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Abstract The concept of basic reproduction number R0 in population dynamics is
studied in the case of random environments. For simplicity the dependence between
successive environments is supposed to follow a Markov chain. R0 is the spectral
radius of a next-generation operator. Its position with respect to 1 always determines
population growth or decay in simulations, unlike another parameter suggested in a
recent article (Hernandez-Suarez et al., Theor Popul Biol, doi:10.1016/j.tpb.2012.05.
004, 2012). The position of the latter with respect to 1 determines growth or decay of
the population’s expectation. R0 is easily computed in the case of scalar population
models without any structure. The main emphasis is on discrete-time models but
continuous-time models are also considered.

Keywords Basic reproduction number · Markov chain · Population dynamics ·
Random environment

Mathematics Subject Classification (2000) 60J20 · 92D25

1 Introduction

In this article we consider population models of the form

p(t + 1) = X (t)p(t), X (t) = A(t) + B(t), t = 0, 1, . . .
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with p(0) given in R
m . p(t) is the population vector while A(t) and B(t) are non-

negative square matrices of size m for all t : A(t) is a birth matrix, while B(t) is a
survival matrix. For simplicity, we assume that the nonnegative matrices (A(t), B(t))
are chosen in a finite list of environments (A(k), B(k))1≤k≤K , there being a proba-
bility Mi, j that an environment of type i is followed by an environment of type j
(1 ≤ i, j ≤ K ). There is also a probability μi that (A(0), B(0)) is of type i . The
matrix M = (Mi, j ) of this Markov chain is supposed to be irreducible. For the sur-

vival matrices to make sense biologically, we assume that
∑

i B(k)
i, j ≤ 1 for all j and

all k. We also assume: (H1) there exists κ such that ‖B(κ)‖1 = max j
∑

i B(κ)
i, j < 1;

(H2) the projection matrices A(k) + B(k) form an ergodic set (see e.g. Caswell 2001).
For example, primitive matrices with a common incidence matrix form an ergodic set.
Some of the assumptions above may be relaxed.

A large literature exists concerning such population models in a random envi-
ronment (Lewontin and Cohen 1969; Tuljapurkar 1990 and references therein). In
particular, writing |p(t)| = ∑

i pi (t) and ‖ · ‖ for any matrix norm, it is known that
with the assumptions above the almost sure limit

r = lim
t→+∞(log |p(t)|)/t = lim

t→+∞(log ‖X (t − 1)X (t − 2) · · · X (0)‖)/t (1)

exists and is independent of p(0) and of the particular sequence of environments
randomly chosen following the Markov chain (Tuljapurkar 1990, p. 26). To stress
the dependence of the growth rate r on the matrices A(t) and B(t), we shall write
r = r(A, B). If for example the population vector is a scalar and if Mi, j = m j for all i
and j , which means that the environments are independent and identically distributed
(i.i.d.), then it is known that

r(A, B) =
∑

k

mk log(A(k) + B(k)) (2)

(see, e.g., Haccou et al. 2005, § 2.9.2).
The classical concept of basic reproduction number (also called net reproductive

rate) R0 has been extended from constant environments to periodic environments
by Bacaër and Guernaoui (2006). This R0 is an asymptotic per generation growth
rate (Bacaër and Ait Dads 2011, 2012). The case of nonperiodic continuous-time
deterministic environments was considered by Thieme (2009, § 5.1) and Inaba (2012).
In a recent article, Hernandez-Suarez et al. (2012) suggested an adaptation of R0 to
models with random environments. It seems however that the position of their “R0”
with respect to 1 does not always decide between population growth and population
decay (a counter-example will be given below). In the present article, we explain how
R0 should be computed so that it gives the right threshold: it is the unique solution of
the equation

r(A/R0, B) = 0. (3)

In other words, R0 is the number by which all birth rates should be divided to bring the
population to the critical situation where neither exponential growth nor exponential
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decay occurs. Such a characterization of R0 was emphasized for constant environments
by Li and Schneider (2002, Theor. 3.1) and for periodic environments either in a
continuous-time or discrete-time setting by Bacaër (2007, Sect. 3.4, 2009, Sect. 4).

