On the basic reproduction number in a random environment

Nicolas Bacaër · Mohamed Khaladi

Received: 13 July 2012 / Revised: 13 October 2012 / Published online: 23 October 2012 © Springer-Verlag Berlin Heidelberg 2012

Abstract The concept of basic reproduction number R_0 in population dynamics is studied in the case of random environments. For simplicity the dependence between successive environments is supposed to follow a Markov chain. R_0 is the spectral radius of a next-generation operator. Its position with respect to 1 always determines population growth or decay in simulations, unlike another parameter suggested in a recent article (Hernandez-Suarez et al., Theor Popul Biol, doi[:10.1016/j.tpb.2012.05.](http://dx.doi.org/10.1016/j.tpb.2012.05.004) [004,](http://dx.doi.org/10.1016/j.tpb.2012.05.004) 2012). The position of the latter with respect to 1 determines growth or decay of the population's expectation. R_0 is easily computed in the case of scalar population models without any structure. The main emphasis is on discrete-time models but continuous-time models are also considered.

Keywords Basic reproduction number · Markov chain · Population dynamics · Random environment

Mathematics Subject Classification (2000) 60J20 · 92D25

1 Introduction

In this article we consider population models of the form

$$
p(t + 1) = X(t)p(t), \quad X(t) = A(t) + B(t), \quad t = 0, 1, ...
$$

N. Bacaër (⊠)

M. Khaladi Department of Mathematics, University Cadi Ayyad, Marrakech, Morocco

Research group UMMISCO, IRD and University Paris 6, Paris, France e-mail: nicolas.bacaer@ird.fr

with $p(0)$ given in \mathbb{R}^m . $p(t)$ is the population vector while $A(t)$ and $B(t)$ are nonnegative square matrices of size *m* for all *t*: $A(t)$ is a birth matrix, while $B(t)$ is a survival matrix. For simplicity, we assume that the nonnegative matrices $(A(t), B(t))$ are chosen in a finite list of environments $(A^{(k)}, B^{(k)})_{1 \leq k \leq K}$, there being a probability $M_{i,j}$ that an environment of type *i* is followed by an environment of type *j* $(1 \le i, j \le K)$. There is also a probability μ_i that $(A(0), B(0))$ is of type *i*. The matrix $M = (M_{i,j})$ of this Markov chain is supposed to be irreducible. For the survival matrices to make sense biologically, we assume that $\sum_i B_{i,j}^{(k)} \le 1$ for all *j* and all *k*. We also assume: (H1) there exists κ such that $||B^{(\kappa)}||_1 = \max_j \sum_i B^{(\kappa)}_{i,j} < 1$; (H2) the projection matrices $A^{(k)} + B^{(k)}$ form an ergodic set (see e.g. [Caswell 2001](#page-10-0)). For example, primitive matrices with a common incidence matrix form an ergodic set. Some of the assumptions above may be relaxed.

A large literature exists concerning such population models in a random environment [\(Lewontin and Cohen 1969;](#page-10-1) [Tuljapurkar 1990](#page-10-2) and references therein). In particular, writing $|p(t)| = \sum_i p_i(t)$ and $\|\cdot\|$ for any matrix norm, it is known that with the assumptions above the almost sure limit

$$
r = \lim_{t \to +\infty} (\log |p(t)|)/t = \lim_{t \to +\infty} (\log \|X(t-1)X(t-2)\cdots X(0)\|)/t \tag{1}
$$

exists and is independent of $p(0)$ and of the particular sequence of environments randomly chosen following the Markov chain [\(Tuljapurkar 1990](#page-10-2), p. 26). To stress the dependence of the growth rate r on the matrices $A(t)$ and $B(t)$, we shall write $r = r(A, B)$. If for example the population vector is a scalar and if $M_{i,j} = m_j$ for all *i* and *j*, which means that the environments are independent and identically distributed (i.i.d.), then it is known that

$$
r(A, B) = \sum_{k} m_k \log(A^{(k)} + B^{(k)})
$$
 (2)

(see, e.g., [Haccou et al. 2005,](#page-10-3) § 2.9.2).

