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Abstract Reaction networks are commonly used to model the dynamics of popu-
lations subject to transformations that follow an imposed stoichiometry. This paper
focuses on the efficient characterisation of dynamical properties of Discrete Reaction
Networks (DRNs). DRNs can be seen as modeling the underlying discrete nondeter-
ministic transitions of stochastic models of reaction networks. In that sense, a proof of
non-reachability in a given DRN has immediate implications for any concrete stochas-
tic model based on that DRN, independent of the choice of kinetic laws and constants.
Moreover, if we assume that stochastic kinetic rates are given by the mass-action law
(or any other kinetic law that gives non-vanishing probability to each reaction if the
required number of interacting substrates is present), then reachability properties are
equivalent in the two settings. The analysis of two types of global dynamical prop-
erties of DRNs is addressed: irreducibility, i.e., the ability to reach any discrete state
from any other state; and recurrence, i.e., the ability to return to any initial state. Our
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56 L. Paulevé et al.

results consider both the verification of such properties when species are present in a
large copy number, and in the general case. The necessary and sufficient conditions
obtained involve algebraic conditions on the network reactions which in most cases
can be verified using linear programming. Finally, the relationship of DRN irreducibil-
ity and recurrence with dynamical properties of stochastic and continuous models of
reaction networks is discussed.

Mathematics Subject Classification 37N25 · 92C42 · 92D25 · 92C45 · 80A30

1 Introduction

Reaction networks describe the possible transformations between species in a system,
subject to stoichiometry constraints (e.g. 2A + B → C + D). They are widely used
for fine-grained modelling of various complex dynamical systems, and in particular
biochemical dynamical systems. Typically, reaction network models are equipped
with kinetic laws in order to take into account the influence of the various speeds
and propensities of the reactions involved on the overall dynamics. Depending on
the nature of the systems and interacting species, those kinetics may follow different
laws. These reaction networks and kinetic rules are then generally interpreted either
in continuous frameworks, such as ODEs (Feinberg 1979; Craciun et al. 2006; Shinar
and Feinberg 1987), which relates the dynamics of the concentration of the species; or
in stochastic frameworks, such as continuous-time Markov chains (Wilkinson 2006;
Anderson et al. 2010), which precisely track the population (copy number) of each
species along time.

In practice, such modelling techniques face two challenges: the actual kinetics
are most of ten unknown and may substantially vary between systems sharing the
same reaction network; and formal analysis of the emerging dynamical properties is
computationally intractable for large-scale continuous and stochastic models.

In this paper, we propose a more abstract level of interpretation of reaction networks,
by focusing on the nondeterministic discrete evolution of the population of the species.
Given the population of each species (discrete state), the system can evolve due to the
application of any reaction, if the minimum required amount of each substrate species
for that reaction is present. We consider that only one discrete reaction can be applied
at a time. Such nondeterministic systems can be formally considered as the discrete
underlying dynamics of stochastic models of reaction networks (Fages and Soliman
2008).

In such a setting, dynamics of Discrete Reaction Networks (DRNs) naturally delimit
the dynamics of concrete stochastic systems, whatever the kinetic laws and constants:
if a reachability is proved impossible in a DRN, it is also impossible for any particular
stochastic model of the network. In the case where the rate (or probability) of a reaction
in the stochastic model never becomes zero, the (discrete) reachability properties of the
stochastic model are equivalent with the corresponding properties of the underlying
DRN. In general, one can think of a DRN as underlying any discrete stochastic model
of the reaction network.
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Dynamical properties of Discrete Reaction Networks 57

Here, we demonstrate that some general dynamical reachability properties can be
efficiently derived from a DRN: the capacity to reach any discrete state from any other
state (irreducibility); and the reversibility of the reachability properties (recurrence).
Such properties are both considered in the case where species are present in a large
copy number as well as in the general case. These results help provide an understanding
of the possible global dynamics of reaction networks, and give a direct relationship
between the structure of the set of reactions and the verification of the dynamical
properties mentioned, without any assumption on kinetic laws.

The main objects and results presented in this paper are summarised below.

Notations For any a, b in Z, [a; b] denotes the set of integers between a and b, i.e.,
{a, a + 1, . . . , b}. For any x, x ′ in Z

d , we say that x is greater than x ′, denoted
x � x ′, if every component of x is greater or equal than the corresponding com-
ponent in x ′, i.e., for any i in [1; d], we have xi ≥ x ′i . The set of matrices of ele-
ments in some set G ⊆ R having n rows and d columns is denoted by Gn×d . If the
matrix V is in Gn×d , then for any j ∈ [1; n], V j is the j th row, and V j is in Gd .
Given a set F ⊆ R, and a matrix V ∈ Gn×d , the span of V over F is denoted by

spanFV �= {λV | λ ∈ Fn}, and is a subset of R
d . Finally, the null vector in R

d is
denoted 0.

Discrete Reaction Networks We consider a set of reactions between d species Ai , i ∈
[1; d] of the form

c1 A1 + · · · + cd Ad −→ c′1 A1 + · · · + c′d Ad (1)

where for any i in [1; d] the numbers ci and c′i are in Z≥0. Such a reaction can be applied
as soon as the population of species Ai is at least ci , for any i in [1; d]. Its application
decreases the population of species Ai by ci and then increases it by c′i . Such a reaction
can be summarised by two vectors of dimension d: v = (c′1 − c1, . . . , c′d − cd), the
drift vector describing the population changes after application of the reaction; and
o = (c1, . . . , cd), the origin of the reaction, i.e., the minimum required population for
applying the reaction.

