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Abstract We consider a mathematical model for the spatio-temporal evolution of two
biological species in a competitive situation. Besides diffusing, both species move
toward higher concentrations of a chemical substance which is produced by them-
selves. The resulting system consists of two parabolic equations with Lotka–Volterra-
type kinetic terms and chemotactic cross-diffusion, along with an elliptic equation
describing the behavior of the chemical. We study the question in how far the phe-
nomenon of competitive exclusion occurs in such a context. We identify parameter
regimes for which indeed one of the species dies out asymptotically, whereas the other
reaches its carrying capacity in the large time limit.

Keywords Chemotaxis · Stability of solutions · Asymptotic behavior ·
Competitive exclusion
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1 Introduction

We consider two biological species which compete for the resources and migrate
towards a higher concentration of a chemical produced by themselves. Here the move-
ment of the two populations is governed by diffusion and chemotaxis. We further
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1608 C. Stinner et al.

assume that the populations proliferate, that the mutual competition between them
takes place according to the classical Lotka–Volterra dynamics and that the chemical
signal diffuses much faster than the two populations. Denoting the population densi-
ties by u(x, t) and v(x, t) and the concentration of the chemoattractant by w(x, t),
classical models (see Murray 1993) lead to the system

⎧
⎪⎨

⎪⎩

ut = d1Δu − χ1∇ · (u∇w) + μ1u(1 − u − a1v), x ∈ Ω, t > 0,

vt = d2Δv − χ2∇ · (v∇w) + μ2v(1 − v − a2u), x ∈ Ω, t > 0,

−Δw + λw = ku + v, x ∈ Ω, t > 0,

(1.1)

under homogeneous Neumann boundary conditions

∂u

∂ν
= ∂v

∂ν
= ∂w

∂ν
= 0, x ∈ ∂Ω, t > 0, (1.2)

and initial conditions

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ Ω, (1.3)

in a bounded domain Ω ⊂ R
n, n ≥ 1, with smooth boundary, where di , χi , μi , ai (i =

1, 2), λ and k are positive parameters.
In order to describe the competition of two species, the associated Lotka–Volterra

ODE system

{
u′ = μ1u(1 − u − a1v), t > 0,

v′ = μ2v(1 − v − a2u), t > 0,

has been studied extensively. It is well-known that if

a1 > 1 > a2 ≥ 0 (1.4)

and both species are initially positive then the second population outcompetes the first
in the sense that u(t) → 0 and v(t) → 1 as t → ∞. A proof of this result and of
extensions to systems with more populations is given in (Zeeman 1995, Theorem 2.1).
It is the objective of the present work to investigate in how far this phenomenon, usually
referred to as competitive exclusion, can be observed also in cases when both species
move towards increasing concentrations of a signal which they produce themselves.

The influence of chemotaxis on the dynamics of biological species competing for
resources like nutrients or space is for instance pointed out in Celani and Vergas-
sola (2010), Hawkins (2011), Hibbing (2010) and Tindall (2008). Particular fields of
relevance include economically important situations when different bacteria interact
with crop plants, where beyond standard kinetics, the respective overall competitive
fitnesses are crucially affected by chemotaxis and motility, see Brencic and Winans
(2005), Vande Broek and Vanderleyden (1995) and Yao and Allen (2006). Derivations
of related mathematical models can be found in Kelly et al. (1988), Lauffenburger
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Competitive exclusion in a two-species chemotaxis model 1609

(1991), Painter and Sherratt (2003) and some basic mathematical aspects such as the
global existence of solutions to models which involve both chemotaxis and competition
are addressed in Kuiper (2001), Zhang (2006). Moreover, for some particular models
the existence and stability of steady states reflecting either competitive exclusion or
coexistence have already been studied analytically, see Dung (2000), Dung and Smith
(1999), Wang and Wu (2002) and Zhang (2006); however, to the best of our knowledge
the literature does not provide any qualitative information on the solution behavior in
the context of competitive exclusion when chemotaxis as well as competitive terms
involving both species are present.

Concerning the problem considered in this paper, in case of a1, a2 ∈ [0, 1) it has
been shown in Tello and Winkler (2012) that (1.1)–(1.3) possesses a unique positive
steady state and conditions on the parameters μi and χi are established which ensure
its global asymptotic stability. In contrast to this result of coexistence of the species
we shall show here that in presence of (1.4) competitive exclusion will take place,
provided that the influence of chemotaxis is sufficiently small.

In order to state our results in this direction, let us introduce the ratios

q1 := χ1

μ1
and q2 := χ2

μ2
. (1.5)

It turns out that in our analysis, besides the number k these parameters will play the
role of key parameters with regard to the effect in question. In particular, we shall see
that if both q1 and q2 are sufficiently small then competitive exclusion occurs for any
solution (u, v, w) with v 	≡ 0.