In Sect. 2, R0 is defined as the spectral radius of a “next-generation operator”
following the terminology of Diekmann and Heesterbeek (2000). Proposition 1 shows
that R0 > 1 if and only if r > 0. Proposition 2 shows that R0 may be computed using
Eq. (3). The formula for R0 obtained for periodic environments by Bacaër (2009) is
in fact a special case of the approach of the present article. Section 3 shows that the
parameter recently introduced by Hernandez-Suarez et al. (2012) determines growth
or decay of the population’s expectation. Section 4 focuses on the scalar case, for
which R0 is easily computed. Some numerical examples are presented in Sect. 5.
Continuous-time models are briefly discussed in Sect. 6 in order to make the link with
a recent article by Artalejo et al. (2012). The conclusion explains that the difference
between our R0 and the “R0” of Hernandez-Suarez et al. (2012) is the same as the
difference between the expected growth rate of the population and the growth rate of
the expected population, which has often been discussed (Lewontin and Cohen 1969;
Tuljapurkar 1990).

2 Definition and properties of R0

As in the periodic case (Bacaër and Ait Dads 2011, 2012), let us split the population
in generations. Let q(n, t) be the population vector belonging to generation n at time
t : for all t ≥ 0 and n ≥ 0,

q(0, 0) = p(0), q(0, t + 1) = B(t)q(0, t)

q(n + 1, 0) = 0, q(n + 1, t + 1) = A(t)q(n, t) + B(t)q(n + 1, t). (4)

Note that the zero on the right side of the equation q(n + 1, 0) = 0 stands for the
zero vector in R

m . Then p(t) = ∑
n≥0 q(n, t) satisfies p(t + 1) = (A(t) + B(t))p(t)

for all t ≥ 0. Let L = �1(N, R
m) be the vector space of sequences (x(0), x(1), . . .)

with x(t) ∈ R
m for all t ≥ 0 such that ‖x‖ = ∑

t≥0
∑m

i=1 |xi (t)| < +∞. Then L is
a Banach space. Notice that (4) may be written as

q(n + 1, 0) = 0, −B(t)q(n + 1, t) + q(n + 1, t + 1) = A(t)q(n, t). (5)

Let us introduce the operators A : L → L , B : L → L , and the identity operator
I : L → L such that for all x ∈ L and t ≥ 0,

(Ax)(0) = 0, (Ax)(t + 1) = A(t)x(t),

(Bx)(0) = 0, (Bx)(t + 1) = B(t)x(t),

(Ix)(t) = x(t).

Since A(t) and B(t) are chosen among a finite set of matrices, it is clear that Ax ∈ L
and Bx ∈ L if x ∈ L . Moreover A and B are bounded linear operators.
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Lemma 1 The spectral radius ρ(A + B) is equal to er(A,B).

Proof Set X = A + B. For all x ∈ L and τ ≥ 1, we have (X τ x)(t) = 0 for
0 ≤ t ≤ τ − 1 and (X τ x)(t) = X (t − 1)X (t − 2) · · · X (t − τ)x(t − τ) if t ≥ τ . From
(1) and from the spectral radius formula we see that

ρ(X ) = lim
τ→+∞ ‖X τ‖1/τ = er(A,B),

where ‖ · ‖ is the operator norm associated with the vector norm in L . �	
Lemma 2 r(0, B) < 0: the population dies out if there are no births.

Proof We have ‖B(k)‖1 ≤ 1 for all k and ‖B(κ)‖1 < 1. The environment κ occurs
(as t → +∞) in a positive fraction πκ of the t terms of the matrix product of Eq. (1)
because the Markov chain is assumed irreducible. But ‖ · ‖1 is a sub-multiplicative
norm. So we get r(0, B) ≤ πκ log ‖B(κ)‖1 < 0. �	

Since r(0, B) < 0, Lemma 1 shows that ρ(B) < 1. So I − B is invertible: if
y = (I − B)x , then x = (I − B)−1 y = y + By + B2 y + · · · , i.e.,

x(t) =
t∑

τ=0

B(t − 1)B(t − 2) · · · B(τ )y(τ )

for all t ≥ 0. For all n ≥ 0, set qn = (q(n, t))t≥0. Equation (5) is equivalent to
(I − B)qn+1 = Aqn , i.e., qn+1 = (I − B)−1Aqn . Since q0 ∈ L , we have qn ∈ L for
all n ≥ 1. Now set gn = Aqn . In this way gn(t + 1) = A(t)q(n, t) is the birth vector
due to generation n between time t and t + 1. We arrive at the following conclusion:

gn+1 = Aqn+1 = A(I − B)−1gn .