In this setting, a Discrete Reaction Network (DRN) of n reactions between d species
can be defined by a couple (V,O) of two matrices having d columns and n rows: V
gathers the drift vectors of the n reactions and O gathers their origins (Definition 1.1).
The definition considers only reactions that can be applied at least once from their
origin, i.e. ∀i ∈ [1; n], Oi + Vi � 0.

Definition 1.1 (Discrete Reaction Network) A Discrete Reaction Network (DRN) is
a couple (V,O), where V ∈ Z

n×d , O ∈ Z
n×d
≥0 , and ∀i ∈ [1; n], Oi + Vi � 0. The

number n is the size and d is the dimension of the DRN.

Example Figure 1 shows two examples of DRNs with three reactions between two
species.
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(a) (b)

Fig. 1 Two DRNs with three reactions involving two species A and B

• Example (a). reactions:

∅ → 2A
A + B → ∅

5A → 4A + 3B
⇒ V =

⎛
⎜⎝

2 0

−1 −1

−1 3

⎞
⎟⎠ ,O =

⎛
⎜⎝

0 0

1 1

5 0

⎞
⎟⎠

• Example (b). reactions:

∅ → 2A
A + B → ∅

5A → 4A + 2B
⇒ V =

⎛
⎜⎝

2 0

−1 −1

−1 2

⎞
⎟⎠ ,O =

⎛
⎜⎝

0 0

1 1

5 0

⎞
⎟⎠

.We will see in Sects. 3 and 4 that these similar-looking DRNs have different dynam-
ical properties.

Discrete transitions The population of the d species of the DRN forms a discrete state
(or point) of the DRN, and is represented as a vector x in Z

d≥0. At state x , only the
reactions j in [1; n] such that x � O j can occur. The occurrence of a single reaction
leads to the state x ′ = x + V j , with necessarily x ′ in Z

d≥0. The transition relation→
(see Definition 1.2) is defined such that x → x ′ if and only if x ′ can be reached by
the occurrence of a single reaction from x . The binary relation→∗ extends the binary
relation→ by considering the successive occurrence of any finite number of reactions.
Hence for any x, x ′ in Z

d≥0, x →∗ x ′ if and only if there exists a sequence of reaction
occurrences from x leading to exactly x ′, which never causes the population of any
species to become negative.

Definition 1.2 (Transition relation→) Given a DRN (V,O) and two points x, x ′ ∈
Z

d≥0, we write x →(V,O) x ′ if and only if ∃i ∈ [1; n] such that x � Oi and x+Vi = x ′.
We denote by→∗

(V,O)
the transitive closure of the binary relation→(V,O). When clear

from context,→(V,O) is written as→.

DRNs may be regarded as discrete Petri nets (Petri 1962; Murata 1989), where the
places are the species, the transitions are the reactions, and arc multiplicities reflect
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Dynamical properties of Discrete Reaction Networks 59

the stoichiometry. This connection has been used previously for the study of ODE
models of chemical networks (Angeli et al. 2007; Shiu and Sturmfels 2010).

Irreducibility and recurrence In this paper, we focus on two dynamical properties
of DRNs:

• Irreducibility: a DRN is irreducible if and only if one can reach any point x ′ ∈ Z≥0
from any point x ∈ Z≥0 (Definition 1.3).
• Recurrence: a DRN is recurrent if and only if one can always reverse the application

of any sequence of reactions (Definition 1.4).

It is worth noticing that any irreducible DRN is recurrent (Remark 1).

Definition 1.3 (Irreducibility) DRN (V,O) is irreducible if and only if ∀x, x ′ ∈ Z
d≥0,

x →∗ x ′ and x ′ →∗ x .

Definition 1.4 (Recurrence) DRN (V,O) is recurrent if and only if ∀x, x ′ ∈ Z
d≥0,

x →∗ x ′ �⇒ x ′ →∗ x .

Remark 1 Irreducibility �⇒ Recurrence.

The terms irreducibility and recurrence have the same meaning as in the Markov
chain literature (Lawler 2006). The term irreducibility is motivated by the fact that is
not possible to reduce the state space of the network by ignoring the states that are
not reachable from a given initial state x , or states that cannot reach x . Hence, if the
reachability class of x (composed of all states y such that y →∗ x and x →∗ y) is
Z

d≥0, we say the DRN is irreducible. The term recurrence comes from the fact that if
we leave a state along some path, it is always possible for that state to occur again (i.e.,
to recur). In the Petri net literature, recurrence is usually referred to as reversibility.

In addition to considering irreducibility and recurrence from any possible popu-
lation of species of the DRN, we also investigate a less restrictive version of these
dynamical properties, when assuming the species are present at a large copy num-
ber (LCN). This basically restricts the above dynamical properties to population of
species greater than a certain threshold M0 in Z

d≥0. We refer to these less restrictive
properties as LCN irreducibility (Definition 1.5) and LCN recurrence (Definition 1.6).
Note that the inclusion relationship between irreducibility and recurrence still holds
(Remark 2).

