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Abstract There are more than 300 avian species that can transmit West Nile virus
(WNv). In general, the corvid and non-corvid families of birds have different responses
to the virus, with corvids suffering a higher disease-induced mortality rate. By taking
both corvids and non-corvids as the primary reservoir hosts and mosquitoes as vectors;
we formulate and study a system of ordinary differential equations to model a single
season of the transmission dynamics of WNv in the mosquito–bird cycle. We calculate
the basic reproduction number and analyze the existence and stability of the equilibria.
The existence of a backward bifurcation gives a further sub-threshold condition beyond
the basic reproduction number for the spread of the virus. We also discuss the role
of corvids and non-corvids in spreading the virus. We conclude that knowledge of
the relative abundance of corvid bird species and other mammals assist us in accurate
estimation of the epidemic of WNv.
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1 Introduction

West Nile virus (WNv) was first isolated from the blood of a febrile woman in the
West Nile province of Uganda in 1937 (Smithburn et al. 1940). This mosquito-borne
virus has been recognized as the cause of epidemics of febrile illness and sporadic
encephalitis in Africa, the Mediterranean Basin, Europe, India, and Australia (Russell
and Dwyer 2000). WNv was detected for the first time in North America in 1999,
during an encephalitis outbreak in New York City (Center for Disease Control and
Prevention (CDC) 1999). Since then, WNv activity has been reported in 46 additional
states in the United States (Center for Disease Control and Prevention (CDC) 2001).
The first reports of WNv activity in Canada came in 2001 when the virus was found
in dead birds and mosquito pools in southern Ontario (Center for Disease Control and
Prevention (CDC) 2001).

When an infected mosquito bites a bird, it transmits the virus; the bird may then
develop sufficiently high viral titers during the next 3–5 days to infect another mos-
quito. The WNv is different from other mosquito-born diseases since it involves a
cross-infection between the host birds and mosquitoes and those birds could travel
with no natural (spatial) boundaries. During its life cycle, the virus circulates between
mosquitoes and birds. The virus can also be passed via vertical transmission from a
mosquito to its offspring which increases the survival of WNv in nature (Swayne et
al. 2000). It has been found that birds from certain species may become infected by
WNv after ingesting it from an infected dead animal or infected mosquitoes, which
are both natural food items of some species (Komar et al. 2003). Although mosquitoes
can transmit the virus to humans and many other species of animals (e.g. horses, cats,
bats, and squirrels), it cannot be transmitted back to mosquitoes.

Mathematical modeling studies for WNv among mosquitoes and avian species
appeared shortly after WNv first arrived in North America in 1999. Thomas and Urena
(2001) applied a discrete time system to model the interactions between the virus life
cycle and the consequent effects on humans. Wonham et al. (2004) presented a single-
season model with a system of differential equations for WNv transmission in the
mosquito–bird population. Their work, using local stability results and simulations,
showed that while mosquito control decreases WNv outbreak threshold, controlling
birds increases it. Cruz-Pacheco et al. (2005) presented and analyzed a mathematical
model for the transmission of WNv infection between mosquito and avian populations
and by using experimental and field data as well as numerical simulations, they found
the phenomena of damped oscillations of the infected bird population. Lewis et al.
(2006) studied the spatial spread of the virus, established the existence of traveling
waves and computed the spatial spreading speed of the infection. In 2006, Lewis et al.
also made a comparative study of the discrete-time model (Thomas and Urena 2001)
and the continuous-time model (Wonham et al. 2004). Kenkre et al. (2005) provided
a theoretical framework for the analysis of the WNv epidemic and for dealing with
mosquito diffusion and birds migration. Bowman et al. (2005) proposed a model sys-
tem incorporating mosquito–bird–human population for assessing control strategies
against WNv. Moreover, many other works on the transmission dynamics of WNv
have been published recently (Blayneh et al. 2010; Gourley et al. 2007; Jang 2007;
Wan and Zhu 2010).
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Fig. 1 Percentages of WNv positive dead corvids and non-corvids in Peel region, Ontario, Canada from
2003 to 2005. Data from the surveillance program of Ontario Ministry of Health and Long-Term Care

In North America, the virus has been found in more than 300 species of birds (Kurt
et al. 2003). In a modeling study of WNv by Cruz-Pacheco et al. (2005), the authors
use experimental and field data and the same model to estimate the basic reproduction
number for several specific species of birds, respectively. From the study of Hamer
et al. (2009), the dynamics of WNv transmission are influenced strongly by a few
key super spreader bird species, and their results showed that the WNv mosquitoes
fed predominantly (83 %) on birds with a high diversity of species used as hosts (25
species), and WNv mosquitoes also fed on mammals (19 %; 7 species with humans
representing 16 %). Their study indicated that approximately 66 % of WNv-infectious
mosquitoes became infected from feeding on just a few species of birds. Yet, as far
as we know, the past modeling effects to understand the transmission dynamics of
WNv have treated the avian species as one family. The study by Hamer et al. (2009)
suggested that it is essential to consider the impact of avian species diversity in one
system to understand the transmission dynamics of WNv.

However, it is not realistic to consider over 300 species of birds in one model.
Note that of those many bird species, corvids are the most susceptible to infection and
comprise an auspicious component of the mortality (Peterson and Marfin 2002). The
surveillance data for WNv in southern Ontario, Canada, suggest that the corvids and
non-corvids have different disease-induced mortality rates. In Fig. 1, we present the
percentages of dead birds from corvids and other bird species in Peel region, Ontario
from 2003 to 2005 (Patrick 2005). From Fig. 1, one can see that corvids account up to
80 % in 2003, 90 % in 2004 and 75 % in 2005 of the total of deaths due to WNv.

In this paper, we propose a system of ordinary differential equations to model the
role of corvids and non-corvids in the transmission of WNv in the mosquito–bird
cycle in a single season. The system of eight differential equations can have up to two
positive equilibria. The analysis of the model including a backward bifurcation gives a
further sub-threshold condition beyond the reproduction number for the control of the
virus. The existence of the backward bifurcation also suggests that the long term WNv
activity in a given region depends on the initial population sizes of birds and density of
mosquitoes. The result of this study suggests that even though dead corvids (American
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Fig. 2 Flow chart of the WNv among vector mosquitoes and corvids and non-corvids, host birds

crow) may not be seen in a given region, like in the early years of the endemic of the
virus, there might be still a possibility of an outbreak due to the existence of the
non-corvids as reservoirs. This study also suggests that it is essential to consider the
diversity of the avian species when modeling WNv in an area.

The paper is organized as follows: We formulate the model, with birds being classi-
fied as corvids and non-corvids, in Sect. 2; and in the next section, we find and analyze
the equilibrium points of the model. The backward bifurcation analysis is given in
Sect. 4 with more details in the appendix. Our numerical simulations and discussion
are presented in Sect. 5.

2 Model formulation

According to the transmission cycle of the virus, we plot the flow chart in Fig. 2. In the
flow chart, Ms(t) and Mi (t) are the number of susceptible and infectious mosquitoes at
time t respectively. The total number of mosquitoes is Nm(t) = Ms(t)+ Mi (t). Due to
its short life span, a mosquito never recovers from the infection and we do not consider
the recovered class in the mosquitoes (Gubler 1989). The number of susceptible,
infected and recovered corvid birds at time t are denoted by B1s(t), B1i (t) and B1r (t),
respectively. Similarly, the number of susceptible, infected and recovered non-corvid
birds at time t are denoted by B2s(t), B2i (t) and B2r (t). Thus, Nb1 = B1s + B1i + B1r

and Nb2 = B2s + B2i + B2r are the total number of corvid and non-corvid birds,
and the total number of birds will be Nb = Nb1 + Nb2. Moreover, the number of
infected birds at time t is denoted by Bi (t) = B1i (t) + B2i (t). According to Hamer
et al. (2009), WNv mosquitoes also feed on mammals (humans, horses, cats, bats,
and squirrels, etc.); hence, we let A be the total of mammals that mosquitoes will bite
for blood meals. Since the death due to infection among individuals in these other
categories can be ignored, we assume that A is constant.

