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Abstract The variation in genome arrangements among bacterial taxa is largely due to
the process of inversion. Recent studies indicate that not all inversions are equally prob-
able, suggesting, for instance, that shorter inversions are more frequent than longer,
and those that move the terminus of replication are less probable than those that
do not. Current methods for establishing the inversion distance between two bacte-
rial genomes are unable to incorporate such information. In this paper we suggest a
group-theoretic framework that in principle can take these constraints into account. In
particular, we show that by lifting the problem from circular permutations to the affine
symmetric group, the inversion distance can be found in polynomial time for a model
in which inversions are restricted to acting on two regions. This requires the proof
of new results in group theory, and suggests a vein of new combinatorial problems
concerning permutation groups on which group theorists will be needed to collaborate
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with biologists. We apply the new method to inferring distances and phylogenies for
published Yersinia pestis data.
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1 Introduction

Significant variation in the position of genes in bacterial genomes is observed across
individuals even within species (Kawai et al. 2006). This variation is largely due to the
process of inversion, which involves successive reversals of segments of the circular
chromosome (Eisen et al. 2000). As the inversion process cannot be directly observed,
mathematical models are needed to draw inferences from genomic data about these
evolutionary processes. Such models can also be used to put a metric on the space of
genome arrangements, that is, to establish estimates of evolutionary distance between
genomes. These distances in turn can be used to reconstruct phylogenetic trees using
distance-based methods such as Neighbour-Joining (Saitou and Nei 1987). In the
context of bacterial phylogenetics, inversions are particularly valuable for this purpose
because, unlike comparisons via single nucleotide polymorphisms (SNPs), their signal
is not affected by horizontal transfer events (Darling et al. 2008).

Several algorithms have been successfully developed to obtain the minimal num-
ber of inversions (or other similar operations) required to transform one genome into
another. For instance, the breakpoint graph of Bafna and Pevzner (1993) and its succes-
sors (for example Hannenhalli and Pevzner 1995) address the inversion distance prob-
lem very effectively under a model in which all inversions are equally probable. There
have even been first attempts to put this approach into an algebraic context (Meidanis
and Dias 2000). An alternative approach has been to define a wider set of operations
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than just inversions, which has led to an elegant general method called Double-Cut-
and-Join (DCJ) for identifying the minimal distance between a pair of genomes (Berg-
eron et al. 2006), again under the model in which all events are equally probable.

Because the processes involved in large-scale evolution on the bacterial chromo-
some are complicated and only partially understood, any algorithm to establish dis-
tance will have to make a range of simplifying assumptions about the processes in order
to make any progress. For instance, the basic approach of using the minimal number of
inversions to estimate distance already implies that the rate of evolution is slow or that
short evolutionary times are involved (which is justified in some cases, Rocha 2006).
Existing methods make further convenient assumptions about the inversion process
itself, including the powerful assumption already mentioned that all inversions on
a chromosome are equally probable. An immediate consequence of this assumption
is that inversions on a circular chromosome can be studied just as well on a linear
chromosome, because any inversion on the circle is equivalent to another (equally
probable) inversion of the complementary region, and hence we may “cut” our repre-
sentation of the circular permutation at some point and develop algorithms as though
it were a linear chromosome.

Evidence has emerged recently that inversions are not all equally probable, and in
particular that there are some restrictions on the length of an inverted region and on its
location on the chromosome. Specifically, on the one hand some studies have suggested
that shorter inverted segments evolve more frequently (Dalevi et al. 2002; Lefebvre et
al. 2003; Darling et al. 2008), and on the other it has been observed that the terminus
of replication is always close to the antipode of the origin of replication (Darling et
al. 2008; Eisen et al. 2000). The latter observation suggests that there is a fitness cost
to having the terminus far from the antipode, and hence that individual inversions
themselves do not move the terminus far from this position.

Such additional information is difficult to incorporate into existing solutions to the
inversion distance problem, and suggests that a new approach is needed. In partic-
ular we give a simple example (Sect. 2.2) that shows cutting the circle to linearize
the problem will fail to find the minimal number of inversions when the length of an
inverted region is constrained. More generally, in this paper we show how the inver-
sion process may be modelled as a group acting on the set of all possible genome
arrangements. Groups are powerful ways of encapsulating the symmetries of objects.
While they have been intensively studied over the last century within pure mathemat-
ics, they have found many applications in science, especially in theoretical physics
and domains such as crystallography where symmetry plays an obvious role.

We first present a group-theoretic framework in which some of the information
about the inversion process can be realised in the form of models based on groups
(Sect. 2). In this way we are able to translate questions about inversion distance into
questions about groups. In the main body of the paper (Sect. 3) we address in detail one
model of the inversion process and develop a new method to establish the inversion
distance in this case, via the proof of results in group theory. In this model we consider
the circular inversions limited to two regions. The key theoretical idea in our approach
is to lift the problem from the group of circular permutations to the affine symmetric
group, which can be viewed intuitively as unrolling the circle on the infinite number
line. This is described in Sects. 3.2 and 3.3. The main theoretical results are given in
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Sects. 3.4 and 3.5. In particular, Theorem 3.16 shows how a same-length representative
of a circular permutation in the affine symmetric group may be found. Length can
easily be calculated in the affine symmetric group, and so this resolves the problem
with cutting the circular genome, and provides a framework in which other such
models can be studied. As an example, we apply this method to the reconstruction of
the phylogenetic history of some published Yersinia genomes (Sect. 4).

2 Group theoretic inversion systems

In this section we introduce a general group-theoretic framework that covers a range
of models of the chromosomal inversion process.

2.1 Group-theoretic inversion systems

The idea of considering genomes as permutations of a set of regions is not new, and
underlies all combinatorial methods. Several other studies also put at least this much
in the language of group theory (Meidanis and Dias 2000; Fertin et al. 2009; Moulton
and Steel 2012).

For instance, given a pair of genomes for which eight conserved regions have
been identified, the regions can be numbered according to the arrangement of one
of the genomes so that this “reference” genome is represented by the sequence
[1, 2, 3, 4, 5, 6, 7, 8]. An inversion of the segment between regions 4 and 7 (inclu-
sive) is then either [1, 2, 3, 7, 6, 5, 4, 8] (unsigned), or [1, 2, 3,−7,−6,−5,−4, 8]
(signed). This notation is based on a common two-line notation for permutations of
n = {1, 2, . . . , n}, in which the top line gives the elements of the domain n and the
bottom line gives the images of each element of n, so that

[1, 2, 3,−7,−6,−5,−4, 8] is shorthand for

(
1 2 3 4 5 6 7 8
1 2 3 −7 −6 −5 −4 8

)
.

