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Abstract We investigate a class of evolutionary models, encompassing many
established models of well-mixed and spatially structured populations. Models in
this class have fixed population size and structure. Evolution proceeds as a Markov
chain, with birth and death probabilities dependent on the current population state.
Starting from basic assumptions, we show how the asymptotic (long-term) behav-
ior of the evolutionary process can be characterized by probability distributions over
the set of possible states. We then define and compare three quantities characterizing
evolutionary success: fixation probability, expected frequency, and expected change
due to selection. We show that these quantities yield the same conditions for success
in the limit of low mutation rate, but may disagree when mutation is present. As part
of our analysis, we derive versions of the Price equation and the replicator equation
that describe the asymptotic behavior of the entire evolutionary process, rather than
the change from a single state. We illustrate our results using the frequency-dependent
Moran process and the birth–death process on graphs as examples. Our broader aim
is to spearhead a new approach to evolutionary theory, in which general principles of
evolution are proven as mathematical theorems from axioms.
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Abbreviations

B Total (population-wide) expected offspring number
bi Expected offspring number of individual i
di Death probability of individual i
E Evolutionary process
ei j Edge weight from i to j in the BD process on graphs
f0(x), f1(x) Reproductive rates of types 0 and 1, respectively, in the

frequency-dependent Moran process
ME Evolutionary Markov chain
N Population size
ps→s′ Probability of transition from state s to state s′ in ME
p(n)

s→s′ Probability of n-step transition from state s to state s′ in ME
r Reproductive rate of type 1 in the BD process on graphs
R Set of replaced positions in a replacement event
R Replacement rule
si Type of individual i
s Vector of types occupying each position; state of ME
u Mutation rate
wi Fitness of individual i
w̄1, w̄0, w̄ Average fitness of types 1 and 0, and of the whole population,

respectively
x1, x0 Frequencies of types 1 and 0, respectively
α Offspring-to-parent map in a replacement event
�selx1 Expected change due to selection in the frequency of type 1
πs Probability of state s in the mutation-selection stationary distribution
π∗

s Probability of state s in the rare-mutation dimorphic distribution
ρ1, ρ0 Fixation probabilities of types 1 and 0
〈 〉 Expectation over the mutation-selection stationary distribution
〈 〉∗ Expectation over the rare-mutation dimorphic distribution

1 Introduction

Evolutionary theory searches for the general principles and patterns of evolution. This
field typically progresses by analyzing models of evolution, such as the Wright-Fisher
process. In these models, the fundamental mechanisms of reproduction, competition,
and heritable variation are abstracted and simplified, so that the evolutionary process
can be studied through mathematical analysis and simulation. Analysis of these models
has yielded great insight. However, this approach is limited by the fact that results from
one model are not directly transferrable to others. General principles of evolution are
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Evolutionary success in models with fixed size and structure 111

revealed only through comparisons across many models. In some cases, intense work
is needed to distinguish robust patterns from artifacts of particular models.

This limitation can be overcome through a more general approach, in which the
objects of study are not individual models but classes of models. A class of models is
defined by its foundational assumptions. These assumptions place limits on how the
biological events that drive evolution (birth, death, mutation, etc.) operate in this class.

The goal of this class-based approach is not specific predictions, but gen-
eral theorems that apply to all models within the class. Through this approach,
broad evolutionary principles can be discovered and proven in a single argument.
A number of recent studies have planted the seeds of such an approach (Metz and
de Roos 1992; Champagnat et al. 2006; Diekmann et al. 2007; Durinx et al. 2008,
Rice 2008; Simon 2008; Nathanson et al. 2009; Rice and Papadopoulos 2009; Tarnita
et al. 2009b; Nowak et al. 2010a,b; Tarnita et al. 2011).

Here we introduce and investigate a particular class of evolutionary models. In
this class, reproduction is asexual, and population size and spatial structure are fixed.
Evolution proceeds as a Markov chain. Each transition corresponds to the replacement
of some individuals by the offspring of others. The probabilities of transition depend
on the current population state; however, we leave the nature of this dependence
unspecified for the sake of generality.

This class encompasses many well-known evolutionary models. In particular, it
encompasses a variety of evolutionary processes on graphs, including voter models
(Holley and Liggett 1975; Cox 1989; Cox et al. 2000; Sood and Redner 2005; Sood
et al. 2008) invasion processes (Sood et al. 2008), and evolutionary game dynamics
(Hauert and Doebeli 2004; Lieberman et al. 2005; Santos and Pacheco 2005; Ohtsuki
et al. 2006; Taylor et al. 2007a; Szabó and Fáth 2007; Santos et al. 2008; Szolnoki
et al. 2008; Roca et al. 2009; Broom et al. 2010; Allen et al. 2012; Shakarian et al.
2012). This class also includes standard models of well-mixed populations, such as the
Wright-Fisher model (Fisher 1930), the Moran (1958) model, and the Cannings (1974)
exchangeable model, along with frequency-dependent extensions of these (Nowak
et al. 2004; Taylor et al. 2004; Imhof and Nowak 2006; Lessard and Ladret 2007;
Traulsen et al. 2007).

We focus on two varieties of results. The first concerns the asymptotic properties of
the evolutionary process—that is, its behavior over long periods of time. With mutation,
we show that the evolutionary Markov chain is ergodic, and therefore its time-averaged
behavior converges to a mutation-selection stationary distribution. Without mutation,
one of the competing types inevitably fixes. Linking these two cases is the limit of
rare mutation, in which long periods of fixation are punctuated by sporadic episodes
of competition. To analyze this limit, we introduce a new probability distribution, the
rare-mutation dimorphic distribution , which characterizes the likelihood of states to
arise during these competition episodes.

Second, we ask how one might quantify success in evolutionary competition. Rea-
sonable choices include fixation probability, fitness (survival probability plus expected
offspring number), and time-averaged frequency. We provide a new definition of fix-
ation probability (the probability that a type, starting with a single individual, will
eventually dominate the population), taking into account the various ways a muta-
tion could arise. We then compare these measures of success. We show that success
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conditions based on fixation probability, fitness, and average frequency coincide in the
low-mutation limit. However, the relationships between these measures become more
intricate with nonzero mutation because, even if mutation is symmetric, differences
in birth rate can induce mutational bias toward one type.

As part of our comparison of success measures, we derive stochastic versions of
the Price equation (Price 1970, 1972; van Veelen 2005) and the replicator equation
(Taylor and Jonker 1978; Hofbauer and Sigmund 1998, 2003). Unlike the traditional
Price equation and replicator equation, which describe deterministic evolutionary
change from a given state, our versions of these equations are based on expecta-
tions over the entire evolutionary process, using probability distributions associated
to the evolutionary Markov chain.

We begin in Sect. 2 by introducing two illustrative examples of models to which our
results apply. We then, in Sect. 3, introduce our fundamental definitions and axioms,
first informally and then rigorously. Section 4 derives results on the asymptotic behav-
ior of the evolutionary process. Section 5 defines measures of evolutionary success
and proves relationships among them. We provide a concise summary of our results
in Sect. 6.

2 Two example models

To motivate and provide intuition for our approach, we first introduce two established
evolutionary models encompassed by our formalism: the frequency-dependent Moran
process (Nowak et al. 2004; Taylor et al. 2004) with mutation, and the birth-death
process on graphs (Lieberman et al. 2005). We will revisit these examples throughout
the text, to illustrate the applications of our definitions and results in the context of
these models.

2.1 Frequency-dependent Moran process with mutation

The Moran process is a simple model of evolutionary competition between two types in
a finite well-mixed population. It was originally formulated (Moran 1958) in the case
of constant selection, but later extended by Nowak et al. (2004) and Taylor et al. (2004)
to incorporate game-theoretic interactions and other forms of frequency dependence.

This model describes a well-mixed population of constant size N . Within this
population there are two types, which we label 0 and 1. An individual’s reproductive
rate depends on the individual’s type as well as the current frequencies of the two
types. We denote the reproductive rates of type 0 and type 1 individuals, respectively,
by f0(x1) and f1(x1), where x1 is the current frequency of type 1. In general, f0 and
f1 may be arbitrary nonnegative functions. Much attention, however, is focused on
the case that reproductive rate is equal to the payoff obtained from interacting with
the whole population according to some 2 × 2 matrix game

(
a00 a01
a10 a11

)
.
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Evolutionary success in models with fixed size and structure 113

Above, aXY denotes the payoff to a type X individual interacting with type Y , for
X, Y ∈ {0, 1}. In this case, f0 and f1 are given by the linear functions

f0(x) = a01x + a00(1 − x), f1(x) = a11x + a10(1 − x).

(These expressions describe the case where self-interaction is included in the model;
otherwise they become slightly more complicated.)

The Moran process proceeds as a Markov chain. At each time step, one individual is
randomly selected to die, with uniform probability 1/N per individual. Independently,
one individual is selected, with probability proportional to reproductive rate, to produce
an offspring. The new offspring inherits the type of the parent with probability 1 − u,
where u ∈ [0, 1] is the mutation rate; otherwise the offspring’s type is determined at
random with equal probability for the two types.