More precisely, in addition to (1.4) our overall assumptions are

k, q1 and q2 are nonnegative and such that q1 ≤ a1, q2 <
1

2
and

kq1 + max

{

q2,
a2 − a2q2

1 − 2q2
,

kq2 − a2q2

1 − 2q2

}

< 1. (1.6)

Observe that these can be rewritten in separate conditions for k, q2 and q1 in such
a way that we require

k ≥ 0,

q2 ∈
[

0,
1

2

)

is such that q2 <

{
1−a2
2−a2

if k ≤ a2(2−a2)
1−a2

,
1

2−a2+k if k >
a2(2−a2)

1−a2
,

q1 ∈ [0, a1] satisfies kq1 < 1 − max

{

q2,
a2 − a2q2

1 − 2q2
,

kq2 − a2q2

1 − 2q2

}

. (1.7)

Here, the latter hypothesis (1.7) itself is equivalent to saying that kq1 + q2 < 1 and

{
kq1 + (2 − a2)q2 + a2 − 2kq1q2 < 1 if kq2 < a2,

kq1 + (2 − a2 + k)q2 − 2kq1q2 < 1 if kq2 ≥ a2.
(1.8)
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1610 C. Stinner et al.

Prescribing the above conditions, we obtain the following main result on competi-
tive exclusion.

Theorem 1.1 Assume (1.4), and suppose that k and the numbers q1 and q2 defined
in (1.5) satisfy (1.6). Then for any choice of nonnegative initial data u0 ∈ C0(Ω̄)

and v0 ∈ C0(Ω̄) satisfying v0 	≡ 0, the problem (1.1)–(1.3) possesses a uniquely
determined global-in-time classical solution (u, v, w) such that u ≥ 0, v > 0 and
w > 0 in Ω̄ × (0,∞) and

u(·, t) → 0, v(·, t) → 1 and w(·, t) → 1

λ
as t → ∞, (1.9)

uniformly with respect to x ∈ Ω . Moreover, either u ≡ 0 in Ω̄ × [0,∞) or u > 0 in
Ω̄ × (0,∞) is satisfied.

Let us illustrate how the condition (1.6) becomes easier to handle in some special
cases.

Remark (i) In the prototypical case when χ1 = χ2 ≡ χ and μ1 = μ2 ≡ μ, (1.6)
reduces to the condition that q := χ

μ
satisfies q < 1

k+1 and

q <

⎧
⎪⎨

⎪⎩

2+k−a2−
√

(k+2−a2)2−8k(1−a2)

4k if a2 > kq

2+2k−a2−
√

(2k+2−a2)2−8k
4k if a2 ≤ kq.

(1.10)

(ii) If in the above case we moreover have k = 1 then (1.10) becomes

q <

⎧
⎨

⎩

4−a2−
√

8−8a2+a2
2

4 if a2 ≤ q
1−a2

2 if a2 > q.
(1.11)

We observe that the first case can only occur if a2 <
4−a2−

√

8−8a2+a2
2

4 is satisfied,
which is equivalent to a2 < 1

3 in view of a2 ∈ [0, 1). Hence, the first case in
(1.11) is equivalent to

a2 <
1

3
and a2 ≤ q <

4 − a2 −
√

8 − 8a2 + a2
2

4
.

The second case in (1.11) is equivalent to

q < min

{

a2,
1 − a2

2

}

=
{

a2 if a2 < 1
3

1−a2
2 if a2 ∈ [ 1

3 , 1
)
.
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Competitive exclusion in a two-species chemotaxis model 1611

Combining both cases we conclude

q <

⎧
⎨

⎩

4−a2−
√

8−8a2+a2
2

4 if a2 < 1
3

1−a2
2 if a2 ∈ [ 1

3 , 1
)
.

(1.12)

(iii) In the limit case k = 0, (1.10) requires that

q <
1 − a2

2 − a2
(1.13)

(iv) Finally, in the borderline case a2 = 0, (1.13) reads

q <
1

2
(1.14)

and is thus consistent with the conditions already found in (Tello and Winkler
2007, Theorem 5.1).

Remark The global existence statement in Theorem 1.1 remains valid if (1.7) is
replaced with the weaker requirement that kq1 + q2 < 1. In fact, Lemma 2.2 below
will show that in this case the interplay of diffusion and kinetics in (1.1) is strong
enough to overbalance chemotactic cross-diffusion in such a way that all solutions are
global and remain bounded.

The plan of this paper is as follows. In Sect. 2 we show the local existence of
a solution along with its positivity properties and prove the existence of a global
bounded solution once kq1 + q2 < 1 is satisfied. Section 3 contains relations between
the possible limits of u and v which are established by using comparison methods in
combination with some algebraic inequalities. In particular we show that v(t) → 1
if u(t) → 0 is satisfied. In Sect. 4 we then prove that u converges to 0 in the cases
kq2 < a2 and kq2 ≥ a2, respectively, and complete the proof of Theorem 1.1. The
final Sect. 5 contains our conclusions and a discussion.

2 Preliminaries: boundedness

In this section we state some basic properties of the solutions to (1.1)–(1.3) and give
a criterion for their boundedness. We start with the local existence of a solution and
its positivity properties.