The set of all such permutations forms a group, with each genome considered to
be a group element (the reference genome being the identity element of the group).
The group of unsigned permutations of a set n is a subgroup of the group of signed
permutations (the hyperoctahedral group, or Coxeter group of type B).

In general, we define an inversion system to be a tuple (G, I) where G is a permu-
tation group and I is a set of inversions such that 〈I〉 = G, i.e. I generates G. If we
choose a particular genome arrangement to be the reference genome, each possible
genome can be considered to be a group element with respect to this reference. For
any pair of genome arrangements there is a unique group element that transforms one
into the other. For instance if genomes G1 and G2 are represented by group elements
(permutations g1 and g2), then the group element transforming G1 into G2 is g−1

1 g2
(we write our groups acting on the right). This group element is independent of the
choice of reference genome. In any inversion system the inversion distance problem
is equivalent to finding the minimum length of a group element as a word in the gen-
erators. Given the impossibility of searching the entire group when the number of
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regions is large (for example, genomes with 60 regions can correspond to groups of
order ∼ 10100), it is necessary to exploit the algebraic structure.

If all inversions are allowed and we ignore orientation, then we have the group of
all permutations of n, namely the symmetric group Sn , the generators are all possible
inversions of intervals on the circle, and the metric is the word length, up to the
action of the dihedral group (see Sect. 2.3 for more details of this action). This is the
model considered by Watterson et al. (1982), and for which they obtained bounds on
the distance. A significant number of extensions and improvements have followed this
path with great success (Kececioglu and Sankoff 1993; Hannenhalli and Pevzner 1995;
Bader et al. 2001). The signed version of this model, in which regions are regarded
as having orientation, gives rise to the hyperoctahedral group, and is the most widely
studied model in the inversion distance literature.

If all inversions are equally probable and are on the circle, an inversion of one
region is equivalent to the inversion of the complementary region. One consequence is
that one may consider a select region to be fixed, and only consider inversions that do
not move it. This enables treatment of the problem as if it were a linear chromosome.
This is the basis for many efficient methods currently available, including the use of
breakpoints (Kececioglu and Sankoff 1993) and methods using the breakpoint graph
due to Bafna and Pevzner (1993).

In this paper we will study a non-uniform model, in which we only permit inversions
of two adjacent regions. In any such model in which the length of an inversion is
restricted, it is not always possible to find the minimum number of inversions by cutting
the genome and treating it as if it were linear. This is best seen with an example.

2.2 Circular permutations with restricted inversion size: an illustrative example

Consider the circular genome with eight regions numbered 1, . . . , 8, and arranged
around the circle in the order [1, 6, 3, 8, 5, 2, 7, 4]. This amounts to an arrangement
in which each even numbered region has moved forwards two spaces and each odd
backwards two spaces. This arrangement can be sorted by 8 inversions of adjacent
regions. For instance if we write si for the swap (i i + 1), with regions numbered mod
8 (so that s8 means swapping the adjacent regions 8 and 1), this arrangement can be
returned to the identity via the action of s8s6s4s2s7s5s3s1:

[1, 6, 3, 8, 5, 2, 7, 4]s8s6s4s2s7s5s3s1 = [4, 6, 3, 8, 5, 2, 7, 1]s6s4s2s7s5s3s1

= [4, 6, 3, 8, 5, 7, 2, 1]s4s2s7s5s3s1

= [4, 6, 3, 5, 8, 7, 2, 1]s2s7s5s3s1

= [4, 3, 6, 5, 8, 7, 2, 1]s7s5s3s1

= [4, 3, 6, 5, 8, 7, 1, 2]s5s3s1

= [4, 3, 6, 5, 7, 8, 1, 2]s3s1

= [4, 3, 5, 6, 7, 8, 1, 2]s1

= [3, 4, 5, 6, 7, 8, 1, 2]
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Fig. 1 An arrangement of eight
regions whose length with
2-region inversions on the circle
is 8 but when calculated by
cutting and linearizing is 9

which is the identity arrangement (on the circle), as shown in Fig. 1. The minimum
number of inversions required to sort this arrangement by cutting-linearizing is 9.

2.3 Circular permutations

The example above raises two important subtleties regarding circular permutations that
do not affect linear rearrangements. The first is that for regions on a circle numbered 1 to
n, position n is adjacent to both position n−1 and position 1. So, while an arrangement
on the line with n and 1 swapped (that is [n, 2, 3, . . . , n − 1, 1]) requires many short
inversions to sort, on a circle it requires just one 2-region inversion swapping n and
1. This feature does not affect matters if all inversions are equally probable, because
an inversion of the regions 2, . . . , n − 1 is just as likely as one of n and 1, so the
inversions across the boundary between n and 1 can be ignored. Of course, an inversion
of the regions 2, . . . , n− 1 results in the regions apparently reversed in order: [n, n−
1, . . . , 2, 1]. However since our genome is in three dimensions this is equivalent to
the arrangement [1, 2, . . . , n − 1, n]. This brings to the fore the second subtlety.

Because the circular chromosome lives in three dimensions, we consider arrange-
ments to be equivalent if they can be obtained from each other by rotating the circle
or by turning it over (ignoring topological features such as knotting). This is because
these actions on the circle simply correspond to different viewpoints from which to
observe the chromosome. The actions of rotating and reflecting a circle form a group
(because they can be composed associatively and have inverse operations), and when
we identify n regularly positioned points on the circle the group is called the dihedral
group, denoted Dn . The set of arrangements equivalent to σ under the action of the
dihedral group is the coset σDn .

On the one hand this means our search space—the set of genuinely distinct
arrangements—is reduced by a factor of 2n (there are 2n elements of Dn). On the
other hand, this means that to find the minimum number of inversions required to gen-
erate a given arrangement we need to consider each element of the coset, or in other
words, each frame of reference. In what follows, our strategy is to develop a method
to find the length of a permutation with respect to any given frame of reference, and
then search over the 2n frames of reference for the shortest.