2.2 Birth–death with constant selection on graphs

Evolutionary graph theory (Lieberman et al. 2005; Ohtsuki et al. 2006; Taylor et al.
2007a; Szabó and Fáth 2007) is a framework for studying spatial evolution. Spa-
tial structure is represented by a graph with N vertices and edge weights ei j , for
i, j ∈ {1, . . . , N }, satisfying ei j > 0 and

∑
j ei j = 1. Individuals occupy vertices of

the graph, and replacement occurs along edges.
The basic model introduced by Lieberman et al. (2005) can be described as

birth–death (BD; see Ohtsuki et al. 2006) with constant selection. In this model,
each of two competing types is defined by a constant reproductive rate. We label
the types 0 and 1, and assign them reproductive rates 1 and r > 0, respectively.
Evolution again proceeds as a Markov chain. At each time step, one individual
is chosen, proportionally to reproductive rate, to reproduce. Offspring of parent
i replace individual j with probability ei j . Offspring inherit the type of the par-
ent.

We focus in particular on the example of star-shaped graphs (Fig. 1). Star graphs
are noteworthy in that they amplify the force of selection relative to drift (Lieberman
et al. 2005).

The simple model described above can be generalized to incorporate local
frequency-dependent interactions (i.e. games; Ohtsuki et al. 2006), other schemes
for determining births and deaths (update rules; Ohtsuki et al. 2006), and nonzero
mutation rates (Allen et al. 2012). All these generalizations fall within the class of
models presented here.

2.3 Remarks on examples

The two above examples illustrate important general features of the class of mod-
els presented here. For example, in both models, evolution proceeds as a Markov
chain, with birth and death probabilities depending on the current state. However,
they are also quite special in several ways. For example, they both have the fea-
ture that exactly one birth and death occurs per time step. Also, in both exam-
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114 B. Allen, C. E. Tarnita

Fig. 1 The star graph, shown for population size N = 9. The center is indexed i = 1, and the N −1 leaves
are indexed i = 2, . . . , N . Edge weights are given by e1 j = 1/(N − 1) and e j1 = 1 for j = 2, . . . , N ;
all other ei j are zero. In the birth–death (BD) process, at each time step, an individual is randomly chosen
to reproduce, with probability proportional to reproductive rate (1 for type 0, r for type 1). If the center
individual reproduces, the offspring replaces a random leaf individual, chosen with uniform probability. If
a leaf individual reproduces, the offspring replaces the center individual

ples, the population structure can naturally be represented as a graph (a complete
graph, in the case of the Moran process). In contrast, our class of models allows
for any number of offspring to be produced per time step, and includes models for
which there is no obvious graph representation of the population structure.

3 Mathematical framework

The aim of this work is to capture the general properties of these and other models,
without specifying any particular representation of population structure or interactions.
Here we present the class of models under consideration. We begin in Sect. 3.1 with
a verbal description of our framework and notation. We then formally state our basic
definitions in Sect. 3.2 and assumptions in Sect. 3.3. The evolutionary Markov chain
is defined in Sect. 3.4.

3.1 Verbal description

Since the formal definition of our class of models requires some specialized notation,
we begin with a verbal description, along with illustrations using the evolutionary
models introduced above.

In the class of models we consider, population size and structure (spatial structure,
social structure, etc.) are fixed. Each model in this class has a fixed number N ≥ 2
of positions. Each position is always occupied by a single individual. Individuals do
not change positions—they remain in position until replaced by new offspring (as
described below). The positions are indexed i = 1, . . . , N . We will sometimes write
“individual i” as a shorthand for “the current occupant of position i”.

There are two competing types, labeled 0 and 1. (The case of more than two types
will be considered in future work). Individuals are distinguished only by their type
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Evolutionary success in models with fixed size and structure 115

Fig. 2 Illustration of an evolutionary transition. The replacement event is represented by the pair (R, α).
The set R = {2, 4, 5} indicates the positions that are replaced, and the mapping α indicates the parent of
the new offspring filling each replaced position. Thus the new occupant of position 2 is the offspring of 1,
α(2) = 1, while the new occupants of 4 and 5 are the offspring of 2, α(4) = α(5) = 2. The offspring in
positions 2 and 4 inherit their parents’ types, while the offspring in position 5 is a mutant

and position. Consequently, the state of the evolutionary system is fully characterized
by specifying which type occupies each position. We therefore represent the state of
the system by the binary vector s = (s1, . . . , sN ), where si denotes the type occupying
position i .

Evolution proceeds by replacement events. In each replacement event, the occu-
pants of some positions are replaced by the offspring of others. We let R denote the
set of positions that are replaced. For each replaced position j ∈ R, the parent of the
new occupant of j is denoted α( j) ∈ {1, . . . , N }. In this notation, α is a set mapping
from R to {1, . . . , N }. Together, the pair (R, α) contains all the information necessary
to specify a replacement event. Figure 2 illustrates a replacement event, along with
mutation (see below).

The probability of each replacement event (R, α) depends on the current state s. We
denote this probability by ps(R, α). Thus in each state s there is a probability distribu-
tion {ps(R, α)}(R,α) over the set of possible replacement events. We call the mapping
from the state s to the probability distribution {ps(R, α)}(R,α) the “replacement rule”,
which we represent with the symbol R.

This abstract notion of a replacement rule allows our framework to encompass a
wide variety of evolutionary models. The replacement rule implicitly represents many
processes that would be explicitly represented in the context of particular models. For
example, the replacement rule for the frequency-dependent Moran process reflects the
reproductive rate functions f1(x) and f0(x), while the replacement rule for the BD
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process on graphs reflects the graph structure. In the general case, the replacement
rule is simply the mapping

Type of the occupant of each position −→ Probabilities of births and deaths.

Any intermediate processes or structural features affecting this mapping are left
unspecified. Our framework is therefore not tied to any particular way of representing
population structure or interactions.

Example: Moran process The replacement rule R for the frequency-dependent Moran
process has the property that ps(R, α) = 0 unless R has exactly one element. (This
expresses the fact that exactly one individual is replaced per time step in this process.)
Using this fact, we can express the replacement rule as

ps
({i}, α) = 1

N

fsα(i)

(
x1(s)

)
∑N

j=1 fs j

(
x1(s)

) .

The first factor on the right-hand side, 1/N , represents the probability that i is replaced,
while the second factor represents the probability that α(i) is chosen to reproduce—
that is, the reproductive rate of α(i) divided by the total reproductive rate.

Example: BD on graphs The replacement rule R for the BD process on graphs also
has the property that ps(R, α) = 0 unless R has exactly one element. The replacement
rule can be expressed as

ps
({i}, α) = 1 + (r − 1)sα(i)∑N

j=1(1 + (r − 1)s j )
eα(i) i .

Note that 1 + (r − 1)s j is precisely the reproductive rate of individual j . The first
factor on the right-hand side is the probability that α(i) is chosen to reproduce—the
reproductive rate of α(i) divided by the total reproductive rate. The second factor,
eα(i) i , is the probability that i is replaced given that α(i) reproduces.

Each new offspring born during a replacement event has probability u of being born
with a mutation. If there is no mutation, the offspring inherits the type of the parent. If
a mutation occurs, we use the convention that the mutant offspring has a 50 % chance
of being of either type (0 or 1).

Overall, evolution is described by a stochastic process called the evolutionary
Markov chain. In each step of this process, a replacement event (R, α) is chosen,
with probability depending on the current state s as according to the replacement rule
R. Possible mutations are then resolved, resulting in a new state s′. This process repeats
indefinitely.

Our analysis will focus on the long-term behavior of the evolutionary Markov chain,
with particular emphasis on the question of which of the two types, 0 or 1, is favored
by evolution.
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Evolutionary success in models with fixed size and structure 117

3.2 Definitions

Definition 1 The state of the evolutionary process is the binary vector s =
(s1, . . . , sN ) ∈ {0, 1}N indicating the type of the occupant of each position.

Definition 2 A replacement event is a pair (R, α), where

– R ⊂ {1, . . . , N } is the set of replaced positions, and
– α : R → {1, . . . , N } is a map indicating the parent of each new offspring.

Definition 3 For a given replacement event (R, α), the set of offspring of individual i
is the preimage α−1(i), i.e. the set of all j ∈ {1, . . . , N } with α( j) = i . The offspring
number of i is the cardinality of this preimage, which we denote |α−1(i)|.
Definition 4 A replacement rule R assigns to each state s ∈ {0, 1}N a probability
distribution {ps (R, α)}(R,α) on the set of possible replacement events.

Definition 5 An evolutionary process E is defined by the following data:

– the population size N ≥ 2,
– the replacement rule R,
– the mutation rate u, 0 ≤ u ≤ 1.

Definition 6 From a given replacement rule R, we can define the following quantities
as functions of the state s:

– The expected offspring number of individual i :

bi (s) = E
[|α−1(i)|] =

∑
(R,α)

ps (R, α) |α−1(i)|,

– The death probability of i :

di (s) = Pr[i ∈ R] =
∑
(R,α)
i∈R

ps (R, α),

– The fitness of i :

wi (s) = 1 + bi (s) − di (s).