The classical concept of basic reproduction number (also called net reproductive rate) *R*⁰ has been extended from constant environments to periodic environments by [Bacaër and Guernaoui](#page-10-4) [\(2006](#page-10-4)). This *R*⁰ is an asymptotic per generation growth rate [\(Bacaër and Ait Dads 2011](#page-10-5), [2012\)](#page-10-6). The case of nonperiodic continuous-time deterministic environments was considered by Thieme [\(2009,](#page-10-7) § 5.1) and [Inaba](#page-10-8) [\(2012](#page-10-8)). In a recent article, [Hernandez-Suarez et al.](#page-10-9) (2012) (2012) suggested an adaptation of R_0 to models with random environments. It seems however that the position of their "*R*0" with respect to 1 does not always decide between population growth and population decay (a counter-example will be given below). In the present article, we explain how *R*⁰ should be computed so that it gives the right threshold: it is the unique solution of the equation

$$
r(A/R_0, B) = 0.
$$
\n⁽³⁾

In other words, R_0 is the number by which all birth rates should be divided to bring the population to the critical situation where neither exponential growth nor exponential decay occurs. Such a characterization of *R*⁰ was emphasized for constant environments by Li and Schneider [\(2002](#page-10-10), Theor. 3.1) and for periodic environments either in a continuous-time or discrete-time setting by Bacaër [\(2007](#page-10-11), Sect. 3.4, [2009,](#page-10-12) Sect. 4).

In Sect. [2,](#page-2-0) R_0 is defined as the spectral radius of a "next-generation operator" following the terminology of [Diekmann and Heesterbeek](#page-10-13) [\(2000](#page-10-13)). Proposition [1](#page-3-0) shows that $R_0 > 1$ if and only if $r > 0$. Proposition [2](#page-4-0) shows that R_0 may be computed using Eq. [\(3\)](#page-1-0). The formula for R_0 obtained for periodic environments by [Bacaër](#page-10-12) [\(2009](#page-10-12)) is in fact a special case of the approach of the present article. Section [3](#page-5-0) shows that the parameter recently introduced by [Hernandez-Suarez et al.](#page-10-9) [\(2012\)](#page-10-9) determines growth or decay of the population's expectation. Section [4](#page-6-0) focuses on the scalar case, for which R_0 is easily computed. Some numerical examples are presented in Sect. [5.](#page-7-0) Continuous-time models are briefly discussed in Sect. [6](#page-8-0) in order to make the link with a recent article by [Artalejo et al.](#page-10-14) [\(2012\)](#page-10-14). The conclusion explains that the difference between our R_0 and the " R_0 " of [Hernandez-Suarez et al.](#page-10-9) [\(2012](#page-10-9)) is the same as the difference between the expected growth rate of the population and the growth rate of the expected population, which has often been discussed [\(Lewontin and Cohen 1969](#page-10-1); [Tuljapurkar 1990\)](#page-10-2).

2 Definition and properties of *R***⁰**

As in the periodic case [\(Bacaër and Ait Dads 2011](#page-10-5), [2012](#page-10-6)), let us split the population in generations. Let $q(n, t)$ be the population vector belonging to generation *n* at time *t*: for all $t \geq 0$ and $n \geq 0$,

$$
q(0, 0) = p(0), \quad q(0, t + 1) = B(t)q(0, t)
$$

$$
q(n + 1, 0) = 0, \quad q(n + 1, t + 1) = A(t)q(n, t) + B(t)q(n + 1, t).
$$
 (4)

Note that the zero on the right side of the equation $q(n + 1, 0) = 0$ stands for the zero vector in \mathbb{R}^m . Then $p(t) = \sum_{n \geq 0} q(n, t)$ satisfies $p(t + 1) = (A(t) + B(t))p(t)$ for all $t \geq 0$. Let $L = \ell^1(\mathbb{N}, \mathbb{R}^m)$ be the vector space of sequences $(x(0), x(1), ...)$ with $x(t) \in \mathbb{R}^m$ for all $t \ge 0$ such that $||x|| = \sum_{i \ge 0} \sum_{i=1}^m |x_i(t)| < +\infty$. Then *L* is a Banach space. Notice that [\(4\)](#page-2-1) may be written as

$$
q(n + 1, 0) = 0, \quad -B(t)q(n + 1, t) + q(n + 1, t + 1) = A(t)q(n, t). \tag{5}
$$

Let us introduce the operators $A: L \to L, B: L \to L$, and the identity operator $\mathcal{I}: L \to L$ such that for all $x \in L$ and $t \geq 0$,

$$
(\mathcal{A}x)(0) = 0, \quad (\mathcal{A}x)(t+1) = A(t)x(t), (\mathcal{B}x)(0) = 0, \quad (\mathcal{B}x)(t+1) = B(t)x(t), (\mathcal{I}x)(t) = x(t).
$$

Since $A(t)$ and $B(t)$ are chosen among a finite set of matrices, it is clear that $Ax \in L$ and $Bx \in L$ if $x \in L$. Moreover A and B are bounded linear operators.