Definition 1.5 (LCN Irreducibility) DRN (V,O) is LCN irreducible if and only if
∃M0 ∈ Z

d≥0 such that ∀x, x ′ ∈ Z
d≥0 with x � M0 and x ′ � M0, x →∗ x ′ and

x ′ →∗ x .

Definition 1.6 (LCN Recurrence) DRN (V,O) is LCN recurrent if and only if ∃M0 ∈
Z

d≥0 such that ∀x, x ′ ∈ Z
d≥0 with x � M0 and x ′ � M0, x →∗ x ′ �⇒ x ′ →∗ x .

Remark 2 LCN Irreducibility �⇒ LCN Recurrence.

Note that a reaction network that has any conservation laws cannot be irreducible
or LCN irreducible.
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Main results

In Sect. 3 we prove that LCN irreducibility is equivalent to having both the strictly
positive real span of drift vectors being R

d and the integer span of drift vectors being
Z

d .

Theorem (3.4) DRN (V,O) is LCN irreducible if and only if spanR>0
V = R

d and
spanZV = Z

d .

Verifying spanR>0
V = R

d can be done using linear programming, and verifying
spanZV = Z

d can be also efficiently done by computing, for instance, the Hermite
normal form of V .

Then, we point out additional properties that characterize full irreducibility: self-
starting (capability to reach a strictly positive point from 0) and self-stopping (capa-
bility to reach 0 from a strictly positive point).

Theorem (3.8) DRN (V,O) is irreducible if and only if (V,O) is LCN irreducible,
self-starting and self-stopping.

Self-starting and self-stopping properties can be decided using a backtracking algo-
rithm combined with linear programming to find a particular order of reactions.

In Sect. 4, we prove that LCN recurrence is equivalent to the presence of 0 in
the strictly positive real span of drift vectors. This property is also considered in a
different context, where it was called positive dependence of drift vectors (Feinberg
1987). Surprisingly, no integer constraints need to be checked for LCN recurrence, so
this property can be easily decided using only linear programming.

Theorem (4.2) DRN (V,O) is LCN recurrent if and only if 0 ∈ spanR>0
V .

Section 5 applies those results to DRNs modelling biological systems. The results
and their relationships with stochastic and continuous models of reaction networks
are discussed in Sect. 6. For example, we show how we can use the theorems above
to check that common phosphorylation chain networks are LCN recurrent and some
circadian clock networks are LCN irreducible.

2 Additional definitions and basic properties

2.1 Set of points and paths manipulation

We introduce the following notations to manipulate sets of points and paths (sequences
of reactions):

lowerpoint Given a set of m points {x1, . . . , xm} ⊂ Z
d , we denote by

lowerpoint({x1, . . . , xm}) the largest point that is lower than all the given points:

lowerpoint({x1, . . . , xm}) �= y ∈ Z
d with ∀i ∈ [1; d], yi = min{x j,i | j ∈ [1;m]}

123



Dynamical properties of Discrete Reaction Networks 61

orderings Given λ ∈ Z
n≥0 with � = ∑n

i=1 λi , we denote by orderings(λ) all the
mappings π : [1; �] → [1; n]which map exactly λi distinct values to i ,∀i ∈ [1; n]:

orderings(λ)
�= {π : [1; �] → [1; n] | ∀i ∈ [1; n], λi = #{ j ∈ [1; �] | π( j) = i}}

where #S denotes the cardinality of the finite discrete set S.

Hereafter, we use such mappings π : [1; �] → [1; n] to refer to paths, i.e.,
sequences of reactions. In such a context, λ ∈ Z

n≥0 should be understood as the
vector giving the number of times each reactions in [1; n] has to be used in a path;
and orderings(λ) as all the possible realizations of such paths.

path application (x • π ) Given a DRN (V,O) of size n and dimension d, a path
π : [1; �] → [1; n], and an initial point x ∈ Z

d , x •π is the set of points resulting
from the sequential application of π from x :

x • π
�=

{
x +

k∑
i=1

Vπ(i) | k ∈ [0; �]
}

.

We remark that lowerpoint(x • π) = x + lowerpoint(0 • π).

2.2 Inverse DRN

The inverse DRN (Definition 2.1) is defined by the negative drift vectors and the origins
shifted by the original drift vector. For instance, the inverse of the reaction described
in Eq. 1 results in:

c′1 A1 + · · · + c′d Ad −→ c1 A1 + · · · + cd Ad (2)

Definition 2.1 (Inverse DRN) Given a DRN (V,O), then (V,O)−1 �= (−V,O + V)

is the inverse DRN.

Lemma 2.2 x →(V,O) x ′ ⇐⇒ x ′ →(V,O)−1 x.

2.3 Basic properties

From the definition of transitions between the discrete states of the DRN (Defini-
tion 1.2), one can easily derive that if x →∗ x ′ then any succession of reactions from
x to x ′ can be applied from x (positively) shifted by any δ ∈ Z

d≥0, leading to x ′ + δ

(Lemma 2.3). In the particular case when 0 →∗ x ′, one can instantiate the latter
property with δ = x ′, which by transitivity of→∗ leads to 0→∗ αx ′ with α ∈ Z>0
(Lemma 2.4).

Lemma 2.3 Given x, x ′ ∈ Z
d≥0, x →∗ x ′ �⇒ ∀δ ∈ Z

d≥0, x + δ→∗ x ′ + δ.