Let us define the biting rate bm of mosquitoes as the average number of bites per
mosquito per day. The transmission probability is the probability when an infectious
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bite produces a new case in a susceptible member of the other species. The prob-
ability that a mosquito chooses a particular bird or other animal to bite can be

assumed as 1
Nb+A . Thus, a bird receives in average bm

(
Nm

Nb+A

)
bites per unit of

time. Then, the infection rate per susceptible bird (corvids or non-corvids) is given

by βbbm

(
Nm

Nb+A

)
Mi
Nm

= βbbm
Mi

Nb+A , where βb is the WNv transmission probabil-

ity from mosquitoes to birds. Similarly, the infection rate per susceptible mosquito
is βmbm

B1i +B2i
Nb+A , where βm is the WNv transmission probability from birds to mos-

quitoes. As was mentioned in the introduction, mosquitoes can transmit WNv verti-
cally (Swayne et al. 2000), and the fraction of progeny of infectious mosquitoes that
is infectious is denoted by q, with 0 ≤ q < 1.

For the corvid and non-corvid bird populations, we assume constant recruitment
rates γb1 and γb2 respectively due to birth and immigration. Usually the bird population
remains unchanged over years if there are no avian diseases or environmental changes.
For simplicity in this paper, we assume that the natural death rate of non-corvid birds
is the same as that of corvid birds db. Another assumption is that infected corvid and
non-corvid birds recover at constant rates of ν1 and ν2, respectively. The specific death
rates associated with WNv infection in the corvid and non-corvid birds population are
μ1 and μ2, respectively. The corvids family is more competent than the non-corvids
family of birds, i.e, the number of secondary infections produced by individuals of
those species is greater than the corresponding number produced by the non-corvids
(Komar et al. 2003). Moreover, from Fig. 1, we noticed that the disease mortality rates
of the corvids family are significantly greater than the corresponding ones for the
non-corvids family (Komar et al. 2003). So we can assume that μ1 > μ2.

Based on the above assumptions, and extending the ideas in Buck et al. (2009),
Cruz-Pacheco et al. (2005) and Wonham et al. (2004), our WNv model is given by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d Ms

dt
= (rm Ms + (1 − q)rm Mi )

(
1 − Nm

Km

)
− dm Ms − βmbm

B1i +B2i
Nb+A Ms,

d Mi

dt
= qrm Mi

(
1 − Nm

Km

)
− dm Mi + βmbm

B1i +B2i
Nb+A Ms,

d B1s

dt
= γb1 − db B1s − βbbm

B1s
Nb+A Mi ,

d B1i

dt
= −(db + μ1 + ν1)B1i + βbbm

B1s
Nb+A Mi ,

d B1r

dt
= −db B1r + ν1 B1i ,

d B2s

dt
= γb2 − db B2s − βbbm

B2s
Nb+A Mi ,

d B2i

dt
= −(db + μ2 + ν2)B2i + βbbm

B2s
Nb+A Mi ,

d B2r

dt
= −db B2r + ν2 B2i ,

(2.1)

where the definitions and values of the parameters used in the model (2.1) are sum-
marized in Table 1.
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Table 1 Parameters in the model for the transmission dynamics of WNv

Par. Definition Range Ref.

rm Mosquitoes per capita
birth rate

(0.036−42.5)(day−1) Wonham et al. (2004)

Km Environmental carrying
capacity of mosquitoes

(105−106) Wonham et al. (2004)

q Vertical transmission
fraction in mosquitoes

(0−1) Wonham et al. (2004)

dm Natural death rate of
mosquitoes

(0.016−0.07)(day−1) Wonham et al. (2004)

db Natural death rate of birds (10−4−10−3)(day−1) Wonham et al. (2004)

βm WNv transmission
probability from birds
to mosquitoes

(0.018−0.24) Wonham et al. (2004)

βb WNv transmission
probability from
mosquitoes to birds

(0.088−0.9) Wonham et al. (2004)

bm Biting rate of mosquitoes (0.2−0.75) Wonham et al. (2004)

γb1 Recruitment rate of
corvid birds

(800−1, 100)(day) Komar et al. (2003)

γb2 Recruitment rate of
non-corvid birds

(800−1, 000)(day) Komar et al. (2003)

ν1 Recovery rate of corvid
birds

(0−0.1)(day−1) Komar et al. (2003)

ν2 Recovery rate of
non-corvid birds

(0−0.2)(day−1) Komar et al. (2003)

μ1 Death rate of corvid birds
due to the infection

(0.2−0.3)(day−1) Komar et al. (2003)

μ2 Death rate of non-corvid
birds due to the
infection

(0.01−0.16)(day−1) Komar et al. (2003)

Adding the first two equations of (2.1), the total number of mosquitoes Nm satisfies

d Nm

dt
= rm Nm

(
1 − Nm

Km

)
− dm Nm . (2.2)

For any given positive initial condition Nm(0) > 0, the total number of mosquitoes

approaches a steady value M̃ =
(

1 − dm
rm

)
Km .

The Eq. (2.2) indicates that the mosquito population will die out if dm ≥ rm,

while the mosquito population will eventually stabilize at a positive equilibrium M̃ if
dm < rm . That is why in our work we are assuming the latter case.

For the two species of birds, their totals satisfy

d Nbj

dt
= γbj − db Nb j − μi B ji , j = 1, 2, (2.3)

respectively. From (2.3), one can see that if there is no virus involved (B ji = 0),
the total populations of corvids and non-corvids will approach B̃ j = γbj

db
, j = 1, 2,

respectively.
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To better organize the analysis, we denote δ j = db + μ j + ν j , j = 1, 2. From
the definition of μ j and ν j we can define 1

δ1
and 1

δ2
as the adjusted infectious period

taking into account the mortality rates of corvid and non-corvid birds respectively. Let
B̃ = B̃1 + B̃2 + A, which is the total number of birds and other mammals.

3 Equilibrium points and reproduction number

The model (2.1) has two disease free equilibrium (DFE) points, E0 = (0, 0, B̃1, 0, 0,

B̃2, 0, 0) and E1 = (M̃, 0, B̃1, 0, 0, B̃2, 0, 0).
For the DFE E0, one can verify that its Jacobian matrix has eigenvalues λ1 = λ2 =

λ3 = λ4 = −db, λ5 = −δ1, λ6 = −δ2, λ7 = (qrm − dm) and λ8 = (rm − dm) > 0,
so E0 is a hyperbolic saddle point.

The local stability of E1 is governed by the basic reproduction number R0 which
can be calculated from the next generation matrix for the system (2.1). Note that
the model has five infected groups, namely Mi , B1i , B1r , B2i and B2r . Using the
notation of van den Driessche and Watmough (2002), the new infection terms and the
remaining transfer terms for those five groups are given below, in partitioned form. In
the following, let

� =

⎛
⎜⎜⎜⎜⎜⎝

qrm Mi

(
1 − Nm

Km

)
+ βmbm

B1i +B2i
Nb+A Ms

βbbm
B1s

Nb+A Mi

0
βbbm

B2s
Nb+A Mi

0

⎞
⎟⎟⎟⎟⎟⎠

, υ =

⎛
⎜⎜⎜⎜⎝

dm Mi

δ1 B1i

db B1r − ν1 B1i

δ2 B2i

db B2r − ν2 B2i

⎞
⎟⎟⎟⎟⎠

.

