =

∑

z≥0

T (z, t)
∂

∂t
p(y, z|t) +

∑

z≥0

p(y, z|t) ∂

∂t
T (z, t),

which we reformulate as

∂

∂t
(Ez[T (Z , t)| y, t] p(y|t))

=
∑

z≥0

T (z, t)
nr∑

j=1
y≥ν+

j,y

z≥ν+
j,z

c j g j (y−ν j,y)h j (z−ν j,z)p(z−ν j,z |y − ν j,y, t)p(y − ν j,y |t)

−
∑

z≥0

T (z, t)
nr∑

j=1

c j g j (y)h j (z)p(z|y, t)p(y|t) + p(y|t)
∑

z≥0

p(z|y, t)
∂

∂t
T (z, t)
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by substitution of ∂
∂t p(y, z|t) with (9) and the use of the multiplication axiom (3).

Next we change the order of summation and substituting in the first sum z → z +ν j,z ,
yielding

∂

∂t
(Ez[T (Z , t)| y, t] p(y|t))

=
nr∑

j=1
y≥ν+

j,y

c j g j (y − ν j,y)
∑

z≥ν−
j,z

T (z + ν j,z, t)h j (z)p(z|y − ν j,y, t)p(y − ν j,y |t)

−
nr∑

j=1

c j g j (y)
∑

z≥0

T (z, t)h j (z)p(z|y, t)p(y|t) + p(y|t)
∑

z≥0

p(z|y, t)
∂

∂t
T (z, t)

This equation can be reformulated further by exploiting the fact that the CME is
proper, meaning that h j (z) = 0 whenever z � ν−

j,z . Accordingly, the limit of the first

summation over z, z ≥ ν−
j,z , can be set to zero, z ≥ 0. Using the definition of the

conditional expectation (8) we obtain (10) which concludes the proof. ��
Note that the manipulations of infinite sums are allowed under absolute conver-

gence, which holds for any test-function T (z, t) which is polynomial in z if for all t
sufficiently many moments of p(y, z|t) with respect to z exist (Engblom 2006). Note
that Lemma 1 is a generalization of a result by Engblom (2006, Lemma 2.1).

Appendix B: Proof of Proposition 2

We consider the conditional mean weighted by the corresponding probability,
μi,z(y, t)p(y|t) = ∑

z≥0 zi p(y, z|t). By differentiating this product with respect to t
we readily obtain

p(y|t) ∂

∂t
μi,z(y, t) = ∂

∂t

(
μi,z(y, t)p(y|t)) − μi,z(y, t)

∂

∂t
p(y|t). (39)

The unknown derivative ∂
∂t

(
μi,z(y, t)p(y|t)) follows from Lemma 1 by choosing the

test function T (Z , t) = Zi ,

∂

∂t

(
μi,z(y, t)p(y|t))

=
nr∑

j=1
y≥ν+

j,y

c j g j (y − ν j,y)Ez
[
(Zi + νi j,z)h j (Z)

∣∣ y − ν j,y, t
]

p(y − ν j,y |t)

−
nr∑

j=1

c j g j (y)Ez
[
Zi h j (Z)

∣∣ y, t
]

p(y|t). (40)
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This derivative depends on Ez
[
(Zi + νi j,z)h j (Z)

∣∣ y − ν j,y, t
]

and Ez
[
Zi h j (Z)

∣∣ y, t
]
.

By adding and subtracting the conditional means we can reformulate these conditional
expectations to

Ez
[
Zi h j (Z)

∣∣ y, t
] = Ez

[
(Zi − μi,z(y, t) + μi,z(y, t))h j (Z)

∣∣ y, t
]

= Ez
[
(Z − μz(y, t))ei h j (Z)

∣∣ y, t
]

+μi,z(y, t)Ez
[
h j (Z)

∣∣ y, t
]

(41)

and

Ez
[
(Zi + νi j,z)h j (Z)

∣∣ y − ν j,y, t
]

= Ez
[
(Zi − μi,z(y − ν j,y, t) + μi,z(y − ν j,y, t) + νi j,z)h j (Z)

∣∣ y − ν j,y, t
]

= Ez
[
(Z − μz(y − ν j,y, t))ei h j (Z)

∣∣ y − ν j,y, t
]

+(μi,z(y − ν j,y, t) + νi j,z)Ez
[
h j (Z)