Lemma 1 *The spectral radius* $\rho(A + B)$ *is equal to e^{r(A,B)}.*

Proof Set $\mathcal{X} = \mathcal{A} + \mathcal{B}$. For all $x \in L$ and $\tau \geq 1$, we have $(\mathcal{X}^{\tau}x)(t) = 0$ for $0 \le t \le \tau - 1$ and $(\mathcal{X}^{\tau} x)(t) = X(t-1)X(t-2)\cdots X(t-\tau)x(t-\tau)$ if $t \ge \tau$. From [\(1\)](#page-1-1) and from the spectral radius formula we see that

$$
\rho(\mathcal{X}) = \lim_{\tau \to +\infty} \|\mathcal{X}^{\tau}\|^{1/\tau} = e^{r(A,B)},
$$

where $\|\cdot\|$ is the operator norm associated with the vector norm in *L*.

Lemma 2 $r(0, B) < 0$: the population dies out if there are no births.

Proof We have $||B^{(k)}||_1 \le 1$ for all *k* and $||B^{(k)}||_1 < 1$. The environment *k* occurs (as $t \to +\infty$) in a positive fraction π_k of the *t* terms of the matrix product of Eq. [\(1\)](#page-1-1) because the Markov chain is assumed irreducible. But $\|\cdot\|_1$ is a sub-multiplicative norm. So we get $r(0, B) \le \pi_K \log \|B^{(\kappa)}\|_1 < 0$.

Since $r(0, B) < 0$, Lemma [1](#page-2-2) shows that $\rho(B) < 1$. So $I - B$ is invertible: if *y* = $(T - B)x$, then $x = (T - B)^{-1}y = y + By + B^2y + \cdots$, i.e.,

$$
x(t) = \sum_{\tau=0}^{t} B(t-1)B(t-2)\cdots B(\tau)y(\tau)
$$

for all $t \geq 0$. For all $n \geq 0$, set $q_n = (q(n, t))_{t \geq 0}$. Equation [\(5\)](#page-2-3) is equivalent to $(T - B)q_{n+1} = Aq_n$, i.e., $q_{n+1} = (I - B)^{-1}Aq_n$. Since $q_0 \in L$, we have $q_n \in L$ for all $n \ge 1$. Now set $g_n = \mathcal{A}q_n$. In this way $g_n(t+1) = A(t)q(n, t)$ is the birth vector due to generation *n* between time t and $t + 1$. We arrive at the following conclusion:

$$
g_{n+1} = \mathcal{A}q_{n+1} = \mathcal{A}(\mathcal{I} - \mathcal{B})^{-1}g_n.
$$

More explicitly, we have $g_{n+1}(0) = 0$ and the renewal equation for the births

$$
g_{n+1}(t+1) = \sum_{\tau=0}^{t} A(t)B(t-1)B(t-2)\cdots B(\tau)g_n(\tau)
$$
 (6)

for all $t > 0$ and $n > 0$.

Definition 1 The spectral radius of the next-generation operator $A(\mathcal{I} - \mathcal{B})^{-1}$ is called *R*0.

Notice the analogy between Definition [1](#page-3-1) and the presentation of R_0 for continuoustime models in time-heterogeneous environments by Thieme [\(2009](#page-10-7), § 5.1) and [Inaba](#page-10-8) [\(2012\)](#page-10-8). As for the growth rate $r(A, B)$ in Sect. [1,](#page-0-0) we shall write $R_0(A, B)$ to stress the dependence with respect to the sequence of matrices $A(t)$ and $B(t)$.

Proposition 1 $R_0(A, B) > 1$ if $r(A, B) > 0$, $R_0(A, B) = 1$ if $r(A, B) = 0$, and $R_0(A, B) < 1$ *if* $r(A, B) < 0$.

Proof Applying a result by Thieme [\(2009,](#page-10-7) Theor. 3.10), we know that $R_0(A, B) - 1$ has the same sign as $\rho(\mathcal{A} + \mathcal{B}) - 1$ $\rho(\mathcal{A} + \mathcal{B}) - 1$. But Lemma 1 showed that $\rho(\mathcal{A} + \mathcal{B}) = e^{r(A, B)}$. So $R_0(A, B) - 1$ has the same sign as $r(A, B)$.

Proposition 2 Assume that $R_0(A, B) > 0$. Then $R_0(A, B)$ is the unique solution of *the equation r*(A/R , B) = 0 *on the interval* $R \in (0, +\infty)$ *.*

