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Abstract Pathogen evolution towards the largest basic reproductive number,R0, has
been observed in many theoretical models, but this conclusion does not hold uni-
versally. Previous studies of host–pathogen systems have defined general conditions
under which R0 maximization occurs in terms of R0 itself. However, it is unclear
what constraints these conditions impose on the functional forms of pathogen related
processes (e.g. transmission, recover, or mortality) and how those constraints relate to
the characteristics of natural systems. Here we focus on well-mixed SIR-type host–
pathogen systems and, via a synthesis of results from the literature, we present a
set of sufficient mathematical conditions under which evolution maximizes R0. Our
conditions are in terms of the functional responses of the system and yield three gen-
eral biological constraints on when R0 maximization will occur. First, there are no
genotype-by-environment interactions. Second, the pathogen utilizes a single trans-
mission pathway (i.e. either horizontal, vertical, or vector transmission). Third, when
mortality is density dependent: (i) there is a single infectious class that individuals
cannot recover from, (ii) mortality in the infectious class is entirely density depen-
dent, and (iii) the rates of recovery, infection progression, and mortality in the exposed
classes are independent of the pathogen trait. We discuss how this approach identifies
the biological mechanisms that increase the dimension of the environmental feedback
and prevent R0 maximization.
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1 Introduction

The evolution of pathogen virulence has been an important area of study for the
past two decades (Bull 1994; Ebert and Herre 1996; Frank 1996; Levin 1996;
Brown et al. 2006; Alizon et al. 2009). One of the hypotheses put forth by the-
oretical studies about virulence evolution is the trade-off between virulence and
other life history parameters of the pathogen (Bull 1994; Frank 1996; Levin 1996).
Many theoretical studies have explored the evolutionary consequences of trade-
offs in compartmental susceptible-infectious-recovered (SIR)-type host–pathogen
models where the pathogen is horizontally transmitted, only a single strain of
the pathogen can infect any given host, and selection is frequency indepen-
dent (Anderson and May 1982; Bremermann and Thieme 1989; Thieme 2007;
Metz et al. 2008; Gyllenberg et al. 2011). A classic result from the earliest
of those studies is that under the above conditions evolution maximizes the
basic reproductive number (Anderson and May 1982; Bremermann and Thieme
1989).

The basic reproductive number, R0, is the number of secondary cases that arise from
a single infected individual in a completely susceptible host population. When R0 > 1,
the pathogen is able to invade a susceptible population, resulting in an epidemic. When
R0 < 1, the pathogen is unable to invade and dies out. Larger values of R0 imply
that the pathogen is better able to invade a completely susceptible population. Thus, in
systems where evolution maximizes R0, the pathogen strain that is best able to invade
a completely susceptible population is also the strain that is unable to be invaded by
other strains at low density.

For well-mixed deterministic SIR-type systems where a host can only be infected
by a single pathogen strain, R0 maximization has been shown to occur in partic-
ular models (Dieckmann et al. 2002; Boots and Sasaki 2003; Thieme 2007; Med-
lock et al. 2009). However, R0 maximization does not occur universally in that class
of systems (Nowak 1991; Dieckmann et al. 2002; Thieme 2007; Metz et al. 2008;
Gyllenberg et al. 2011). To help identify when pathogen evolution maximizes R0,
previous studies have derived sufficient conditions for the evolutionary maximiza-
tion of R0 in terms of R0 itself (Mylius and Diekmann 1995; Metz et al. 2008;
Gyllenberg et al. 2011). An important conclusion from these studies is that R0 max-
imization, and optimization in general, requires the environmental feedbacks of the
system to be effectively one dimensional (Mylius and Diekmann 1995; Metz et al.
2008).

Despite this existing body of general mathematical theory and the collection of
specific studies demonstrating when R0 maximization does and does not occur, it
remains unclear under what general biological conditions evolution maximizes R0
in SIR-type systems. Furthermore, it is unclear what constraints the R0 maximiza-
tion theory in Mylius and Diekmann (1995) and Metz et al. (2008) imposes on the
functional forms used to model pathogen-related processes like transmission, pro-
gression of the infection, recovery, and mortality. Understanding these constraints on
the functional forms is important for three reasons. First, such constraints allow one
to identify when evolution maximizes R0 simply from the structure of the equa-
tions of the dynamical system. Depending on how complex a model is, this can
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be simpler than determining if R0 satisfies monotonicity conditions or comput-
ing invasability plots. Second, there is a clear mechanistic link between the func-
tional forms used in theoretical models and particular characteristics of biological
processes in natural systems. Thus, conditions on functional forms allows one to
link particular biological phenomena to general theory. Finally, linking the func-
tional form constraints to biological processes can identify what characteristics of
natural systems inhibit and promote R0 maximization. For example, constraints on
functional forms can be used to identify what functional forms (and hence what
biological processes) increase the dimension of environmental feedbacks. This in
turn helps identify what kinds of systems are likely to exhibit R0 maximization
and evaluate how applicable results based on R0 maximization theory are to natural
systems.