Lemma 2.4 0→∗ x ′ ⇒ ∀α ∈ Z>0, 0→∗ αx ′.
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3 Deciding irreducibility

DRN (V,O) is irreducible if any point in Z
d≥0 can be reached from any other point

in Z
d≥0 (Definition 1.3). We first address the LCN irreducibility, and then exhibit

supplementary properties that lead to full irreducibility.

3.1 LCN irreducibility

Recall that DRN (V,O) is LCN irreducible if and only if any point above a certain
M0 ∈ Z

d≥0 can be reached from any other point above M0 (Definition 1.5).
Before using the LCN hypothesis, we remark that the DRN is irreducible if (and

only if) one can reach each elementary point ei ,∀i ∈ [1; d] from 0 and vice-versa
(Lemma 3.1). Here ei is the d-dimensional vector having 0 at each of its component,
except the i th component being 1.

Lemma 3.1 DRN (V,O) is irreducible if and only if ∀i ∈ [1; d], 0 →∗ ei and
ei →∗ 0.

Note that a necessary condition for LCN irreducibility is that spanZ≥0
V = Z

d . This
property is actually sufficient for LCN irreducibility (Lemma 3.2) by choosing M0 big
enough such that for any i ∈ [1; d] at least one reachability path from M0 to M0 ± ei

never goes outside Z
d≥0, and such that M0 is greater than all the reaction origins.

Remarking that spanQ>0
V = Q

d ⇔ spanR>0
V = R

d (Lemma 3.3), Theorem 3.4
establishes that verifying spanZ≥0

V = Z
d is equivalent to verifying both spanZV = Z

d

and spanR>0
V = R

d .
While the verification of spanZ≥0

V = Z
d involves integer programming techniques,

verifying if spanR>0
V = R

d and spanZV = Z
d can be done more efficiently: the

former can be decided using linear programming, for instance by first checking whether
0 ∈ spanR>0

V and then whether spanR≥0
V = R

d ; the latter can be decided, for
instance, by computing the Hermite normal form of V (Cohen 1993).

Lemma 3.2 DRN (V,O) is LCN irreducible⇐⇒ spanZ≥0
V = Z

d .

Proof spanZ≥0
V = Z

d ⇒ ∀i ∈ [1; d], ∃λi,+, λi,− ∈ Z
n≥0 : λi,+V = ei and λi,−V =

−ei .
For each i ∈ [1; d] and s ∈ {+,−}, we pick an arbitrary ordering π i,s ∈

orderings(λi,s).
If M0 is defined such that ∀i ∈ [1; d],∀s ∈ {+,−},∀ j ∈ [1; n], M0 +

lowerpoint(0 • π i,s) � O j , then it is clear that ∀i ∈ [1; d], M0 →∗ M0 + ei and
M0 + ei →∗ M0. ��
Lemma 3.3 spanR>0

V = R
d ⇔ spanQ>0

V = Q
d .

Proof (⇒) Let us consider λ ∈ R
n
>0 such that λV = w, where w ∈ Q

d .
Consider a basis (βα)α∈I of R over Q such that βα0 = 1 (i.e. ∀r ∈

R, ∃ a unique choice of rα ∈ Q : r =∑
α∈I rαβα). Then w = λV =∑n

j=1 λ jV j =
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∑n
j=1(

∑
α∈I λα

j βα)V j = ∑
α∈I (

∑n
j=1 λα

j V j )βα with λα ∈ Q
n . On the other

hand, w = wβα0 +
∑

α∈I\{α0} 0βα . Hence,
∑n

j=1 λ
α0
j V j = w and ∀α ∈ I, α �=

α0,
∑n

j=1 λα
j V j = 0.

(⇐) Because spanQ>0
V = Q

d , Q
d ⊆ spanR≥0

V . This implies that the convex hull

of Q
d is a subset of spanR≥0

V , hence R
d ⊆ spanR≥0

V which implies spanR≥0
V = R

d .
Finally, we conclude that spanR≥0

V = spanR>0
V because, from hypothesis, 0 is a

positive linear combination of elements rows of V: 0 ∈ spanQ>0
V �⇒ ∃λ̃ ∈ Q

n
>0 :

λ̃V = 0. Hence, for any w ∈ R
d , there exists λ ∈ R

n≥0 such that w = w + 0 =
λV + λ̃V = (λ+ λ̃)V , with (λ+ λ̃) ∈ R>0. ��
Theorem 3.4 spanZ≥0

V = Z
d ⇐⇒ spanR>0

V = R
d and spanZV = Z

d . Therefore,

DRN (V,O) is LCN irreducible if and only if spanR>0
V = R

d and spanZV = Z
d .

Proof (⇐) spanR>0
V = R

d ⇔ spanQ>0
V = Q

d (Lemma 3.3). Therefore, ∃λ ∈ Q
n
>0

such that λV = 0 and ∃α ∈ Z>0 such that αλ ∈ Z
d
>0. Moreover, ∀i ∈ [1; d] and

∀s ∈ {+,−}, ∃λi,s ∈ Z
n such that λi,sV = sei . Hence, there exists β ∈ Z>0 such

that λ∗ = βαλ + λi,s with λ∗ ∈ Z
d≥0, resulting in λ∗V = sei . (⇒) use the fact that

spanZ≥0
V = Z

d ⇒ spanZ>0
V = Z

d , which follows from −V j ∈ spanZ≥0
V . ��

Example One can check that both examples of Fig. 1 verify spanR>0
V = R

d . However,
the computation of Hermite normal forms shows that only example (b) verifies the
second necessary condition spanZV = Z

d . Hence, example (a) is not LCN irreducible
whereas example (b) is LCN irreducible.