Proof Since the basic reproduction number depends linearly on the set of birth rates, we have $R_0(A/R_0(A, B), B) = 1$. So $r(A/R_0(A, B), B) = 0$ because of Proposi-tion [1.](#page-3-0) Hence the equation $r(A/R, B) = 0$ has at least one solution. Given Eq. [\(1\)](#page-1-1), the mapping $R \mapsto r(A/R, B)$ is obviously nonincreasing on the interval $R \in (0, +\infty)$. It is easily checked, by taking the second derivative, that for every (i, j) the mapping $R \mapsto A_{i,j}(t)/R + B_{i,j}(t)$ is either identically zero or log-convex [this point was already used by Bacaër and Ait Dads [\(2012,](#page-10-6) Appendix C)]. It follows from the results of Cohen [\(1980,](#page-10-15) Theor. 1) that the mapping $R \mapsto r(A/R, B)$ is convex. So the equation $r(A/R, B) = 0$ cannot have more than one solution. Indeed if it had two distinct solutions R_1 and R_2 with $R_1 < R_2$, the nonincreasing and convex function $R \mapsto r(A/R, B)$ would be constant equal to 0 not only on the interval (R_1, R_2) , but for all $R \geq R_1$. This function from $(0, +\infty)$ to R being convex, it is also continuous. So $r(A/R, B) \rightarrow r(0, B) < 0$ as $R \rightarrow +\infty$. We have thus reached a contradiction. \Box

Remark 1 Proposition [2](#page-4-0) shows that, in general, computing R_0 is as difficult as computing *r*, and requires slightly more computer time because a dichotomy method has to be used.

Remark 2 For periodic environments where the sequence is $(1, 2, \ldots, K)$, [Bacaër](#page-10-12) [\(2009\)](#page-10-12) showed that R_0 was the spectral radius of

$$
\begin{pmatrix}\nA^{(1)} & 0 & \cdots & 0 \\
0 & A^{(2)} & & \vdots \\
\vdots & \ddots & \ddots & 0 \\
0 & \cdots & 0 & A^{(K)}\n\end{pmatrix}\n\begin{pmatrix}\n-B^{(1)} & I & 0 & \cdots & 0 \\
0 & -B^{(2)} & I & & 0 \\
0 & \ddots & \ddots & & \vdots \\
\vdots & \ddots & \ddots & 0 & I \\
I & \cdots & 0 & 0 & -B^{(K)}\n\end{pmatrix}^{-1}
$$
\n(7)

Bacaër and Ait Dads [\(2012,](#page-10-6) Prop. 3) emphasized that this R_0 is the unique solution of the equation

$$
\rho\left(\left(\frac{A^{(K)}}{R} + B^{(K)}\right) \cdots \left(\frac{A^{(1)}}{R} + B^{(1)}\right)\right) = 1.
$$

Given Eq. [\(1\)](#page-1-1), the left side above is obviously equal to $e^{r(A/R,B)}$. So we can conclude from Proposition [2](#page-4-0) that the R_0 of [Bacaër](#page-10-12) [\(2009](#page-10-12)) is the same as the R_0 of Definition [1](#page-3-1) in the special case of periodic environments $(M_{i,j} = 1 \text{ if } j = i+1 \text{ and } 1 \le i \le K-1$,

² Springer

 $M_{K,1} = 1$, and $M_{i,j} = 0$ otherwise). To emphasize this, it is convenient to present R_0 in a periodic environment as the spectral radius of

$$
\begin{pmatrix}\n0 & 0 & \cdots & 0 & A^{(K)} \\
A^{(1)} & 0 & & & 0 \\
0 & \ddots & \ddots & & \vdots \\
\vdots & \ddots & \ddots & 0 & 0 \\
0 & \cdots & 0 & A^{(K-1)} & 0\n\end{pmatrix}\n\begin{pmatrix}\nI & 0 & \cdots & 0 & -B^{(K)} \\
-B^{(1)} & I & & & 0 \\
0 & \ddots & \ddots & & \vdots \\
\vdots & \ddots & \ddots & I & 0 \\
0 & \cdots & 0 & -B^{(K-1)} & I\n\end{pmatrix}^{-1},
$$
\n(8)

which is easily shown to be the same as the spectral radius of (7) (see Hernandez-Suarez et al. [2012](#page-10-9), Sect. 5). The fact that this spectral radius coincides with the spectral radius of $A(I - B)^{-1}$ [\(Cushing and Zhou 1994;](#page-10-16) [Caswell 2001\)](#page-10-0) when the environment is constant (with $A^{(k)} = A$ $A^{(k)} = A$ $A^{(k)} = A$ and $B^{(k)} = B$ for all k) [was](#page-10-6) [already](#page-10-6) [shown](#page-10-6) [by](#page-10-6) Bacaër and Ait Dads [\(2012](#page-10-6)).