∣∣ y − ν j,y, t
]
. (42)

Substitution of these reformulated conditional expectations into (40) followed by the
insertion of (40) into (39) yields the evolution equation for the conditional mean (16),
which concludes the proof of Proposition 2. ��

Appendix C: Proof of Proposition 3

We consider the product CI,z(y, t)p(y|t) and differentiate it with respect to time,
which readily yields

p(y|t) ∂

∂t
CI,z(y, t) = ∂

∂t

(
CI,z(y, t)p(y|t)) − CI,z(y, t)

∂

∂t
p(y|t). (43)

Using Lemma 1 with T (Z , t) = (Z − μz(y, t))I , we obtain

∂

∂t

(
CI,z(y, t)p(y|t))

=
nr∑

j=1
y≥ν+

j,y

c j g j (y−ν j,y)Ez

[
(Z +ν j,z − μz(y, t))I h j (Z)

∣∣∣ y − ν j,y, t
]

p(y − ν j,y |t)

−
nr∑

j=1

c j g j (y)Ez

[
(Z − μz(y, t))I h j (Z)

∣∣∣ y, t
]

p(y|t)

−
ns,z∑

i=1
Ii ≥1

Ii Ez

[
(Z − μz(y, t))I−ei

∣∣∣ y, t
]

p(y|t) ∂

∂t
μi,z(y, t), (44)
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where the third sum corresponds to the term Ez
[

∂
∂t T (Z , t)

∣∣ y, t
]

p(y|t) in (10) and

∀i ∈ {1, . . . , ns,z} with Ii ≥ 1 : Ez

[
(Z − μz(y, t))I−ei

∣∣∣ y, t
]

= CI−ei ,z(y, t). (45)

After substituting (43) and (45) into (44), it remains for us to prove that (23) holds.
Therefore, we add and subtract μz(y − ν j,y, t) in (Z + ν j,z − μz(y − ν j,y, t))I and
apply the multinomial theorem, yielding

(Z + ν j,z − μz(y, t))I

= (Z − μz(y − ν j,y, t) + μz(y − ν j,y, t) − μz(y, t) + ν j,z)
I

=
∑

0≤k≤I

(
I
k

) (
μz(y − ν j,y, t) − μz(y, t) + ν j,z

)I−k
(Z − μz(y − ν j,y, t))k,

(46)

where the summation runs over all vectors k ∈ N
ns,z
0 for which ki ∈ [0, Ii ] for all i .

By substituting (46) into Ez
[
(Z + ν j,z − μz(y, t))I h j (Z)

∣∣ y − ν j,y, t
]

and employing
that the expectation of a sum is the sum of the expectations, we arrive at (23), which
concludes the proof. ��

Appendix D: Proof of Proposition 4

For i ∈ {1, ns,y} Eq. (29) states merely the definition of the mean. The result for
ns,y < i ≤ ns follows from

μ̄i (t) =
∑

y≥0

∑

z≥0

z j p(y, z|t) =
∑

y≥0

∑

z≥0

z j p(z|y, t)

︸ ︷︷ ︸
= μ j,z(y, t)

p(y|t), with j = i − ns,y,

which concludes the proof of (29). The result for the centered moment C̄I (t) is obtained
by a reordering of the sums and the application of the multiplication axiom (3):

C̄I (t) =
∑

y≥0

∑

z≥0

(y − μ̄y(t))
Iy (z − μ̄z(t))

Iz p(y, z|t)

=
∑

y≥0

(y − μ̄y(t))
Iy

∑

z≥0

(z − μ̄z(t))
Iz p(z|y, t)p(y|t).

In order to arrive at the term (z −μz(y, t))Iz , we add and subtract μz(y, t). This yields
(z − μz(y, t) + μz(y, t) − μ̄z(t))Iz and reformulation in terms of (μz(y, t) − μ̄z(t))
and (z − μz(y, t)) using the multinomial theorem gives
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C̄I (t) =
∑

y≥0

(y − μ̄y(t))
Iy

∑

z≥0

∑

0≤k≤Iz

(
Iz

k

)
(μz(y, t)

−μ̄z(t))
Iz−k · (z − μz(y, t))k p(z|y, t)p(y|t).