Lemma 2.1 Suppose that u0, v0 ∈ C0(Ω̄) are nonnegative such that v0 	≡ 0. Then
there exists Tmax ∈ (0,∞] and a unique classical solution (u, v, w) of (1.1)–(1.3)
which is nonnegative and belongs to C0(Ω̄ × [0, Tmax )) ∩ C2,1(Ω̄ × (0, Tmax )).
Moreover, v > 0 and w > 0 in Ω̄ × (0, Tmax ) and either u ≡ 0 in Ω̄ × [0, Tmax ) or
u > 0 in Ω̄ × (0, Tmax ) are satisfied. Furthermore, we have the following extensibility
criterion:

If Tmax < ∞, then lim sup
t↗Tmax

(‖u(·, t)‖L∞(Ω) + ‖v(·, t)‖L∞(Ω)

) = ∞. (2.1)
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Proof The local existence and regularity of the solution as well as the extensibility
criterion (2.1) can be proved by a slight adaption of well-known methods. We thus
may confine ourselves with an outline of the proof and refer the reader e.g. to Winkler
(2010), where details are given in a closely related situation.

For small T ∈ (0, 1), in the space

X := C0([0, T ]; C0(Ω̄)) × C0([0, T ]; C0(Ω̄))

we consider the closed set

S :=
{
(u, v) ∈ X

∣
∣
∣ ‖u‖L∞((0,T );L∞(Ω)) ≤ R + 1 and ‖v‖L∞((0,T );L∞(Ω)) ≤ R + 1

}
,

where R := ‖u0 + v0‖L∞(Ω). For (u, v) ∈ S, we introduce a mapping Φ on S by
letting w ∈ ⋂

1<p<∞ L∞((0, T ); W 2,p(Ω)) denote the (weak) solution of

{
−Δw + λw = ku + v, x ∈ Ω,
∂w
∂ν

= 0, x ∈ ∂Ω,
(2.2)

and then defining

Φ(u, v)(t) :=
(

Φ1(u, v)(t)
Φ2(u, v)(t)

)

:=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

ed1tΔu0 +
t∫

0

ed1(t−s)Δ[−χ1∇ · (u∇w) + f1(u, v)](s) ds

ed2tΔv0 +
t∫

0

ed2(t−s)Δ[−χ2∇ · (v∇w) + f2(u, v)](s) ds

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

for t ∈ [0, T ], where (eτΔ)τ≥0 denotes the Neumann heat semigroup, and where

f1(u, v) := μ1u(1 − u − a1v) and f2(u, v) := μ2v(1 − v − a2u), u ∈ R, v ∈ R.

Then by a straightforward reasoning involving standard elliptic regularity properties
and known smoothing estimates for the heat semigroup (Quittner and Souplet 2007),
it is possible to show that if T = T (R) is sufficiently small then Φ is a contraction on
S. The accordingly existing fixed point (u, v) of Φ, along with w as gained from (2.2),
can then, again by standard regularity arguments, shown to be smooth in Ω̄ × (0, T )

and continuous in Ω̄ × [0, T ] in all its components, and to solve (1.1) classically in
Ω × (0, T ). Since the choice of T depends on R only, (2.1) is now immediate.

An application of the strong maximum principle to the first and second equation of
(1.1) implies the claim concerning the positivity of u and v. Hence, ku+v is positive in
Ω̄ × (0, Tmax ) and the strong elliptic maximum principle applied to the third equation
of (1.1) yields positivity also of w.
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Competitive exclusion in a two-species chemotaxis model 1613

Finally, taking differences U := u1 − u2 and V := v1 − v2 of two supposedly
existing solutions (ui , vi , wi ) in Ω × (0, T ) for some T > 0, i ∈ {1, 2}, upon test-
ing the equations for U and V obtained from (1.1) by U and V , respectively, in a
straightforward manner one can derive an inequality of the form

1

2

d

dt

⎧
⎨

⎩

∫

Ω

U 2 +
∫

Ω

V 2

⎫
⎬

⎭
≤ C(T ′)

⎧
⎨

⎩

∫

Ω

U 2 +
∫

Ω

V 2

⎫
⎬

⎭
for all t ∈ (0, T ′),

valid for any fixed T ′ ∈ (0, T ) and some C(T ′) > 0 depending on the bounded
quantities ‖ui‖L∞(Ω×(0,T ′)) and ‖vi‖L∞(Ω×(0,T ′)), i ∈ {1, 2}. This clearly implies
uniqueness. ��

We now let L j = L j (x, t), j ∈ {1, 2}, the parabolic operators

L jϕ := d jΔϕ − χ j∇w(x, t) · ∇ϕ, (x, t) ∈ Ω × (0, Tmax ), (2.3)

for ϕ ∈ C2(Ω). Then the first and third equation of (1.1) show that

ut − L1u = u · {−χ1Δw + μ1(1 − u − a1v)}
= u · {μ1 − (μ1 − kχ1)u − (a1μ1 − χ1)v − λχ1w} in Ω × (0, Tmax ).