Thus, at point E1, the Jacobian matrices of � and υ with respect to the five groups
leads to

F(E1) =

⎛
⎜⎜⎜⎜⎜⎜⎝

qdm
βm bm M̃

B̃
0 βm bm M̃

B̃
0

βbbm B̃1

B̃
0 0 0 0

0 0 0 0 0
βbbm B̃2

B̃
0 0 0 0

0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

, V −1(E1) =

⎛
⎜⎜⎜⎜⎜⎝

1
dm

0 0 0 0
0 1

δ1
0 0 0

0 ν1
dbδ1

1
db

0 0
0 0 0 1

δ2
0

0 0 0 ν2
dbδ2

1
db

⎞
⎟⎟⎟⎟⎟⎠

,

where F is a non-negative matrix and V is non-singular. It is not difficult to find
the basic reproduction number defined by R0 = ρ(FV −1), the spectral radius of the
matrix FV −1. If we denote

� =
√√√√βmβbb2

m
M̃

dm B̃2

(
B̃1

δ1
+ B̃2

δ2

)
, (3.1)
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then the basic reproduction number

R0 = q

2
+ 1

2

√
q2 + 4�2. (3.2)

Note that for the WNv infection, the number of infections produced by a single
corvid or non-corvid bird during its infectious period in a completely susceptible

mosquito population is given by βmbm
M̃
B̃2

(
B̃1
δ1

+ B̃2
δ2

)
. In the same way, the number of

infections in a completely susceptible avian population produced by a single infectious
mosquito is given by βbbm

dm
. Then � is the basic reproductive number in the absence of

vertical transmission.
The following proposition is a consequence from Theorem 2 of van den Driessche

and Watmough (2002):

Proposition 3.1 For system (2.1), the disease-free equilibrium E1 is locally asymp-
totically stable if R0 < 1 and unstable if R0 > 1.

The epidemiological implication of Proposition (3.1) is that, in general, when R0 <

1, a small influx of infected mosquitoes into the community would not generate a large
outbreak, and the disease dies out in time. However, we show in the next subsection
that the disease may still persist even when R0 < 1.

3.1 Endemic equilibrium points

To obtain all the endemic equilibrium points (EEP), or the positive equilibrium points,
first we set the right hand sides in Eq. (2.1) equal to zero:

(rm Ms + (1 − q)rm Mi )

(
1 − Nm

Km

)
− dm Ms − βmbm

B1i + B2i

Nb + A
Ms = 0, (3.3)

qrm Mi

(
1 − Nm

Km

)
− dm Mi + βmbm

B1i + B2i

Nb + A
Ms = 0, (3.4)

γb − db B1s − βbbm
B1s

Nb + A
Mi = 0, (3.5)

−(db + μ1)B1i − ν1 B1i + βbbm
B1s

Nb + A
Mi = 0, (3.6)

−db B1r + ν1 B1i = 0, (3.7)

γb2 − db B2s − βbbm
B2s

Nb + A
Mi = 0, (3.8)

−(db + μ2)B2i − ν2 B2i + βbbm
B2s

Nb + A
Mi = 0, (3.9)

−db B2r + ν2 B2i = 0. (3.10)
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Then we write the susceptible and recovered bird variables in terms of B1i and B2i

B1s = B̃1 − δ1
db

B1i ,

B2s = B̃2 − δ2
db

B2i ,

B1r = ν1
db

B1i ,

B2r = ν2
db

B2i .

(3.11)

By adding (3.3) and (3.4), we have Nm

(
Nm − Km

(
1 − dm

rm

))
= 0. At any positive

equilibrium, we have Nm = Ms + Mi = Km

(
1 − dm

rm

)
= M̃ .

In case Ms + Mi = M̃ , it follows from (3.6), (3.9) and (3.11) that one can verify

B2i = δ1 B̃2

δ2 B̃1
B1i . (3.12)

From Eq. (3.4), we have (1 − q)dm Mi = βmbm Ms
B1i +B2i
Nb+A , and then

Mi = βmbm M̃(B1i + B2i )

(1 − q)dm(Nb + A) + βmbm(B1i + B2i )
. (3.13)

Equations (3.6) and (3.9) imply that

B1i + B2i =
(

βbbm Mi

Nb + A

)(
B̃1

δ1
+ B̃2

δ2
− B1i

db
− B2i

db

)
. (3.14)

Eliminating Mi from Eqs. (3.13) and (3.14), a straight forward calculation gives
that if an endemic equilibrium exists, its Bi -coordinates should satisfy the follow-
ing quadratic equation:

c20 B2
1i + c11 B1i B2i + c02 B2

2i + c10 B1i + c01 B2i + c00 = 0, (3.15)

where

c20 = (1 − q)dm

(
μ1
db

)2 − βmbm
μ1
db

,

c11 = 2(1 − q)dm
μ1
db

μ2
db

− βmbm(
μ1
db

+ μ2
db

),

c02 = (1 − q)dm

(
μ2
db

)2 − βmbm
μ2
db

,

c10 = βmbm B̃ − 2(1 − q)dm B̃ μ1
db

+ βmβbb2
m

M̃
db

,

c01 = βmbm B̃ − 2(1 − q)dm B̃ μ2
db

+ βmβbb2
m

M̃
db

,

c00 = (1 − q)dm B̃2 − M̃βmβbb2
m

(
B̃1
δ1

+ B̃2
δ2

)
.

(3.16)
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Using the expression for R0 in (3.2) we can write

βbβmb2
m

M̃

B̃2

(
B̃1

δ1
+ B̃2

δ2

)
= dm(R2

0 − q R0),

so we can rewrite c00 in (3.16) as

c00 = B̃2dm (1 − q + R0) (1 − R0). (3.17)

To obtain the positive equilibrium points, we find the intersection of the line (3.12)
with the quadratic curve (3.15).

For the curve defined by (3.15), let D = c02c20 − 1
4 c2

11. One can verify that D =
−β2

m b2
m

4d2
b

(μ1 − μ2)
2 < 0. Therefore, the quadratic curve (3.15) is a hyperbola. In order

to better understand the intersection of this hyperbola with line (3.12), we make the
following rotation of B1i and B2i axes by letting

x =
[
(1 − q)dm

μ1
db

− βmbm

]
B1i +
[
(1 − q)dm

μ2
db

− βmbm

]
B2i ,

y = μ1
db

B1i + μ2
db

B2i .
(3.18)

The inverse of the rotation operator is given by

B1i = 1
βm bm (μ1−μ2)

(μ2x − [(1 − q)dmμ2 − βmbmdb]y),

B2i = 1
βm bm (μ1−μ2)

(−μ1x + [(1 − q)dmμ1 − βmbmdb]y),
(3.19)

provided μ1 �= μ2. By using this transformation we can conclude that,

Nb + A = B̃ − μ1

db
B1i − μ2

db
B2i = B̃ − y. (3.20)

Using the new coordinates, it follows from (3.18) that the line (3.12) and the hyper-
bola (3.15) become

L: y = x

k
, (3.21)

C : y =
(

B̃ + βbbm
M̃

db

)
x − x0

x − x1
, (3.22)

where

k = (1 − q)dm −
βm bm db

(
B̃1
δ1

+ B̃2
δ2

)

μ1
B̃1
δ1

+μ2
B̃2
δ2

,

x0 = c00

B̃+βbbm
M̃
db

,

x1 = (1 − q)dm

(
B̃ − βbbm

M̃
db

)
.

(3.23)
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Since 1 > μ1 > μ2 > 0, q ∈ (0, 1), and from the Table 1, we have (1 −
q)dmμ2 − βmbmdb > 0, then (1 − q)dmμ1 − βmdb > 0, and then 0 < k < 1. For the
equation of a hyperbola (3.22) whose (mutually orthogonal) asymptotes are x = x1

and y = B̃ + βbbm
M̃
db

respectively, the horizontal asymptote intersects the y-axis at a
positive point while the intersection of the vertical asymptote with the x-axis depends
on the sign of x1.