Proposition 3 *The definition of R*⁰ *above is independent of the particular random sequence* $(A(t), B(t))_{t>0}$ *of environments following the Markov chain with matrix M. So R*⁰ *may be called the basic reproduction number of the model.*

Proof Let $(A(t), B(t))$ and $(A'(t), B'(t))$ be two sequences of environments following the Markov chain with matrix *M*. Let $R_0(A, B)$ and $R_0(A', B')$ be the corresponding basic reproduction numbers. We wish to show that $R_0(A, B) = R_0(A', B')$. From Proposition [2,](#page-4-0) we know that $r(A/R_0(A, B), B) = 0$ and that $r(A'/R_0(A', B'), B') = 0$. But gro[wth](#page-10-2) [rates](#page-10-2) [are](#page-10-2) [independent](#page-10-2) [of](#page-10-2) [the](#page-10-2) [particular](#page-10-2) [sequence](#page-10-2) [of](#page-10-2) [environments](#page-10-2) [\(](#page-10-2)Tul-japurkar [1990](#page-10-2)). So $0 = r(A/R_0(A, B), B) = r(A'/R_0(A, B), B')$. We see that both $R_0(A, B)$ and $R_0(A', B')$ are solutions of $r(A'/R, B') = 0$. Proposition [2](#page-4-0) implies that $R_0(A, B) = R_0(A', B')$ \Box

3 Another parameter

In a recent article, [Hernandez-Suarez et al.](#page-10-9) [\(2012\)](#page-10-9) suggested to call "*R*0" the spectral radius of

$$
\begin{pmatrix} M_{1,1}A^{(1)} & \cdots & M_{K,1}A^{(K)} \\ \vdots & & \vdots \\ M_{1,K}A^{(1)} & \cdots & M_{K,K}A^{(K)} \end{pmatrix} \begin{bmatrix} I - \begin{pmatrix} M_{1,1}B^{(1)} & \cdots & M_{K,1}B^{(K)} \\ \vdots & & \vdots \\ M_{1,K}B^{(1)} & \cdots & M_{K,K}B^{(K)} \end{pmatrix} \end{pmatrix}^{-1}, \quad (9)
$$

where *I* is an identity matrix of suitable size. To avoid any confusion, we shall call this spectral radius *R*∗.

In the literature on Markovian environments, it is known that

$$
\log \mu = \lim_{t \to +\infty} \frac{\log \mathbb{E}[|p(t)|]}{t}
$$
 (10)

exists (recall that $|\cdot|$ stands for the sum of components). Moreover μ is the spectral radius of $D(M' \otimes I)$, where *D* is the block-diagonal matrix $D = \text{diag}(A^{(1)} +$ $B^{(1)}, \cdots, A^{(K)} + B^{(K)}$), *M'* is the transpose of *M*, and *I* is the identity matrix (see Tuljapurkar [1990,](#page-10-2) p. 45, where it is called Bharucha's formula).

Proposition 4 $R_* > 1$ *if* $\log \mu > 0$, $R_* = 1$ *if* $\log \mu = 0$ *, and* $R^* < 1$ *if* $\log \mu < 0$ *.*

Proof Notice that the matrix $D(M' \otimes I)$ is equal to

$$
\begin{pmatrix} M_{1,1}(A^{(1)} + B^{(1)}) & \cdots & M_{K,1}(A^{(K)} + B^{(K)}) \\ \vdots & & \vdots \\ M_{1,K}(A^{(1)} + B^{(1)}) & \cdots & M_{K,K}(A^{(K)} + B^{(K)}) \end{pmatrix}.
$$

This matrix is equal to $A^* + B^*$, where

$$
A^* = \begin{pmatrix} M_{1,1}A^{(1)} & \cdots & M_{K,1}A^{(K)} \\ \vdots & & \vdots \\ M_{1,K}A^{(1)} & \cdots & M_{K,K}A^{(K)} \end{pmatrix},
$$

and B^* is defined similarly by replacing A by B. Applying the result given by Thieme [\(2009,](#page-10-7) Theor. 3.10), we know that $\rho(A^* + B^*) - 1$ and $\rho(A^*(I - B^*)^{-1}) - 1$ have the same sign. But $\mu = \rho(A^* + B^*)$ and $R_* = \rho(A^*(I - B^*)^{-1})$.

Remark 3 In a periodic environment we have $R_0 = R_*$, as can be seen by comparing the matrices (8) and (9) .

4 The scalar case

If the matrices $A(t)$ and $B(t)$ are scalars, and if the environments are i.i.d., then it follows immediately from Eq. [\(2\)](#page-1-2) and Proposition [2](#page-4-0) that

$$
\sum_{k=1}^{K} m_k \log \left(\frac{A^{(k)}}{R_0} + B^{(k)} \right) = 0,
$$

or equivalently that

$$
\prod_{k=1}^K \left(\frac{A^{(k)}}{R_0} + B^{(k)} \right)^{m_k} = 1.
$$

Consider now the more general case of Markov dependence between successive environments. Recall that $M = (M_{i,j})$ is the matrix of transition probabilities. The chain being irreducible, let π be the positive stationary distribution of the time spent in

the different environments: $\pi_j = \sum_i \pi_i M_{i,j}$ for all *j* and $\sum_j \pi_j = 1$. As mentioned by Haccou et al. $(2005, \S 2.9.2)$ $(2005, \S 2.9.2)$ the growth rate is

$$
r(A, B) = \sum_{k} \pi_{k} \log(A^{(k)} + B^{(k)})
$$

[for a proof, simply notice that $\log p(t) = \sum_{k=1}^{t-1} \log X(t) + \log p(0)$ and that, as $t \to +\infty$, the number of terms equal to $\log(A^{(k)} + B^{(k)})$ in the sum over τ is $\pi_k t + o(t)$]. So Proposition [2](#page-4-0) shows that R_0 is the solution of

$$
\prod_{k=1}^{K} \left(\frac{A^{(k)}}{R_0} + B^{(k)} \right)^{\pi_k} = 1.
$$
\n(11)