This study presents a synthesis of results from the literature that results in a set
of sufficient mathematical conditions under which evolution maximizes R0 in SIR-
type systems. We focus on well-mixed SIR-type systems where a host can only be
infected by a single pathogen strain and consider both frequency independent and
frequency dependent selection. The analysis is based on the next generation technique
for computing R0 in van den Driessche and Watmough (2002) and the sufficient
condition for R0 maximization in Mylius and Diekmann (1995). This approach yields
conditions in terms of the functional forms used to model epidemiological processes
and we directly relate these conditions to the characteristics of natural systems. We
note that other optimization principles can arise in theoretical models (Metz et al. 2008;
Gyllenberg et al. 2011), but in this study we will only focus on R0 maximization.

The biological interpretation of our conditions yields three general biological
conditions under which evolution maximizes R0 when selection is frequency
independent. First, there are no genotype-by-density or genotype-by-environment
interactions. That is, the effects of the host class densities and the pathogen
trait on system processes are independent. Second, the pathogen utilizes a single
route of transmission (e.g. horizontal, vertical, or vector transmission). Third,
if mortality is density dependent then: (i) there is a single infectious class
that individuals cannot recover from, (ii) mortality in the infectious class is
entirely density dependent, and (iii) the rates of recovery, infection progres-
sion, and mortality in the exposed classes are independent of the pathogen
trait. The additional condition that arises when selection is frequency depen-
dent is that there can be no genotype-by-genotype interactions between pathogen
strains.

In the following we first review the theory underlying our results, focusing on
the case where selection is frequency independent. We then apply the theory to
epidemiological systems with a single infectious class and systems with one exposed
and one infectious class. Next we present a summary of the results for more compli-
cated systems involving multiple exposed and multiple infectious classes and vector
transmission. Within each of the above cases we analyze specific examples. We then
extend our conditions to include systems where selection is frequency dependent. We
conclude with a discussion of how our conditions for R0 maximization relate to the
dimension of the environmental feedbacks in the systems.
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2 Methods

2.1 Model

Here we introduce a general model for a direct transmission host–pathogen system
with a single host species. A review of the following theory for more general systems
(e.g., vector-borne pathogens) is included in Appendix A.

We divide the host population into susceptible (S), infected (C j for 1 ≤ j ≤ n),
and recovered (R) classes. We assume that there is a single susceptible class and a
single recovered class, but see Appendix B for two examples with multiple susceptible
classes. Note that an infected class, C j , could be either an infectious class (I ) or an
exposed class (E), where exposed individuals are infected but not infectious. We
assume all newly infected individuals enter class C1 and that infected individuals pass
through each infected class sequentially as the infection progresses. The pathogen
is assumed to be characterized by a one-dimensional trait parameter θ . We assume
the dynamics of the system tend to either an endemic equilibrium or the disease free
equilibrium for any fixed trait value. The disease free equilibrium is comprised of only
susceptible individuals at density N .

For a monomorphic pathogen population, the dynamics of the host–pathogen sys-
tem are

d S

dt
= GS(S, C, R, θ)− US(S, C, R, θ)

dC1

dt
=

n∑

j=1

C jF ( j)
C1
(S, C, R, θ)− C1V−

C1
(S, C, R, θ)

(1)dC j

dt
= C j−1V+

C j
(S, C, R, θ)− C jV−

C j
(S, C, R, θ), 2 ≤ j ≤ n

d R

dt
= GR(S, C, R, θ)− UR(S, C, R, θ).

where C = (C1, . . . ,Cn). The functions GS and US (GR and UR) are the rates at
which individuals enter and leave the susceptible (recovered) class, respectively. The
terms C jF ( j)

C1
are the rates at which newly infected individuals enter class C1 due to

transmission of the pathogen from individuals in class C j . The terms C j−1V+
C j

and

C jV−
C j

are the rates at which already infected individuals enter and leave class C j ,

respectively. V−
C j

is the sum of the per capita mortality rate, DC j , and the per capita
rate at which individuals transfer out of class C j due to recovery or progression of

the infection, TC j . Throughout we assume F ( j)
C1

, V+
C j

, and V−
C j

are finite and positive
when evaluated at points where C j = 0 for all j .

2.2 The basic reproductive number

We now compute the basic reproductive number for the pathogen in system (1).
The reproductive number of a pathogen with trait θ, R(S, C, R, θ), is the number
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of secondary infections that arise from a single infected individual in a population
with host class densities S, C, and R. The basic reproductive number of a pathogen
with trait θ, R0(θ), is the number of secondary infections that arise from a single
infected individual in a completely susceptible population at the disease free equilib-
rium. The basic productive number can be computed as R0(θ) = R(N , 0, 0, θ)where
C = 0 implies that C j = 0 for all j .

We compute the reproductive number using the next generation technique in
van den Driessche and Watmough (2002). Define VC j (S, C, R, θ, C̄ j−1, C̄ j−1) =
−C̄ j−1V+

C j
(S, C, R, θ)+ C̄ jV−

C j
(S, C, R, θ). Let MF and MV be the matrices

MF (S, C, R, θ) =
[
F (k)

C j

]

j,k
, MV (S, C, R, θ) =

[
∂VC j

∂C̄k

]

j,k
(2)

evaluated at C̄ j = 0 for all j . The reproductive number is R(S, C, R, θ) =
ρ(MF M−1

V ), where ρ(M) is the spectral radius of a matrix M (Diekmann et al. 1990;
van den Driessche and Watmough 2002). When R(S, C, R, θ) > 1, a pathogen with
trait θ can invade a population with class densities S, C, and R.