We note that this subtlety is often not considered in the inversion distance literature
(the initial paper by Watterson et al. 1982 is an exception). This may be because in a
model in which inversions of any length are equally probable, the circular chromosome
can be treated as if it were linear: as remarked above, an inversion across the origin
of replication is equivalent to one on the complementary region. This feature is not
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Fig. 2 Some of the 2n “frames of reference” obtained by action of the dihedral group Dn on the identity
arrangement. Clockwise rotation is denoted by r and the reflection in the vertical axis (flip) by f

enough, however, to account for the rotation and reflection symmetry, and to find the
minimal distance under existing models it is still necessary to evaluate the distance
under the different frames of reference (as shown in Fig. 2) obtained by the action of
the 2n elements of the dihedral group.

3 The two-region inversion distance problem for circular genomes

For the remainder of the paper we focus on a constrained model in which only inver-
sions of two adjacent regions are permitted, and in which we ignore orientation of
the regions. The restriction to two-region inversions allows us to exploit the theory of
Coxeter groups. In this model the group G is the symmetric group Sn and the gener-
ating set I is the set of two-region inversions. Note that because we are on the circle
this is not a standard generating set for the symmetric group. Notation and a group
presentation of (G, I) are given in Sect. 3.1.

The key idea we exploit is that the best way to view circular permutations is by lifting
the problem to the (extended) affine symmetric group. This is the group of periodic
permutations of the integers, and is a natural place to study circular permutations
because by virtue of being on a circle, these are also periodic. The affine symmetric
group and the extended affine symmetric group are introduced in Sects. 3.2 and 3.3.

An important result that we use is a theorem of Shi (Theorem 3.3) that gives a
formula for the length of an element of the affine symmetric group with respect to
the standard generators. Unfortunately, it cannot be used directly because despite the
connection between circular and affine permutation groups, they are not identical—for
one thing the affine symmetric group is infinite and the circular permutation group
is finite. In fact the circular permutation group is a quotient of the affine symmetric
group, and when we “lift” a circular permutation to the affine situation (effectively
looking at its pre-image) we have infinitely many choices. The goal of Sects. 3.4
and 3.5 is to present a way to choose a representative of a circular permutation in the
affine symmetric group that has the same length as the circular permutation. In this
way we derive a method for finding the inversion-length of the circular permutation:
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choose a pre-image in the affine symmetric group that has the same length, and then
apply Shi’s formula.

The group-theoretic results in Sects. 3.4 and 3.5 are, as far as we are aware, new
to algebra. These are examples of answers to group-theoretic questions that arise
directly from the biological models. In other words, the group-theoretic questions
asked, relating to lifts of circular permutations, are not ones that have arisen in other
applications and so it is necessary to prove new claims.

In particular, in Sect. 3.4 we prove that if a lift of a circular permutation is of minimal
length out of all possible lifts, then it satisfies some constraints on the “crossings”
(Definition 3.4) that are possible. These constraints are summarized in Corollaries 3.10
and 3.11. Finally in Sect. 3.5 we prove the main result of this paper, Theorem 3.16, that
in an affine permutation that is a minimal lift of a circular permutation, each element
of n = {1, 2, . . . , n} is moved a minimal amount. This result (almost) determines the
lift from the circular permutation to the affine symmetric group that gives the minimal
length, as required.

3.1 The two-region inversion model

The group generators for this model are inversions of two regions, that is, simple
transpositions si = (i i + 1) swapping regions i and i + 1. However because we are
on the circle with n regions we consider regions to be equivalence classes of integers
mod n, so that sn = (n n + 1) is the transposition swapping regions n and 1, and our
group is the set of bijections on Zn .

If we were to consider only the generators s1, . . . sn−1 then this group would be
precisely the standard presentation for the symmetric group as a Coxeter group of type
A. The relations in this case are

s2
i = 1 for each i = 1, . . . , n − 1,

si s j = s j si if |i − j | > 1, and
si si+1si = si+1si si+1 for each i = 1, . . . , n − 2.

The additional generator sn can be written in terms of these generators as the conjugate

sn = sn−1sn−2 . . . s2s1s2 . . . sn−2sn−1

and it behaves in a precisely analogous manner to the above, giving a presentation (via
Tietze transformations) for our circular permutation group with generators {si | i =
1, . . . , n} and relations:

s2
i = 1 for each i = 1, . . . , n,

si s j = s j si if i − j mod n �= ±1,

si si+1si = si+1si si+1 for each i = 1, . . . , n − 1, and
sn = sn−1sn−2 . . . s2s1s2 . . . sn−2sn−1.

While the length function for the symmetric group with respect to the Coxeter-type pre-
sentation is well-studied (see for example Humphreys 1990), the additional generator
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Fig. 3 The strategy of lifting a
circular permutation s to an
affine permutation σ in order to
calculate its length. Thick
arrows denote the mappings that
are constructed in this paper

provided by the circle makes the relevant theorems inapplicable. Fortunately, there is
another way to view this group using the affine symmetric group S̃n .

In the remainder of this section we show how to lift a circular permutation to the
affine symmetric group in such a way that the length in the affine symmetric group is
the minimal number of 2-region inversions required to sort the circular permutation
(see Fig. 3). Because we know how to calculate length in the affine symmetric group
(see next section), we can then use this to find the length of the circular permutation.
We will in fact be working often in the extended affine symmetric group S̃ext

n , which
we introduce in Sect. 3.3. This group is defined in the same way as the affine symmetric
group, but without the restriction on the sum of the images of a permutation given by
Eq. (2) below.

3.2 The affine symmetric group

Recall that n := {1, 2, . . . , n}.
Definition 3.1 (Affine permutation) A bijection σ : Z→ Z is an affine permutation
if it satisfies the following two conditions:
periodic:

σ(i + n) = σ(i)+ n for all i ∈ Z (1)

balanced:

∑
i∈n

σ(i) =
∑
i∈n

i = n(n + 1)

2
(2)

following Lusztig (1983).

The affine symmetric group S̃n can be realized as the group of affine permutations.
The symmetric group Sn can be identified with a subgroup of S̃n by extending each
permutation from n to Z obeying the periodicity requirement, and can also be obtained
by projecting from S̃n by reducing domain and codomain mod n. In particular the
generators s̃i of S̃n are the periodic permutations s̃i (i + kn) = i + 1+ kn and s̃i (i +
1+ kn) = i + kn for all k ∈ Z, and s̃i ( j) = j if j �≡ i or i + 1 mod n.