Finally, we exchange the two inner sums and substitute
∑

z≥0(z −μz(y, t))k p(z|y, t)
by Ck,z(y, t). The modified equation for C̄I (t) becomes (30) which concludes the
proof. ��

Appendix E: Initial conditions for states y with p( y|0) = 0

Proposition 5 Given an initial distribution p(y, z|0), a state y with p(y|0) = 0,
and the differentiation index Ky with ∀k ∈ {1, . . . , Ky − 1} : ∂k

t p(y|0) = 0 and

∂
Ky
t p(y|0) �= 0, the initial conditional moments for (24) are

∂
Ky
t p(y|0)μi,z(y, 0)

=
nr∑

j=1
y≥ν+

j,y

c j g j (y−ν j,y)
∂Ky−1

∂t Ky−1

(
Ez

[
(Z + ν j,z)

ei h j (Z)
∣∣ y − ν j,y , t

]
p(y − ν j,y |t))

∣∣∣∣∣
t=0

(47)

and

∂
Ky
t p(y|0)CI,z(y, 0)

=
nr∑

j=1
y≥ν+

j,y

c j g j (y−ν j,y)
∂Ky−1

∂t Ky−1

(
Ez

[
(Z + ν j,z −μz(y, t))I h j (Z)

∣∣∣ y − ν j,y , t
]

p(y−ν j,y |t)
)∣∣∣∣∣

t=0

,

(48)

(Ky + 1)∂
Ky
t p(y|0)μ̇i,z(y, 0) + ∂

Ky+1
t p(y|0)μi,z(y, 0)

=
nr∑

j=1

y≥ν+
j,y

c j g j (y − ν j,y)
∂Ky

∂t Ky

(
Ez

[
(Z + ν j,z)

ei h j (Z)
∣∣ y − ν j,y , t

]
p(y − ν j,y |t))

∣∣∣∣∣
t=0

−
nr∑

j=1

c j g j (y)Ez
[
Zei h j (Z)

∣∣ y, 0
]
∂

Ky
t p(y|0), (49)
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and

(Ky + 1)∂
Ky
t p(y|0)ĊI,z(y, 0) + ∂

Ky+1
t p(y|0)CI,z(y, 0)

=
nr∑

j=1
y≥ν+

j,y

c j g j (y − ν j,y)
∂Ky

∂t Ky

(
Ez

[
(Z +ν j,z − μz(y, t))I h j (Z)

∣∣∣ y − ν j,y, t
]

p(y − ν j,y |t)
)∣∣∣∣

t=0

−
nr∑

j=1

c j g j (y)Ez

[
(Z − μz(y, 0))I h j (Z)

∣∣∣ y, 0
]
∂

Ky
t p(y|0)

−
ns,z∑

i=1
Ii ≥1

Ii CI−ei ,z(y, 0)μ̇i,z(y, 0)∂
Ky
t p(y|0). (50)

Proof To prove Proposition 5, we consider a general test function T (Z , t) and its
conditional expectation Ez[T (Z , t)| y, t]. It can be shown using Leibniz rule that for
any L ∈ N,

∂L

∂t L
(Ez[T (Z , t)| y, t] p(y|t)) =

L∑

k=0

(
L
k

)(
∂k

∂tk
p(y|t)

)(
∂L−k

∂t L−k
Ez[T (Z , t)| y, t]

)
.

(51)

Furthermore, by applying the differentiation operator ∂L−1

∂t L−1 to (10) it follows from
Lemma 1 that

∂L

∂t L
(Ez[T (Z , t)| y, t] p(y|t))

=
nr∑

j=1
y≥ν+

j,y

c j g j (y − ν j,y)
∂L−1

∂t L−1

(
Ez

[
T (Z + ν j,z, t)h j (Z)

∣∣ y − ν j,y , t
]

p(y − ν j,y |t))

−
nr∑

j=1

c j g j (y)
∂L−1

∂t L−1

(
Ez

[
T (Z , t)h j (Z)

∣∣ y, t
]

p(y|t))

+ ∂L−1

∂t L−1

(
Ez

[
∂

∂t
T (Z , t)

∣∣∣∣ y, t

]
p(y|t)

)
.