(2.4)

Similarly, the second and third equation of (1.1) imply

vt − L2v = v · {−χ2Δw + μ2(1 − v − a2u)}
= v · {μ2 − (μ2 − χ2)v + (kχ2 − a2μ2)u − λχ2w} in Ω × (0, Tmax ).

(2.5)

The final result of this section asserts boundedness of the solution once the ratios q1
and q2 defined in (1.5) are small enough.

Lemma 2.2 Assume that

kq1 + q2 < 1. (2.6)

Then Tmax = ∞ and both u and v are bounded in Ω × (0,∞).

Proof According to the fact that u, v and w are all nonnegative by Lemma 2.1, we
have

P1u := ut − L1u − u · {μ1 − (μ1 − kχ1)u + χ1v} ≤ 0 in Ω × (0, Tmax ) and

P2v := vt − L2v − v · {μ2 − (μ2 − χ2)v + kχ2u} ≤ 0 in Ω × (0, Tmax ),

(2.7)
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where L1 and L2 are defined in (2.3). We now observe that (2.6) is equivalent to

(μ1 − kχ1)(μ2 − χ2) > kχ1χ2

and hence to

μ1 − kχ1

χ1
>

kχ2

μ2 − χ2
.

We can thus pick ξ > 0 large enough such that

ξ ≥ max

{

‖u0‖L∞(Ω),
μ2 − χ2

kχ2
‖v0‖L∞(Ω)

}

(2.8)

and that

μ1 − kχ1 − μ1
ξ

χ1
>

kχ2 + μ2
ξ

μ2 − χ2
,

which enables us to find A > 0 fulfilling

μ1 − kχ1 − μ1
ξ

χ1
> A >

kχ2 + μ2
ξ

μ2 − χ2
. (2.9)

Then the constant functions defined by

u(x, t) := ξ and v(x, t) := Aξ, (x, t) ∈ Ω̄ × [0, Tmax ),

satisfy

u(x, 0) = ξ ≥ u0(x) and v(x, 0) = Aξ >
kχ2

μ2 − χ2
· ξ ≥ v0(x) for all x ∈ Ω

(2.10)

by (2.8). Moreover, (2.9) warrants that

P1u = −ξ · {μ1 − (μ1 − kχ1)ξ + χ1 · Aξ} > 0 in Ω × (0, Tmax )

and

P2v = −Aξ · {μ2 − (μ2 − χ2) · Aξ + kχ2ξ} > 0 in Ω × (0, Tmax ).

In view of (2.7) and (2.10), the comparison principle for cooperative reaction–diffusion
systems (see for instance Quittner and Souplet 2007, Proposition 52.22) allows us to
conclude that u ≤ u and v ≤ v in Ω × (0, Tmax ), which by Lemma 2.1 entails that
Tmax = ∞ and that u and v are globally bounded. ��
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3 Some technical inequalities

According to the above boundedness result, under the assumption (1.6) we know that

L1 := lim sup
t→∞

(

max
x∈Ω̄

u(x, t)

)

,

L2 := lim sup
t→∞

(

max
x∈Ω̄

v(x, t)

)

, and

l2 := lim inf
t→∞

(

min
x∈Ω̄

v(x, t)

)

(3.1)

define finite real numbers satisfying

L1 ≥ 0 and 0 ≤ l2 ≤ L2.

Proving Theorem 1.1 then amounts to verifying that L1 = 0 and L2 = l2 = 1, because
the large time behavior of w is then uniquely determined according to the following.

Lemma 3.1 For each t ∈ (0, Tmax ), we have

min
y∈Ω̄

v(y, t) ≤ λw(x, t) ≤ k · max
y∈Ω̄

u(y, t) + max
y∈Ω̄

v(y, t) for all x ∈ Ω̄. (3.2)

Proof The proof repeats a standard elliptic comparison argument: If ϕ ∈ C2(Ω̄)

denotes an arbitrary function satisfying ∂ϕ
∂ν

< 0 on ∂Ω , then for any ε > 0, at each
point x0 ∈ Ω̄ where z := w(·, t) + εϕ attains its maximum we necessarily have
x0 ∈ Ω and hence Δz(x0) ≤ 0. Since Δz = λz − ku − v + ε(Δϕ − λϕ), this implies
that

λz(x) ≤ λz(x0) ≤ ku(x0, t) + v(x0, t) − ε(Δϕ − λϕ)(x0)

≤ k · max
y∈Ω̄

u(y, t) + max
y∈Ω̄

v(y, t) + ε · max
y∈Ω̄

|Δϕ(y) − λϕ(y)|.

Taking ε ↘ 0 we arrive at the right inequality in (3.2), whereas the left can be seen
similarly on dropping the nonnegative term k · miny∈Ω̄ u(y, t). ��

A first trivial observation linking the asymptotic of (u, v, w) to L1, L2 and l2 then
is the following.