– The frequencies of types 0 and 1, respectively:

x0(s) = 1

N

N∑
i=1

(1 − si ), x1(s) = 1

N

N∑
i=1

si .

Example: Moran process For the frequency-dependent Moran process, we have

bi (s) = fsi

(
x1(s)

)
∑N

j=1 fs j

(
x1(s)

) , di (s) = 1

N
, (3.1)
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for each s ∈ {0, 1}N and each i ∈ {1, . . . , N }.
Example: BD on graphs For the birth-death process on a graph with edge weights
{ei j }, we have

bi (s) = 1 + (r − 1)si∑N
j=1(1 + (r − 1)s j )

, di (s) =
N∑

k=1

(1 + (r − 1)sk)∑N
j=1(1 + (r − 1)s j )

eki .

3.3 Assumptions

We will assume the following restrictions on the replacement rule R. First, as we will
later see, it is mathematically convenient to assume a constant overall birth rate across
states:

Assumption 1 The total expected offspring number
∑N

i=1 bi (s) has a constant value
B over all s ∈ {0, 1}N .

Second, for each position i , it should be possible for i’s descendants to eventually
dominate the population:

Assumption 2 For each individual i , there is a positive integer n and a finite sequence
{(Rk, αk)}n

k=1 of replacement events such that

– ps (Rk, αk) > 0 for all k and all s ∈ {0, 1}N , and
– For all individuals j ∈ {1, . . . , N },

αk1 ◦ αk2 ◦ · · · ◦ αkm ( j) = i,

where 1 ≤ k1 < k2 < · · · < km ≤ n are the indices k for which j ∈ Rk .

In other words, there is some sequence of possible replacement events leading to
the result that the entire population is descended from a single individual in position i .

The first assumption is for the sake of mathematical convenience. It could be relaxed
to yield a more general framework, at the cost of increasing the complexity of a number
of our results. The second assumption, however, is fundamental: it guarantees the unity
of the population. Without this second assumption, the population could in theory
consist of separate sub-populations with no gene flow between them, or with gene
flow only in one direction.

It is straightforward to verify that our two examples, the frequency-dependent
Moran process and the birth–death process on graphs, both satisfy these assumptions.

3.4 The evolutionary Markov chain

To every evolutionary process E , there is an associated evolutionary Markov chain
ME . The state space of ME is the set {0, 1}N of possible state vectors s. From a given
state s, the next state s′ is determined by a two-step random process (replacement
then mutation). First, a replacement event (R, α) is sampled from the distribution
{ps(R, α)}(R,α). Then for each i ∈ {1, . . . , N },
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Evolutionary success in models with fixed size and structure 119

– If i /∈ R then s′
i = si . (If i was not replaced, its type stays the same.)

– If i ∈ R then s′
i is assigned by the rule:

s′
i =

⎧⎨
⎩

sα(i) with probability 1 − u,

0 with probability u/2,

1 with probability u/2.

In either of the latter two subcases of the i ∈ R case, we say that a mutation has
occurred.

We denote transition probabilities in ME by ps1→s2 . The probability of transition
from s1 to s2 in exactly n steps is denoted p(n)

s1→s2 .
Example: Moran process Since the N positions are interchangeable in the Moran
process, the state space for the evolutionary Markov chain can be reduced from {0, 1}N

to {0, . . . , N }, where the elements in the latter set correspond to the number m of type
1 individuals. The transition probabilities of the evolutionary Markov chain can then
be written as

pm→m+1 = N − m

N

(
(1 − u)

m f1
( m

N

)
m f1

( m
N

) + (N − m) f0
( m

N

) + u

2

)
,

pm→m−1 = n

N

(
(1 − u)

(N − m) f0
( m

N

)
m f1

( m
N

) + (N − m) f0
( m

N

) + u

2

)
, (3.2)

pm→m = 1 − pm→m+1 − pm→m−1.

Example: BD on star graphs Since the leaves are interchangeable on the star graph,
the state space for the evolutionary Markov chain can be reduced from {0, 1}N to
{0, 1} × {1, . . . , N − 1}. In this reduced state space, a state can be represented by
the pair (s1, �), where s1 ∈ {0, 1} represents the type of the center, and � indicates
the abundance of type 1 individuals among the leaves. Using this representation, the
transition probabilities for the evolutionary Markov chain can be written

p(0,�)→(1,�) = �r

N − � + �r
,

p(0,�)→(0,�−1) = 1

N − � + �r

�

N − 1
,

p(0,�)→(0,�) = 1 − p(0,�)→(1,�) − p(0,�)→(0,�−1),

p(1,�)→(0,�) = N − � − 1

N − � − 1 + (� + 1)r
,

p(1,�)→(1,�+1) = r

N − � − 1 + (� + 1)r

N − � − 1

N − 1
,

p(1,�)→(1,�) = 1 − p(1,�)→(0,�) − p(1,�)→(1,�+1).

(3.3)
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4 Asymptotic behavior of the evolutionary Markov chain

We now examine the asymptotic properties of the evolutionary Markov chain ME as
t → ∞. We separate the cases u > 0 (mutation is present; Sect. 4.1) and u = 0 (no
mutation; Sect. 4.2). We then, in Sect. 4.3, explore how these cases are linked in the
limit of low mutation rate (u → 0).

4.1 Processes with mutation: ergodicity and the mutation-selection stationary
distribution

In the case u > 0, we show that ME is ergodic. As a consequence, its long-term
behavior can be described by a stationary probability distribution over states. We
call this the mutation-selection stationary distribution. This distribution is a stochastic
analogue of the mutation-selection equilibrium in deterministic models.

Theorem 1 For u > 0, ME is ergodic (aperiodic and positive recurrent).

Proof To prove ergodicity, it suffices to show that there is a whole number m for which
it is possible to transition between any two states in exactly m steps. We take m = N
and show that p(N )

s1→s2 > 0 for any pair of states s1 and s2.
Assumption 2 trivially implies that, for any individual i there is at least one replace-

ment event (R, α) such that i ∈ R and ps (R, α) > 0 for all s ∈ {0, 1}N . So for
each i , fix a replacement event (Ri , αi ) with these properties. This gives a sequence
{(Ri , αi )}N

i=1 of replacement events such that (a) each replacement event has nonzero
probability for all s ∈ R

N , and (b) each position is replaced at least once over the
course of the sequence.

We now assign mutations according to the following rule: For each (Ri , αi ), and
each replaced position j ∈ Ri , a mutation occurs so that the type of j becomes equal
to (s2) j . Since u > 0 and ps (Ri , αi ) > 0 for all s ∈ {0, 1}N , the resulting state
transition has nonzero probability.

We have now constructed a sequence of N state transitions, each with nonzero
probability, in which each position i is replaced at least once. Since each replacement
of i results in si = (s2)i , the final state after all m transitions is s2. This completes the
proof that ME is ergodic. �

Ergodicity implies that each evolutionary Markov chain with u > 0 has a
well-defined stationary distribution. We call this the mutation-selection stationary
distribution, and denote the probability of state s in this distribution by πs. The
mutation-selection stationary distribution can be computed from the recurrence
relation

πs =
∑

s′∈{0,1}N

πs′ ps′→s. (4.1)

We use the notation 〈 〉 to represent the expectation of a quantity over the mutation-
selection stationary distribution of ME . For example, the expected fitness of position
i is denoted 〈wi 〉 and is given by
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Fig. 3 Mutation-selection stationary distributions for the Moran process, with frequency dependence
described by the Prisoner’s Dilemma game with payoffs a00 = 6, a01 = 4, a10 = 7, a11 = 5. Type
0 plays the role of the cooperator. The population size is N = 10. States are grouped together according
to the number of type 1 individuals. The two panels correspond to mutation rates u = 0.1 and u = 0.2,
respectively. Calculations are based on Eqs. 3.2 and 4.1. Lower mutation rates lead to increased probability
concentration on the states 0 and 1 in which only one type is present, while higher mutation increases the
probabilities of intermediate frequencies

〈wi 〉 =
∑

s∈{0,1}N

πs wi (s).

The utility of the mutation-selection stationary distribution is made clear by the
following consequence of the Markov chain ergodic theorem (e.g., Woess 2009): Let
g(s) be any function of the state s, and let S(t) denote the random variable representing
the state of ME after t time-steps, given the initial state S(0). Then

lim
T →∞

1

T

T −1∑
t=0

g(S(t)) = 〈g〉,

almost surely. In words, 〈g〉 is almost surely equal to time-average of g(S(t)), as the
total time T goes to infinity. We also have, as a consequence of the Perron-Frobenius
theorem, that

lim
t→∞ E[g(S(t))] = 〈g〉.