As with the symmetric group in relation to the Coxeter presentation, there is an easy
formula for the minimum number of (affine) transpositions s̃i required to represent an
affine permutation, due to Shi (1986) (see also Shi 1994). In our context, using the
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Fig. 4 Some of the infinitely many alternative ways to lift the mapping 3 	→ 4 to the affine symmetric
group

length function in Sn would not take into account the additional generator sn ; the key
idea here is that by lifting a circular permutation up to the affine symmetric group the
length function in S̃n accounts for all n generators.

The obstacle to using the length function in the affine symmetric group is that a
circular permutation doesn’t define a unique affine permutation: we need to choose
for each s(i) ∈ Z/nZ a representative σ(i) ∈ Z, and we need to do this in such a way
that the length of the obtained affine permutation is minimised.

To illustrate the problem, consider the circular permutation

σ =
(

1 2 3 4 5
3 5 4 1 2

)
,

which we denote in “window” notation by [3, 5, 4, 1, 2]. This has 3 	→ 4, but lifting
to S̃5 we could have any choice of 3 	→ {4 + 5 j | j ∈ Z} (see Fig. 4). All choices
give equivalent circular permutations.

3.3 The extended affine symmetric group

Some choices of how to lift a circular permutation to an affine permutation will result
in periodic permutations that do not satisfy condition (2) of Definition 3.1: that is,
they are not balanced. Periodic permutations that are not balanced are part of the
extended affine symmetric group, as defined in this subsection. We also give the Shi
length formula (Theorem 3.3) that holds for both the extended and the non-extended
affine symmetric groups, and define the crossing number of an affine permutation
(Definition 3.4).

Definition 3.2 (Extended affine permutation) An extended affine permutation is a
periodic bijection σ : Z→ Z.

That is, a balanced extended affine permutation is an affine permutation: an element
of S̃n . The set of extended affine permutations also forms a group, denoted S̃ext

n , and it
can be generated by the same set s̃i for i ∈ n together with the additional permutation
τ : Z→ Z given by τ(i) = i + 1 for all i ∈ Z.

Any extended affine permutation σ can be balanced by multiplication with a suitable
power of τ . Importantly, this power of τ does not affect the number of transpositions
s̃i needed to express σ : any extended affine permutation may be written as a product
τ kw where w is an expression in the s̃i for i = 1, . . . , n, and k as well as the length
of w are unique. The unique power of τ in such an expression is called the winding
number of the permutation.
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In the context of circular permutations, τ corresponds to a rotation of the circle by
one position.

Let P = {
(i, j) ∈ n2 | i < j

}
, i.e. the set of all those pairs of regions that are in

strictly ascending order.

Theorem 3.3 (Shi 1986) Given an extended affine permutation σ , the length �(σ ) of
σ , that is the minimum number of transpositions occurring in any representation of σ

as a product of transpositions, is given by

�(σ ) =
∑

(i, j)∈P

∣∣∣∣
⌊

σ( j)− σ(i)

n

⌋∣∣∣∣ . (3)

Proof See Lemma 4.2.2 of Shi (1986), pp. 68–70. 
�
Definition 3.4 Given an extended affine permutation σ , and (i, j) ∈ P, we define the
crossing number κi, j (σ ) of the positions i and j in σ as

κi, j (σ ) =
⌊

σ( j)− σ(i)

n

⌋
.

Associating to σ a diagram as in Fig. 4, the crossing number for the pair (i, j), κi, j (σ ),
is the number of strands ( j+kn) 	→ σ( j+kn) (k ∈ Z) that cross the strand i 	→ σ(i),
where crossings from the left are counted positive and crossings from the right are
counted negative.

Definition 3.5 For k ∈ Z we define the set of all strictly ascending pairs with crossing
number exactly k in σ as

Ik(σ ) = {
(i, j) ∈ P | κi, j (σ ) = k

} = {
(i, j) ∈ P | kn ≤ σ( j)− σ(i) < (k + 1)n

}
.

Note that

∑
(i, j)∈P

∣∣∣∣
⌊

σ( j)− σ(i)

n

⌋∣∣∣∣ =
∑

(i, j)∈P

∣∣κi, j (σ )
∣∣

=
∑
k∈Z
|k| · |Ik(σ )|

=
∑

k∈N+
|k| · (|Ik(σ )| + |I−k(σ )|). (4)

3.4 Crossing numbers for minimum length representatives

Thanks to Shi’s formula (Theorem 3.3), the crossing numbers are closely related to
length. So given a minimum length representative of a circular permutation, there
should be some constraints on the crossing numbers. In this section we show that the
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only crossing numbers that can occur in a minimum length representative of a given
circular permutation are −1, 0, and +1.

We start by proving some “transitivity” constraints for pairs of crossing numbers
involving a common position. For instance we provide constraints on the crossing
number of the pair (i, k) when we have crossing numbers for (i, j) and ( j, k) (Part
(i)).

Lemma 3.6 Let σ be an extended affine permutation. The following hold:

(i) If (i, j) ∈ Ir (σ ) and ( j, k) ∈ Is(σ ) then (i, k) ∈ Ir+s(σ ) ∪ Ir+s+1(σ ).
(ii) If (i, j) ∈ Ir (σ ) and (i, k) ∈ Is(σ ) then ( j, k) ∈ Is−r−1(σ ) ∪ Is−r (σ ) or

(k, j) ∈ Ir−s−1(σ ) ∪ Ir−s(σ ).
(iii) If (i, k) ∈ Ir (σ ) and ( j, k) ∈ Is(σ ) then (i, j) ∈ Ir−s−1(σ ) ∪ Ir−s(σ ) or

( j, i) ∈ Is−r−1(σ ) ∪ Is−r (σ ).

Proof (i) As (i, j) ∈ Ir (σ ) is equivalent to rn ≤ σ( j) − σ(i) < (r + 1)n and
( j, k) ∈ Is(σ ) is equivalent to sn ≤ σ(k)−σ( j) < (s+1)n, one has (r+ s)n ≤
σ(k)− σ(i) < (rs + 2)n, whence (i, k) ∈ Ir+s(σ ) ∪ Ir+s+1(σ ).