More explicitly, we have gn+1(0) = 0 and the renewal equation for the births

gn+1(t + 1) =
t∑

τ=0

A(t)B(t − 1)B(t − 2) · · · B(τ )gn(τ ) (6)

for all t ≥ 0 and n ≥ 0.

Definition 1 The spectral radius of the next-generation operator A(I − B)−1 is
called R0.

Notice the analogy between Definition 1 and the presentation of R0 for continuous-
time models in time-heterogeneous environments by Thieme (2009, § 5.1) and Inaba
(2012). As for the growth rate r(A, B) in Sect. 1, we shall write R0(A, B) to stress
the dependence with respect to the sequence of matrices A(t) and B(t).

Proposition 1 R0(A, B) > 1 if r(A, B) > 0, R0(A, B) = 1 if r(A, B) = 0, and
R0(A, B) < 1 if r(A, B) < 0.
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Proof Applying a result by Thieme (2009, Theor. 3.10), we know that R0(A, B) − 1
has the same sign as ρ(A + B) − 1. But Lemma 1 showed that ρ(A + B) = er(A,B).
So R0(A, B) − 1 has the same sign as r(A, B). �	
Proposition 2 Assume that R0(A, B) > 0. Then R0(A, B) is the unique solution of
the equation r(A/R, B) = 0 on the interval R ∈ (0,+∞).

Proof Since the basic reproduction number depends linearly on the set of birth rates,
we have R0(A/R0(A, B), B) = 1. So r(A/R0(A, B), B) = 0 because of Proposi-
tion 1. Hence the equation r(A/R, B) = 0 has at least one solution. Given Eq. (1), the
mapping R 
→ r(A/R, B) is obviously nonincreasing on the interval R ∈ (0,+∞).
It is easily checked, by taking the second derivative, that for every (i, j) the map-
ping R 
→ Ai, j (t)/R + Bi, j (t) is either identically zero or log-convex [this point
was already used by Bacaër and Ait Dads (2012, Appendix C)]. It follows from the
results of Cohen (1980, Theor. 1) that the mapping R 
→ r(A/R, B) is convex. So
the equation r(A/R, B) = 0 cannot have more than one solution. Indeed if it had two
distinct solutions R1 and R2 with R1 < R2, the nonincreasing and convex function
R 
→ r(A/R, B) would be constant equal to 0 not only on the interval (R1, R2), but
for all R ≥ R1. This function from (0,+∞) to R being convex, it is also continuous.
So r(A/R, B) → r(0, B) < 0 as R → +∞. We have thus reached a contradiction.

�	
Remark 1 Proposition 2 shows that, in general, computing R0 is as difficult as com-
puting r , and requires slightly more computer time because a dichotomy method has
to be used.

Remark 2 For periodic environments where the sequence is (1, 2, . . . , K ), Bacaër
(2009) showed that R0 was the spectral radius of

⎛

⎜
⎜
⎜
⎜
⎜
⎝

A(1) 0 · · · 0

0 A(2)
...

...
. . .

. . . 0

0 · · · 0 A(K )

⎞

⎟
⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−B(1) I 0 · · · 0

0 −B(2) I 0

0
. . .

. . .
...

...
. . .

. . . 0 I

I · · · 0 0 −B(K )

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

−1

(7)

Bacaër and Ait Dads (2012, Prop. 3) emphasized that this R0 is the unique solution of
the equation

ρ

((
A(K )

R
+ B(K )

)

· · ·
(

A(1)

R
+ B(1)

))

= 1.

Given Eq. (1), the left side above is obviously equal to er(A/R,B). So we can conclude
from Proposition 2 that the R0 of Bacaër (2009) is the same as the R0 of Definition 1
in the special case of periodic environments (Mi, j = 1 if j = i +1 and 1 ≤ i ≤ K −1,
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MK ,1 = 1, and Mi, j = 0 otherwise). To emphasize this, it is convenient to present R0
in a periodic environment as the spectral radius of

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 · · · 0 A(K )

A(1) 0 0

0
. . .

. . .
...