Lemma 3.2 Assume (2.6). Then for all ε > 0 there exists tε > 0 such that

u(x, t) ≤ L1 + ε for all x ∈ Ω̄ and t ≥ tε, (3.3)

that

l2 − ε ≤ v(x, t) ≤ L2 + ε for all x ∈ Ω̄ and t ≥ tε, (3.4)
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1616 C. Stinner et al.

and that

l2 − ε ≤ λw(x, t) ≤ k(L1 + ε) + (L2 + ε) for all x ∈ Ω̄ and t ≥ tε. (3.5)

Proof That (3.3) and (3.4) can be achieved for suitably large tε is an immediate
consequence of the definitions in (3.1). Then applying Lemma 3.1 for fixed t ≥ tε we
readily obtain (3.5). ��

Next we compare u with a suitable spatially homogeneous function and obtain an
upper bound for L1 in terms of l2.

Lemma 3.3 Assume (1.6). Then the numbers L1 and l2 defined in (3.1) fulfill the
relation

(1 − kq1)L1 ≤ (1 − a1l2)+. (3.6)

Proof If u ≡ 0 in Ω̄ × [0,∞), then (3.6) is fulfilled in view of L1 = 0. Otherwise,
according to (2.4), taking L1 as in (2.3) we recall that

ut = L1u + u · {μ1 − (μ1 − kχ1)u − (a1μ1 − χ1)v − λχ1w} in Ω × (0,∞),

where (1.6) ensures that a1μ1 − χ1 ≥ 0. Thus, if for fixed ε > 0 we take tε as given
by Lemma 3.2, then (3.4) and (3.5) yield

−(a1μ1 − χ1)v ≤ −(a1μ1 − χ1) · (l2 − ε) in Ω × (tε,∞)

and

−λχ1w ≤ −χ1 · (l2 − ε) in Ω × (tε,∞),

and therefore we obtain

ut ≤ L1u + u · {μ1 − (μ1 − kχ1)u − a1μ1(l2 − ε)} in Ω × (tε,∞).

Since L1 annihilates spatially homogeneous functions, a parabolic comparison
argument hence implies that

u(x, t) ≤ u(t) for all x ∈ Ω̄ and t ≥ tε, (3.7)

where u denotes the solution of the initial-value problem

{
u′ = u · {μ1 − (μ1 − kχ1)u − a1μ1(l2 − ε)}, t > tε,

u(tε) = maxx∈Ω̄ u(x, tε).
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Since u(·, tε) is positive in Ω̄ by Lemma 2.1, it is clear that

u(t) → max

{

0,
μ1 − a1μ1(l2 − ε)

μ1 − kχ1

}

as t → ∞,

which in conjunction with (3.7) yields the inequality

lim sup
t→∞

(

max
x∈Ω̄

u(x, t)

)

≤ max

{

0,
μ1 − a1μ1(l2 − ε)

μ1 − kχ1

}

.

Taking ε ↘ 0 now shows that indeed (3.6) must be valid. ��
In order to study the large time behavior of v we need to distinguish two cases

depending on the sign of kq2 − a2. We again use comparison arguments involving
spatially homogeneous functions and first give the result for kq2 < a2.

Lemma 3.4 Suppose that (1.6) holds, and that kq2 < a2. Then

(1 − q2)L2 ≤ (1 − q2l2)+ (3.8)

and

(1 − q2)l2 ≥ 1 − a2L1 − q2L2. (3.9)

Proof The procedure is similar to that in Lemma 3.3: Given ε > 0, we take tε > 0 as
provided by Lemma 3.2. We recall that by (2.5) we have

vt = L2v + v · {μ2 − (μ2 − χ2)v − (a2μ2 − kχ2)u − λχ2w} in Ω × (0,∞)

(3.10)

with L2 given by (2.3). Since a2μ2 − kχ2 is nonnegative according to our hypothesis
kq2 < a2, using that u ≥ 0 we can estimate

−(a2μ2 − kχ2)u ≤ 0 in Ω × (0,∞),

whereas by (3.5),

−λχ2w ≤ −χ2 · (l2 − ε) in Ω × (tε,∞).

Thus, (3.10) implies that

vt ≤ L2v + v · {μ2 − (μ2 − χ2)v − χ2(l2 − ε)} in Ω × (tε,∞),

whence by comparison we find that

v(x, t) ≤ v(t) for all x ∈ Ω̄ and t ≥ tε,
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if we let v denote the solution of

{
v′ = v · {μ2 − (μ2 − χ2)v − χ2(l2 − ε)}, t > tε,

v(tε) = maxx∈Ω̄ v(x, tε).