2.3 Evolution and R0 maximization

We assume evolution occurs at a much slower rate than the epidemiological dynamics
in system (1). In order to apply our theory, we require that any successful invading
pathogen replaces the resident pathogen in system (1). System (1) has this property
when the trait values of the invading pathogen strains are sufficiently close to those
of the resident pathogen strains (Geritz et al. 2002; Dercole and Rinaldi 2008). In
particular, if the invading strain can invade the endemic equilibrium of the resident
strain and the resident strain cannot invade the endemic equilibrium of the invader, then
invasion implies replacement (Geritz 2005). The author is not aware of any conditions
on system (1) that ensure invasion implies replacement for large differences between
the trait values of the invading and resident strains. Finally, we assume only a single
strain of the pathogen can infect any given host (i.e. no coinfection or superinfection)
and recovered individuals are immune to all strains of the pathogen (i.e. total cross
immunity).

We are interested in the case where nonresident strains of the pathogen can invade
the endemic equilibrium of a resident strain. In the following we will focus on the
evolutionary dynamics in system (1) when selection is frequency independent. When
selection is frequency independent, the fitness of the invading pathogen strain is inde-
pendent of the trait value of the resident and determined solely by the densities of the
host classes (Hartl and Clark 2007). In this case the reproductive number of the invad-
ing strain only depends on the densities of the host classes and the invader trait value.
Note that while the host class densities at the endemic equilibrium are determined by
the trait value of the resident strain, the trait value of the resident strain only indirectly
affects the fitness of the invading strain via the host class densities. We address the case
where selection is frequency dependent in Appendix F. When selection is frequency
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dependent, the fitness of the invading strain depends explicitly on the trait value of
the resident strain (Hartl and Clark 2007). In this case the reproductive number of the
invading strain depends on the host class densities and both the resident and invader
trait values.

Let S∗, C∗,and R∗ be the susceptible, infected, and recovered host densities at
the endemic equilibrium for a resident strain of the pathogen with trait θr . Let C̄ j

denote the densities of hosts infected with an invading pathogen strain with trait θi .
When selection is frequency independent and the invader is rare, the epidemiological
dynamics of the invader are

dC̄1

dt
=

n∑

j=1

C̄ jF ( j)
C1
(S∗, C∗, R∗, θi )− C̄1V−

C1
(S∗, C∗, R∗, θi )

dC j

dt
= C̄ j−1V+

C j
(S∗, C∗, R∗, θi )− C̄ jV−

C j
(S∗, C∗, R∗, θi ), 2 ≤ j ≤ n. (3)

The invader can invade the endemic equilibrium of the resident strain if R(S∗, C∗, R∗,
θi ) > 1. Because we assume invasion implies replacement, in this case the invading
strain becomes the new resident strain. Note that the reproductive number for a resident
pathogen invading its own endemic equilibrium is R(S∗, C∗, R∗, θr ) = 1. If there
exists a resident strain such that R(S∗, C∗, R∗, θi ) < 1 for all other strains, then that
resident strain cannot be invaded by any other strain at low densities. Such strains are
called evolutionary stable strategies (ESSs, Smith and Price 1973).

We are interested in sufficient conditions on the functional forms in system (1)
such that an ESS also has the largest basic reproductive number. To determine these
conditions, we use a sufficient condition for R0 maximization derived in Mylius and
Diekmann (1995). In particular, if the reproductive number for a pathogen with trait
θ can be written as

R(S, C, R, θ) = g(S, C, R)R0(θ), (4)

where g(S, R) is a positive function, then evolution always selects for the pathogen
strain that maximizes the basic reproductive number; see Appendix A. Note that
typically 0 ≤ g(S, R) ≤ 1 for biological models. In the following we present the con-
ditions on the functional forms of F ( j)

C1
, V+

C j
, and V−

C j
such that R(S, C, R, θ) factors

as in Eq. (4). Note that because MF and MV depend only on the functions F ( j)
C1
, V+

C j
,

and V−
C j

, our conditions for R0 maximization hold for any choice of dynamics for the
susceptible and recovered classes.

3 Results

3.1 R0 maximization in models with a single infectious class

We first consider systems with a single infectious class. The level of generality of
our model includes systems where transmission is density dependent or frequency
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dependent and systems where immunity can be lost (SIS and SIRS systems) and
recovery is not possible (SI systems). The model is

d S

dt
= GS(S, I, R, θ)− US(S, I, R, θ)

d I

dt
= IFI (S, I, R, θ)− IV−

I (S, I, R, θ) (5)

d R

dt
= GS(S, I, R, θ)− UR(S, I, R, θ).

Here FI is the per capita recruitment rate of infectious individuals due to horizontal
or vertical transmission and V−

I is the per capita rate at which infected individuals
exit the infectious class. The per capita exit rate V−

I = TI + DI is the sum of the per
capita rate at which infectious individuals transfer out of the infectious class into other
classes (TI ) and the per capita death rate (DI ). Since there is only a single infected
class in system (5), the transfer rate is equal to the recovery rate.