...
. . .

. . . 0 0

0 · · · 0 A(K−1) 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

I 0 · · · 0 −B(K )

−B(1) I 0

0
. . .

. . .
...

...
. . .

. . . I 0

0 · · · 0 −B(K−1) I

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

−1

,

(8)

which is easily shown to be the same as the spectral radius of (7) (see Hernandez-
Suarez et al. 2012, Sect. 5). The fact that this spectral radius coincides with the spectral
radius of A(I − B)−1 (Cushing and Zhou 1994; Caswell 2001) when the environment
is constant (with A(k) = A and B(k) = B for all k) was already shown by Bacaër and
Ait Dads (2012).

Proposition 3 The definition of R0 above is independent of the particular random
sequence (A(t), B(t))t≥0 of environments following the Markov chain with matrix M.
So R0 may be called the basic reproduction number of the model.

Proof Let (A(t), B(t)) and (A′(t), B ′(t)) be two sequences of environments following
the Markov chain with matrix M . Let R0(A, B) and R0(A′, B ′) be the correspond-
ing basic reproduction numbers. We wish to show that R0(A, B) = R0(A′, B ′). From
Proposition 2, we know that r(A/R0(A, B), B)=0 and that r(A′/R0(A′, B ′), B ′)=0.
But growth rates are independent of the particular sequence of environments (Tul-
japurkar 1990). So 0 = r(A/R0(A, B), B) = r(A′/R0(A, B), B ′). We see that both
R0(A, B) and R0(A′, B ′) are solutions of r(A′/R, B ′) = 0. Proposition 2 implies
that R0(A, B) = R0(A′, B ′). �	

3 Another parameter

In a recent article, Hernandez-Suarez et al. (2012) suggested to call “R0” the spectral
radius of

⎛

⎜
⎝

M1,1 A(1) · · · MK ,1 A(K )

...
...

M1,K A(1) · · · MK ,K A(K )

⎞

⎟
⎠

⎡

⎢
⎣I −

⎛

⎜
⎝

M1,1 B(1) · · · MK ,1 B(K )

...
...

M1,K B(1) · · · MK ,K B(K )

⎞

⎟
⎠

⎤

⎥
⎦

−1

, (9)

where I is an identity matrix of suitable size. To avoid any confusion, we shall call
this spectral radius R∗.

In the literature on Markovian environments, it is known that

log μ = lim
t→+∞

log E[|p(t)|]
t

(10)
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On the basic reproduction number in a random environment 1735

exists (recall that | · | stands for the sum of components). Moreover μ is the spec-
tral radius of D(M ′ ⊗ I ), where D is the block-diagonal matrix D = diag(A(1) +
B(1), · · · , A(K ) + B(K )), M ′ is the transpose of M , and I is the identity matrix (see
Tuljapurkar 1990, p. 45, where it is called Bharucha’s formula).

Proposition 4 R∗ > 1 if log μ > 0, R∗ = 1 if log μ = 0, and R∗ < 1 if log μ < 0.

Proof Notice that the matrix D(M ′ ⊗ I ) is equal to

⎛

⎜
⎝

M1,1(A(1) + B(1)) · · · MK ,1(A(K ) + B(K ))
...

...

M1,K (A(1) + B(1)) · · · MK ,K (A(K ) + B(K ))

⎞

⎟
⎠ .

This matrix is equal to A∗ + B∗, where

A∗ =
⎛

⎜
⎝

M1,1 A(1) · · · MK ,1 A(K )

...
...

M1,K A(1) · · · MK ,K A(K )

⎞

⎟
⎠ ,

and B∗ is defined similarly by replacing A by B. Applying the result given by Thieme
(2009, Theor. 3.10), we know that ρ(A∗ + B∗) − 1 and ρ(A∗(I − B∗)−1) − 1 have
the same sign. But μ = ρ(A∗ + B∗) and R∗ = ρ(A∗(I − B∗)−1). �	
Remark 3 In a periodic environment we have R0 = R∗, as can be seen by comparing
the matrices (8) and (9).

4 The scalar case

If the matrices A(t) and B(t) are scalars, and if the environments are i.i.d., then it
follows immediately from Eq. (2) and Proposition 2 that

K∑

k=1

mk log

(
A(k)

R0
+ B(k)

)

= 0,

or equivalently that

K∏

k=1

(
A(k)

R0
+ B(k)

)mk

= 1.