In light of the long time asymptotics of v, this entails that

lim sup
t→∞

(

max
x∈Ω̄

v(x, t)

)

≤ max

{

0,
μ2 − χ2(l2 − ε)

μ2 − χ2

}

for any ε > 0 and hence

L2 ≤ max

{

0,
μ2 − χ2l2
μ2 − χ2

}

,

which proves (3.8).
Similarly, (3.9) can be obtained by going back to (3.10) and using (3.3) and (3.5)

to estimate

−(a2μ2 − kχ2)u ≥ −(a2μ2 − kχ2) · (L1 + ε) in Ω × (tε,∞)

and

−λχ2w ≥ −χ2 · (kL1 + L2 + (k + 1)ε) in Ω × (tε,∞),

again because kχ2 ≤ a2μ2. We thereupon obtain

vt − L2v ≥ v · {μ2 − (μ2 − χ2)v − (a2μ2 − kχ2)

· (L1 + ε) − χ2(kL1 + L2 + (k + 1)ε)}
= v · {μ2 − (μ2 − χ2)v − a2μ2 · (L1 + ε) − χ2(L2 + ε)}

in Ω × (tε,∞),

whence

v(x, t) ≥ v(t) for all x ∈ Ω̄ and t ≥ tε, (3.11)

by the comparison principle, where

{
v′ = v · {μ2 − (μ2 − χ2)v − a2μ2(L1 + ε) − χ2(L2 + ε)}, t > tε,

v(tε) = minx∈Ω v(x, tε).
(3.12)

Now an important observation, singling out the particular steady state solution
(ũ, ṽ, w̃) ≡ (1, 0, 1

λ
) for which (3.9) does not hold, is that v(tε) is positive thanks
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to the positivity of v in Ω̄ × (0,∞) asserted by Lemma 2.1. Consequently, v again
approaches the larger of the equilibria of (3.12), that is, we have

v(t) → max

{

0,
μ2 − a2μ2(L1 + ε) − χ2(L2 + ε)

μ2 − χ2

}

as t → ∞,

which in the limit ε ↘ 0 clearly implies (3.9). ��
In case of kq2 ≥ a2 we proceed in a similar way.

Lemma 3.5 Assume (1.6), and suppose that kq2 ≥ a2. Then

(1 − q2)L2 ≤ (1 + (kq2 − a2)L1 − q2l2)+ (3.13)

and

(1 − q2)l2 ≥ 1 − kq2L1 − q2L2. (3.14)

Proof Again using (2.5) as a starting point, given ε > 0 we take tε > 0 as given by
Lemma 3.2 and estimate

(kχ2 − a2μ2)u ≤ (kχ2 − a2μ2) · (L1 + ε) in Ω × (tε,∞)

and

−λχ2w ≤ −χ2 · (l2 − ε) in Ω × (tε,∞).

We thereupon obtain from the identity

vt = L2v + v · {μ2 − (μ2 − χ2)v + (kχ2 − a2μ2)u − λχ2w} in Ω × (0,∞),

(3.15)

as obtained in (2.5), that

vt ≤ L2v + v · {μ2 − (μ2 − χ2)v + (kχ2 − a2μ2)(L1 + ε) − χ2(l2 − ε)}
in Ω × (tε,∞).

By comparison with spatially homogeneous ODE solutions in the same manner as
in Lemma 3.4, we thereby derive the inequality

lim sup
t→∞

(

max
x∈Ω̄

v(x, t)

)

≤ max

{

0,
μ2 + (kχ2 − a2μ2)(L1 + ε) − χ2(l2 − ε)

μ2 − χ2

}

,

which on taking ε ↘ 0 yields (3.13).
Similarly, inserting the lower estimates

(kχ2 − a2μ2)u ≥ 0 in Ω × (0,∞)
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and

−λχ2w ≥ −χ2 · (kL1 + L2 + (k + 1)ε) in Ω × (tε,∞)

into (3.15) shows that

vt ≥ L2v + v · {μ2 − (μ2 − χ2)v − χ2(kL1 + L2 + (k + 1)ε)} in Ω × (tε,∞),

which on comparison entails that

lim inf
t→∞

(

min
x∈Ω̄

v(x, t)

)

≥ μ2 − χ2(kL1 + L2 + (k + 1)ε)

μ2 − χ2

and thereby proves (3.14). ��
Using the estimates shown in this section, we are now able to prove that v(t) → 1

in L∞(Ω) as t → ∞ if we assume L1 = 0.

Lemma 3.6 Assume that (1.6) holds, and suppose that L1 = 0. Then L2 = l2 = 1.

Proof We first observe that q2l2 ≤ 1, for otherwise by either (3.8) or by (3.13) in
combination with L1 = 0 we would have L2 = 0 and hence could draw the conclusion
that l2 = 0 which is absurd in view of (3.9) and (3.14).

Accordingly, in light of the hypothesis L1 = 0, Lemma 3.4 and Lemma 3.5 show
that in both cases kq2 < a2 and kq2 ≥ a2, the inequalities

(1 − q2)L2 ≤ 1 − q2l2 (3.16)

and

(1 − q2)l2 ≥ 1 − q2 L2 (3.17)

hold, which on subtraction imply

(1 − q2)(L2 − l2) ≤ q2(L2 − l2).

Since (1.6) implies that q2 < 1
2 , this asserts that L2 ≤ l2 and hence L2 = l2.