It is therefore natural to characterize the long-term behavior of the evolutionary Markov
chain using expectations over the mutation-selection stationary distribution. Mutation-
selection stationary distributions have been used recently to analyze a number of
particular models (Rousset and Ronce 2004; Taylor et al. 2007b; Antal et al. 2009a,b;
Tarnita et al. 2009a) as well as classes of models (Tarnita et al. 2009b, 2011; Nathanson
et al. 2009).
Example: Moran process Mutation-selection stationary distributions for a
Prisoner’s Dilemma game under the Moran process are illustrated in Fig. 3.
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4.2 Processes without mutation: absorbing behavior

In the case u = 0, the evolutionary Markov chain is not ergodic, but rather converges
to one of two absorbing states, corresponding to fixation of the two competing types.
We state this formally in the following theorem:

Theorem 2 For u = 0, ME has exactly two absorbing states, 0 and 1. For any states
s, s′ with s′ /∈ {0, 1}, limn→∞ p(n)

s→s′ = 0.

Informally, the second claim of the theorem asserts that, from any initial state, the
process will almost certainly become absorbed in 0 or 1 as the number of steps goes
to infinity.

Proof It is clear that 0 and 1 are indeed absorbing states. To prove the rest of the claim,
consider an initial state s0. It suffices to show that there is a nonzero probability of
transitioning from s0 to one of 0 or 1 in a finite number of steps. For then all states
other than 0 and 1 are transient, and the probability of occupying a transient state at
time t approaches 0 as t → ∞ (e.g., Koralov and Sinai 2007; Woess 2009).

Choose a position i . By Assumption 2 there is a sequence {(Rk, αk)}n
k=1 of replace-

ment events such that

– ps (Rk, αk) > 0 for all k and all s ∈ {0, 1}N , and
– For all individuals j ∈ {1, . . . , N },

α1 ◦ α2 ◦ · · · ◦ αn( j) = i.

Since mutation does not occur for u = 0, the sequence {(Rk, αk)}n
k=1 unambiguously

determines a sequence of state transitions, all of which have nonzero probability. After
this sequence of state transitions, the type of each individual is (s0)i (again, since
mutations are impossible). Thus the resulting state is either 0 or 1. This completes the
proof. �

4.3 The low-mutation limit and the rare-mutation dimorphic distribution

Having described the asymptotic behavior of the evolutionary Markov chain with and
without mutation, we now connect these cases by investigating the limit u → 0.
This limit describes the situation in which mutation is rare, and sporadic episodes of
competition separate long periods in which the population is fixed for one type or
the other. In particular, we introduce the rare-mutation dimorphic distribution , which
characterizes the likelihood of states to arise during these competition episodes.

For some fixed population size N and replacement rule R, we let Eu denote the
evolutionary process with mutation rate u ≥ 0. In this section we study the family of
Markov chains

{MEu

}
u≥0 as a perturbation (Gyllenberg and Silvestrov 2008) of the

mutation-free Markov chain ME0 . We denote by ps→s′(u) the transition probability
from s to s′ in MEu . In the case u > 0 we write πs(u) for the stationary probability of
s in MEu .

The following lemma will be of great use in understanding the behavior of MEu

as u → 0.
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Lemma 1 For each s ∈ {0, 1}N , πs(u) is a rational function of u.

Proof For any finite ergodic Markov chain, the probabilities associated to each state
in the stationary distribution are rational functions of the transition probabilities (e.g.
Mihoc 1935; Iosifescu 1980). Since the transition probabilities ps→s′(u) of MEu are
polynomial functions of u, πs(u) is a rational function of u for each s. �

This lemma allows us to consider the limit of the mutation-selection stationary
distribution as u → 0. For each s ∈ {0, 1}N , we define πs(0) = limu→0 πs(u); this
limit exists since πs(u) is a bounded rational function of u ∈ (0, 1]. By taking the limit
u → 0 in the recurrence relation Eq. 4.1, we obtain that {πs(0)}s∈{0,1}N solves Eq. 4.1
as well. Thus {πs(0)}s is a stationary distribution of ME0 . Since ME0 is absorbing
(Theorem 2), it follows that {πs(0)}s is concentrated entirely on the absorbing states
0 and 1; that is, πs(0) = 0 for s /∈ {0, 1}. This formalizes the above remark that, in
the low-mutation limit, the evolutionary process is almost always fixed for one type
or the other. The frequencies with which types 0 and 1 are fixed are given by π0(0)

and π1(0), respectively.
We note that, in contrast to the u > 0 case, {πs(0)}s is not unique as a stationary dis-

tribution of the evolutionary Markov chain ME0 . Indeed, any distribution concentrated
on the absorbing states 0 and 1 is a stationary distribution of this Markov chain.

4.3.1 The rare-mutation dimorphic distribution

Though, under rare mutation, the population is most often fixed for one type or the
other, the states that are most interesting from an evolutionary perspective are those
that arise during episodes of competition between the two types. Here we introduce
the rare-mutation dimorphic distribution , which characterizes the relative likelihoods
of these states in the low-mutation limit.

To define this distribution, we first consider the conditional mutation-selection
stationary distribution of MEu for u > 0, given that both types are present in the
population. The probability πs|/∈{ 0,1 }(u) of a state s ∈ {0, 1}N \{0, 1} in this conditional
distribution is given by

πs|/∈{ 0,1 }(u) = πs(u)

1 − π0(u) − π1(u)
. (4.2)

The rare-mutation dimorphic distribution {π∗
s }s∈{0,1}N \{0,1} is then obtained as the

limit of this conditional distribution as u → 0:

π∗
s = lim

u→0
πs|/∈{ 0,1 }(u) = lim

u→0

πs(u)

1 − π0(u) − π1(u)
. (4.3)

In short, the rare-mutation dimorphic distribution is the limit as u → 0 of the
mutation-selection stationary distribution of MEu , conditioned on both types being
present. The following lemma ensures that the rare-mutation dimorphic distribution
is well-defined.
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Lemma 2 For all states s /∈ {0, 1}, the limit

lim
u→0

πs(u)

1 − π0(u) − π1(u)
(4.4)

exists.

Proof Since πs(u), π0(u), and π1(u) are all rational functions of u, the conditional
probability

πs|/∈{ 0,1 }(u) = πs(u)

1 − π0(u) − π1(u)

is a rational function of u as well. Since 0 ≤ πs(u) ≤ 1 − π0(u) − π1(u), we have
0 ≤ πs|/∈{ 0,1 }(u) ≤ 1 for all u > 0. A rational function which is bounded on an open
subset U ⊂ R must extend continuously to the closure Ū of U . Therefore the limit
4.4 exists. �

Since it pertains to evolutionary competition under rare mutation, the rare-mutation
dimorphic distribution arises naturally from the basic considerations of evolutionary
theory. Indeed, Corollaries 1 and 2 below show that the rare-mutation dimorphic
distribution is the correct distribution to average over when comparing quantities
that pertain to specific states (e.g. frequency, fitness) to those that characterize the
entire evolutionary process (e.g. fixation probability), under rare mutation. Despite this
usefulness, we have found only a handful of examples in which such a distribution
is considered (e.g. Zhou et al. 2010, and Zhou and Qian 2011, who considered a
conditional stationary distribution equivalent to, but defined differently from, the rare-
mutation dimorphic distribution for the Moran process).

The rare-mutation dimorphic distribution is similar in spirit to quasi-stationary
distributions (Darroch and Seneta 1965; Barbour 1976; Gyllenberg and Silvestrov
2008; Cattiaux et al. 2009; Collet et al. 2011), in that both distributions describe
asymptotic behavior in absorbing Markov chains, conditioned (in some sense) on non-
absorption. However, there is a substantive difference in the way this conditioning
is implemented: In quasi-stationary distributions, one conditions on the event that
absorption has not yet occurred. In contrast, the rare-mutation dimorphic distribution
begins with an ergodic Markov chain (MEu for u > 0), conditions on not occupying a
subset of states (the fixation states {0, 1}), and then takes a limit (u → 0) under which
this subset becomes absorbing. These two ways of conditioning on non-absorption are
mathematically different; thus the rare-mutation dimorphic distribution is not quasi-
stationary according to standard mathematical definitions.

We denote expectations in the rare-mutation dimorphic distribution by 〈 〉∗. In
Sect. 4.3.3 we derive a recurrence formula that can be used to compute this distribution
for any model satisfying our assumptions.