To obtain the intersection between the hyperbola (3.22) and the line (3.21), we have
to find the roots of the following equation:

x2 −
[

x1 +
(

B̃ + βbbm
M̃

db

)
k

]
x + c00k = 0. (3.24)

The discriminant 	 for the quadratic equation (3.24) satisfies,

	 =
[
((1 − q)dm + k)B̃ − ((1 − q)dm − k)βbbm

M̃

db

]2

− 4kc00.

Depending on the sign of 	, we can have up to two positive equilibria. Let E = (M∗
s ,

M∗
i , B∗

1s, B∗
1i , B∗

1r , B∗
2s, B∗

2i , B∗
2r ) be any one of the arbitrary endemic equilibrium of

the model (2.1), represented as

B∗
1i =

db
δ1

B̃1x

k
(
μ1

B̃1
δ1

+ μ2
B̃2
δ2

) , B∗
2i = δ1 B̃2

δ2 B̃1
B∗

1i ,

B∗
1s = B̃1 − δ1

db
B∗

1i , B∗
2s = B̃2 − δ2

db
B∗

2i , B∗
1r = ν1

db
B∗

1i , B∗
2r = ν2

db
B∗

2i ,

M∗
i = βmbm M̃(B∗

1i + B∗
2i )

(1 − q)dm

(
B̃ − μ1

db
B∗

1i − μ2
db

B∗
2i

)
+ βmbm(B∗

1i + B∗
2i )

, M∗
s = M̃ − M∗

i .

If R0 > 1, then c00 < 0 and we always have only one positive root,

xE2 =
[
x1 +
(

B̃ + βbbm
M̃
db

)
k
]

+ √
	

2
,

and we denote the corresponding equilibrium by E2.
If R0 = 1, then c00 = 0; subsequently, we have one positive root if

x1 +
(

B̃ + βbbm
M̃

db

)
k > 0.
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This condition can be written in another form as:

βbbm

db

M̃

B̃
<

(
(1 − q)dm + k

(1 − q)dm − k

)
. (3.25)

Now we consider the case R0 < 1. Since c00 > 0, we always have one or two
positive roots if 	 ≥ 0.

First if x1 > x0, then

(1 − q)dm

db
B̃ > βmbm

(
B̃1

δ1
+ B̃2

δ2

)
> (1 − q)dmβbbm

M̃

d2
b

,

which implies B̃ > βbbm
M̃
db

. Since c00 > 0, then x0 > 0 and R0 < 1. Moreover, the
hyperbolic curve C will intersect the x, y axes at positive points as shown in Fig. 3a.

So the line L has two positive intersection points with the hyperbola C as shown in

Fig. 3a, with one being above the line y = B̃ + βbbm
M̃
db

. Let x-coordinates of L and

C with y = B̃ be denoted by x10 and x11, then (3.21) and (3.22) give,

x10 = k B̃ =
⎛
⎝(1 − q)dm −

βmbmdb

(
B̃1
δ1

+ B̃2
δ2

)

μ1
B̃1
δ1

+ μ2
B̃2
δ2

⎞
⎠ B̃,

and

x11 =
⎛
⎝(1 − q)dm −

βmbmdb

(
B̃1
δ1

+ B̃2
δ2

)

B̃

⎞
⎠ B̃.

As shown in Fig. 3a, one can verify that x10 < x11 which means the other intersection
of L with C is also above the line y = B̃. Thus, from (3.20) that total number of birds
would be negative, so this case does not occur biologically.

If x1 = x0, then c00 = (1 − q)dm

(
B̃2 − β2

b b2
m

M̃2

d2
b

)
> 0, which implies R0 < 1.

Note in this case the hyperbola C will be reduced to a line y = B̃+βbbm
M̃
db

, as shown in

Fig. 3b. Thus, we have one positive equilibrium point that satisfies y = B̃ + βbbm
Mi
db

.
Again, from (3.20) the total number of birds would be negative, and this case has
no positive equilibrium. Hence, there is no positive equilibria if x1 ≥ x0. Now we
consider the case x1 < x0. Here we need to consider the following five cases.

Case 1 If x1 < 0 with x0 < 0, then R0 > 1, and therefore c00 < 0 which leads to
	 > 0. Consequently, the hyperbolic curve C intersects the x-axis with one negative
component. So there is one intersecting point as shown in Fig. 4. From the case x1 > x0
we proved that x10 < x11 which leads to the intersection between L and C at point
below the line y = B̃. Thus, it follows from (3.20) that the total number of birds would
be positive, so if R0 > 1 there exists a unique endemic equilibrium.
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(a) (b)

Fig. 3 If x1 ≥ x0, system does not have any endemic equilibrium point (EEP). a x1 > x0 (R0 < 1), no
EEP. b x1 = x0 (R0 < 1), no EEP

Fig. 4 Case 1 x1 < x0 and
x0 < 0, (R0 > 1), system
always has a unique EEP

Case 2 If x1 < 0 with x0 = 0, then R0 = 1. Therefore, the hyperbolic curve C passes

through the origin, and we have 	 =
(

x1 +
(

B̃ + βb
M̃
db

)
k
)2

. In this case and under

condition (3.25) we have one positive intersection point; otherwise, we will not have
any positive intersection point. These subcases are shown in Fig. 5a, b. Also by the
same way as in Case 1, this intersection point is below the line y = B̃.

Case 3 If x1 < 0 with x0 > 0, then B̃ < βbbm
M̃
db

and R0 < 1. Therefore, under
condition (3.25), we can see that we do not have any positive intersection points if
	 < 0 and we have one or two intersection points if and only if 	 ≥ 0. Moreover,

from the definition of c00 in Eq. (3.16), we can conclude that c00 < k B̃
(

B̃ + βbbm
M̃
db

)

which means 1
k x0 < B̃ and then x0 < x10 < x11. Then any intersection between L and

C occurs at a point below the line y = B̃. It is important to note here that if 	 = 0,
then we denote the basic reproduction number by R0 = R1

0 . Case 3 is shown in
Fig. 6.
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(b)(a)

Fig. 5 Case 2 x1 < x0 with x0 = 0, (R0 = 1), we have at most one EEP. a No EEP. b One EEP

(a) (b)

(c)

Fig. 6 Case 3 x1 < x0, x1 < 0 with x0 > 0, (R0 < 1), we have at most two EEPs. a 	 < 0 no EEP.
b 	 = 0 one EEP. c 	 > 0 two EEP

Case 4 If x1 = 0 then B̃ = βbbm
M̃
db

and

	 = −4k B̃βmbm

(
B̃ −
(

μ1

δ1
B̃1 + μ2

δ2
B̃2

))
< 0.

So we do not have any real intersection points.
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(a) (b)

(c)

Fig. 7 Case 5. If x1 < x0 with x1 > 0, (R0 < 1), no EEP. a 	 < 0. b 	 = 0. c 	 > 0

Case 5 If x1 > 0 with x0 > 0, then R0 < 1 and

βmbmdb

(1 − q)dm

(
B̃1

δ1
+ B̃2

δ2

)
< βbbm

M̃

db
< B̃.

By the same way in Case 3, we can have a maximum of two positive intersection points.
However, in the case that we have positive intersection points, we can conclude that

c00 > k B̃
(

B̃ + βbbm
M̃
db

)
which means 1

k x0 > B̃ and then x11 > x0. This leads to the

intersection between L and C at a point above the line y = B̃. Hence, from (3.20) the
total number of birds is negative, and this case does not occur biologically. Case 5 is
shown in Fig. 7.

Now, if we use xE2 and xE3 to define equilibrium points E2 and E3 we are able to
state the principal results about the existence and number of the equilibrium points.

Proposition 3.2 If we suppose that (1 − q)dmμ2 − βmbmdb > 0, the system (2.1)
can have up to two positive equilibrium. More precisely,

1. If R0 > 1, there exists a unique endemic equilibrium E2.

2. If R0 < 1, then

123



1568 A. Abdelrazec et al.

(a) If db
βbbm

< M̃
B̃

<
db

βbbm

(
(1−q)dm+k
(1−q)dm−k

)
and 	 > 0, there exists two endemic

equilibria E2 and E3.