Therefore, once more applying (3.16) shows that L2 ≤ 1, while similarly (3.17)
entails that l2 ≥ 1. This completes the proof. ��

4 Asymptotic behavior

According to Lemmas 2.1, 2.2, 3.2 and 3.6, in order to prove Theorem 1.1 it remains
to show that L1 = 0 is indeed valid. This will be done by considering again two cases
depending on the sign of kq2 − a2.
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4.1 The case kq2 < a2

Combining Lemmas 3.3 and 3.4, we complete the proof of Theorem 1.1 for kq2 < a2.

Lemma 4.1 Suppose that (1.6) holds as well as kq2 < a2. Then L1 = 0.

Proof Let us suppose on the contrary that L1 be positive. Then Lemma 3.3 says that

(1 − kq1)L1 ≤ 1 − a1l2 (4.1)

and hence

l2 <
1

a1
. (4.2)

Here we observe that by (4.2) we also have 1 − q2l2 > 1 − q2
a1

≥ 1 − 1
a1

> 0 due
to the fact that (1.6) entails that q2 ≤ 1. Consequently, Lemma 3.4 asserts that

(1 − q2)L2 ≤ 1 − q2l2 (4.3)

and

(1 − q2)l2 ≥ 1 − a2L1 − q2L2. (4.4)

Now combining (4.4) with (4.1) yields

q2 L2 ≥ 1 − a2 L1 − (1 − q2)l2

≥ 1 − a2 · 1 − a1l2
1 − kq1

− (1 − q2)l2

= 1 − a2

1 − kq1
+

(
a1a2

1 − kq1
− 1 + q2

)

· l2,

which in light of (4.3) shows that

1 − q2

q2
·
{

1 − a2

1 − kq1
+

(
a1a2

1 − kq1
− 1 + q2

)

· l2

}

≤ (1 − q2)L2 ≤ 1 − q2l2.

Thus, necessarily

1 − q2

q2
·
(

1 − a2

1 − kq1

)

− 1 ≤
{

−1 − q2

q2
·
(

a1a2

1 − kq1
− 1 + q2

)

− q2

}

· l2,

which on multiplication by (1 − kq1)q2 can be seen to be equivalent to

{1 − a1a2 − kq1 − (2 − a1a2)q2 + 2kq1q2} · l2 ≥ 1 − a2

−kq1 − (2 − a2)q2 + 2kq1q2. (4.5)
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Since according to (1.8),

I := 1 − a2 − kq1 − (2 − a2)q2 + 2kq1q2

is positive, (4.5) is thus only possible if also

J := 1 − a1a2 − kq1 − (2 − a1a2)q2 + 2kq1q2

is positive. Therefore, (4.5) implies that

l2 ≥ I

J
,

which in conjunction with (4.2) says that a1 I < J , that is,

a1 − a1a2 − a1kq1 − a1(2 − a2)q2 + 2a1kq1q2 < 1

−a1a2 − kq1 − (2 − a1a2)q2 + 2kq1q2.

A simple rearrangement thus yields

(a1 − 1) · (1 − kq1 − 2q2 + 2kq1q2) < 0,

which is incompatible with the assumption I > 0, because a1 > 1 and

1 − kq1 − 2q2 + 2kq1q2 = I + a2(1 − q2) ≥ I > 0

thanks to the fact that q2 < 1 by (1.6). This contradiction shows that actually L1 must
vanish. ��

4.2 The case kq2 ≥ a2

Finally, a combination of Lemmas 3.3 and 3.5 completes the proof of Theorem 1.1
also for kq2 ≥ a2 like in the preceding section. The details of the proof are given in
the following Lemma.

Lemma 4.2 Let (1.6) hold, and assume that kq2 ≥ a2. Then L1 = 0.

Proof If L1 was positive, again Lemma 3.3 would yield

l2 <
1

a1
(4.6)

and

L1 ≤ 1 − a1l2
1 − kq1

. (4.7)
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On the other hand, since (4.6) and kq2 ≥ a2 imply 1 + (kq2 − a2)L1 − q2l2 >

1 − q2
a1

≥ 1 − 1
a1

> 0, Lemma 3.5 says that

(1 − q2)L2 ≤ 1 + (kq2 − a2)L1 − q2l2, (4.8)

which combined with (4.7) implies

(1 − q2)L2 ≤ 1 + (kq2 − a2) · 1 − a1l2
1 − kq1

− q2l2

=
(

1 + kq2 − a2

1 − kq1

)

−
{

a1(kq2 − a2)

1 − kq1
+ q2

}

· l2, (4.9)

because kq2 ≥ a2. Moreover, the second statement in Lemma 3.5 asserts that

(1 − q2)l2 ≥ 1 − kq2L1 − q2L2,

which in view of (4.7) and (4.9) becomes

(1 − q2)l2 ≥ 1 − kq2 · 1 − a1l2
1 − kq1

− q2

1 − q2
·
(

1 + kq2 − a2

1 − kq1

)

+ q2

1 − q2
·
{

a1(kq2 − a2)

1 − kq1
+ q2

}

· l2.