(ii) As (i, j) ∈ Ir (σ ) is equivalent to −(r + 1)n < σ(i) − σ( j) ≤ −rn and
(i, k) ∈ Is(σ ) is equivalent to sn ≤ σ(k)−σ(i) < (s+1)n, one has (s−r−1)n <

σ(k)−σ( j) < (s−r+1)n, respectively (r−s−1)n < σ( j)−σ(k) < (r−s+1)n.
If j < k, the former implies ( j, k) ∈ Is−r−1(σ ) ∪ Is−r (σ ), while in the case
k < j , the latter implies (k, j) ∈ Ir−s−1(σ ) ∪ Ir−s(σ ).

(iii) As (i, k) ∈ Ir (σ ) is equivalent to rn ≤ σ(k)−σ(i) < (r+1)n and ( j, k) ∈ Is(σ )

is equivalent to −(s + 1)n < σ( j) − σ(k) ≤ −sn, one has (r − s − 1)n <

σ( j)−σ(i) < (r−s+1)n, respectively (s−r−1)n < σ(i)−σ( j) < (s−r+1)n.
If i < j , the former implies (i, j) ∈ Ir−s−1(σ )∪ Ir−s(σ ), while in the case j < i ,
the latter implies ( j, i) ∈ Is−r−1(σ ) ∪ Is−r (σ ). 
�

The idea now is the following: Assume that α > 1 is the maximal integer such that
I−α(σ ) ∪ Iα(σ ) is non-empty. This means that |α| is the maximal size of a crossing
number in σ . We will define two transformations that reduce this, by removing the
pairs with crossing numbers−α (respectively α) without increasing the absolute value
of any crossing number, except from 0 to 1. The proof of this claim uses the transitivity
constraints in Lemma 3.6 and the maximality of α.

Given an extended affine permutation σ and a subset S ⊆ n, we define the extended
affine permutation σ S by setting

σ S(i) =
{

σ(i)+ n if i ∈ S,

σ (i) otherwise.

That is, σ S has the image of each element of S shifted by n. Note that this does not
change the circular permutation that they correspond to.

Lemma 3.7 For an extended affine permutation σ , if κi, j (σ ) = r , then one has
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κi, j (σ
S) =

⎧⎪⎨
⎪⎩

r + 1 if i /∈ S and j ∈ S,

r − 1 if i ∈ S and j /∈ S,

r otherwise.

Proof The claims follow immediately from Definition 3.4.

The following two propositions show how to choose a subset S ⊆ n in such a way
that the largest crossing number for σ S is strictly lower than that of σ .

Proposition 3.8 Let σ be an extended affine permutation, and assume that α > 1 is
the maximal integer such that Iα(σ ) ∪ I−α(σ ) is non empty.

For S = {
i ∈ n | ∃ j ∈ n , (i, j) ∈ Iα(σ )

}
one has Iα(σ S) = ∅. Moreover, for

any (i, j) ∈ P with κi, j (σ ) �= 0, one has |κi, j (σ
S)| ≤ |κi, j (σ )|.

Proof Assume that (i, j) ∈ Ir (σ ), so that κi, j (σ ) = r , and suppose

|κi, j (σ
S)| > |κi, j (σ )| = |r | > 0.

Then, by Lemma 3.7, if r > 0 we have i /∈ S and j ∈ S, and if r < 0 we have i ∈ S
and j /∈ S.

If r > 0 then there exists k ∈ { j + 1, . . . , n} with ( j, k) ∈ S = Iα(σ ), so
(i, k) ∈ Iα+r (σ ) ∪ Iα+r+1(σ ) by Lemma 3.6 contradicting the maximality of α.

If r < 0 then there exists k ∈ {i + 1, . . . , n} such that (i, k) ∈ S = Iα(σ ).
By Lemma 3.6, either j < k and ( j, k) ∈ Iα−r−1(σ ) ∪ Iα−r (σ ), or k < j and
(k, j) ∈ Ir−α−1(σ ) ∪ Ir−α(σ ). Since r < 0, the only situation compatible with the
maximality of α is r = −1 and ( j, k) ∈ Iα(σ ), but in this case j ∈ S, which is a
contradiction.

By Lemma 3.7, it only remains to show that κi, j (σ
S) �= κi, j (σ ) for any (i, j) ∈

Iα(σ ). As (i, j) ∈ Iα(σ ) implies i ∈ S, one can only have κi, j (σ
S) = κi, j (σ ) if

j ∈ S, that is, if there exists k ∈ { j + 1, . . . , n} with ( j, k) ∈ S = Iα(σ ). But then, by
Lemma 3.6, (i, k) ∈ I2α(σ ) ∪ I2α+1(σ ), again contradicting the maximality of α. 
�

A similar argument deals with the case in which Iα(σ ) is empty:

Proposition 3.9 Let σ be an extended affine permutation, and assume that α > 1 is
the maximal integer such that Iα(σ ) ∪ I−α(σ ) is non empty. Moreover assume that
Iα(σ ) = ∅.

For S = {
j ∈ n | ∃ i ∈ n , (i, j) ∈ I−α(σ )

}
one has I−α(σ S) = ∅. Moreover, for

any (i, j) ∈ P with κi, j (σ ) �= 0, one has |κi, j (σ
S)| ≤ |κi, j (σ )|.

Proof The proof is similar to that of Proposition 3.8. 
�
We now translate these results into the context of a circular permutation s. In

particular, we have the key conclusion that if σ is a minimal affine representative of s
then its crossing numbers are at most ±1.

Corollary 3.10 If s is a circular permutation and σ is an extended affine permutation
representing s, whose length is minimal among all representatives of s, then Ik(σ ) = ∅

for all k ∈ Z\{−1, 0,+1}.
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Proof If σ is a representative of s and Ik(σ ) �= ∅ for some k ∈ Z \ {−1, 0,+1}, then
application of Proposition 3.8 or Proposition 3.9 produces another representative of s
that has, by Theorem 3.3, smaller length. 
�
Corollary 3.11 If s is a circular permutation and σ is an extended affine permu-
tation representing s, whose length is minimal among all representatives of s, then
max

{
σ(i) | i ∈ n

}−min
{
σ(i) | i ∈ n

}
< 2n.

Proof Choose k ∈ n such that σ(k) = min
{
σ(i) | i ∈ n

}
. One has σ( j)−min

{
σ(i) |

i ∈ n
} = σ( j)− σ(k) < 2n for all j ∈ n by Corollary 3.10, so the claim holds. 
�

We have now placed significant constraints on an important feature of an affine
permutation (its crossing numbers), when it is a minimal length representative of a
circular permutation. The question remains of how to choose an affine representative
that satisfies these constraints on the crossing numbers. This is addressed in the next
section.