Using Eq. (2), the reproductive number for a pathogen with trait θ in system (5) is

R(S, I, R, θ) = FI (S,I,R,θ)
V−

I (S,I,R,θ)
= FI (S,I,R,θ)

TI (S,I,R,θ)+DI (S,I,R,θ)
; (6)

see Appendix B for details. The basic reproductive number for a pathogen strain is
R0(θ) = R(N , 0, 0, θ). The reproductive number can be written in the form given by
Eq. (4) when FI and V−

I can be written as

(A1) FI (S, I, R, θ) = f I (S, I, R)η(θ)ξ f (S, I, R, θ)
(A2) V−

I (S, I, R, θ) = v−
I (S, I, R)ν(θ)ξv(S, I, R, θ)

(A3) ξ f = ξv

Under these conditions the reproductive rate can be written as

R(S, I, R, θ) = f I (S, I, R)η(θ)ξ f (S, I, R, θ)

v−
I (S, I, R)ν(θ)ξv(S, I, R, θ)

= f I (N , 0, 0)

v−
I (N , 0, 0)

η(θ)

ν(θ)

ξ f (N , 0, 0, θ)

ξv(N , 0, 0, θ)

v−
I (N , 0, 0)

f I (N , 0, 0)

f I (S, I, R)

v−
I (S, I, R)

= R0(θ)g(S, I, R).

In conditions (A1) and (A2), f I and v−
I represent the effects the densities of the host

classes have on the recruitment and exit rates of infectious individuals. We will refer to
f I and v−

I as the effects of the environment. The functions η and ν represent the effects
the pathogen trait has on the recruitment and exit rates of infected individuals. Finally,
the terms ξ f and ξv represent the effects of the interactions between the pathogen
trait and the densities of the host classes. This term has multiple interpretations,
e.g. genotype-by-density, genotype-by-environment, or phenotype-by-environment
interactions, but throughout the text we will refer to these terms as genotype-by-
environment interaction effects.
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The biological interpretations and consequences of conditions (A1) through (A3)
are the following. First consider condition (A3). Biologically, FI and V−

I are only
likely to have the same genotype-by-environment interaction terms when there are
no genotype-by-environment interactions, i.e. ξ f = ξv = 1. In this case, the effects
of the environment and the trait on recruitment, recovery, and death are independent.
Next consider condition (A1). When there are multiple routes of transmission (e.g.,
horizontal or vertical transmission), condition (A1) implies that either the environ-
mental effects or the trait effects must be the same across all transmission routes; see
Example 3 and Appendix B for details. In natural systems, we do not expect horizontal
and vertical transmission pathways to have the same dependence on the densities of
the host classes, nor do we expect the pathogen trait to affect all transmission routes
the same. Thus, we expect evolution to maximize R0 only in systems with a single
transmission pathway.

To interpret condition (A2) we decompose VI into death (DI ) and transfer (TI )

rates. Condition (A2) is satisfied when one of the following holds

(A2.1) TI = tI (S, I, R)τ (θ)ξv(S, I, R, θ) and DI = 0
(A2.2) TI = 0 and DI = dI (S, I, R)δ(θ)ξv(S, I, R, θ)
(A2.3) TI = tI (S, I, R)τ (θ)ξv(S, I, R, θ), DI = dI (S, I, R)δ(θ)ξv(S, I, R, θ),

and τ = δ

(A2.4) TI = tI (S, I, R)τ (θ)ξv(S, I, R, θ), DI = dI (S, I, R)δ(θ)ξv(S, I, R, θ),
and tI = dI

Condition (A2.1) implies that there is no mortality of infectious individuals. Condition
(A2.2) implies that recovery is not possible and that infection ultimately leads to death.
When death and recovery are both possible, condition (A2.3) requires the death and
recovery rates to have the same trait dependence. Condition (A2.3) is unlikely to arise
in nature as it implies that an increase in the death rate due to pathogen evolution is
accompanied by an increase in the recovery rate.

Condition (A2.4) requires the death and recovery rates to have the same density
dependence. To see when this arises, decompose the mortality rate into pathogen
induced mortality that is independent of the host population density, δ1(θ), and density
dependent mortality, δ2(θ)d(S, I, R). Thus the total death per capita rate is DI =
δ1(θ) + δ2(θ)d(S, I, R). An example from the literature is DI = δ1(θ) + δ2(S +
I + R) (Thieme 2007; Gyllenberg et al. 2011). For DI to satisfy condition (A2.2),
the density dependent mortality rate would either have to be independent of the host
population density [d(S, I, R) = 0] or the pathogen induced mortality would have
to be negligible [δ1(θ) = 0]. Note that we expect the per capita recovery rate to be
independent of the host population density. Thus, for DI + TI to satisfy condition
(A2.4), either mortality would have to be density independent or there could be no
recovery [T (S, I, R, θ) = 0]. In total, condition (A2.4) will be satisfied in natural
systems either when mortality is density independent or when mortality is entirely
density dependent and there is no recovery.