3.2 Full irreducibility

In this subsection, we demonstrate that a DRN is totally irreducible if and only if it
is LCN irreducible and is both self-starting (Definition 3.5) and self-stopping (Defin-
ition 3.6). A DRN is self-starting if at least one strictly positive point can be reached
from 0, and is self-stopping if there exists at least one strictly positive point from which
0 can be reached – which is equivalent to the inverse DRN being self-starting.

Definition 3.5 (Self-starting DRN) DRN (V,O) is self-starting if and only if ∃x ∈
Z

d
>0 such that 0→∗ x .

Definition 3.6 (Self-stopping DRN) DRN (V,O) is self-stopping if and only if inverse
DRN (V,O)−1 is self-starting.

Lemma 3.7 establishes that a DRN is self-starting if and only if there exists a
sequence of d reactions (not necessarily unique) such that for each dimension at least
one reaction of this sequence has a positive drift along that dimension, and such that
the origin of the kth reaction belongs to the positive real span of the k − 1 preceding
drift vectors (the first reaction having necessarily 0 as origin). Therefore, one can
derive a backtrack algorithm to determine if such an ordering of reactions exists.

Then, Theorem 3.8 states that if an LCN irreducible DRN is both self-starting and
self-stopping then it is irreducible. Indeed, if the DRN is self-starting, then there exists
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64 L. Paulevé et al.

Fig. 2 Illustration of the reasoning for Theorem 3.8 on irreducibility. If the DRN is self-starting, by
repeating the reactions, we eventually reach the LCN region from 0. In the same manner, if the DRN is
self-stopping, we eventually reach 0 from a point in the LCN region. If the DRN is LCN irreducible, any
point in the LCN region can be reached by any other point in the LCN region. Therefore, one can construct
a path from 0 to each elementary vector, and vice-versa

a strictly positive point x ∈ Z>0 such that 0→∗ x . From Lemma 2.4, the self-starting
property implies that there exists a point x ′ � M0 such that 0→∗ x ′. Then, if the DRN
is self-stopping, one can show similarly that there exists a point x ′′ � M0 such that
x ′′ →∗ 0. Because the DRN is LCN recurrent, we know that any pair of points above
M0 is reversibly reachable. Hence, by using Lemma 2.3, one can verify the existence
of a reversible path from 0 to all ei , i ∈ [1; d].

Informally, the self-starting property allows to reach the LCN region, and the self-
stopping allows to reach any ±ei or 0 from any point in the LCN region. The LCN
irreducibility property finally ensures that those two paths can be connected. This is
illustrated in Fig. 2.

Lemma 3.7 (∃x ∈ Z
d
>0 s.t. 0→∗ x)⇐⇒ ∃ a mapping σ : [1; d] → [1; n] with:

1. ∀k ∈ [1; d], ∃i ∈ [1; d],Vσ(i),k ≥ 1, and

2. Oσ(1) = 0 and ∀k ∈ [2; d],Oσ(k) ∈ spanR≥0

⎛
⎜⎝

Vσ(1)

...

Vσ(k−1)

⎞
⎟⎠ .

Proof (⇐) Let us define ∀k ∈ [1; d],
k �= { j ∈ [1; d] | ∃i ∈ [1; k],Vσ(i), j ≥ 1}
and xk such that ∀i ∈ [1; d], xk

i = 1
�⇔ i ∈ 
k and xk

i = 0
�⇔ i /∈ 
k . We show by

induction that ∀k ∈ [1; d], ∃x ′ � xk s.t. 0→∗ x ′:
• k = 1: 0→ Vσ(1) with ∀ j ∈ 
1, Vσ(1), j ≥ 1.
• k + 1: by induction, (2), and Lemma 2.4, ∃α ∈ Z>0 such that αxk ≥ Oσ(k+1)

(with 0 →∗ αxk). Hence, αxk → αxk + Vσ(k+1). We remark that if ∃i ∈
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k+1 such that (αxk + Vσ(k+1))i < 1, then necessarily i ∈ 
k . Hence,
∃β ∈ Z>0 such that (βαxk + Vσ(k+1)) � xk+1. Therefore, 0 →∗ x ′ with
x ′ � xk+1.

Finally, as 
d = [1; d], ∃x ∈ Z
d
>0 s.t. 0→∗ x .

(⇒) 0 →∗ x ⇒ ∃� ∈ Z>0, ∃ a path π : [1; �] → [1; n] with
∑�

i=1 Vπ(i) ∈Z
d
>0,

and ∀i ∈ [1; �],∑i−1
j=1 Vπ( j) � Oπ(i). Let us define the mapping ς : [1; d] → [1; �]

iteratively, starting with ς(1)
�= 1 and ∀k ∈ [2; d]:

• with ωk �= { j ∈ [1; d] | �i ∈ [1; k − 1],Vπ(ς(i)), j ≥ 1},
• if ωk = ∅, ς(k)

�= 1;

• otherwise, ς(k)
�= min{m ∈ [ς(k − 1) + 1; �] | ∃ j ∈ ωk,Vπ(m), j ≥ 1}. We

remark that this minimum necessarily exists (otherwise x /∈ Z
d
>0), and ∀m ∈

[ς(k − 1); ς(k)− 1], ∑m
j=1 π( j) ∈ spanR≥0

⎛
⎜⎝

Vσ(1)

...