3.5 Finding a minimum length representative

In this section we show that a minimal affine representative of a circular permutation
must have images for each i ∈ n that are the minimal possible distance from i (Theo-
rem 3.16). To begin with, we will need to define the nett crossing number of a position
i ∈ n (Definition 3.12), as well as the winding number of σ .

Definition 3.12 Given an extended affine permutation σ , and i ∈ n, we define the
nett crossing number νi (σ ) of the position i to be

νi (σ ) =
∑
j∈n

κi, j (σ ).

Any vertical line in general position through a diagram in S̃ext
n has the same number

of nett crossings (crossings from the left minus crossings from the right, or vice versa).
This number is the winding number of the permutation, and is the exponent on τ in
its expression in terms of the si and τ , as described in Sect. 3.3 (the elements of
winding number zero are the affine permutations, that is, the “balanced” ones). This
feature follows because each generator si has zero nett crossings, and nett crossings
are invariant under Reidemeister moves.

We now have a lemma that is a direct consequence of the results in the previous
section, showing that in minimal representatives the images of regions cannot move
more than n. This is somewhat intuitive, since if it were not true it would mean that
in a minimal sequence of inversions a region could move more than a full circle to its
destination, which (intuitively) seems unlikely.

Lemma 3.13 If σ is a minimal balanced representative of a circular permutation,
then |σ(i)− i | < n.
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Proof If |σ(i)− i | ≥ n then there are two alternatives: σ(i) ≥ i + n or σ(i) ≤ i − n.
We show that either leads to a contradiction.

Suppose that σ(i) ≥ i + n. Then σ(i − n) ≥ i by periodicity. If there was a j > i
that had an image σ( j) less than σ(i − n) = σ(i)− n, then it would cross the i strand
twice, violating Lemma 3.10. This implies that the winding number of σ is strictly
positive, because in the vertical line down from i+ε (for ε sufficiently small), the only
crossings can be from the left. This violates the balance of σ and so is a contradiction.

The second case is symmetric. 
�

The following is a technical consequence of Lemma 3.13 that is needed in the next
proof:

Lemma 3.14 Suppose j ∈ Z\{0}. In a minimal balanced representative,

|σ(i)− i + jn| =
{

σ(i)− i + jn if j > 0

−(σ (i)− i + jn) if j < 0.

Proof This is immediate from Lemma 3.13, since either 0 < σ(i)− i < n or −n <

σ(i)− i < 0. 
�

Lemma 3.15 If σ is a balanced permutation then νi (σ ) = i − σ(i). Moreover, if σ

has winding number k then νi (σ ) = i − σ(i)+ k.

Proof If σ is balanced, the element στ i−σ(i) of S̃ext
n sends i 	→ i , and has winding

number i−σ(i). A vertical line in general position just to the left or right of i will have
the same number of nett crossings as the strand i 	→ i , namely the winding number
i − σ(i). But the multiplication of σ by τ i−σ(i) does not change any crossings, and
hence the claim follows. When the winding number of σ is k �= 0, the winding number
after multiplication by τ i−σ(i) is k + (i − σ(i)) as required. 
�

Theorem 3.16 If s is a circular permutation and σ is an affine permutation represent-
ing s, whose length is minimal among all representatives of s, then for each i ∈ n, σ

takes the shortest distance between i and the equivalence class σ(i) mod n.

Proof We have a circular permutation s and a balanced, minimal length lift, σ ∈ S̃n .
Our claim is that each σ(i) is the minimal distance from i of all choices {σ(i)+ jn |
j ∈ Z}.

For an arbitrary i , we consider alternative choices of image from the set {σ(i)+ jn |
j ∈ Z\{0}}. We claim that any of these alternatives increases the distance of the image
from i .

Given that σ is balanced, a choice of i 	→ σ(i)+ jn results in winding number j ,
and so the nett number of crossings of the line i 	→ σ(i)+ jn is i−(σ (i)+ jn)+ j , by
Lemma 3.15. If j > 0, all crossings of this edge are from the right, as crossings from
the left would cross the edge i 	→ σ(i) twice, violating minimality by Corollary 3.10
(see Fig. 5). Similarly, if j < 0 all crossings are from the left, for the same reason.
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Fig. 5 The dotted arrows in the left panel indicate all possible sets of connections that cross the strand
i 	→ σ(i) and a hypothetical alternative strand i 	→ σ(i)+ n (shown dashed). If σ is minimal then no pair
of equivalence classes of strands cross more than once, by Corollary 3.10. This means one of the sets of
connections drawn on the left is empty and the only possible non-empty sets are shown on the right panel.
Note that the panel on the right shows crossings of the hypothetical alternative strand that are all from the
same side (right to left)

It follows that the total number of crossings of the edge i 	→ σ(i)+ jn equals the
absolute value of the nett number of crossings, namely

total crossings of (i 	→ σ(i)+ jn) =
{
−(i − (σ (i)+ jn)+ j) if j > 0

i − (σ (i)+ jn)+ j if j < 0.

=
{

(σ (i)− i)+ jn − j if j > 0

(i − σ(i))− jn + j if j < 0.

For the original strand we have i − σ(i) nett crossings and distance |σ(i)− i |. So
the total number of crossings of the strand is at least |i −σ(i)|. Therefore we have the
inequalities:

|i − σ(i)| ≤ total crossings of (i 	→ σ(i))

≤ total crossings of (i 	→ σ(i)+ jn) by minimality of σ ,

=
{

(σ (i)− i)+ jn − j if j > 0

(i − σ(i))− jn + j if j < 0,

<

{
(σ (i)− i)+ jn if j > 0

(i − σ(i))− jn if j < 0,

= |σ(i)+ jn − i | by Lemma 3.14

= the distance from i to σ(i)+ jn.

In other words, if σ is a balanced, minimum length representative of the circular
permutation s, then each σ(i) is the minimum distance from i of all the alternatives
{σ(i)+ jn | j ∈ Z}, as required. 
�

Note: the distance between i and σ(i) is strictly less than that between i and σ(i)+n
when σ is drawn with the winding number zero. If σ(i) + n is instead chosen as the
image of i the winding number becomes 1, as noted in the proof. If the permutation is
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rebalanced (changing the frame of reference) then the bottom axis is moved one to the
left, resulting in the distance i to σ(i) increasing by one and the distance i to σ(i)+ n
decreasing by 1. Consequently, some choices σ(i) or σ(i) + n could be equivalent.
This occurs when σ(i) = (n − 1)/2 (n odd). Here is the argument.