Consider now the more general case of Markov dependence between successive
environments. Recall that M = (Mi, j ) is the matrix of transition probabilities. The
chain being irreducible, let π be the positive stationary distribution of the time spent in
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1736 N. Bacaër, M. Khaladi

the different environments: π j = ∑
i πi Mi, j for all j and

∑
j π j = 1. As mentioned

by Haccou et al. (2005, § 2.9.2) the growth rate is

r(A, B) =
∑

k

πk log(A(k) + B(k))

[for a proof, simply notice that log p(t) = ∑t−1
τ=0 log X (τ ) + log p(0) and that, as

t → +∞, the number of terms equal to log(A(k)+B(k)) in the sum over τ isπk t+o(t)].
So Proposition 2 shows that R0 is the solution of

K∏

k=1

(
A(k)

R0
+ B(k)

)πk

= 1. (11)

Thus R0 can be easily computed, e.g., using a dichotomy method.

5 Examples

As a first example, consider a scalar population (m = 1) and suppose that there are
two environments (K = 2):

(A(1), B(1)) = (1, 0.5), (A(2), B(2)) = (0.1, 0.58), M =
(

0.3 0.7
0.6 0.4

)

.

The stationary distribution is (π1, π2) = (6/13, 7/13). Equation (11) gives R0 �
0.949 < 1: the population goes extinct almost surely. For such an example, Eq. (9)
gives R∗ � 1.050 > 1. For illustration we made several simulations of the model
starting from p(0) = 1. Fig. 1 suggests that the process is indeed subcritical. The
parameter values were chosen precisely so that R0 < 1 while R∗ > 1. However it

Fig. 1 log p(t) as a function of t . Here R0 < 1 while R∗ > 1

123



On the basic reproduction number in a random environment 1737

seems that in many other cases both parameters are on the same side of 1 and differ
only very slightly, the difference often being less than 1 %. Although such a difference
may appear as biologically insignificant, it does have its importance for establishing
threshold results mathematically.

As a second example, let us consider a model with two stages and two environments:

A(1) =
(

0.1 2
0 0

)

, B(1) =
(

0 0
0.1 0

)

,

A(2) =
(

1 0.3
0 0

)

, B(2) =
(

0 0
0.7 0

)

, M =
(

0.5 0.5
0.5 0.5

)

.

Notice that the matrices A(k) + B(k) for k = 1, 2 are Leslie matrices and that the
environments are independent and identically distributed. Formula (9) gives R∗ =
1.01 > 1. If we run simulations starting for example from p(0) = (1 1)′, if we estimate
the growth rate r by 1

t log(|p(t)|/|p(0)|) with t = 5000, and if we iterate the process
1000 times, we find that the expected growth rate is −0.1021 with a sample standard
error of 0.0074. This suggests that r < 0 and therefore that R0 < 1. To estimate R0
numerically, we use Proposition 2: we divide A(k) for k = 1, 2 by R and estimate the
new growth rate. With R = 0.84, we find r � 0.0135 with a sample standard error of
0.0072, suggesting that r > 0. With R = 0.88, we find r � −0.0168 with a sample
standard error of 0.0071, suggesting that r < 0. So it seems that 0.84 < R0 < 0.88.

For the same example, one can also directly use the definition of R0 as the spectral
radius of the operator � = A(I − B)−1. Beware that this operator does not have any
nonzero eigenvalue, as the continuous-time case studied by Inaba (2012, Lemma 9).
But we can compute gn for n large and estimate R0 from n

√‖gn‖/‖g0‖. In our example
notice that B(k)B(k′) = 0 for all k, k′ = 1, 2 and that g0(t) = 0 for all t ≥ 3. It follows
from the renewal equation (6) that gn(t) = 0 for all t ≥ τ implies gn+1(t) = 0 for all
t ≥ τ + 2. So gn(t) = 0 for all t ≥ 2n + 3. To compute gn , it is therefore enough to
consider the operator � on the finite dimensional subspace �1({0, 1, . . . , 2n +2}, R

2).
For n = 1, 000, we chose 10 random sequences of environments and found estimates
of R0 with a mean of 0.86 and a sample standard error of 0.015, in line with the
estimate already obtained.