Vσ(k−1)

⎞
⎟⎠.

From construction, σ
�= ς ◦ π verifies (1) and (2). ��

Theorem 3.8 DRN (V,O) is irreducible if and only if (V,O) is LCN irreducible
and ∃x ∈ Z

d
>0 s.t. 0 →∗

(V,O)
x and ∃x ′ ∈ Z

d
>0 s.t. 0 →∗

(V,O)−1 x ′ (i.e. (V,O) is
self-starting and self-stopping).

Proof (⇒) obvious. (⇐) For any fixed M0, from Lemma 2.4, ∃α ∈ Z>0 such that
αx � M0 and αx ′ � M0, with 0→∗

(V,O)
αx and 0→∗

(V,O)−1 αx ′. Hence,∀i ∈ [1; d],
from Lemma 2.3,

• 0→∗
(V,O)

αx →∗
(V,O)

(αx + ei )→∗(V,O)
(αx ′ + ei )→∗(V,O)

(0+ ei ), and
• (0+ ei )→∗(V,O)

(αx + ei )→∗(V,O)
αx →∗

(V,O)
αx ′ →∗

(V,O)
0.

��

Example One can easily show that the two examples in Fig. 1 are self-starting and self-
stopping. Using LCN irreducibility criteria from the previous subsection, we conclude
that example (b) is irreducible [recall that example (a) is not LCN irreducible, so it is
not irreducible].

4 Deciding recurrence

Recall that DRN (V,O) is recurrent if and only if for all pair of points x, x ′ ∈ Z
d≥0,

x →∗ x ′ implies x ′ →∗ x (Definition 1.4). First, we show that the LCN recurrence
is equivalent to the presence of the null vector in the strictly positive real span of drift
vectors. Then, we discuss sufficient conditions to obtain the recurrence, and reduce
the full recurrence property to a set of reachability properties.
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Fig. 3 Black dots are the points of the lattice generated by V . The lattice fundamental regions (formed by
the basis) are delimited by the gray lines

4.1 LCN recurrence

Let us ignore reaction origins and population positivity constraints. If 0 ∈ spanZ>0
V ,

it is clear that from any point x , one can undo any reaction application and then go
back to x : 0 ∈ spanZ>0

V ⇒ ∃λ ∈ Z
n
>0 such that λV = 0. Hence ∀i ∈ [1; d], we

obtain (λ− ei )V = −Vi .
By following the proof of Lemma 3.3, we remark in Lemma 4.1 that 0 ∈ spanQ>0

V
(hence 0 ∈ spanZ>0

V) is equivalent to 0 ∈ spanR>0
V . This can be verified with linear

programming.

Lemma 4.1 0 ∈ spanQ>0
V ⇐⇒ 0 ∈ spanR>0

V .

Proof (⇒) obvious. (⇐) same proof as for Lemma 3.3 with w = 0. ��
Finally, Theorem 4.2 establishes that LCN recurrence is equivalent to 0 ∈

spanR>0
V . The main difficulty is to prove that there exists a M0 ∈ Z

d≥0 such that
it is possible to reverse all the reactions connecting any pair of points above M0 by
staying in Z

d≥0. For that, we consider a basis B = {b1, . . . , bk} of the free Z-module
generated by V . It is worth noticing that, because 0 ∈ spanZ>0

V , it follows that
bi ∈ spanZ≥0

V,∀i ∈ [1; k]. Let us pick M0 large enough such that there exists a
sequence of reactions from M0 that can be successively applied (i.e., never below
their origins) and that goes to all the vertices of the fundamental region formed by B
that are adjacent to M0. Then any pair of points above M0 that is connected can be
reversibly reached from each other. Figure 3 illustrates this reasoning.

The proof of Theorem 4.2 also indicates that the reachability graph above M0
becomes in a sense maximal, or saturated: if x + δ →∗ x ′ + δ when x � M0, x ′ �
M0, δ ∈ Z

d≥0, then x →∗ x ′. This is stated by Corollary 4.3.
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Theorem 4.2 (V,O) is LCN recurrent⇐⇒ 0 ∈ spanR>0
V .

Proof (⇒) Straightforward. (⇐) Let us consider B = {b1, . . . , bk}, a basis of the free
Z-module generated by V .

From Lemma 4.1, 0 ∈ spanZ>0
V , which implies ±bi ∈ spanZ≥0

V , ∀i ∈ [1; k].
Hence, ∀i ∈ [1; k],∀s ∈ {+,−}, ∃λi,s ∈ Z

n≥0 such that λi,sV = bi,s �= sbi . Let us
pick an arbitrary ordering π i,s ∈ orderings(λi,s).

Let us define M0 ∈ Z
d≥0 such that for any mapping  : [1 : 2k] → [1; k]×{+,−},

and ∀l, l ′ ∈ [1; 2k],(l) = (l ′) ⇒ l = l ′, then ∀l ∈ [1; 2k],∀ j ∈ [1; n], M0 +
lowerpoint((

∑l−1
m=1 b(m−1)) • π(m)) � O j .