In the following we consider three examples. The first has a widely used and simple
form that results in the maximization of R0. In the second system the transmission
function does not satisfy condition (A1) and evolution does not maximize R0. Specific
numerical examples of these two systems are included in Fig. 1. The third example
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Fig. 1 Numerical examples where pathogen evolution maximizes R0(θ) and where pathogen evolution
does not maximize R0(θ). a, b Basic reproductive number of a pathogen as a function of its trait, θ .
c, d Pairwise invasability plots for the pathogen. Gray (white) regions denote strains of the pathogen that
can (cannot) invade a given resident strain. The evolutionarily optimal trait value occurs at the intersection
of the black curves. Arrows in (c) and (d) denote the trait values that maximize R0(θ) in panels (a) and (b),
respectively. Numerical examples are derived from Example 1 (a, c) and Example 2 (b, d) from the main
text. Parameters are β(θ) = 4 + 2θ, κ(θ) = 1 + θ, ω = 0.5, μ(θ) = 2 + θ2, and N = 10. The dynamical
equation for the susceptible class is d S/dt = −F(S, I, R)+ μ(θ)I + μR R + ρR where μR is the death
rate of recovered individuals, ρ is the loss of immunity rate, and the total population size is assumed to be
constant, S + I + R = N

illustrates why we do not expect R0 to arise in systems where the pathogen is spread
both vertically and horizontally.

Example 1 Systems with functions of the form FI = f1(S, I, R)η(θ) and V−
I =

v1(S, I, R)ν(θ) are widely used in the literature. In such systems, the reproductive
number can easily be shown to factor as in Eq. (4),

R(S, I, R, θ) =
(

f1(S, I, R)

f1(N , 0)

v1(N , 0)

v1(S, I, R)

)
f1(N , 0)η(θ)

v1(N , 0)ν(θ)

=
(

f1(S, I, R)

f1(N , 0)

v1(N , 0)

v1(S, I, R)

)
R0(N , 0, 0, θ).

Systems with these functional forms always satisfy conditions (A1) and (A2) and
hence, result in the evolutionary maximization of R0.
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For example, the R0 maximization hypothesis in Anderson and May (1982) and
Bremermann and Thieme (1989) arose from models where the infectious class dynam-
ics were given by

d I

dt
= β(θ)SI − μ(θ)I − ω(θ)I (7)

where β(θ) is the mass action transmission coefficient,μ(θ) is the per capita mortality
rate, andω(θ) is the per capita recovery rate. Translating equation (7) into our notation
yields f I (S, I, R) = S, η(θ) = β(θ), v−

I (S, I, R) = 1, ν(θ) = μ(θ) + ω(θ),
and ξ f = ξv = 1. Decomposing the exit rates into transfer and death rates yields
tI (S, I, R) = 1, τ (θ) = ω(θ), dI (S, I, R) = 1, and δ(θ) = μ(θ). Note that the per
capita mortality and recovery rates are independent of the host class sizes and thus
satisfy condition (A2.4).

In this example,

R(S, I, R, θ) = β(θ)S

μ(θ)+ ω(θ)
(8)

which can be put in the form of Eq. (4) by setting

g(S, I, R) =
(

f1(S, I, R)

f1(N , 0)

v1(N , 0)

v1(S, I, R)

)
= S

N
. (9)

Hence, as was observed in Anderson and May (1982) and Bremermann and Thieme
(1989), evolution maximizes R0. In the numerical example in Fig. 1c, the evolutionary
optimal strategy (i.e. the ESS denoted by the intersection of the two black curves)
coincides with the trait value that maximizes the basic reproductive number (denoted
by the black arrow).

Example 2 Now consider a system where the infectious dynamics are given by

d I

dt
= β(θ)SI

κ(θ)+ S
− μ(θ)I − ω(θ)I. (10)

Here, the transmission function βS/[κ(θ) + S] represents how the transmission rate
saturates as the density of susceptible individuals increases. The parameter κ(θ) is the
density of susceptible individuals at which the transmission rate is half of the maximum
rate. In this system FI (S, I, R, θ) = β(θ)S/(κ(θ)+ S) and V−

I (S, I, R, θ) = μ(θ)+
ω(θ). The reproductive number for the pathogen is

R(S, I, R, θ) = β(θ)S

κ(θ)+ S

1

μ(θ)+ ω(θ)
. (11)

When κ does not depend on the trait θ , then system (7) satisfies conditions (A1)
through (A3). In particular, f I (S, I, R) = S/(κ+S), η(θ) = β(θ), v−

I (S, I, R) = 1,
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ν(θ) = μ(θ) + ω(θ), and ξ f = ξv = 1. In this case R(S, I, R, θ) can be written as
in Eq. (4) with

g(S, I, R) = S

κ + S

κ + N

N
. (12)

Thus, evolution maximizes R0.
When κ(θ) does depend on the trait, β(θ)S/(κ(θ) + S) cannot be factored as

in condition (A1). Thus, R(S, I, R, θ) cannot be written as in Eq. (4) because the
function g(S, I, R)will depends on both S and θ . In this case, the value of the optimal
strain will be determined by how the endemic equilibrium density of the susceptible
population depends on the strain of the resident pathogen (Mylius and Diekmann 1995;
Geritz et al. 1998). As seen in Fig. 1d, the evolutionary optimal strategy (denoted by
the intersection of the black curves, θ ≈ 0.135) does not coincide with the trait value
that maximizes the basic reproductive number (black arrow, θ ≈ 0.283).