Example: Moran process The rare-mutation dimorphic distribution for the
frequency-dependent Moran process is given by

πm ∝ m f1
( m

N

) + (N − m) f0
( m

N

)
m(N − m) f0

( m
N

)
m−1∏
i=1

f1
( i

N

)
f0

( i
N

) . (4.5)
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Fig. 4 Rare-mutation dimorphic distributions for the Moran process, with frequency dependence described
by a Prisoner’s Dilemma game (left) and a Snowdrift game (right). Type 0 plays the role of the cooperator
in each case. Note that, since the Snowdrift game promotes coexistence between cooperators and defectors,
the rare-mutation dimorphic distribution for the Snowdrift game places greater probability on intermediate
states. Calculations are based on Eq. 4.5, together with the transition probabilities in Eq. 3.2
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Fig. 5 Rare-mutation dimorphic (RMD) distributions for the BD process on a star graph with 8 leaves
(see Sect. 2.2 and Fig. 1). The bars show the probabilities of the various states (s1, �). The horizontal axes
correspond to the abundance � of type 1 among the leaves, while the two colors of bars correspond to the
type s1 ∈ {0, 1} of the center. In a, both types have equal reproductive rate (from which the symmetry in
the figure follows), while in b, types 0 and 1 have reproductive rates 1 and 1.1, respectively. Calculations
are based on the recurrence formula Eq. 4.8, together with the transition probabilities in Eq. 3.3

Above, m represents the number of type 1 individuals, and the symbol ∝ means
“proportional to”. This expression can be verified using the recurrence formula derived
in Theorem 3 below, together with the transition probabilities in Eq. 3.2. Equivalent
formulas were obtained by Zhou et al. (2010) and Zhou and Qian (2011). Figure 4
illustrates the rare-mutation dimorphic distribution s for the Moran process in the cases
of a Prisoner’s Dilemma and a Snowdrift game.
Example: BD on star graphs Fig. 5 illustrates the rare-mutation dimorphic distribution
for the birth-death process on a star graph for two values of r .
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4.3.2 The mutant appearance distribution

It is also important to characterize the states that are likely to arise when a new
mutation appears. This is because mutant offspring may be more likely to appear in
some positions rather than others, and the ultimate success of a mutation may depend
on the position in which it arises.

To this end, we here define the mutant appearance distributions {μ1
s }s∈{0,1}N and

{μ0
s }s∈{0,1}N . For a state s, μ1

s gives the probability of being in state s immediately
after a type 1 mutant arises in a population otherwise of type 0, and vice versa for μ0

s .
These distributions are essential to our definition of fixation probability, and also play
a role in the recurrence formula for the rare-mutation dimorphic distribution that we
derive in Sect. 4.3.3.

Definition 7 The mutant appearance distribution of type 1, {μ1
s }s is a probability

distribution on {0, 1}N defined by

μ1
s =

{
limu→0

p0→s(u)
1−p0→0(u)

s �= 0,

0 s = 0.

In words, μ1
s is the low-mutation limit of the probability that state s is reached in a

transition that leaves state 0. The mutant appearance distribution of type 0, {μ0
s }s, is

defined similarly.
It is intuitively clear that μ1

s and μ0
s should be nonzero only for states s that have

exactly one individual—the mutant—whose type is different from the others. Further
reflection suggests that mutants should appear in position i with probability propor-
tional to the rate at which position i is replaced, which is di (0) or di (1) for the two
respective distributions. We formalize these observations in the following lemma:

Lemma 3 The mutant appearance distribution {μ1
s }s satisfies

μ1
s =

{ di (0)
B if si = 1 and s j = 0 for j �= i,

0 otherwise,

and the analogous result holds for {μ0
s }s.

We recall that B is the total expected offspring number for the whole population,
which is constant over states by Assumption 1.

Proof We give the proof for {μ1
s }s; the proof for {μ0

s }s is similar. If s has si = 1 and
s j = 0 for j �= i , then

p0→s(u) =
∑
(R,α)
i∈R

p0(R, α)
u

2

(
1 − u

2

)|R|−1 = u

2
di (0) + O(u2). (4.6)
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For all other states s, p0→s(u) is of order u2 as u → 0. Summing Eq. 4.6 over states
s �= 0, we obtain

1 − p0→0(u) = u

2

N∑
i=1

di (0) + O(u2) = u B

2
+ O(u2) (u → 0). (4.7)

Dividing Eq. 4.6 by Eq. 4.7 and taking the limit as u → 0 yields the desired result. �
Example: Moran process In the Moran process, di (s) = 1/N for each position i and
state s, thus the mutant appearance distributions place equal probability on mutants
arising in each position.

Example: BD on graphs For the birth–death process on graphs, we have di (0) =
di (1) = 1/N

∑N
j=1 e ji . This quantity—called the temperature of vertex i by Lieber-

man et al. (2005)—gives the probability of mutants appearing at vertex i under the
two mutant appearance distributions. In particular, for the star graph, a new mutant
has probability (N −1)/N of arising at the center, versus 1/

(
N (N −1)

)
for each leaf.

Our convention for the appearance of mutants departs from that of Lieberman et al.
(2005) and other works in evolutionary graph theory, which assume that mutants are
equally likely to arise at each position.

4.3.3 A recurrence formula for the rare-mutation dimorphic distribution

As we will later show, the rare-mutation dimorphic distribution is very useful for
linking different measures of evolutionary success. It is therefore desirable to have a
recurrence formula for this distribution, so that it can be obtained numerically without
the computation of limits. The following theorem provides such a formula.

Theorem 3 The rare-mutation dimorphic distribution {π∗
s }s satisfies

π∗
s =

∑
s′ /∈{0,1}

π∗
s′

(
ps′→s + ps′→0 μ1

s + ps′→1 μ0
s

)
, (4.8)

where {ps1→s2}s1,s2 are the transition probabilities in ME0 . Together with the con-
straint

∑
s/∈{0,1} π∗

s = 1, this system of equations uniquely determines {π∗
s }s.

This recurrence formula has an intuitive interpretation. It implies that {π∗
s }s is

the stationary distribution of a Markov chain M∗ on {0, 1}N \{0, 1} with transition
probabilities

p∗
s→s′ = ps→s′ + ps→0 μ1

s′ + ps→1 μ0
s′ . (4.9)

The Markov chain M∗ is the same as ME0 except that, if one type would fix, instead
a new state is sampled from the appropriate mutant appearance distribution. (In other
words, the time between fixation and new mutant appearance is collapsed.) The proof
below formalizes this intuition.

Proof This proof is based on the principle of state reduction (Sonin 1999). From the
Markov chain MEu with u > 0, we eliminate the states 0 and 1, so that transitions

123



128 B. Allen, C. E. Tarnita

to either of these states instead go to the next state other than 0 or 1 that would be
reached. This results (Sonin 1999, Proposition A) in a Markov chain, which we denote
MEu |/∈{0,1}, whose set of states is {0, 1}N \{0, 1} and whose transition probabilities are

p∗
s→s′(u) = ps→s′(u) + ps→0(u)r0→s′(u) + ps→1(u)r1→s′(u). (4.10)

Above, r0→s(u) denotes the probability that s is the first state in {0, 1}N \{0, 1} visited
by the Markov chain MEu with initial state 0. An analogous definition holds for
r1→s′(u). These probabilities satisfy the recurrence relations

r0→s(u) = p0→s(u) + p0→0(u)r0→s(u) + p0→1(u)r1→s(u)

r1→s(u) = p1→s(u) + p1→1(u)r1→s(u) + p1→0(u)r0→s(u).

or equivalently,

r0→s(u) = p0→s(u) + p0→1(u)r1→s(u)

1 − p0→0(u)
(4.11)

r1→s(u) = p1→s(u) + p1→0(u)r0→s(u)

1 − p1→1(u)
. (4.12)

Lemma 1(b) and Proposition C of Sonin (1999) imply that, for all u > 0, the
stationary distribution of MEu |/∈{0,1} coincides with the conditional stationary distrib-
ution {πs|/∈{0,1}(u)}s defined in Eq. 4.2. Furthermore, using Eqs. 4.10–4.12, we obtain
the following recurrence relation for all s ∈ {0, 1}N \{0, 1}, u > 0:

πs|/∈{ 0,1 }(u) =
∑

s′ /∈{0,1}
πs′|/∈{ 0,1 }(u)

(
ps′→s(u)

+ps′→0(u)
p0→s(u) + p0→1(u)r1→s(u)

1 − p0→0(u)

+ps′→1(u)
p1→s(u) + p1→0(u)r0→s(u)

1 − p1→1(u)

)
.