(b) If db
βbbm

< M̃
B̃

<
db

βbbm

(
(1−q)dm+k
(1−q)dm−k

)
and 	 = 0, these two equilibria coalesce.

(c) Otherwise, there is no endemic equilibrium.
3. If R0 = 1, then

(a) If M̃
B̃

<
db

βbbm

(
(1−q)dm+k
(1−q)dm−k

)
, there exists a unique endemic equilibrium E2.

(b) Otherwise, there is no endemic equilibrium.

The epidemiological implication of Proposition (3.2) is that when R0 < 1 the virus
may or may not become endemic (at any region) depending on the ratio between the
quantity of mosquitoes on one hand and that of birds and other mammals on the other
hand.

3.2 Local stability of E2 and E3

In this section, we study the local stability of the EEP in the system (2.1). By using the
Jacobian matrix, at any equilibrium point, the eigenvalues satisfy: the first −(rm −dm),
the second −db that is repeated four times, as well as the eigenvalues from the matrix
W with

W =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−(1 − q)dm
M̃
Ms

(
(1−q)dm

μ1
db

−βm bm

)
Mi +βm bm M̃

Nb+A

(
(1−q)dm

μ2
db

−βm bm

)
Mi +βm bm M̃

Nb+A

βbbm
B1s

Nb+A −
(

δ1 + δ1

(
βbbm

Mi
db

− μ1
db

B1i

)

Nb+A

)
δ1

μ2
db

B1i

Nb+A

βbbm
B2s

Nb+A δ2

μ1
db

B2i

Nb+A −
(

δ2 + δ2

(
βbbm

Mi
db

− μ2
db

B2i

)

Nb+A

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

We can find the eigenvalues of W by finding the roots of the cubic equation

λ3 + A2λ
2 + A1λ + A0 = 0, (3.26)

where

A2 = (1 − q)dm
M̃

Ms
+ (δ1 + δ2) + δ1

( βbbm Mi
db

− μ1
db

B1i

Nb + A

)
+ δ2

( βbbm Mi
db

− μ2
db

B2i

Nb + A

)
,

A1 = (1 − q)dm
M̃

Ms
(δ1 + δ2) + δ1δ2

(
1 +

βbbm Mi
db

Nb + A

)(
1 +

βbbm Mi
db

− μ1
db

B1i − μ2
db

B2i

Nb + A

)

+(1−q)dm
M̃

Ms

⎛
⎝ δ1

(
βbbm Mi

db
− μ1

db
B1i

)
+ δ2

(
βbbm Mi

db
− μ2

db
B1i

)

Nb + A

⎞
⎠−βmbm

M̃

Mi

δ1 B1i +δ2 B2i

Nb+ A

−
δ1

(
(1 − q)dm

μ1
db

− βmbm

)
B1i + δ2

(
(1 − q)dm

μ2
db

− βmbm

)
B2i

Nb + A
,
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A0 = δ1δ2(1 − q)dm

(
1 + βbbm

Mi
db

Nb + A

)
M̃

Ms

( βbbm Mi
db

− μ1
db

B1i − μ2
db

B2i

Nb + A

)

−δ1δ2

(
1 + βbbm

Mi
db

Nb + A

) (
(1 − q)dm

μ1
db

− βmbm

)
B1i +
(
(1 − q)dm

μ2
db

− βmbm

)
B2i

Nb + A
.

For any endemic equilibrium point E = (M∗
s , M∗

i , B∗
1s, B∗

1i , B∗
1r , B∗

2s, B∗
2i , B∗

2r )

of the system (2.1), we have the following proposition to determine the sign of the
eigenvalues and the roots for the characteristic equation (3.26).

Proposition 3.3 For the system (2.1), E2 is stable while E3 is unstable when they
exist.

Proof For both E2 and E3, from Eq. (3.6) we have βbbm
M∗

i
db

> δ1
db

B∗
1i >

μ1
db

B∗
1i .

Similarly by (3.9) we have βbbm
M∗

i
db

>
μ2
db

B∗
2i . Hence, A2 > 0 (in (3.26)) for both E2

and E3.
By using Eqs. (3.3) to (3.10) and (3.13) we can conclude that, for any positive

equilibrium with M∗
s = M̃(1−q)dm(B̃−yE )

(1−q)dm B̃−xE
and M∗

i = M̃((1−q)dm yE −xE )

(1−q)dm B̃−xE
, we can rewrite

A0 as

A0 = δ1δ2

k(B̃−yE )2

⎛
⎝1+

βbbm
M∗

i
db

B̃ − yE

⎞
⎠
(

2x2
E −xE

[
((1−q)dm +k)B̃−((1−q)dm −k)βb

M̃

db

])
.

If R0 < 1 and case 3(a) of Proposition (3.2) holds, then we have two positive
equilibrium points denoted by (xE2 , yE2) and (xE3, yE3). For E3 from (3.24) we can
see that

xE3 <
1

2

[
((1 − q)dm + k)B̃ − ((1 − q)dm − k)βbbm

M̃

db

]
,

therefore A0 < 0, the roots of (3.26) will have different signs, and E3 is unstable. While

for E2, from (3.24) we have xE2 > 1
2

[
((1−q)dm +k)B̃−((1−q)dm −k)βbbm

M̃
db

]
.

Hence, we conclude that A0 > 0.

In the same way, if R0 > 1, from Proposition (3.2), we have one positive equilibrium
point denoted by (xE2 , yE2) and from (3.24),

xE2 >
1

2

[
((1 − q)dm + k)B̃ − ((1 − q)dm − k)βbbm

M̃

db

]

and A0 > 0.

Finally, to prove that all roots of Eq. (3.26) are negative at E2, in the two cases
R0 < 1 and R0 > 1, we need to prove that if A0 > 0 then A1 A2 − A0 > 0.

By (3.4) we conclude that at E2, (1 − q)dm M∗
i > βmbm M∗

s
B∗

1i
N∗

b +A , so this leads to

(1−q)dm
M̃
M∗

s
> βmbm

M̃
M∗

i

B∗
1i

N∗
b +A , and in the same way, (1−q)dm

M̃
M∗

s
> βmbm

M̃
M∗

i

B∗
2i

N∗
b +A .
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Therefore,

δ1

[
(1−q)dm

M̃

M∗
s

−βmbm
M̃

M∗
i

B∗
1i

N∗
b + A

]
+δ2

[
(1−q)dm

M̃

M∗
s

−βmbm
M̃

M∗
i

B∗
2i

N∗
b + A

]
> 0.

(3.27)

From (3.6) at E2 we can conclude that
βbbm M∗

i
db

>
μ1
db

B∗
1i + μ2

db
B∗

2i . Then we have

δ1δ2

⎛
⎝1 +

βbbm M∗
i

db

N∗
b + A

⎞
⎠
⎛
⎝1 +

βbbm M∗
i

db
− μ1

db
B∗

1i − μ2
db

B∗
2i

N∗
b + A

⎞
⎠ > 0. (3.28)

It follows from (3.27) and (3.28) that A0 > 0 implies that A1 > 0 and

A1 A2 − A0

=
(

(1 − q)2d2
m

M̃

M∗
s

+ A1

)⎡
⎣(δ1 + δ2) +

δ1

(
βbbm M∗

i
db

− μ1
db

B∗
1i

)
+ δ2

(
βbbm M∗

i
db

− μ2
db

B∗
1i

)

N∗
b + A

⎤
⎦

+δ1δ2

⎡
⎣1 + βbbm

M∗
i

db

N∗
b + A

⎤
⎦
(
(1 − q)dm

μ1
db

− βmbm

)
B∗

1i +
(
(1 − q)dm

μ2
db

− βmbm

)
B∗

2i

N∗
b + A

−(1 − q)dm
M̃

M∗
s

⎛
⎝ δ1

(
(1 − q)dm

μ1
db

− βmbm

)
B∗

1i + δ2

(
(1 − q)dm

μ2
db

− βmbm

)
B∗

2i

N∗
b + A

⎞
⎠ .