Example 3 Assume the pathogen can be transmitted vertically and horizontally. To
simplify the dynamics, we assume that the host population dynamics follow logistic
growth with carrying capacity K . The equation for the infectious class is

d I

dt
= I

(
r(θ)− S + I + R

K

)
+ β(θ)SI − μI (θ)I − ω(θ)I (13)

where r(θ) is the per capita birth rate of infectious hosts and all other parameters are
defined as in Example 1. In Eq. (13), FI (S, I, R, θ) = r(θ)−(S + I + R)/K +β(θ)S
and V−

I (S, I, R, θ) = μ(θ)+ ω(θ).

The reproductive number for system (20) is

R(S, I, R, θ) = r(θ)− (S + I + R)/K + β(θ)S

μ(θ)+ ω(θ)
. (14)

If either r(θ) or β(θ) depend on the trait, then FI (S, I, R, θ) does not factor as in
condition (A1). In this case it is not possible to write R(S, I, R, θ) as in Eq. (4) because
g(S, I, R) will depend on S, I, R and θ . If r and β do not depend on the pathogen
trait, then FI (S, I, R, θ) can be factored as f I (S, I, R) = r −(S+ I + R)/K +βS and
ηI (θ) = 1. However, this case only arises in the biologically unlikely scenario where
the pathogen trait has no affect on pathogen transmission or host recruitment. This
example illustrates why we do not expect evolution to maximize R0 when vertical
and horizontal transmission pathways are both present.

3.2 R0 maximization in models with an exposed class

To demonstrate how the conditions for R0 maximization in model (5) generalize
to more complex models, we consider a system with an exposed class, E , and an
infectious class, I . The generality of the model includes systems where immunity
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can be lost and recovery is not possible. For notational ease in this section we set
X = (S, E, I, R). The model is

d S

dt
= GS(X, θ)− US(X, θ)

d E

dt
= IFE (X, θ)− EV−

E (X, θ)

d I

dt
= EV+

I (X, θ)− IV−
I (X, θ)

d R

dt
= GR(X, θ)− UR(X, θ). (15)

Note that infectious individuals cannot return to the exposed class (i.e. there is no IV+
E

term) and that all newly infected individuals enter the exposed class (i.e. there is no
IFI term).

The reproductive number for a pathogen with strain θ in system (15) is

R(X, θ) = FE (X, θ)

V−
E (X, θ)

V+
I (X, θ)

V−
I (X, θ)

. (16)

The basic reproductive number is R0(θ) = R(N , 0, 0, 0, θ). R(X, θ) factors as in
Eq. (4) when

(B1) FE = fE (X)ηE (θ)ξ
+
E (X, θ)

(B2) V−
E = v−

E (X)ν
−
E (θ)ξ

−
E (X, θ)

(B3) V+
I = v+

I (X)ν
+
I (θ)ξ

+
I (X, θ)

(B4) V−
I = v−

I (X)ν
−
I (θ)ξ

−
I (X, θ)

(B5) ξ+
E = ξ−

E and ξ+
I = ξ−

I

Under these conditions, R(X, θ) can be written as in Eq. (4),

R(X, θ) = fE (X)v
−
E (N , 0, 0, 0)v+

I (X)v
−
I (N , 0, 0, 0)

v−
E (X) fE (N , 0, 0, 0)v−

I (X)v
+
I (N , 0, 0, 0)

R0(θ) = g(X)R0(θ) (17)

Conditions (B1) through (B5) have a particular structure. First, each functional
response must factor into terms representing environmental effects ( fE , v

−
E , v

+
I , and

v−
I ), pathogen trait effects (ηE , ν

−
E , ν

+
I , and ν−

I ), and genotype-by-environment inter-
action effects (ξ±

E and ξ±
I ). In addition, for each infected class the genotype-by-environ

ment interaction terms of all the functional forms must be the same (ξ+
E = ξ−

E and
ξ+

I = ξ−
I ).

The biological interpretation of conditions (B1) through (B5) is the following. First
consider condition (B5). Since the rate of disease progression out of the exposed class
is equal to the entry rate into the infectious class, the equivalence of the genotype-
by-environment interactions within classes implies that the genotype-by-environment
interactions are the same across all classes. We do not expect the genotype-by-environ
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ment interaction effects to be the same for the transmission, entry, and exit rates. Thus,
condition (B5) implies that there are no genotype-by-environment interactions (ξ±

E =
ξ±

I = 1). In this case the effects of the environment and the trait are independent.
Condition (B1) implies that the pathogen utilizes a single route of transmission.

Thus, transmission cannot occur both vertically and horizontally. Conditions (B2)
through (B4) can be interpreted by decomposing V−

E and V−
I into transfer and death

rates. This decomposition yields conditions analogous to conditions (A2.1) through
(A2.4) for each infected class. We expect conditions (B2) through (B4) to be satisfied
in two different cases. In the first case, the per capita mortality, disease progression,
and recovery rates of all class are density independent. In the second case, mortality is
density dependent, but additional constraints on the infected classes must hold. First,
the per capita mortality, transfer, and recovery rates of the exposed class must be
independent of the pathogen trait. Second, recovery is not possible from the infectious
class. Third, the mortality rate of the infectious class is entirely density dependent and
factors as in condition (A2.2).

In the following we consider two examples that illustrate the two cases above. In
the first, mortality is density independent and evolution maximizes R0. The second
illustrates the conditions under which R0 maximization occurs when mortality is
density dependent.