6 Continuous-time models

Let us now briefly sketch how a similar theory can be developed for linear continuous-
time population models in a random ergodic environment. For example let us take a
model of the form

dp/dt = (A(t) − B(t))p(t), (12)

where p(t) is a vector, A(t) a nonnegative square matrix function of size m, and
B(t) a matrix function of the same size with nonnegative off-diagonal coefficients.
We assume for simplicity that (A(t), B(t)) belongs to a finite list of environments
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1738 N. Bacaër, M. Khaladi

((A(k), B(k)))1≤k≤K and that the transition between the environments follows an inho-
mogeneous continuous-time Markov chain (see, e.g., Ge et al. 2006): the probability
�k(t) to be in state k at time t satisfies d�/dt = Q(t)�, where Q(t) is irreducible,
T -periodic, with nonnegative off-diagonal coefficients, piecewise continuous, and
such that Q j j (t) = −∑

i �= j Qi j (t). The matrix Q(t) is allowed to be periodic because
many populations experience a mixture of seasonal and random effects (for discrete-
time models such a mixture can be incorporated in the transition matrix M of Sect. 1).
Let λ1(A, B) be the largest Lyapunov exponent (see, e.g., Arnold and Wihstutz 1986)
of (12). We shall assume that λ1(0, B) < 0: the population tends to 0 without births.

The basic reproduction number R0 can be defined as the spectral radius of the
renewal operator K on L1((0,∞), R

m) given by (Ku)(t) = ∫ t
0 K (t, x)u(t − x) dx ,

where the kernel is given by K (t, x) = A(t)C(t, x) and C(t, x) is the survival matrix
from time t − x to time t : C(t, x) = Z(t), d Z/ds = −B(s)Z(s) for t − x < s < t
and Z(t − x) = I (the identity matrix). Indeed it is known (Bacaër and Ait Dads 2011,
Lemma 2) that the birth vector per unit of time due to generation n satisfies a recurrence
relation involving the operator K, which is similar to Eq. (6). For a discussion of the
link between the spectral radius of this operator and R0 but for deterministic models,
see Inaba (2012, Sect. 4). If R0 > 0 then R0 may once again be characterized by
the fact that λ1(A/R0, B) = 0, as in Proposition 2. The spectral radius R0 of K is
almost surely independent of the particular random sequence of environments, as in
Proposition 3.

If p(t) is a scalar population then λ1(A, B) = 〈A〉 − 〈B〉, where for instance
〈A〉 = limt→∞ 1

t

∫ t
0 A(s) ds. So R0 = 〈A〉/〈B〉 as, e.g., in the work of Córdova-

Lepe et al. (2012) on a model with almost periodic coefficients. The row vector v =
(1 1 . . . 1) satifies dv/dt = 0 = vQ(t). So it can be shown, following Perthame (2007,
§ 6.3.2), that there is a unique T -periodic positive solution u(t) of du/dt = Q(t)u(t)
such that

∑
i ui (t) = 1. The law of large numbers for Markov chains shows that

〈A〉 = 1
T

∫ T
0

∑
k uk(s)A(k) ds. So

R0 =
∫ T

0

∑
k uk(s)A(k) ds

∫ T
0

∑
k uk(s)B(k) ds

.

If moreover Q(t) does not depend on t then there is a unique vector u such that Qu = 0
and

∑
i ui = 1. So R0 = (

∑
k uk A(k))/(

∑
k uk B(k)). This formula for R0 is the same

as the one for “R AR A
0 ” by Artalejo et al. (2012, § 4.1).

7 Conclusion

The difference between the R0 in the present paper and the “R0” (which we call R∗)
of Hernandez-Suarez et al. (2012) is similar to the difference between on one side the
“stochastic” growth rate (1), which is also equal to the expected growth rate of the
population

r = lim
t→+∞ E

[
log |p(t)|

t

]

,
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and on the other side the growth rate of the expected population (10) (Lewontin and
Cohen 1969; Tuljapurkar 1990). It is the position of r with respect to 0 or of our
R0 with respect to 1, which decides whether the population is sub- or supercritical
in simulations. However log μ and R∗ are much easier to compute in Markovian
environments with structured (non-scalar) populations: they are given by the spectral
radii of simple matrices.
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