Now taking the limit u → 0 and invoking the definitions of π∗
s , μ0

s , and μ1
s yields

π∗
s =

∑
s′ /∈{0,1}

π∗
s′

(
ps′→s + ps′→0 μ1

s + ps′→1 μ0
s

+ lim
u→0

p0→1(u)r1→s(u)

1 − p0→0(u)
+ lim

u→0

p1→0(u)r0→s(u)

1 − p1→1(u)

)
. (4.13)

The two limits on the right-hand side above are zero because, as u → 0, p0→1(u) and
p1→0(u) are of order uN (these transitions require N simultaneous mutations; recall
N ≥ 2), while 1 − p0→0(u) and 1 − p1→1(u) are of order u (see proof of Lemma 3).
This proves that {π∗

s }s satisfies the recurrence relations 4.8.
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To show that Eq. 4.8, together with
∑

s/∈{0,1} π∗
s = 1, uniquely determines {π∗

s }s,
we will prove the equivalent statement that {π∗

s }s is the unique stationary distribution
of the Markov chain M∗, defined following the statement of Theorem 3. We first claim
that M∗ has a single closed communicating class, accessible from any state. To prove
this, let s0 ∈ {0, 1}N\{0, 1} be a state satisfying μ1

s0
> 0. We show that s0 is accessible

from any state, by the following argument: for any state s1 /∈ {0, 1}, there is at least one
position i with (s1)i = 0. As a consequence of Assumption 2, there is a sequence of
states (s1, s2, . . . , sk, 0), for some k ≥ 1, such that each transition between consecutive
states of this sequence has positive probability in ME0 . Since 0 and 1 are absorbing
states of ME0 , we have s2, . . . , sk /∈ {0, 1}. Consider now the amended sequence
(s1, s2, . . . , sk, s0). By Eq. 4.9 and the positivity of μ1

s0
, each transition in this latter

sequence has positive probability in M∗. Thus s0 is accessible from any state, which
proves that M∗ has a single closed communicating class, accessible from any state.
A standard variation of the Markov chain ergodic theorem (e.g. Woess 2009, Corollary
3.23) now implies that M∗ has a unique stationary distribution, which implies that
{π∗

s }s is uniquely determined as claimed. �
We remark that further asymptotic properties (as u → 0 and time → ∞) of the

Markov chains MEu and MEu |/∈{0,1} can be obtained using the results of Gyllen-
berg and Silvestrov (2008). For example, Theorem 5.5.1 of Gyllenberg and Silve-
strov (2008) applied to MEu |/∈{ 0,1 } (after an appropriate transformation from discrete
to continuous time) can yield a power series expansion of πs|/∈{ 0,1 }(u) in u around
u = 0. This expansion characterizes how intermediately small mutation rates affect
the likelihood of states to arise during evolutionary competition.

5 Measures of evolutionary success

We now turn to quantities that characterize evolutionary success. We focus first, in
Sect. 5.1 on the expected frequencies 〈x0〉 and 〈x1〉 of types 0 and 1 respectively,
on the expected change in x1 due to selection, 〈�selx1〉, and on quantities related to
average fitness. We prove a number of relations between these quantities, including,
in Sect. 5.1.4, stochastic versions of the Price equation and replicator equation.

We then turn to fixation probability in Sect. 5.2. Section 5.2.1 defines the fixation
probabilities ρ1 and ρ0 of types 1 and 0, respectively. Section 5.2.2 then proves our
central result: that in the limit of low mutation, the success conditions 〈x1〉 > 1/2,
〈�selx1〉 > 0, and ρ1 > ρ0 all coincide.

5.1 Frequency, fitness, and change due to selection

5.1.1 Expected frequency

It is natural to quantify the success of types 0 and 1 in terms of their respective
frequencies x0 and x1, as defined in Sect. 3.2. When mutation is present (u > 0),
ergodicity (Theorem 1) implies that, over long periods of time, the time averages
of x0 and x1 converge to their expectations, 〈x0〉 and 〈x1〉, in the mutation-selection
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stationary distribution. Therefore, a natural condition for the success of type 1 is
that it has higher expected frequency than type 0, 〈x1〉 > 〈x0〉 (see, for example Antal
et al. 2009a,b; Nowak et al. 2010b). Since the two frequencies sum to one, this is
equivalent to 〈x1〉 > 1/2.

5.1.2 Average fitness

Evolutionary success can also be quantified in terms of the average fitnesses w̄1 and
w̄0 of types 1 and 0 respectively. We define these average fitnesses in a particular state
s as

w̄1(s) =
{ ∑N

i=1 si wi (s)∑N
i=1 si

s �= 0

0 s = 0,

and

w̄0(s) =
{ ∑N

i=1(1−si )wi (s)∑N
i=1(1−si )

s �= 1

0 s = 1.

5.1.3 Expected change in frequency due to selection

Yet another success measure is the expected change in frequency due to selection
(Antal et al. 2009a,b; Tarnita et al. 2009a; Nowak et al. 2010b). For type 1, and in a
particular state s, this is defined as

�selx1(s) = 1

N

N∑
i=1

si (bi (s) − di (s)).

In words, �selx1(s) is the expected number of offspring born to type 1 individuals,
minus the expected number of deaths to type 1 individuals, divided by the total pop-
ulation size. Equivalently, �selx1(s) equals the expected change in the frequency x1
from the current state s to the next, conditioned on no mutations occurring.

Moving to the entire evolutionary process, we say type 1 is “favored by selection”
if 〈�selx1〉 > 0, or 〈�selx1〉∗ > 0 in the case u = 0.

5.1.4 The stationary Price equation and stationary replicator equation

The following theorem equates the expected change due to selection 〈�selx1〉 to three
other quantities, each of which is a stochastic version of a well-known formula in
evolutionary theory.

Theorem 4 For any evolutionary process E , the following identities hold, with 〈 〉∗
in place of 〈 〉 in the case u = 0:
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(a) The “stationary Price equation”:

〈�selx1〉 = 1

N

〈
N∑

i=1

siwi

〉
− 1

N 2

〈
N∑

i=1

si

N∑
i=1

wi

〉
, (5.1)

(b) The “stationary replicator equation”:

〈�selx1〉 = 〈x1(w̄1 − w̄)〉 = 〈x1x0(w̄
1 − w̄0)〉. (5.2)

In Eq. (5.2) above, w̄ denotes the average fitness of all individuals. Since population
size is constant (hence average birth rate equals average death rate), w̄ is identically
equal to 1 for our class of models. The symbol w̄ is used in order to maintain consistency
with usages of the replicator equation in models where average fitness is not constant.

This theorem is proven by verifying the corresponding identities in each state
(including, in the case u > 0, the monomorphic states 1 and 0). This can be achieved
by straightforward algebraic manipulation. Since these identities hold in each state,
they also hold in expectation over the stationary and dimorphic distributions.

We pause to discuss the names given to these identities. The stationary Price equa-
tion, Eq. (5.1), is a stochastic version of the well-known Price equation (Price 1970,
1972), which can be written (in the case of constant population size) as

�selx1(s) = 1

N

N∑
i=1

siwi (s) − 1

N 2

N∑
i=1

si

N∑
i=1

wi (s). (5.3)

The right-hand side of the Price equation is customarily written as a covariance between
type and fitness (Price 1970); however, we avoid this notation because it can lead to
confusion over which quantities are to be regarded as random variables (see van
Veelen 2005, 2012). We note that while the original Price equation, Eq. 5.3, applies
to a particular state s, the stationary Price equation, Eq. (5.1), applies to the entire
evolutionary Markov chain ME .

The stationary replicator equation, Eq. (5.2), is a stochastic variation of the replicator
equation (Taylor and Jonker 1978; Hofbauer and Sigmund 1998, 2003)—a differential
equation for the evolutionary dynamics of competing types in an infinite population.
In the case of two types, the replicator equation can be written as

ẋ1 = x1(w
1 − w̄) = x0x1(w

1 − w0),

where x1 and x0 represent the respective frequencies of types 1 and 0 at time t , and w1

and w0 represent their respective fitnesses. (The first equality defines the dynamics,
while the second is a mathematical identity.) Another version of the stationary repli-
cator equation, for a different class of evolutionary models, was proven by Nathanson
et al. (2009).

Finally we remark that, although the expected average fitnesses 〈w̄1〉 and 〈w̄1〉
appear to be natural success measures, it is not true in general that 〈�selx1〉 > 0 ⇔
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〈w̄1〉 > 〈w̄0〉. Rather, Theorem 4 implies that to obtain the expected direction of selec-
tion, the correct comparison is not 〈w̄1〉 versus 〈w̄0〉, but 〈x0x1w̄

1〉 versus 〈x0x1w̄
0〉.

5.1.5 The relation between expected frequency and expected change due to selection

The success conditions 〈x1〉 > 1/2 and 〈�selx1〉 > 0 can be related using the following
theorem. This is proven by Nowak et al. (2010b, Appendix A), under assumptions
applicable to the class of models considered here:

Theorem 5 In an evolutionary process with u > 0,

〈x1〉 >
1

2
⇐⇒ 〈�selx1〉 − u

N

〈
N∑

i=1

si (bi − B/N )

〉
> 0. (5.4)

Above, the term

− u

N

〈
N∑

i=1

si (bi − B/N )

〉

characterizes the net effect of mutation on the expected frequency of type 1. If type 1
individuals have a higher birth rate than the average birth rate B/N , then on average,
more type 1 individuals will be lost rather than gained through mutation. An important
lesson of this theorem is that the direction of selection may be different from the
direction of evolution. For example, if types 0 and 1 have equal fitness, but type 1
replaces itself more often, there will be more mutations from 1 to 0 than vice versa.
This will cause the expected frequency of type 0 to exceed that of type 1.

In the low-mutation limit, the mutational bias term vanishes, and the success condi-
tions 〈x1〉 > 1

2 and 〈�selx1〉 > 0 coincide. To state this result formally, we consider, as
in Sect. 4.3, a family of evolutionary processes {Eu}u≥0, in which the population size
N and replacement rule R are fixed but the mutation rate u varies. The low-mutation
result can then be stated as follows:

Corollary 1 〈�selx1〉∗ > 0 if and only if limu→0〈x1〉 > 1/2 in the family of evolu-
tionary processes {Eu}u≥0.