Thus A1 A2 − A0 > 0, and the proof is complete. 
�

4 Backward bifurcation

To discuss the backward bifurcation, we choose δ1 = μ1+ν1+db and δ2 = μ2+ν2+db

as the bifurcation parameters. We will express the two conditions R0 = 1 and 	 = 0 in
terms of the parameters δ1 and δ2 (δ1 > δ2), and then present the bifurcation diagram
in (δ1, δ2) plane.

First, with R0 = 1, Eq. (3.2) can be rewritten as,

δ1 = α B̃1 + α2 B̃1 B̃2

δ2 − α B̃2
(4.1)

where α = βbβm b2
m M̃

(1−q)dm B̃2 .

The second curve can be obtained by letting 	 = 0 in Eq. (3.24). Solving 	 = 0
in terms of δ1 one can get

δ1 = ρ B̃1 + ρ2 B̃1 B̃2

δ2 − ρ B̃2
, (4.2)
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Fig. 8 In the plane (δ1, δ2),

when R0 < 1 we have two EEPs
in the dashed area

Δ<0

O

δ1

δ2

δ = δ1 2

0
R  = 1

R <1
0

R >1
0

Δ=0

Δ>0

where

ρ = βbβmb2
m M̃

(1 − q)dm B̃2 − 1
4k

(
((1 − q)dm + k)B̃ − ((1 − q)dm − k)βbbm

M̃
db

)2 .

In the positive quadrant of the parameters plane (δ1, δ2), Eq. (4.1) is a hyperbola,
whose (mutually orthogonal) asymptotes are δ1 = α B̃1 and δ2 = α B̃2. Similarly,
Eq. (4.2) represents a hyperbola with (mutually orthogonal) asymptotes, δ1 = ρ B̃1
and δ2 = ρ B̃2. From the above we can conclude that if ((1 − q)dm + k)B̃ = ((1 −
q)dm − k)βbbm

M̃
db

, then the two hyperbolas (4.1) and (4.2) are the same, and x1 +(
B̃ + βbbm

M̃
db

)
k = 0 in Eq. (3.24). Then when M̃

B̃
= db

βbbm

(
(1−q)dm+k
(1−q)dm−k

)
, we do not

have any positive equilibrium points if R0 ≤ 1, while if R0 > 1, we have one positive
equilibrium point, where ρ > α > 0.

One can verify that the two hyperbolas (4.1) and (4.2) do not intersect in the positive
quadrant, and a region for the existence of two endemic equilibria to occur is well
defined in the shadow area as shown in Fig. 8.

Then from the above and from Proposition (3.2), if the discriminant 	 is set to zero
and solved for the critical value of R0, which we denote by R1

0, then we have

R1
0 =

q +
√

q2 + ((1−q)dm+k)2

kdm

(
4k(1−q)dm

((1−q)dm+k)2 −
(

1 − (1−q)dm−k
(1−q)dm+k

βbbm
db

M̃
B̃

)2)

2
. (4.3)

Thus, the backward bifurcation scenario involves the existence of a subcritical trans-
critical bifurcation at R0 = 1 and of a saddle-node bifurcation at R0 = R1

0 < 1. The
qualitative bifurcation diagrams describing two types of bifurcation at R0 = 1 are
depicted in Fig.9a, b.
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(a) (b)

Fig. 9 Basic reproduction number and bifurcation diagram. a Backward bifurcation. b Forward bifurcation

Theorem 4.1 Consider model (2.1) with positive parameters. If

A <

(
μ1−(ν1+db(1+ βmbm

(1−q)dm
))

)
B̃1

δ1
+
(

μ2−(ν2+db(1+ βmbm

(1−q)dm
))

)
B̃2

δ2
,

(4.4)

then system (2.1) undergoes a backward bifurcation when R0 = 1.

Proof See the Appendix. 
�
The parameter A measuring the effects of other animals bitten by mosquitoes to take
blood meals is usually ignored in many compartment models for mosquito-borne
diseases. So if we assume that all the birds as one family and A = 0, then the condition
for occurrence of the backward bifurcation in the Theorem 4.1 can be simplified as

μ > ν + db

(
1 + βmbm

(1 − q)dm

)
(4.5)

which is consistent with the results on backward bifurcation in Jiang et al. (2009) and
Wan and Zhu (2010).

The epidemiological significance of the phenomenon of backward bifurcation is
that if R0 is nearly below unity, then the disease control strongly depends on the initial
sizes of the various sub-populations of the model. On the other hand, reducing R0
below the saddle-node bifurcation value R1

0 will help to eradicate the disease.

5 Simulations and discussions

In this section, we carry out some numerical simulations to illustrate the effects and
role of two avian species, corvids and non-corvids, on the transmission of WNv and
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its dynamics. Numerical results are obtained using values for parameters given in
Table 1.

5.1 The basic reproduction number in case of corvid and non-corvid populations

Let h ∈ [0, 1] be the percentage of corvids in new recruitment of birds. If γb is the
recruitment rate, then in the model (2.1) we have γb1 = hγb and γb2 = (1 − h)γb. If
h = 0, then all birds are non-corvid, and if h = 1, all birds are corvids.

It follows from (3.2) that we can rewrite the basic reproduction number as

R0 = q

2
+ 1

2

√
q2+4�2 with �=

√√√√√βmb2
m

γb

db

M̃

dm

(
γb
db

+ A
)2
(

βb1h

δ1
+ βb2(1−h)

δ2

)
.

(5.1)

For the case of h = 1 and h = 0, if we denote

R0 j = q

2
+ 1

2

√√√√√q2 + 4βmb2
m

γb

db

M̃

dm

(
γbj
db

+ A
)2
(

βbj

δ j

)
, j = 1, 2, (5.2)

then R01 and R02 are the basic reproduction numbers in the case that all birds are
corvids ( j = 1) and non-corvids ( j = 2), respectively. One can verify that we have

(
R0 − q

2

)2 = h
(

R01 − q

2

)2 + (1 − h)
(

R02 − q

2

)2
, h ∈ [0, 1]. (5.3)

Since corvids are more competent in transmitting the virus as the primary host for
the virus (Komar et al. 2003), therefore we have βb1

δ1
>

βb2
δ2

. So from (5.2), we have
R01 > R02. One can further verify that R02 < R0 < R01.

For the reproduction number as a function of the percentage h ∈ [0, 1], it follows
from (5.3) that we have

R0 = q

2
+
√(

R02 − q

2

)2 + h(R01 + R02 − q)(R01 − R02), h ∈ [0, 1]. (5.4)

Since R01 > R02, so for the case with a small vertical transmission rate q, as shown
in Fig. 10, the basic reproduction number R0 is an increasing function of h which
defines a segment of a parabola (5.4) for h ∈ [0, 1].

Another important observation is that if we do not distinguish the birds as corvids
and non-corvids, and take the bird population as only one species (using corvid parame-
ters), just like what have been done in available modeling for WNv, we have R0 < R01,
resulting in over estimation of the epidemic of the virus in the birds population. This
observation suggests that it will be essential to further classify the birds into more
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Fig. 10 The basic reproduction number R0 as a function of h

species according to their responses, or death rates due to the infection of the virus.
We leave this for our future work.

As shown in Fig. 10, one can see that R0 is an increasing function of h ∈ [0, 1].
This means that in regions with high percentage of corvids, the virus becomes epi-
demic with higher basic reproduction number. This is consistent with the observation
in Peel region, Ontario, Canada in early years when the virus first arrived and caused
the outbreak, (see Fig. 1). It is well known that a large number of corvid birds died
due to the infection and thus, leading to the decrease of their numbers. Yet in regions
with a lower percentage, the epidemic either did not occur or was not as severe as
regions with higher percentages of corvid birds. In later years after the virus had
established in the region, when R0 < 1 the outbreak of the virus may still occur
(inspite of the lower number of corvid birds) due to existence of the backward bifur-
cation.