Thus R_0 can be easily computed, e.g., using a dichotomy method.

5 Examples

As a first example, consider a scalar population $(m = 1)$ and suppose that there are two environments $(K = 2)$:

$$
(A^{(1)}, B^{(1)}) = (1, 0.5), \quad (A^{(2)}, B^{(2)}) = (0.1, 0.58), \quad M = \begin{pmatrix} 0.3 & 0.7 \\ 0.6 & 0.4 \end{pmatrix}.
$$

The stationary distribution is $(\pi_1, \pi_2) = (6/13, 7/13)$. Equation [\(11\)](#page-7-1) gives $R_0 \simeq$ $0.949 < 1$: the population goes extinct almost surely. For such an example, Eq. (9) gives $R_* \simeq 1.050 > 1$. For illustration we made several simulations of the model starting from $p(0) = 1$ $p(0) = 1$. Fig. 1 suggests that the process is indeed subcritical. The parameter values were chosen precisely so that $R_0 < 1$ while $R_* > 1$. However it

Fig. 1 log $p(t)$ as a function of *t*. Here $R_0 < 1$ while $R_* > 1$

seems that in many other cases both parameters are on the same side of 1 and differ only very slightly, the difference often being less than 1 %. Although such a difference may appear as biologically insignificant, it does have its importance for establishing threshold results mathematically.

As a second example, let us consider a model with two stages and two environments:

$$
A^{(1)} = \begin{pmatrix} 0.1 & 2 \\ 0 & 0 \end{pmatrix}, \qquad B^{(1)} = \begin{pmatrix} 0 & 0 \\ 0.1 & 0 \end{pmatrix},
$$

$$
A^{(2)} = \begin{pmatrix} 1 & 0.3 \\ 0 & 0 \end{pmatrix}, \qquad B^{(2)} = \begin{pmatrix} 0 & 0 \\ 0.7 & 0 \end{pmatrix}, \qquad M = \begin{pmatrix} 0.5 & 0.5 \\ 0.5 & 0.5 \end{pmatrix}.
$$

Notice that the matrices $A^{(k)} + B^{(k)}$ for $k = 1, 2$ are Leslie matrices and that the environments are independent and identically distributed. Formula [\(9\)](#page-5-2) gives R_* = $1.01 > 1$. If we run simulations starting for example from $p(0) = (1 1)'$, if we estimate the growth rate *r* by $\frac{1}{t} \log(|p(t)|/|p(0)|)$ with $t = 5000$, and if we iterate the process 1000 times, we find that the expected growth rate is −0.1021 with a sample standard error of 0.0074. This suggests that $r < 0$ and therefore that $R_0 < 1$. To estimate R_0 numerically, we use Proposition [2:](#page-4-0) we divide $A^{(k)}$ for $k = 1, 2$ by R and estimate the new growth rate. With $R = 0.84$, we find $r \approx 0.0135$ with a sample standard error of 0.0072, suggesting that $r > 0$. With $R = 0.88$, we find $r \approx -0.0168$ with a sample standard error of 0.0071, suggesting that $r < 0$. So it seems that $0.84 < R_0 < 0.88$.

For the same example, one can also directly use the definition of R_0 as the spectral radius of the operator $\Omega = A(T - B)^{-1}$. Beware that this operator does not have any nonzero eigenvalue, as the continuous-time case studied by Inaba [\(2012,](#page-10-8) Lemma 9). But we can compute g_n for *n* large and estimate R_0 from $\sqrt[n]{||g_n||/||g_0||}$. In our example notice that $B^{(k)}B^{(k')} = 0$ for all *k*, $k' = 1$, 2 and that $g_0(t) = 0$ for all $t \ge 3$. It follows from the renewal equation [\(6\)](#page-3-2) that $g_n(t) = 0$ for all $t \ge \tau$ implies $g_{n+1}(t) = 0$ for all $t \ge \tau + 2$. So $g_n(t) = 0$ for all $t \ge 2n + 3$. To compute g_n , it is therefore enough to consider the operator Ω on the finite dimensional subspace $\ell^1(\{0, 1, ..., 2n+2\}, \mathbb{R}^2)$. For $n = 1,000$, we chose 10 random sequences of environments and found estimates of *R*⁰ with a mean of 0.86 and a sample standard error of 0.015, in line with the estimate already obtained.