From M0 construction, the set of lattice fundamental regions formed by b1, . . . , bk

intersecting Z
d
≥M0

is connected and fits inside Z
d≥0. Moreover, each edge of those

fundamental regions can be translated to a sequence of drift vectors v ∈ V in Z
d≥0.

Therefore, ∀x, x ′ � M0 we have x →′ x ′ ⇒ x ′ → x . ��
Corollary 4.3 (Reachability Graph Saturation) If 0 ∈ spanZ>0

V then there exists
M0 ∈ Z

d≥0 such that the reachability graph on the set M0 + Z
d≥0 becomes constant

in the sense that: if x →∗ x ′, and x − δ, x ′ − δ � M0 for some δ ∈ Z
d≥0, then

x − δ→∗ x ′ − δ.

We refer to this property as “saturation” of the reachability graph, because it means
that, for M0 large enough, and any M ′0 � M0, the reachability graph in the region
above M ′0 is identical (up to a shift) to the reachability graph in the region above M0.

Example From the previous section we know that example (b) in Fig. 1 is irreducible
hence recurrent, but example (a) is not irreducible. Using the characterization above
one can verify that example (a) is LCN recurrent.

4.2 Full recurrence

Assume a DRN (V,O) is LCN recurrent. If ∃x∗ ∈ Z
d
>0 such that 0 →∗ x∗ →∗ 0,

then (V,O) is recurrent (Lemma 4.4). Indeed, using Lemma 2.4, ∃α ∈ Z>0 such that
αx∗ � M0. Then, for any pair of points x, x ′ ∈ Z

d≥0, if x →∗ x ′, then, by Lemma 2.3,
x + αx∗ →∗ x ′ + αx∗. Because the DRN is LCN recurrent, x ′ + αx∗ →∗ x + αx∗.
Hence, x ′ →∗ x . We remark however that, to our knowledge, there is no efficient
general method to verify if ∃x∗ ∈ Z

d
>0 such that 0 →∗ x∗ →∗ 0. Moreover, this

condition is sufficient but not necessary, in order to insure that an LCN recurrent
network is fully recurrent.

Lemma 4.4 If DRN (V,O) is LCN recurrent and ∃x∗ ∈ Z
d
>0 such that 0→∗ x∗ and

x∗ →∗ 0, then (V,O) is recurrent.

Proof Consider α ∈ Z>0 such that αx∗ � M0. If x →∗ x ′ then x ′ →∗ x ′ + αx∗ →∗
x + αx∗ →∗ x . ��

In the general case, and independently of LCN recurrence, we notice that recurrence
is equivalent to the reachability of the origin of each reaction from the point that is
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its origin plus drift vector (Lemma 4.5). Again, there is currently no efficient general
method to verify these reachability properties.

Lemma 4.5 DRN (V,O) is recurrent if and only if ∀ j ∈ [1; n],O j + V j →∗ O j .

Proof (⇒) straightforward. (⇐) ∀x ∈ Z
d≥0,∀ j ∈ [1; n] : x � O j , x → x + V j →∗

x . ��

The above lemma allows to conclude that any weakly reversible reaction network is
recurrent (Lemma 4.6). A reaction network is weakly reversible if each reaction is part
of a cycle of reactions Johnston et al. (2012); for instance X → Y ; Y → Z; Z → X
is a weakly reversible reaction network.

Lemma 4.6 Any weakly reversible reaction network is recurrent.

Proof A DRN models a weakly reversible reaction network if and only if each reaction
is part of a cycle of m ≤ n reactions where the origin of a reaction matches with the
origin plus the drift vector of the previous reaction, i.e. ∀ j ∈ [1; n], ∃m ∈ [1; n] and
a path π : [1;m] → [1; n] such that ∀k ∈ [1;m],Oπ(k) = O j + V j +∑k−1

l=1 Vπ(l)

and O j = O j + V j +∑k
l=1 Vπ(l). Therefore, ∀ j ∈ [1; n],O j + V j →∗ O j . ��

Example The sufficient condition for recurrence depicted in Lemma 4.4 is verified by
example (a) of Fig. 1. Indeed, 0 →∗ (6, 6) →∗ 0 (applying 3V1 then 2V3 from 0
results in (6, 6), then applying 6V2 results in 0). Hence, example (a) is recurrent (but
not irreducible), whereas example (b) is irreducible (and recurrent).

5 Biological examples

This section applies the results of this paper to show that a model of circadian clock
is LCN irreducible, and a generic model of phosphorylation chain is LCN recurrent.

5.1 Circadian clock

We study here a model of PER and TIM circadian oscillations from Leloup and
Goldbeter (1999), extracted from the BioModels database (Le Novère et al. 2006).
This model involves 10 species and 26 reactions (including 6 reversible). The list of
reactions is given in Fig. 4.

One can check that the necessary and sufficient conditions for LCN irreducibility of
Theorem 3.4 are verified by this DRN. Hence, there exists a threshold on the population
of species such that there exists a succession of reactions connecting any pair of states
above this threshold.