5.2 Backward bifurcation

By Theorem 4.1, the backward bifurcation will occur when R0 = 1 and the condition
(4.4) is satisfied. The existence of the backward bifurcation is illustrated by simulating

the model (2.1) with the values of the parameters from Table 1 and A = B̃1
20 . We keep

μ1, μ2 as bifurcation parameters and we plot the two curves (4.1) and (4.2) in the
(μ1, μ2) planes. As shown in Fig. 11, we note that the two positive equilibria exist
only in a small area S between the two hyperbola curves.

By taking (μ1, μ2) = (0.24, 0.07) ∈ S, a time series of Bi is plotted in Fig. 12
showing the DFE and two endemic equilibria. Also using (3.2) and (4.3), we can find
R1

0 = 0.9922 < R0 = 0.9962 < 1. Moreover, the value of the right hand side of

condition (4.4) can be calculated as 0.2386 × B̃1; subsequently, the value of A = B̃1
20

satisfies the condition (4.4). Therefore, the backward bifurcation will occur (when R0
is nearly below unity). We can then find B1i in the two endemic equilibria E2 and E3
as B2

1i = 1, 779 and B3
1i = 409, respectively.
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Fig. 11 Bifurcation curves for the model (2.1) in the plane (μ1, μ2)
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Fig. 12 The trajectories of infected corvid birds in (2.1) with (μ1, μ2) = (0.24, 0.07) ∈ S for different
selection of initial values

Further, Fig. 12 shows that one of the endemic equilibria E2 is stable, the other E3
is unstable (saddle), and the DFE is stable. This clearly shows the co-existence of two
locally-asymptotically stable equilibria when R0 < 1.

5.3 The impact of other mammals A

From the expression in (3.2) and (5.3), we can conclude that the basic reproduction
number increases as A decreases.

In Fig. 13, we simulate and present the total number of infected birds with different

sizes of A. We compare the cases when A = 0,
B∗

s
2 , B∗

s and 2B∗
s , where B∗

s is the
initial number of birds and we also assume that all birds are of one family. One
can see that the peak value of infected bird population increases and the peak time
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Fig. 14 Total of all infected birds with different values of h

occurs earlier when A decreases. This is due to the fact that some of the mosquito
bites are shared by other mammals which causes the decrease of the incidence of the
birds.

5.4 The impact of bird species diversity

In Sect. 5.1, we see that the basic reproduction number is an increasing function of h
(the percentage of corvids of the total birds population). By using the same parameters
as in Table 1, in Fig. 14 we present the total number of infected birds (Bi ) for h ∈ [0, 1].

Usually, registers of WNv cases in the avian population are based on the number
of dead birds found. Thus, epidemiological reports indicate high WNv prevalence in
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Fig. 15 Comparison of the peak time of total infected mosquitoes, and infected corvids and non-corvids.
Corvid is 20, 40 and 60 % of the total population. a Infected mosquitoes. b Peak time for infected corvids
and non-corvids for different h

avian species with high disease mortality rate. In Fig. 15, using the parameters given
in Table 1, we present the corvids and non-corvid birds population with initial total
bird population 15, 000. We can observe in Fig. 15a that the peak time of the infected
mosquitoes appears earlier with higher percentage of corvid birds. It suggests that if
we ignore the weather and environmental factors for a region with higher percentage
of corvids, the peak time of the total infected mosquitoes (correspondingly the risk of
WNv risk) in the region arrives earlier.

From Fig. 15b, we can observe that the peak time of the infected non-corvid sub-
population occurs later with the increase of its percentage that ranges between 40 and
80 %. On the other hand, the peak time of the infected corvid subpopulation occurs
earlier with the increase of its percentage. This observation together with the simu-
lations in Fig. 15a suggests that for a region with more corvids, usually one would
observe a large amount of dead corvids, the virus first causes the outbreak in the bird
populations, and is followed with the peak of infected mosquitoes which can poten-
tially induce the outbreak in the human population. But for a region with less corvids,
it takes longer time for the epidemic of the virus to reach a peak in the birds population
which would postpone the peak of infection in mosquito population. In this case if
the cold wind arrives earlier in the region, it can blow away the epidemic of the virus
in human population. The above! observation is consistent with the endemic of the
virus in regions in Southern Ontario (Public Health Agency of Canada Public Health
Agency of Canada). The first year Ontario had more cases of WNv was in 2002, a
total of 394 human cases reported.

Yet, if warmer weather promotes the abundance of total mosquitoes to reach a
peak earlier, it can still cause outbreak in humans even if there are fewer number of
corvids in the region. Recent outbreak of WNv in regions like Durham, Ontario verifies
our observation. This year, the early and hot summer in Southern Ontario allows
mosquitoes to breed more quickly, which allows the WNv in infected mosquitoes,
and therefore in birds, to replicate faster. As of September 25, 2012, a total of 220
cases of human infection were reported (Public Health Agency of Canada Public
Health Agency of Canada). For the risk assessment and forecasting of WNv, it will be
very important and interesting to study and estimate the peak times for the mosquito
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abundance, total infected birds and human cases. We will consider this in a future
work when the related data can be available.

This paper presents a deterministic model for the transmission dynamics of WNv,
by classifying avian populations as corvids and non-corvids. A detailed analysis of
the model shows the presence of the locally stable disease free equilibrium whenever
the associated reproduction number is less than unity. The model undergoes backward
bifurcation where the stable disease free equilibrium co-exists with a stable endemic
equilibrium. The existence of the backward bifurcation indicates that the spread of the
virus when R0 is nearly below unity could be dependent on the initial sizes of the sub-
population of the model. This paper generalizes the results of backward bifurcation in
previous work (Jiang et al. 2009; Wan and Zhu 2010).

Thus, in this work, we analyzed the effects of two avian populations, corvid and
non-corvid family of birds with different responses to the virus, and we found that
the level of incidence (measured by the peak) and the basic reproduction number are
completely different when assuming one family of bird population. We also discussed
the impact of other mammals on the transition of WNv. Thus, from the above, we can
conclude that if we do not classify the bird population into different species and if we
do not include other mammals, any epidemic calculations will be overestimated.

6 Appendix

In this Appendix, the proof of Theorem 4.1 is given. It employs Theorem 6.1 (demon-
strated below), which is adopted from Castillo-Chavez and Song (2004) that is, in
turn, based on the use of the center manifold theory (Carr 1981; Guckenheimer and
Holmes 1983).

Theorem 6.1 (Castillo-Chavez and Song 2004) Consider the following general sys-
tem of ordinary differential equations with a parameter

dx

dt
= f (x, φ), f : Rn −→ R, and f ∈ C2(R × R). (6.1)

Without loss of generality, it is assumed that 0 is an equilibrium for system (6.1) for
all values of the parameter φ, (that is f (0, φ) = 0 ∀φ). Assume

1. B = Dx f (0, 0) =
(

∂ f j
∂xi

, 0, 0
)

is the linearized matrix of system (6.1) around the

equilibrium 0 with φ evaluated at 0. Zero is a simple eigenvalue of B and all other
eigenvalues of B have negative real parts;

2. Matrix B has a right eigenvector w and a left eigenvector v corresponding to the
zero eigenvalue. Let fk be the kth component of f and

a =
8∑

k,i, j

vkwiw j
∂2 fk

∂xi∂x j
(0, 0)

b =
8∑

k,i

vkwi
∂2 fk

∂xi∂φ
(0, 0).
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The local dynamics of system (6.1) around 0 are totally determined by a and b.
(a) In the case where a > 0; b > 0, we have that when φ < 0 with |φ| close

to zero, 0 is locally asymptotically stable and there exists a positive unstable
equilibrium; when 0 < φ << 1, 0 is unstable and there exists a negative and
locally asymptotically stable equilibrium.