Proof First we note that, for the states s = 0 and s = 1, the quantities �selx1(s) and

N∑
i=1

si (bi (s) − B/N )

appearing in Therorem 5 both vanish. This is trivial for s = 0 since in this state si = 0
for all i . For s = 1 this is true because

∑N
i=1 bi (s) = ∑N

i=1 di (s) = B by Assumption
1. Because of this, we can replace the expectations in Theorem 5 with expectations
over the distribution {πs|/∈{0,1}}s conditioned on both types being present (defined in
Sect. 4.3.1), yielding
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〈x1〉 >
1

2
⇐⇒ 〈�selx1〉|/∈{ 0,1 } − u

N

〈
N∑

i=1

si (bi − B/N )

〉

|/∈{ 0,1 }
> 0,

in the evolutionary process Eu with u > 0. Now taking the limit u → 0 yields

lim
u→0

〈x1〉 >
1

2
⇐⇒ 〈�selx1〉∗ > 0,

as desired. �

5.2 Fixation probability

Evolutionary success is frequently defined in terms of fixation probability—the prob-
ability that a new mutant trait will become fixed in the population. Section 5.2.1 gives
a rigorous definintion of the fixation probabilities ρ1 and ρ0 for our class of models.
Then Sect. 5.2.2 proves our central result, that the success conditions 〈x1〉 > 1/2 and
〈�selx1〉 > 0 become equivalent to ρ1 > ρ0 in the limit of low mutation rate.

5.2.1 The definition of fixation probability

Intuitively, fixation probability is the probability that, starting from a single individual,
a type will come to dominate the population (i.e. be present in all individuals). However,
this apparently simple notion is complicated by the fact that the success of the new
type may depend on the position in which it arises. We resolve this issue by sampling
the initial state from the appropriate mutant appearance distribution.

Definition 8 For an evolutionary process E with u = 0, we define the fixation proba-
bility ρ1 of type 1 as the probability that the evolutionary Markov process ME becomes
absorbed in state 1, given that its initial state was sampled from {μ1

s }s:

ρ1 =
∑

s∈{0,1}N

μ1
s lim

n→∞ p(n)
s→1.

We define the fixation probability ρ0 of type 0 in similar fashion. We observe
that, as a direct consequence of Assumption 2, both ρ0 and ρ1 are positive for every
evolutionary process with u = 0.
Example: Moran process For the frequency-dependent Moran process with no muta-
tion, fixation probabilities are given by (Nowak et al. 2004; Taylor et al. 2004)

ρ1 =
(

1 +
N−1∑
m=1

m∑
k=1

f0
( k

m

)
f1

( k
m

)
)−1

, ρ0 =
(

1 +
N−1∑
m=1

m∑
k=1

f1
( k

m

)
f0

( k
m

)
)−1

.

In the case of neutral evolution, f1(x) ≡ f0(x) ≡ 1, we have ρ1 = ρ0 = 1/N .
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Example: BD on star graphs Based on the work of Broom and Rychtár (2008), we
calculate the fixation probability of type 1 (with reproductive rate r ) on a star graph
to be

ρ1 = n(r − 1)(r + 1)2

(nr + 1)2
(

n + r

r(nr + 1)

)n

− r(nr + 1)(n + r)

.

Above, n = N − 1 is the number of leaves. Our answer differs from the fixation
probability obtained by Broom and Rychtár (2008) because they assume mutations
are equally likely to arise in each position, whereas in our framework mutants arise
according to the mutant appearance distribution. In particular, for neutral evolution
(r = 1), we have

ρ1 = 2n

1 + n + n2 + n3 .

Interestingly, this fixation probability is less than or equal to the neutral fixation prob-
ability for the Moran process, with equality only in the case n = 1 (equivalently,
N = 2). This suggests that neutral mutations accumulate more slowly for BD on
the star than in a well-mixed population. This raises the intriguing question of how
different population structures affect the accumulation of neutral mutations. This ques-
tion is currently unexplored in evolutionary graph theory, because previous work has
assumed that mutations are equally likely to arise in each position, leading to a neutral
fixation probability of 1/N for any process.

5.2.2 Equivalence of fixation probability to other success measures

For an evolutionary process without mutation, the condition ρ1 > ρ0 is a natural and
well-established criterion for the evolutionary success of type 1, relative to type 0
(see, for example, Nowak 2006b). It is of considerable theoretical interest to link this
condition to other success measures—particularly those involving quantities that can
be calculated in each state. In this way, the state-by-state dynamics of an evolutionary
process can be related to its ultimate outcome.

The following theorem and its corollary below achieve this goal, in a general way,
for the class of models under consideration. Theorem 6 states that, in the limit of low
mutation, the success conditions ρ1 > ρ0 and 〈x1〉 > 1/2 coincide. Corollary 2 shows
that both of these coincide with the condition 〈�selx1〉∗ > 0.

To state these results, we again consider a family of evolutionary processes {Eu}u≥0,
with fixed N and R but varying u.

Theorem 6 ρ1 > ρ0 in the evolutionary process E0 if and only if

lim
u→0

〈x1〉 >
1

2

in the family of evolutionary processes {Eu}u≥0.
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Proof We begin by expanding

lim
u→0

〈x1〉 =
∑

s∈{0,1}N

(
πs(0)

1

N

N∑
i=1

si

)
= π1(0),

since, by the remarks following Lemma 1, the only states s with positive πs(0) are 1,
for which x1 = 1, and 0, for which x1 = 0. Since π0(0) + π1(0) = 1, we have the
equivalence

lim
u→0

〈x1〉 >
1

2
⇐⇒ π1(0) > π0(0). (5.5)

We now relate π0(0) and π1(0) to the fixation probabilities ρ0 and ρ1. By ergodicity
(Theorem 1), for u > 0, the mutation-selection stationary distribution satisfies πs(u) =
limn→∞ p(n)

s′→s(u) for any states s, s′ ∈ {0, 1}N , where p(n)

s′→s(u) denotes the n-step
transition probability from s′ to s. Applying this rule to the states 0 and 1 and dividing
yields

π1(u)

π0(u)
= limn→∞ p(n)

0→1(u)

limn→∞ p(n)
1→0(u)

=
∑

s p0→s(u) limn→∞ p(n)
s→1(u)∑

s p1→s(u) limn→∞ p(n)
s→0(u)

=
∑

s
p0→s(u)

u B/2 limn→∞ p(n)
s→1(u)∑

s
p1→s(u)

u B/2 limn→∞ p(n)
s→0(u)

.

Recalling that 1 − p0→0 and 1 − p1→1 can both be expanded as u B/2 + O(u2)

(see the proof of Lemma 3), we take the limit of both sides as u → 0, obtaining

π1(0)

π0(0)
=

∑
s μ1

s limn→∞ p(n)
s→1(u)∑

s μ0
s limn→∞ p(n)

s→0(u)
= ρ1

ρ0
.

Combining with the equivalence 5.5 completes the proof. �
We observe that this proof relies on Assumption 1 (constant overall birth and death

rates). The theorem does not hold if Assumption 1 is violated. If instead the birth rate
is B0 in state 0 and B1 in state 1, we have the alternate equivalence:

lim
u→0

〈x1〉 >
1

2
⇐⇒ ρ1

B1
>

ρ0

B0
.

To gain intuition for this rule, suppose B1 > B0. Then type 1 replaces itself faster than
does type 0 (in states for which only one type is present). Consequently, type 1 produces
more type 0 mutants than vice versa. As a result, type 1 will have lower expected
frequency than would be expected from comparing only fixation probabilities.
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Combining Corollary 1 and Theorem 6 yields the following equivalence of success
conditions for mutation-free evolutionary processes:

Corollary 2 In the evolutionary process E with u = 0,

ρ1 > ρ0 ⇐⇒ 〈�selx1〉∗ > 0.

The utility of Corollary 2 is that it equates a success measure characterizing ultimate
outcomes of evolution, ρ1 > ρ0, with another, 〈�selx1〉∗ > 0, characterizing selective
forces across states of the evolutionary process. This generalizes a result of Taylor
et al. (2007b), who prove a similar theorem for a particular model (the Moran process
on graphs with bi-transitive symmetry).

Example: Moran process For the frequency-dependent Moran process, evolutionary
success can be determined using the formula Nowak et al. (2004), Taylor et al. (2004)

ρ1

ρ0
=

N−1∏
i=1

f1
( k

m

)
f0

( k
m

) .

Combining the formula for the rare-mutation dimorphic distribution, Eq. 4.5, with the
definition of �selx1 and the formulas for bi (s) and di (s) in Eq. 3.1, we can calcuate

〈�selx1〉∗ = 1

N

(
N−1∏
i=1

f1
( k

m

)
f0

( k
m

) − 1

)
= 1

N

(
ρ1

ρ0
− 1

)
,

which verifies Corollary 2 for this process.

6 Summary of results

Our main results can be summarized as follows.