6 Continuous-time models

Let us now briefly sketch how a similar theory can be developed for linear continuoustime population models in a random ergodic environment. For example let us take a model of the form

$$
dp/dt = (A(t) - B(t))p(t),
$$
\n(12)

where $p(t)$ is a vector, $A(t)$ a nonnegative square matrix function of size *m*, and $B(t)$ a matrix function of the same size with nonnegative off-diagonal coefficients. We assume for simplicity that $(A(t), B(t))$ belongs to a finite list of environments

 $((A^{(k)}, B^{(k)}))_{1 \leq k \leq K}$ and that the transition between the environments follows an inhomogeneous continuous-time Markov chain (see, e.g., [Ge et al. 2006\)](#page-10-17): the probability $\prod_k(t)$ to be in state *k* at time *t* satisfies $d\prod/dt = Q(t)\prod$, where $Q(t)$ is irreducible, *T* -periodic, with nonnegative off-diagonal coefficients, piecewise continuous, and such that $Q_{jj}(t) = -\sum_{i \neq j} Q_{ij}(t)$. The matrix $Q(t)$ is allowed to be periodic because many populations experience a mixture of seasonal and random effects (for discretetime models such a mixture can be incorporated in the transition matrix *M* of Sect. [1\)](#page-0-0). Let $\lambda_1(A, B)$ be the largest Lyapunov exponent (see, e.g., [Arnold and Wihstutz 1986\)](#page-10-18) of [\(12\)](#page-8-1). We shall assume that $\lambda_1(0, B) < 0$: the population tends to 0 without births.

The basic reproduction number R_0 can be defined as the spectral radius of the renewal operator *K* on $L^1((0, \infty), \mathbb{R}^m)$ given by $(Ku)(t) = \int_0^t K(t, x)u(t - x) dx$, where the kernel is given by $K(t, x) = A(t)C(t, x)$ and $C(t, x)$ is the survival matrix from time $t - x$ to time $t: C(t, x) = Z(t), dZ/ds = -B(s)Z(s)$ for $t - x < s < t$ and $Z(t-x) = I$ (the identity matrix). Indeed it is known (Bacaër and Ait Dads [2011,](#page-10-5) Lemma 2) that the birth vector per unit of time due to generation *n* satisfies a recurrence relation involving the operator K , which is similar to Eq. [\(6\)](#page-3-2). For a discussion of the link between the spectral radius of this operator and R_0 but for deterministic models, see Inaba [\(2012,](#page-10-8) Sect. 4). If $R_0 > 0$ then R_0 may once again be characterized by the fact that $\lambda_1(A/R_0, B) = 0$, as in Proposition [2.](#page-4-0) The spectral radius R_0 of K is almost surely independent of the particular random sequence of environments, as in Proposition [3.](#page-5-3)

If $p(t)$ is a scalar population then $\lambda_1(A, B) = \langle A \rangle - \langle B \rangle$, where for instance $\langle A \rangle$ = $\lim_{t \to \infty} \frac{1}{t} \int_0^t \hat{A}(s) ds$ $\lim_{t \to \infty} \frac{1}{t} \int_0^t \hat{A}(s) ds$ $\lim_{t \to \infty} \frac{1}{t} \int_0^t \hat{A}(s) ds$. So $R_0 = \langle A \rangle / \langle B \rangle$ [as,](#page-10-19) [e.g.,](#page-10-19) in [the](#page-10-19) [work](#page-10-19) [of](#page-10-19) Córdova-Lepe et al. [\(2012\)](#page-10-19) on a model with almost periodic coefficients. The row vector $v =$ $(1 1 \ldots 1)$ satifies $dv/dt = 0 = vQ(t)$. So it can be shown, following Perthame [\(2007,](#page-10-20) § 6.3.2), that there is a unique *T*-periodic positive solution $u(t)$ of $du/dt = Q(t)u(t)$ such that $\sum_{i} u_i(t) = 1$. The law of large numbers for Markov chains shows that $\langle A \rangle = \frac{1}{T} \int_0^T \sum_k u_k(s) A^{(k)} ds$. So

$$
R_0 = \frac{\int_0^T \sum_k u_k(s) A^{(k)} ds}{\int_0^T \sum_k u_k(s) B^{(k)} ds}.
$$

If moreover $Q(t)$ does not depend on *t* then there is a unique vector *u* such that $Qu = 0$ and $\sum_i u_i = 1$. So $R_0 = (\sum_k u_k A^{(k)})/(\sum_k u_k B^{(k)})$. This formula for R_0 is the same as the one for " R_0^{ARA} " by Artalejo et al. [\(2012,](#page-10-14) § 4.1).