(b) In the case where a < 0; b < 0, we have that when φ < 0 with |φ| close to
zero, 0 is unstable; when 0 < φ << 1, 0 is locally asymptotically stable, and
there exists a positive unstable equilibrium;

(c) In the case where a > 0; b < 0, we have that when φ < 0 with |φ| close
to zero, 0 is unstable and there exists a locally asymptotically stable negative
equilibrium; when 0 < φ << 1, 0 is stable and a positive unstable equilibrium
appears

(d) In the case where a < 0; b > 0, we have that when φ changes from negative
to positive, 0 changes its stability from stable to unstable. Correspondingly,
a negative unstable equilibrium becomes positive and locally asymptotically
stable.

To apply Theorem (6.1), the following simplification and change of variables are
made on the system (2.1). First of all, let x1 = Ms, x2 = Mi , x3 = B1s, x4 =
B1i , x5 = B1r , x6 = B2s, x7 = B2i , x8 = B2r . Further, by using the vector notation
X = (x1, x2, x3, x4, x5, x6, x7, x8)

T , the system (2.1) can be written in the form of
d X
dt = F(x), with F = ( f1, f2, f3, f4, f5, f6, f7, f8)

T , such that

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx1

dt
= (rm x1 + (1 − q)rm x2)

(
1 − x1+x2

Km

)
− dm x1 − βmbm

x4+x7∑8
j=3 x j +A

x1,

dx2

dt
= qrm x2

(
1 − x1+x2

Km

)
− dm x2 + βmbm

x4+x7∑8
j=3 x j +A

x1,

dx3

dt
= γb1 − dbx3 − βbbm

x3∑8
j=3 x j +A

x2,

dx4

dt
= −δ1x4 + βbbm

x3∑8
j=3 x j +A

x2,

dx5

dt
= −dbx5 + ν1x4,

dx6

dt
= γb2 − dbx6 − βbbm

x6∑8
j=3 x j +A

x2,

dx7

dt
= −δ2x7 + βbbm

x6∑8
j=3 x j +A

x2,

dx8

dt
= −dbx8 + ν2x7.

(6.2)

Assume that (1 − q)dmμ2 − βmbmdb > 0. Choose (δ1, δ2) as a bifurcation para-
meters. As a result of solving R0 = 1, backward bifurcation occurs at any point on
the curve defined at Eq. (4.1) (see Sect. 4).
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The Jacobian matrix of the system (2.1) at E1 (with (δ1, δ2) satisfying Eq. (4.1)) is
given by

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−(rm − dm) dm(1 − q) + (dm − rm) 0 −βmbm
M̃
B̃

0 0 −βmbm
M̃
B̃

0

0 −(1 − q)dm 0 βmbm
M̃
B̃

0 0 βmbm
M̃
B̃

0

0 −βbbm
B̃1

B̃
−db 0 0 0 0 0

0 βbbm
B̃1

B̃
0 −δ1 0 0 0 0

0 0 0 ν1 −db 0 0 0

0 −βbbm
B̃2

B̃
0 0 0 −db 0 0

0 βbbm
B̃2

B̃
0 0 0 0 −δ2 0

0 0 0 0 0 0 ν2 −db.

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

The eigenvalues of the Jacobian matrix can be obtained by the following equation:

χ(λ) = λ(λ + db)
4(λ + (rm − dm))(λ2 + a2λ + a1),

where a2 = δ1 + δ2 + (1 − q)dm and a1 = δ2(δ1 + (1 − q)dm).

Thus, the Jacobian matrix has a simple zero eigenvalue and all the other eigenvalues
have negative real parts for all rm > dm . Hence, Theorem (6.1) can be used to analyze
the dynamics of the system (2.1).

When R0 = 1, it can be shown that the Jacobian matrix has a right eigenvector
(associated to the zero eigenvalue), given by w = (w1, w2, w3, w4, w5, w6, w7, w8)

T ,

where w1 = −w2, w2 = w2, w3 = −βbbm
B̃1

db B̃
w2, w4 = βbbm

B̃1

δ1 B̃
w2, w5 =

βbbm
ν1 B̃1

δ1db B̃
w2, w6 = −βbbm

B̃2

db B̃
w2, w7 = βbbm

B̃2

δ2 B̃
w2, w8 = βbbm

ν2 B̃2

δ2db B̃
w2.

Similarly, the components of the left eigenvector of Jacobian matrix (corresponding
to the zero eigenvalue), denoted by v = (v1, v2, v3, v4, v5, v6, v7, v8)

T , are given by

v1 = 0, v2 = v2, v3 = 0, v4 = βmbm
M̃
B̃

v2, v5 = 0, v6 = 0, v7 = βmbm
M̃
B̃

v2, v8 = 0.

Let a and b be the coefficients defined in Theorem (6.1). We can calculate a as
follows: for the transformed system (6.2), the associated non-zero partial derivatives
of f (evaluated at the DFE E1) are given by

∂2 f2

∂x1∂x2
= −qrm

Km
,

∂2 f2

∂x1∂x j
= βmbm

B̃
, ( j = 4, 7),

∂2 f2

∂x2∂x2
= −2

qrm

Km
,

∂2 f2

∂xi∂x j
= −βmbm

M̃

B̃2
, (i = 3, 4, 5, 6, 7, 8; j = 4, 7),

∂2 f4

∂x2∂x j
= −βbbm

B̃1

B̃2
, ( j = 4, 5, 6, 7, 8),

∂2 f4

∂x2∂x3
= βbbm

B̃ − B̃1

B̃2
,

∂2 f7

∂x2∂x j
= −βbbm

B̃2

B̃2
, ( j = 3, 4, 5, 7, 8),

∂2 f7

∂x2∂x6
= βbbm

B̃ − B̃2

B̃2
.
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Then,

a =
8∑

k,i, j

vkwi w j
∂2 fk

∂xi ∂x j
(0, 0)

= 2βmβ2
b b3

m

db

M̃

B̃4
v2w

2
2(B̃1 + B̃1)

(
B̃1

(
ν1 + db

δ1
− 1

)
+ B̃2

(
ν2 + db

δ2
− 1

))

+2βmβ2
b b3

m

db

M̃

B̃4
v2w

2
2(B̃1+ B̃1)

(
A+ B̃1

(
1− μ1

δ1

)
+ B̃2

(
1− μ2

δ2

)
+ βmbmdb

(1−q)dm

(
B̃1

δ1
+ B̃2

δ2

))

= 2βmβ2
b b3

m

db

M̃(B̃1 + B̃2)

B̃4
v2w

2
2

(
A −
(

μ1 − ν1 − db − dbβmbm

(1 − q)dm

)
B̃1

δ1

−
(

μ2 − ν2 − db − dbβmbm

(1 − q)dm

)
B̃2

δ2

)
.

Then, from the above equation we can conclude that a is negative if and only if A
satisfies the Eq. (4.4).

From Eq. (4.1) we can see that δ1 ≥ α B̃1δ2

δ2−α B̃2
, if and only if R0 ≤ 1. Using the same

notation as in Castillo-Chavez and Song (2004), φ = α B̃1δ2

δ2−α B̃2
− δ1, then φ ≥ 0 if and

only if R0 ≥ 1, and φ < 0 if and only if R0 < 1.

We can calculate b by substituting the vectors v and w and the respective partial
derivatives (evaluated at the DFE E1) into the expression

b =
8∑

k,i

vkwi
∂2 fk

∂xi∂φ
(0, 0),

which implies

b = 2βmβbb2
m

db

M̃ B̃1

B̃2
v2w2 > 0.

Since coefficient b is always positive, it follows that the system (2.1) will undergo
backward bifurcation if the coefficient a is negative.
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