Because no reaction has an origin being 0, the DRN is not self-starting, hence not
fully irreducible; and because of the presence of degradation reaction, the DRN is
not fully recurrent (for instance, 0 is reachable from the state where all species are 0
except PER_mRNA being 1, but the converse is false).
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Fig. 4 Reaction network of the PER/TIM circadian oscillations (Leloup and Goldbeter 1999)

5.2 Phosphorylation chains

We consider a generic model of chains of phosphorylation, where an enzyme E can
progressively phosphorylate a protein up to a certain level k. In concurrence, a kinase
F can progressively de-phosphorylate this protein (Angeli et al. 2007).

S0 + E � S0 E → S1 + E � S1 E → S2 + E � · · · → Sk + E

S0 + F ← S1 F � S1 + F ← S2 F � S2 + F ← · · ·� Sk + F

Because of mass conservation properties (for example
∑k

m=0 Sm +∑k−1
m=0 Sm E +∑k

m=1 Sm F being constant), such a DRN is not irreducible – in particular, spanR>0
V �=

R
d .
Assuming LCN, one can notice that the irreversible reactions such as Sm E →

Sm+1+ E can be undone using the chain of reaction Sm+1+ F → Sm+1 F → Sm+ F
followed by Sm + E → Sm E . The undoing of Sm + F ← Sm F irreversible reactions
is achieved similarly. This shows that the DRN is LCN recurrent as 0 ∈ spanR>0

V . In
addition, we remark that it is actually sufficient that all the species are present with at
least one copy in order to undo any irreversible reaction of this network (i.e., M0 can
be the vector having all its components being 1).

Removing the LCN hypothesis, and in particular considering that F is absent (0
copy), it becomes impossible to revert the reaction S0 E → S1 + E . Hence, the DRN
is not fully recurrent.
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LCN irreducibility depends both on stoichiometry properties (as highlighted by the
two examples in Fig. 1) and on the dimension of the lattice generated by V: if the
free Z-module generated by V has a lower dimension than V , the DRN is not LCN
irreducible. This typically occurs in the presence of mass conservation properties, as
highlighted by the example on phosphorylation chains.

In addition, as stated in Lemma 4.6, we recall that any weakly reversible reaction
networks is recurrent, as they verify necessarily 0 ∈ spanR>0

V .

6 Discussion

Relationships between DRNs and stochastic models dynamics Markov chains are
a widely used modelling framework for analysing dynamics of biochemical reaction
networks. Typically, the discrete states of such Markov chains represent the population
of each biochemical species, and the transitions follow the drift vectors of reactions,
when applicable (population of species greater than the reaction origin). Then, Markov
chains associate either probabilities (DTMCs) or continuous rates (CTMCs) to tran-
sitions following biochemical laws, for instance.

In that sense, a DRN can be considered as the underlying discrete dynamics of
any Markov chain modelling the same set of reactions (Fages and Soliman 2008). If
we assume that the probabilities or rates associated to reactions are never null, we
obtain the following correspondence between DRNs and Markov chains dynamical
properties:

• DRN is irreducible if and only if the associated Markov chain is irreducible.
• DRN is recurrent if and only if all states in the associated Markov chain are

recurrent.

In the case where probability or rates may become null, DRN irreducibility (resp.
recurrence) is still a necessary condition for Markov chain irreducibility (resp. recur-
rence).

We note that a DRN which is not recurrent implies that there exist some irreversible
reactions. On the other hand, weak reversibility allows, in some cases, an efficient
characterization of the stationary distribution in the associated Markov chain models
(Anderson et al. 2010).

Relationships between DRNs and continuous models dynamics Continuous models
of reaction networks, such as ODE systems, typically evolve in the continuous space
of concentrations of species and implicitly assume that species are present in LCN. In
that way, we may want to relate dynamical properties of such continuous models of
reaction networks to LCN properties of DRNs.

In particular, one can remark that if a DRN is not LCN recurrent, i.e. 0 /∈ spanR>0
V ,

then there exists a hyperplane H in R
d such that all reaction vectors point on the

same side of this hyperplane, and at least one reaction vector points strictly inside the
corresponding half-space. This implies that no oscillation is possible in the continuous
dynamics, i.e. there cannot exist any periodic solution. Indeed, if 0 /∈ spanR>0

V , then
there exists a vector vH perpendicular to the hyperplane H which gives rise to the
linear function L(x) = vH x which is a strict Lyapunov function for the ODE model
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(there we assume that reaction rate functions do not vanish if reactant concentrations
are strictly positive).

Future work One possible future direction following the results presented is the
derivation of necessary or sufficient conditions for persistence of DRNs.

Informally, persistent dynamical systems are ones where no species “goes extinct”,
i.e., if we start with all species being present in the system, then no trajectory will
wipe out some species in the long run.

The notion of persistence for continuos systems has been of great interest recently
(Angeli et al. 2007; Craciun et al. 2013). It is not obvious how to define persistence
for discrete systems, but one possible definition is given in Definition 6.1. Note that
recurrence is a particular case of this notion of persistence (Remark 3).

Definition 6.1 (Persistence) DRN (V,O) is persistent if and only if ∀x ∈ Z
d
>0,∀x ′ ∈

Z
d≥0 such that ∃k ∈ [1; d] with x ′k = 0, x →∗ x ′ �⇒ ∃x ′′ ∈ Z

d
>0 such that x ′ → x ′′.

Remark 3 Recurrence �⇒ Persistence.

More generally, the study of DRNs may allow to efficiently prove the absence of
certain dynamical properties in a wide-range of concrete models, independent of rate
laws or kinetic parameters.
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