Example 4 When mortality is density independent, the dynamics of the infected
classes are

d E

dt
= βSI − (νE + ρE + μE )E

d I

dt
= νE E − (ρI + μI )I (18)

where β is the transmission coefficient, 1/νE is the average time between infection
and the onset of infectiousness, ρE and ρI are the per capita recovery rates, andμE and
μI are per capita death rates. All parameters are potential functions of the pathogen
trait. Here, fE (X) = S, ηE (θ) = β(θ), v−

E (X) = v+
I (X) = v−

I (X) = 1, ν−
E (θ) =

νE (θ) + ρE (θ) + μE (θ), ν
+
I (θ) = νE (θ), ν

−
I (θ) = νI (θ) + ρI (θ) + μI (θ), and

ξ±
E = ξ±

I = 1. Note that decomposing the exit rates into transfer and mortality rates
yields τE (θ) = νE (θ)+ρE (θ), δE (θ) = μI (θ), τI (θ) = ρE (θ), and δI (θ) = μI (θ).
Since dE (X) = dI (X) = tE (X) = tI (I ) = 1, system (18) satisfies the condition for
SEIR systems analogous to condition (A2.4).

Since the functional forms in system (18) satisfy conditions (B1) through (B5), the
reproductive number factors as

R(X, θ)= βνE S

(νE +ρE +μE )(ρI +μI )
= S

N

βνE N

(νE +ρE +μE )(ρE +μI )
= S

N
R0(θ)

(19)

where g(S, I, R) = S/N as in Eq. (4). Thus, evolution always maximizes R0.
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Example 5 Now consider a system where mortality is density dependent,

d E

dt
= βSI − [νE + ρE + μE + m E (M, θ)]E

d I

dt
= νE E − [ρI + μI + m I (M, θ)]I. (20)

where M = S(t)+E(t)+I (t)+R(t) is the host population size at time t . Here, m E (M)
and m I (M) are the per capita density dependent mortality rates. All other parameters
are interpreted as in system (18). The reproductive number for system (20) is

R(X, θ) = βSνE

[νE + ρE + μE + m E (M, θ)][ρI + μI + m I (M, θ)] . (21)

The functions FE = β(θ)S and V+
I = νE (θ) factor as fE (X) = S, ηE (θ) =

β(θ), v+
I (X) = 1, ν+

I (θ) = νE (θ), and ξ+
E = ξ+

I = 1. However, in general V−
E =

νE +ρE +μE + m E (M, θ) and V−
E = ρI +μI + m I (M, θ) do not satisfy conditions

(B2), (B4), and (B5). Hence, in general Eq. (21) cannot be written as in Eq. (4).
System (20) satisfies conditions (B1) through (B5) when one of the following is

holds

(C1) m E = 0 and m I = 0
(C2) m E = 0, ρI = μI = 0, and m I (M, θ) = m1(M)m2(θ)

(C3) νE , ρE , μE , and m E do not depend on θ, ρI = μI = 0, and m I (M, θ) =
m1(M)m2(θ)

Other possibilities exist if ρI (θ) = μI (θ) = δI (θ) or if ρE (θ) = μE (θ) = δE (θ).
However, we do not expect these cases to arise in natural systems because they imply
that the pathogen trait has the same effect on recovery and mortality rates. Note that
under conditions (C2) and (C3) mortality in the infectious class is entirely due to
density dependent processes.

When condition (C1) is satisfied, systems (18) and (20) are equivalent. Hence
evolution maximizes R0. When condition (C2) is satisfied, the per capita mortality
rate of the exposed class is independent of the host population size, there is no recovery
from the infectious class, and mortality in the infectious class is entirely due to density
dependent processes. In this case v−

E (X) = v+
I (X) = 1, ν−

E (θ) = νE (θ)+ ρE (θ) +
μE (θ), ν

+
I (θ) = νE (θ), v

−
I (X) = m1(M), ν

−
I (θ) = m2(θ), and ξ±

E = ξ±
I = 1.

Following Eq. (17), the reproductive number can then be written as

R(X, θ) = Sm1(N )

Nm1(M)
R0(θ) (22)

where g(S, E, I, R) = Sm1(M)/[Nm1(N )] as in Eq. (4).
When condition (C3) is satisfied, all recovery and mortality rates of the exposed

class are independent of the pathogen trait, there is no recovery from the infec-
tious class, and mortality in the infectious class is entirely due to density depen-
dent processes. In this case, V−

E and V−
E satisfy conditions (B2) through (B5) where
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v−
E (X) = νE +ρE +μE + m E (M), ν

−
E (θ) = 1, v−

I (X) = m1(M), ν
−
I (θ) = m2(θ),

and ξ−
E = ξ−

I = 1. The reproductive number for system (20) can then be written as

R(X, θ) = Sm3(N )[νE + ρE + μE + m E (N )]
Nm3(M)[νE + ρE + μE + m E (M)]R0(θ) = g(X)R0(θ). (23)

3.3 Maximization in models with vectors and multiple infected classes

We now summarize the main conclusions for systems with multiple exposed and
multiple infectious classes and systems with vector-borne pathogens. All analytical
results are contained in Appendices C, D, and E.