When multiplied by (1 − kq1)(1 − q2), this yields

{(1 − kq1)(1 − q2)
2 − a1kq2(1 − q2) − a1q2(kq2 − a2) − q2

2 (1 − kq1)} · l2
≥ (1 − kq1)(1 − q2) − kq2(1 − q2) − (1 − kq1)q2 − q2(kq2 − a2),

which can be simplified so as to become

J · l2 ≥ I,

where

I := 1 − kq1 − (2 + k − a2)q2 + 2kq1q2

is positive thanks to (1.8), and hence also

J := 1 − kq1 − (2 − a1a2 + ka1)q2 + 2kq1q2

must be positive. We thus have l2 ≥ I
J , whence we may conclude using (4.6) that

a1 I < J , that is,

a1 − a1kq1 − (2a1 + ka1 − a1a2)q2 + 2a1kq1q2 < 1 − kq1

−(2 − a1a2 + ka1)q2 + 2kq1q2.
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However, this is equivalent to

(a1 − 1)(1 − kq1)(1 − 2q2) < 0,

which contradicts (1.6), because clearly kq1 < 1 and q2 < 1
2 . ��

5 Conclusions and discussion

In this paper we have considered two biological species which compete for the same
resources and migrate chemotactically towards a higher concentration of a chemical
substance, which they produce. The problem is modeled by using a system of three
partial differential equations: two nonlinear parabolic equations to describe the evolu-
tion of the biological species and a linear PDE to model the behavior of the chemical.
This chemical diffuses considerably faster than the living organism, and it is thus
assumed that the evolution of the chemical signal is governed by an elliptic equation.

The system contains several parameters which measure different aspects in the
system: chemotaxis effects, competition, diffusion, chemical production and decay. In
the case when competition is absent, it is known that due to chemotaxis, the considered
system may produce finite-time blow-up (Espejo et al. 2010), while if on the other
hand chemotactic effects are blinded out, then the competitive terms keep the solution
bounded and guarantee their global existence. A natural and challenging question
has been posed in the literature for such systems: Which are the constraints and the
threshold values that decide between driving the system toward global existence, or
enforcing blow-up? This question remains open even in the case of a single species.
In that case the competitive term is simplified to a logistic growth function (cf. Tello
and Winkler 2007 for partial results).

A second question concerns the influence of chemotaxis effects on the stability of
the homogeneous steady states determined by the competitive terms. The presence of
a large number of parameters in the system makes this question difficult to answer.
In the case where the competitive terms are weak in the sense that in (1.1) we have
ai ∈ [0, 1) for i = 1, 2, a partial answer is given in Tello and Winkler (2012) within
some range of the chemotactic parameters. In this paper we have studied the problem
under the assumption that when compared to the latter setting, one of the species is
significantly more aggressive in terms of competition.

In this framework, characterized by the assumption (1.4), we have seen that if
in (1.5), both ratios qi , i = 1, 2, between the chemotactic sensitivities χi and the
competition parameters μi are suitably small then all nontrivial solutions will be global
in time and bounded, and that they approach the homogeneous steady state in which
the aggressive subpopulation is at its carrying capacity and the less aggressive species
has died out. This inter alia shows that the phenomenon of (asymptotic) extinction of
one species, known to be valid for the associated Lotka–Volterra ODE system without
diffusion and chemotaxis, persists also in such systems with chemotactic interaction,
provided the latter is sufficiently weak. Global existence of solutions is obtained under
the assumption q1k + q2 < 1. In that case competition prevents blow-up but extra
assumptions are required to prove the stability claim in (1.9).
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We do not know in how far the set (1.6) of hypotheses under which our results
have been derived is optimal. After all, in some known borderline cases our approach
yields requirements which are consistent with assumptions made in the literature
for correspondingly simplified models (cf. the discussion in the remark following
Theorem 1.1). In light of results from the literature on corresponding single-species
systems, it seems natural to conjecture that for suitably large values of qi , solutions
may exhibit more colorful dynamics. Indeed, in such a setting numerical simulations
indicate that chaotic behavior may occur (Painter and Hillen 2011). It is conceivable
that some solutions may even blow up in finite time, but a substantial influence of
the space dimension n on the occurrence of such explosion phenomena is most likely
to be expected: In the single-species case, for instance, although some examples of
high-dimensional blow-up phenomena despite logistic-type growth restrictions have
been found for n ≥ 5 (Winkler 2011), it is known that blow-up never occurs when
n ≤ 2 (Tello and Winkler 2007). In particular, the detection of explosions must thus
be restricted to the case n ≥ 3 in which even numerical approaches seem delicate. As
opposed to this, our assumptions in this paper are completely independent of n, and
moreover they are fully explicit; thereby our results reveal, in a quantitative manner, a
stability feature of the competitive exclusion phenomenon with respect to chemotactic
interaction.
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