Lemma 3.17 If two choices i 	→ σ(i) and i 	→ σ(i)+n both result in minimal length
elements, and the permutation is balanced with i 	→ σ(i), then i − σ(i) = 1

2 (n − 1).

Proof As in the proof of Theorem 3.16, if i 	→ σ(i) gives a minimal length element
then the number of crossings of a line i 	→ σ(i)+ n is σ(i)+ n − i − 1. Similarly, if
i 	→ σ(i)+ n also gives a minimal length element then the number of crossings of a
line i 	→ σ(i) is i −σ(i). Since both choices have the same total number of crossings
and all else remains fixed, these lines must have the same number of crossings, namely
σ(i)+ n − i − 1 = i − σ(i). The lemma follows. 
�

Note that in the above lemma, and as mentioned prior to it, the permutation is
balanced with i 	→ σ(i) but not balanced with i 	→ σ(i)+ n. So the distances when
balanced are not the same thing as the number of crossings. The above scenario arises
when n is odd, so for a given frame of reference there is only one choice: the distances
i to σ(i) and i to σ(i)+ n are different.

The results in this section show that, for each frame of reference, a minimal rep-
resentative may be found by choosing shortest distances for each image. Taking the
shortest representative over all frames of reference will yield the minimal number of
inversions required for the given circular permutation.

4 Implementation and application

In this section we explain how the results may be implemented algorithmically to
compute the inversion length in the two-region inversion model, and then apply the
method to some published Yersinia pestis genomes.

4.1 Computational implementation

The method arising from these results breaks into three natural algorithmic compo-
nents:

1. minimizing paths for the lifting process,
2. calculating the length for an affine permutation, and
3. sorting a circular permutation (finding an explicit sequence of inversions).

For lifting a circular permutation into an extended affine permutation we have to
make a decision which way to route each path, i.e. choosing minimal-distance images
for each i ∈ n. A straight-forward method checks for each i ∈ n whether the image
in the previous or in the next window has a shorter distance or not (Algorithm 1).

For calculating the length of an affine permutation we simply count the number
of crossings. The sum in Eq. (3) can be translated into a for loop easily. Then for
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calculating the circular length we have to go through all frames of reference to find
the minimal length (Algorithm 2).

Additionally, we can sort the permutation, producing a geodesic. The sorting algo-
rithm (Algorithm 3) operates by comparing consecutive pairs and swaps them if
needed, hence doing uncrossings. This algorithm always chooses the lowest index
pair to be swapped and thus produces a single geodesic. However, a systematic explo-
ration of all possible swaps (e.g. a backtrack algorithm) can enumerate geodesics.

Since we combine quadratic and linear algorithms, the overall sorting algorithm is
also polynomial. In particular we can easily deal with real-world genome data with
approximately 80 regions. The algorithms in this subsection were implemented using
the GAP (GAP 2012) computer algebra system and the source code is available upon
request.

Algorithm 1: Minimizing the path between a point and its image.
input : n number of points

i a point
σ(i) the image of i under σ

output: σ ′(i) the minimized image

MinimizePath (n, i, σ (i)):
d ← |i − σ(i)|;1
if |i − (σ (i)+ n)| < d then return σ(i)+ n;2
if |i − (σ (i)− n)| < d then return σ(i)− n;3
return σ(i);4

Algorithm 2: Calculating the 2-inversion length of a circular permutation.
input : σ circular permutation
output: the 2-inversion length of σ

CircularTwoInversionLength (σ ):
n← Size (σ ); min← �(σ );1
foreach σ ′ ∈ σ · Dn do2

σ ′m ← all paths minimized in σ ′;3
if �(σ ′m ) <min then4

min← �(σ ′m );5

return min;6

4.2 Application to Yersinia genomes

We apply the method summarised in Algorithm 2 to calculate inversion-based distances
among eight Yersinia genomes. The input data are in the form of a set of permutations
of regions that are conserved across all genomes. We obtained these permutations
from Darling et al. (2008) by using the Mauve software package (Darling et al. 2010).
The resulting matrix of minimal inversion distances is given in Table 1. This matrix
of distances can be used to generate a phylogenetic tree using distance-based methods
such as neighbour-joining (Saitou and Nei 1987). We applied this method using the
phylip package (Felsenstein 1989). The two genomes of Yersinia pseudotuberculosis
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can be used as outgroups, as done for example by Bos et al. (2011). The resulting
phylogeny is shown in Fig. 6.

This evolutionary reconstruction can be compared to the results of Darling et
al. (2008), who also used inversion information. While Darling et al. used a net-
work visualisation of the relationships among the genomes, it is possible to see the
similarities with our phylogeny. Namely, Y. pestis Pestoides and Y. pestis Microtus
91001 join near the root, the remaining Y. pestis isolates group together, and the two
Yersinia pseudotuberculosis outgroups also group together. Another point of com-
parison is the phylogeny based on 1,694 variable positions across the whole genome

Algorithm 3: Sorting by uncrossings. The algorithm returns a geodesic between
m and m′, where m′ is sorted in the sense that all points have their corresponding
neighbours, but the whole configuration may be rotated and/or flipped by a dihedral
action.

input : m list of images of minimized configuration
output: w a word encoding the sequence of 2-inversions for sorting m

Sort (m):
n← Size (m);w← [];1
foreach i ∈ n do2

d[i] ← m[i] − i ;3

repeat4
finished← true;5
foreach i ∈ n do6

j ← (i + 1) mod n;7
if d[i] > d[ j] then8

Swap (m[i], m[ j]);9
Add (w, i);10
foreach k ∈ {i, j} do11

d[k] ← MinimizePath (n, k, m[k])-k;12

finished← false;13
break;14

until finished ;15
return w;16

Table 1 Matrix of minimal inversion distances among Yersinia genomes calculated by Algorithm 2

KIM ANTIQUA MICROTUS CO92 NEPAL516 PESTOIDES Yp_IP31758 Yp_IP32953

KIM 0 233 738 188 334 515 758 738

ANTIQUA 233 0 750 319 449 664 719 712

MICROTUS 738 750 0 745 659 809 695 706

CO92 188 319 745 0 366 595 697 760

NEPAL516 334 449 659 366 0 659 641 759

PESTOIDES 515 664 809 595 659 0 753 695

Yp_IP31758 758 719 695 697 641 753 0 589

Yp_IP32953 738 712 706 760 759 695 589 0
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Fig. 6 Phylogeny from data published in Darling et al. (2008), based on distances obtained by applying
Algorithm 2

(Bos et al. 2011). Again, Pestoides and Microtus 91001 diverged early while the
remaining genomes evolved more recently. Bos et al. distinguish two clades that arose
since the Black Death: one with Nepal516 and KIM and the other with CO92 and
Antiqua. Although there are slight differences within these recent clades, our methods
produced a tree that is broadly consistent with the tree of Bos et al. (2011) which uses
sequence variation—a completely different source of information.