Using the general Leibniz rule this equation can be reformulated to

∂L

∂t L (Ez[T (Z , t)| y, t] p(y|t))

=
nr∑

j=1
y≥ν+

j,y

c j g j (y−ν j,y)
∂L−1

∂t L−1

(
Ez

[
T (Z +ν j,z, t)h j (Z)

∣∣ y−ν j,y, t
]

p(y − ν j,y |t)
)
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−
nr∑

j=1

c j g j (y)

L−1∑

k=0

(
L − 1

k

)(
∂L−k−1

∂t L−k−1 Ez
[
T (Z , t)h j (Z)

∣∣ y, t
]) (

∂k

∂tk
p(y|t)

)

+
L−1∑

k=0

(
L − 1

k

) (
∂L−k−1

∂t L−k−1 Ez

[
∂

∂t
T (Z , t)

∣∣∣∣ y, t

]) (
∂k

∂tk
p(y|t)

)
. (52)

By evaluating (51) and (52) at t = 0 for L = Ky and employing that∀k ∈ {1, . . . , Ky−
1} : ∂k

t p(y|0) = 0 we obtain

∂
Ky
t p(y|0)Ez[T (Z , 0)| y, 0]

=
nr∑

j=1
y≥ν+

j,y

c j g j (y − ν j,y)
∂Ky−1

∂t Ky−1

(
Ez

[
T (Z + ν j,z, t)h j (Z)

∣∣ y − ν j,y, t
]

p(y − ν j,y |t)
)∣∣∣∣

t=0
.

(53)

As ∂
Ky
t p(y|t) is non-zero, (53) defines the initial values Ez[T (Z , 0)| y, 0]. The

Eqs. (47) and (48) for the initial conditions μi,z(y, 0) and CI,z(y, 0) follow for
T (Z , t) = Zi and T (Z , t) = (Z − μz(y, t))I , respectively.

To derive equations for the initial derivatives μ̇i,z(y, 0) and ĊI,z(y, 0) we evalu-
ate (51) and (52) at t = 0 for L = Ky + 1. Employing ∀k ∈ {1, . . . , Ky − 1} :
∂k

t p(y|0) = 0, this yields

(Ky + 1)∂
Ky
t p(y|0)Ėz[T (Z , 0)| y, 0] + ∂

Ky+1
t p(y|0)Ez[T (Z , 0)| y, 0]

=
nr∑

j=1

y≥ν+
j,y

c j g j (y − ν j,y)
∂Ky

∂t Ky

(
Ez

[
T (Z + ν j,z, t)h j (Z)

∣∣ y − ν j,y , t
]

p(y − ν j,y |t))
∣∣∣∣∣
t=0

−
nr∑

j=1

c j g j (y)Ez
[
T (Z , 0)h j (Z)

∣∣ y, 0
]
∂

Ky
t p(y|0)

+ Ez

[
∂

∂t
T (Z , 0)

∣∣∣∣ y, t

]∣∣∣∣
t=0

∂
Ky
t p(y|0). (54)

As ∂
Ky
t p(y|t) is non-zero, (54) defines the initial derivative Ėz[T (Z , 0)| y, 0]. Thus, by

selecting T (Z , t) = Zi we obtain (49) which allows for the calculation of μ̇i,z(y, 0).
To obtain (50), we finally choose T (Z , t) = (Z − μz(y, t))I .

To determine the initial values using (47)-(50) we evaluate the (Ky − 1)-
th derivatives of Ez

[
(Z + ν j,z)

ei h j (Z)
∣∣ y − ν j,y, t

]
p(y − ν j,y |t) and

Ez
[
(Z + ν j,z − μz(y, t))I h j (Z)

∣∣ y − ν j,y, t
]

p(y − ν j,y |t) at t = 0. Therefore, we
merely employ (52) with the appropriate test function T (Z , t), L = Ky − 1, and
the substitution y → y − ν j,y . The resulting derivatives are replaced using the
same approach and all other conditional expectations are expressed in terms of
centered moments using a Taylor series representation similar to (17). While the
resulting equation is extremely lengthy, and therefore not stated here, it is straight
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forward to construct them for any problem using a simple recursion. Employ-
ing the structure of (52), it can be shown that the derivatives merely depend on
the marginal probabilities and the initial conditional moments of states ỹ with
p(ỹ|0) > 0. These conditional moments can be computed directly from p(y, z|0),
hence, the right-hand sides of (47)–(50) can be evaluated which concludes the proof.