6.1 Asymptotic behavior of the evolutionary process

– If mutation is present, the evolutionary Markov chain is ergodic. Its time-averaged
asymptotic behavior is described by the mutation-selection stationary distribution.

– If there is no mutation, the evolutionary Markov chain eventually becomes
absorbed in a state in which only one trait is present.

– In the limit of low mutation, the time-averaged asymptotic behavior conditioned on
both types being present is described by the rare-mutation dimorphic distribution .

6.2 Measures of evolutionary success

– The following identities hold for all evolutionary processes, with 〈 〉 replaced by
〈 〉∗ in the case u = 0:
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– The stationary Price equation:

〈�selx1〉 = 1

N

〈
N∑

i=1

siwi

〉
− 1

N 2

〈
N∑

i=1

si

N∑
i=1

wi

〉
,

– The stationary replicator equation:

〈�selx1〉 = 〈x1(w̄1 − w̄)〉 = 〈x1x0(w̄
1 − w̄0)〉.

– For an evolutionary process E with u = 0, the following success conditions are
equivalent:

– ρ1 > ρ0,
– 〈�selx1〉∗ > 0,
– limu→0〈x1〉 > 1/2,

where, in the last condition, 〈x1〉 is evaluated in the family of evolutionary processes
{Eu}u≥0 having the same population size N and replacement rule R as E .

7 Discussion

7.1 Overview

This work provides a rigorous foundation for studying evolution in a fairly general
class of models, including established models of well-mixed (Fisher 1930; Moran
1958; Cannings 1974; Nowak et al. 2004; Taylor et al. 2004; Imhof and Nowak 2006;
Lessard and Ladret 2007; Traulsen et al. 2007) and graph-structured (Holley and
Liggett 1975; Cox 1989; Cox et al. 2000; Lieberman et al. 2005; Santos and Pacheco
2005; Sood and Redner 2005; Ohtsuki et al. 2006; Taylor et al. 2007a; Szabó and
Fáth 2007; Santos et al. 2008; Sood et al. 2008; Szolnoki et al. 2008; Roca et al.
2009; Allen et al. 2012; Shakarian et al. 2012) populations. Our definitions give
formal mathematical meaning to important quantities—such as fixation probability
and expected frequency—in greater generality than is usually considered. Our results
comparing measures of evolutionary success may prove helpful in determining evo-
lutionarily successful traits and behaviors, both in particular models and in classes of
models.

7.2 The rare-mutation dimorphic distribution

One important theoretical contribution of this work is the introduction of the rare-
mutation dimorphic distribution. This distribution helps address a central challenge in
evolutionary theory: to link quantities or characteristics of specific states to the ultimate
outcome of evolution. In approaching this challenge, it is useful to consider probabil-
ity distributions that reflect the time-averaged behavior of the evolutionary process.
Then, by taking expectations, one can move from quantities describing specific states
to quantities characterizing the overall process. In the case of nonzero mutation, many
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works (Rousset and Ronce 2004; Taylor et al. 2007b; Antal et al. 2009a,b; Tarnita
et al. 2009a,b; Nathanson et al. 2009; Tarnita et al. 2011) have made use of the
mutation-selection stationary distribution for this purpose. However, the question of
what distribution to use in models without mutation has not been addressed, save for
a few specific examples (Zhou et al. 2010; Zhou and Qian 2011). Our results (e.g.
Corollary 2) show that the rare-mutation dimorphic distribution is a natural choice
for linking state-dependent quantities to evolutionary outcomes when mutation is
rare.

7.3 The Price equation and general approaches to evolutionary theory

Our approach has distinct advantages over approaches to evolutionary theory that
use the Price equation—Eq. 5.3 and variants thereof—as a starting point (Queller
1992, 2011; Gardner et al. 2011; Marshall 2011 and many others). These approaches
are sometimes advertised as being assumption-free, and hence applicable to any
evolutionary process. It is true that, as a mathematical identity, the Price equation
requires no assumptions other than the axioms of the real numbers. But this lack
of assumptions means that the Price equation cannot, on its own, be used to draw
conclusions about the outcome of evolution. Indeed, it is logically impossible to
derive mathematical conclusions about any process without first making assumptions.
Therefore, though the Price equation may be useful for describing aspects of evo-
lution, and as a mathematical step within a derivation, it is inadequate as a founda-
tional starting point for evolutionary theory (see van Veelen 2005, 2012 for further
discussion).

In contrast, our approach shows how general theorems about evolution can be
proven within an assumption-based framework. Indeed, one of our results is itself a
stochastic version of the Price equation. This stationary Price equation, item (5.1),
applies to the entire evolutionary process. In this way, it represents a longer-term view
than the original Price equation, as well as stochastic generalizations developed by
Grafen (2000) and Rice (2008), which apply only to a single evolutionary time-step.
We emphasize, however, that the stationary Price equation is not assumption-free; it
depends on the assumptions that delineate our class of models. It is not immediately
clear whether the stationary Price equation can be extended to more general classes
of models, particularly those with changing population size.

7.4 Directions for future research

Many avenues of future research present themselves, both for generalizing this frame-
work and for applying it to specific problems of interest.

7.4.1 Dynamic size and structure

Most immediate, perhaps, is the need to extend to populations of dynamic size and
structure. The dynamics of population structure can significantly affect evolutionary
outcomes (Gross and Blasius 2008; Perc and Szolnoki 2010), particularly in the case
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of cooperative dilemmas (Pacheco et al. 2006a,b; Tarnita et al. 2009a; Fu et al. 2008;
Wu et al. 2010; Fehl et al. 2011; Rand et al. 2011). Though generalizing in these
directions will present some difficulties (notational as well as mathematical), these
difficulties do not appear insurmountable.

7.4.2 Evolutionary games and other interactions

Another important research direction involves representing social and ecological inter-
actions more explicitly. In the framework presented here, all aspects of population
structure and interaction are subsumed in the replacement rule R. Unpacking R, and
the interactions and processes it incorporates, will yield further insight into how pop-
ulation structure and other variables affect the evolution.

In particular, our approach can be applied to evolutionary game theory
(Maynard Smith and Price 1973; Cressman 1992; Weibull 1997; Hofbauer and Sig-
mund 2003; Nowak 2006a). The effects of spatial structure on evolutionary game
behavior is a topic of intense interest (Nowak and May 1992; van Baalen and Rand
1998; Hauert and Doebeli 2004; Santos and Pacheco 2005; Ohtsuki et al. 2006; Taylor
et al. 2007a; Szabó and Fáth 2007; Roca et al. 2009; Broom et al. 2010; Shakarian
et al. 2012). By incorporating games into our framework, and formalizing the notion
of an “update rule” (Ohtsuki et al. 2006), we can potentially unify and contextualize
results from many different models.

7.4.3 Greater genetic complexity

Our framework can also be extended beyond the competition between two haploid
types, toward evolution on complex genetic landscapes. One obvious extension is to
incorporate diploid genetics. This would involve modifying replacement events to
incorporate two offspring-to-parent maps, one for each sex. Another straightforward
extension is to incorporate more than two types and different rates of mutation between
types. For example, types can be represented as genetic sequences, with mutations
possible at each position.

Alternatively, one could instead consider a continuous space of possible types with
localized mutation. This could connect our approach to the fields of quantitative genet-
ics (Falconer 1981; Lynch and Walsh 1998) and adaptive dynamics (Hofbauer and
Sigmund 1990; Dieckmann and Law 1996; Metz et al. 1996; Geritz et al. 1997). One
potential goal is to extend the elegant mathematical framework of Champagnat et al.
(2006) to spatially structured populations.

There is also potential to connect this framework to standard mathematical tools
of population genetics, such as diffusion approximations (Kimura 1964; Ewens 1979)
and coalescent theory (Kingman 1982; Wakeley 2009).

7.4.4 Symmetry in population structure

As we observed in our two example processes, symmetries in population struc-
ture allow for reduction of the state space of the evolutionary Markov chain. Such
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symmetries are useful in calculating evolutionary dynamics (Taylor et al. 2007a;
Broom and Rychtár 2008), and represent an interesting connection between evolu-
tionary theory and group theory (see, for example, Taylor et al. 2011). Our framework
and other general approaches may enable a more systematic study of symmetry and
its consequences in evolution.

7.5 Outlook on general approaches to evolutionary theory

This work, and the future research avenues described here, are part of a larger project: to
extend the field of evolutionary theory from the analysis of particular models to the level
of a mathematical theory. Mathematical theories begin with fundamental axioms, and
from them derive broad theorems illustrating general principles. We believe this can be
done for evolution. Indeed, general, assumption-based approaches have already shed
light on the dynamics of structured populations (Metz and de Roos 1992; Diekmann
et al. 2001, 1998, 2007), evolutionary game theory (Tarnita et al. 2009b, 2011), and
quantitative trait evolution (Champagnat et al. 2006; Durinx et al. 2008; Simon 2008).
While individual models will continue to be important for formulating new hypotheses
and understanding particular systems, axiomatic approaches can make rigorous the
unifying principles of evolution. This project is in its infancy. There is much exciting
work to be done.
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