5 A general modelling framework

We have studied a model in which only certain inversions are permitted, specifically
those of two adjacent regions. As remarked in Sect. 2.1, this is but one example of an
inversion system, in which the set of inversions I is constrained in some way. In this
setting, we define a metric � on the group relative to I and according to parsimony,
so that �(g) is the word length of g in the generators I. Then the distance between
genomes G1 and G2, represented by group elements g1 and g2 in the model (G, I)

with the metric � is simply �(g−1
1 g2). The model in which all inversions are permitted,

the uniform model, simply removes constraints on I completely.
A more realistic model than either the uniform or a constrained model is one in

which inversions may be given different weights according to experimental data, such
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Fig. 7 Different biological models. The widely used uniform model and any constrained model are special
cases of the general model, in which all inversions are assigned a weight value. The weights can be interpreted
as probabilities the inversions to occur

as the frequencies of different inversion lengths. Estimates of these frequencies have
been obtained for instance in Darling et al. (2008) (see Fig. 7 of that paper). In the
group-theoretic setting, we have the same group and the same generators as in the
uniform model, since all inversions are permitted. The variation in the frequencies
of different inversions is accounted for by manipulating the length function in the
group, for instance by assigning weights to inversions depending on the number of
regions involved (Swidan et al. 2004). In the uniform and constrained models, and
in most combinatorial group theory, each generator is defined to have length 1, and
the length of a product of generators is the sum of the lengths. However, length is
used as a proxy for evolutionary distance, and if inversions are not equally probable
then their length should be different. In the light of the parsimony assumption that the
most likely evolutionary path is one of minimal distance, the weighting (or length) of
a single inversion needs to be adjusted to account for the difference in probability.

For example, let I be the set of all possible inversions, and suppose ω : I → R
≥0

is a weight function assigned to the inversions. If we assume short inversions are
more probable than longer inversions, we may have a weight function that is order-
preserving with respect to inversion length (if s is longer than t then ω(s) > ω(t)).
Then our metric on the group may be defined by first defining length additively on any
word in the generators, setting �(si1 . . . sik ) = ω(si1)+· · ·+ω(sik ). Then to define the
length of a group element g ∈ G one needs to take the minimum over all words w in the
generators I representing g: �(g) = min{�(w) | w = g}. This establishes the minimal
weight path in the Cayley graph from the identity arrangement to g. In practice this
is a significant problem, however, as there are infinitely many words representing g.
Even eliminating paths that double back on themselves the search space is potentially
very large. Applying this model in generality will require some clever new ideas or
a statistical approach [some computational approaches have been taken in Pinter and
Skiena (2002), Swidan et al. (2004)].

While the general version of this model seems difficult to work with, special cases
are clearly not intractable, as we have shown in this paper. The two-region inversion
model we study simply employs a special weight function in which ω(s) = 1 if s
is an inversion of two regions and 0 otherwise. Indeed, any model that restricts the
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set of inversions I but treats them all as equivalent follows a similar pattern, setting
ω(s) = 1 if s ∈ I and 0 otherwise. This also applies to models in which inversions
are not restricted according to length but by location, such as models only permitting
inversions that do not move the terminus of replication, or even that are symmetric
about the terminus (Ohlebusch et al. 2005). Similarly the uniform model generally
studied has the even simpler weight function ω(s) = 1 for all inversions s.

6 Discussion

In this article, we have introduced a group theoretic framework for modelling the
process of bacterial genome rearrangement due to inversions. Using this framework,
we outlined a range of alternative models. We focused on a specific model in which
inversions act locally on two genomic regions at a time. Based on this model, the
group theoretic framework has enabled us to derive a new algorithm to obtain the
minimum number of inversion events connecting two genomes under comparison. The
key conceptual step has been to find a way to lift circular permutations to the affine
symmetric group in such a way that the inversion distance on the circular genome can
be found using results on length of elements in the affine symmetric group.

The combinatorial group theory of permutation groups has a long history of devel-
opment and therefore presents a potent opportunity to examine in a new light the
processes underlying bacterial genome evolution. There is potential to introduce more
realism into models of genome evolution by generalising the model studied here within
the group theoretic framework. This represents an important advance over existing
methods of comparative genomics based on fairly coarse assumptions, most particu-
larly the assumption that all inversion events are equally probable. In addition, while
the questions in group theory that arise in the algebraic models in this paper are new,
they are related to other questions under ongoing consideration by mathematicians.
It is to be hoped that this connection between evolutionary biology and algebra will
drive further theoretical development of related group theory.

Our approach extends preceding studies that applied group theory to genome evo-
lution. While the innovative study by Watterson et al. (1982) described the inver-
sion distance problem, its interpretation as a problem in group theory was first noted
by Kececioglu and Sankoff (1993) a decade later (and followed by Meidanis and Dias
(2000)). These models, along with most other approaches to the problem, assume a
uniform distribution of inversion lengths; something we have addressed in this paper
by allowing only inversions of two adjacent regions. A wider issue is that of whether
the minimal length is the best measure of evolutionary distance at all, given evolution
may not have taken a shortest path to the observed arrangements, regardless of the
metric used to define minimal. Recently, Moulton and Steel (2012) pursued this chal-
lenge to parsimony, using group theoretic principles to consider the effect on length of
a small change to an inversion sequence, and obtained “worst-case” bounds on the dif-
ference between lengths of elements when an additional generator is used. In general,
it is clear that the application of group-theoretic methods to genomics problems holds
great promise for a fertile exchange between algebraists and evolutionary biologists.
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