��
Some numerical schemes, e.g., DAE solvers based on Taylor series methods, might

require higher-order derivatives at the initial time point. These higher-order derivatives
can also be constructed using the results of Proposition 5. Therefore, one merely
employs (52) with the required order L .

Appendix F: Comparison of DAE and approximative ODE formulation of the
conditional moment equation

The conditional moment equation is a DAE, M(ξ)ξ̇ = F(ξ), with the state vector
ξ ∈ R

nξ and mass matrix M(ξ) ∈ R
nξ ×nξ . The state vector contains the marginal

probabilities, the conditional means and higher-order conditional moments (for m ≥
2). The class of DAEs is more general than the class of ODEs, ξ̇ = f (ξ). Only
if M(ξ) is invertible for all ξ the DAE can be reformulated to an ODE, namely
f (ξ) = M−1(ξ)F(ξ). This invertibility is not ensured for the conditional moment
equation. Thus, the conditional moment equation is not an ODE and can also not be
simply restated as one.

Different approaches exist to approximate DAEs with ODEs. The most common
approximation is probably ξ̇ = (M(ξ) + δ I )−1 F(ξ) where I is the identity matrix.
The constant δ ∈ R+ should be as small as possible to achieve a good approxi-
mation, but large enough to ensure invertibility. Clearly, even for small δ, the ODE
solution is merely an approximation of the DAE solution. To illustrate this we depict
in Fig. 13 the error of different methods for the three-stage gene expression model
with y = ([Doff ], [Don], [R]) and z = [P] (see Sect. 5.3). The error is evaluated
with respect to the FSP solution which we consider as a gold standard. Figure 13a
depicts the error between the FSP solution and the solution of the conditional moment
equation computed using a DAE solver. Figure 13b, c depict the error between the
FSP solution and the solution of the approximated conditional moment equation,
ξ̇ = (M(ξ)+δ I )−1 F(ξ), computed using an ODE solver for δ = 10−6 and δ = 10−10,
respectively. It can be seen that the error in the marginal probabilities is small for all
three methods, but the error in the conditional moments is indeed very large for the
ODE approximations. Interestingly, a smaller δ results only in a shift of the error into
large mRNA numbers, thus small marginal probabilities, but does not decrease the
maximal error.

Besides the error introduced by the approximation of the DAE with an ODE, we
would like to mention that the reformulation in terms of an ODE might not always
be numerically advantageous. DAEs can also be solved for p(y|t) = 0, when the
corresponding equations provide equality constraints for the dynamic variables. In
case of p(y|t) � 1, the DAE has the advantage that the multiplication by a small value
is numerically more stable than the division by a small value. Beyond the simulation
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Fig. 13 Error in the marginal probabilities (left) and in the conditional mean of protein number (right) for
scenario 2, θ(2). The subplots depict the error between the solution of the MCM with m = 2 computed using
different numerical methods and the FSP solution of the CME. The individual lines represent the errors in
the conditional means in the off-state (blue solid line), in the on-state (red solid line), and in the overall
marginal probabilities (black solid line). (Remark The y-axis scales of the different plots are different.) a
DAE solver. b ODE solver with δ = 10−6. c ODE solver with δ = 10−10. d DAE solver with approximated
initial conditions (δ = 10−6) (color figure online)
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of the dynamics, also the treatment of the initial conditions might be critical. For
small marginal probabilities p(y|t) the evaluation of (35) and (36) might become
numerically unstable. In this situation it can be advantageous to accept a small error
in the initial conditions and to use

μi,z(y, 0) =
∑

z≥0

zi
p(y, z|0)

p(y|0) + δ
,

CI,z(y, 0) =
∑

z≥0

(z − μz(y, t))I p(y, z|0)

p(y|0) + δ
.

As the states for which the error is introduced possess very low marginal probabilities,
in our experience the error decays quickly. This is also shown in Fig. 13d, which shows
the simulation results obtained using a DAE solver with an approximation of the initial
conditions with δ = 10−6.

To sum up, in our experience the simulation of the conditional moment equa-
tion using a DAE solver is superior to the approximation of the conditional moment
equation by an ODE followed by the simulation of the ODE using ODE solvers. Fur-
thermore, errors introduced in the initial conditional moments of states with lower
marginal probabilities in general decay quickly.
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