7 Conclusion

The difference between the R_0 in the present paper and the " R_0 " (which we call R_*) of [Hernandez-Suarez et al.](#page-10-9) [\(2012\)](#page-10-9) is similar to the difference between on one side the "stochastic" growth rate [\(1\)](#page-1-1), which is also equal to the expected growth rate of the population

$$
r = \lim_{t \to +\infty} \mathbb{E}\left[\frac{\log |p(t)|}{t}\right],
$$

and o[n](#page-10-1) [the](#page-10-1) [other](#page-10-1) [side](#page-10-1) [the](#page-10-1) [growth](#page-10-1) [rate](#page-10-1) [of](#page-10-1) [the](#page-10-1) [expected](#page-10-1) [population](#page-10-1) [\(10\)](#page-5-4) [\(](#page-10-1)Lewontin and Cohen [1969](#page-10-1); [Tuljapurkar 1990\)](#page-10-2). It is the position of r with respect to 0 or of our *R*⁰ with respect to 1, which decides whether the population is sub- or supercritical in simulations. However $\log \mu$ and R_* are much easier to compute in Markovian environments with structured (non-scalar) populations: they are given by the spectral radii of simple matrices.

Acknowledgments We thank S. Méléard, O. Diekmann, and particularly C. Hernandez-Suarez for stimulating our interest in random environments.

References

- Arnold L, Wihstutz V (1986) Lyapunov exponents: a survey. In: Arnold L, Wihstutz V (eds) Lyapunov exponents. Lecture Notes in Mathematics, vol 1186. Springer, Berlin, pp 1–26
- Artalejo JR, Economou A, Lopez-Herrero MJ (2012) Stochastic epidemic models with random environment: quasi-stationarity, extinction and final size. J Math Biol. doi[:10.1007/s00285-012-0570-5](http://dx.doi.org/10.1007/s00285-012-0570-5)
- Bacaër N (2007) Approximation of the basic reproduction number *R*0 for vector-borne diseases with a periodic vector population. Bull Math Biol 69:1067–1091
- Bacaër N (2009) Periodic matrix population models: growth rate, basic reproduction number and entropy. Bull Math Biol 71:1781–1792
- Bacaër N, Ait Dads EH (2011) Genealogy with seasonality, the basic reproduction number, and the influenza pandemic. J Math Biol 62:741–762
- Bacaër N, Ait Dads EH (2012) On the biological interpretation of a definition for the parameter R_0 in periodic population models. J Math Biol 65:601–621
- Bacaër N, Guernaoui S (2006) The epidemic threshold of vector-borne diseases with seasonality. J Math Biol 53:421–436
- Caswell H (2001) Matrix population models: construction, analysis, and interpretation, 2nd edn. Sinauer Associates, Sunderland
- Cohen JE (1980) Convexity properties of products of random nonnegative matrices. Proc Natl Acad Sci USA 77:3749–3752
- Córdova-Lepe F, Robledo G, Pinto M, González-Olivares E (2012) Modeling pulse infectious events irrupting into a controlled context: a SIS disease with almost periodic parameters. Appl Math Model 36:1323– 1337
- Cushing JM, Zhou Y (1994) The net reproductive value and stability in structured population models. Nat Res Model 8:1–37

Diekmann O, Heesterbeek JAP (2000) Mathematical epidemiology of infectious diseases. Wiley, Chichester

- Ge H, Jiang DQ, Qian M (2006) Reversibility and entropy production of inhomogeneous Markov chains. J Appl Probab 43:1028–1043
- Haccou P, Jagers P, Vatutin VA (2005) Branching processes: variation, growth, and extinction of populations. Cambridge University Press, Cambridge
- Hernandez-Suarez C, Rabinovich J, Hernandez K (2012) The long-run distribution of births across environments under environmental stochasticity and its use in the calculation of unconditional life-history parameters. Theor Popul Biol. doi[:10.1016/j.tpb.2012.05.004](http://dx.doi.org/10.1016/j.tpb.2012.05.004)
- Inaba H (2012) On a new perspective of the basic reproduction number in heterogeneous environments. J Math Biol 65:309–348
- Lewontin RC, Cohen D (1969) On population growth in a randomly varying environment. Proc Natl Acad Sci USA 62:1056–1060
- Li CK, Schneider H (2002) Applications of Perron–Frobenius theory to population dynamics. J Math Biol 44:450–462
- Perthame B (2007) Transport equations in biology. Birkhäuser, Basel
- Thieme HR (2009) Spectral bound and reproduction number for infinite-dimensional population structure and time heterogeneity. SIAM J Appl Math 70:188–211
- Tuljapurkar S (1990) Population dynamics in variable environments. Springer, New York