There are three general mathematical conditions under which evolution maxi-
mizes R0. First, each functional response must factor into three components rep-
resenting environmental, trait, and genotype-by-environment interaction effects, e.g.
F(X, θ) = f (X)η(θ)ξ f (X, θ). Second, for each species the pathogen infects, the
genotype-by-environment interaction terms must be the same across all classes of that
species. For example, in vector-borne systems the genotype-by-environment terms for
all host classes must be the same and the genotype-by-environment terms for all vector
classes must be the same. Third, for systems with multiple infectious classes, the per
capita rates at which infectious individuals enter (V+

C j
) and exit (V−

C j
) a particular

infectious class must have either the same dependence on the pathogen trait or the
same dependence on the densities of the host classes. This last condition is similar to,
but more restrictive than, conditions (A2.1) through (A2.4) for system (5).

The biological consequences of the conditions are similar to those for the previous
models. The first condition implies that the pathogen can only utilize one transmission
pathway. Thus the pathogen can only be spread via horizontal, vertical, or vector-
borne transmission; see Example 6. The constraints imposed by the second condition
suggest that R0 maximization will arise only in systems where there are no genotype-
by-environment interactions. In this case, the trait and the host class densities affect
pathogen related processes independently.

The biological consequences of the third condition depend on the structure of the
host population. When each species has a single infectious class, the consequences are
the same as those in system (15). That is, either mortality is density independent or
mortality is density dependent and the conditions illustrated in Example 5 must hold.
When multiple infectious classes are present in a given species, the entry and exit rates
for all infectious classes of that species must have either the same dependence on the
trait or the same dependence on the host classes. We do not expect the pathogen trait to
have the same effect on the entry and exit rates for all infected classes. In principle the
entry and exit rates of all infectious classes can have the same density dependence, but
biologically we expect this only in the case where the per capita recovery, mortality,
and infection progression rates are density independent. Thus, for any species with
multiple infectious classes, R0 maximization is only expected if mortality is density
independent.

The following two examples consider vector-borne pathogens. Let Ŝ, Ê, Î , and
R̂ denote the densities of the susceptible, exposed, infectious and recovered vector
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classes, respectively. Let N̂ be the density of susceptible vectors at the disease free
equilibrium. For notational ease, let X = (S, E, I, R, Ŝ, Ê, Î , R̂). The first example
is from a study by Medlock et al. (2009) where evolution maximizes R0. The second
example includes both direct and vector transmission and does not maximize R0.

Example 6 The equations for the infected classes in Medlock et al. (2009) are

d E

dt
= βS Î − (νE + μE )E

d I

dt
= νE E − (ρI + μI )I

(24)d Ê

dt
= β̂ Ŝ I − (νÊ + μÊ )Ê

d Î

dt
= νÊ Ê − (ρ Î + μ Î ) Î

where β and β̂ are the transmission coefficients, 1/νE and 1/νÊ are the average times
between exposure to the pathogen and the onset of infectiousness, ρI and ρ Î are the
recovery rates, and μE , μI , μÊ and μ Î are the mortality rates. All parameters are
potentially functions of θ . Note that mortality is density independent and that the
pathogen only utilizes one route of transmission.

In this system, the functional forms in the host class equations factor into compo-
nents that depend on the host class densities [ fE (X) = S and v−

E (X) = v±
I (X) = 1]

and components that depend on the pathogen trait [ηE (θ) = β(θ)S, ν−
E (θ) =

νE + μE , ν
+
I (θ) = νE , ν

−
I (θ) = ρI + μI ]. Furthermore, there are no genotype-

by-environment interaction terms, i.e. ξ±
E = ξ±

I = 1. The functional forms in the
vector class equations factor in an analogous way. Consequently, the reproductive
number of the pathogen can be written as in Eq. (4),

R1(X, θ) = βSνE

(νE + μE )(ρI + μI )

β̂ ŜνÊ

(νÊ + μÊ )(ρ Î + μ Î )
= SŜ

N N̂
R0(θ) (25)

where g(X) = SŜ/(N N̂ ). As was found in Medlock et al. (2009), evolution maximizes
R0.

Example 7 Now assume the pathogen utilizes both horizontal and vector-borne trans-
mission routes. The dynamics of the exposed class are

d E

dt
= β1SI + β2S Î − (νE + μE )E . (26)

where β1 is the direct transmission coefficient and β2 is the vector transmission coeffi-
cient. The equations for the I, Ê , and Î classes are as in system (24). The reproductive
number of the pathogen is
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R2(X, θ)= 1

2

β1SνE

(νE +μE )(ρI +μI )
+ 1

2

√(
β1SνE

(νE +μE )(ρI +μI )

)2

+R1(X, θ) (27)

where R1 is defined as in Eq. (25) with β = β2.

As shown in Example 6, all of the transfer functions factor into components that
depend only on the host and vector classes and components that only depend on the
pathogen trait. The contributions to newly infected individuals from direct transmission
(β1SI ) and vector transmission (β2S Î ) also factor. However, because the pathogen
utilizes two modes of transmission, the reproductive number R2(X, θ) factors as in
Eq. (4) only if the parameters depend on θ in such a way that β̂β2ν̂E = β2

1νE and
(νE +μE )(νI +μI ) = (ν̂E + μ̂E )(ν̂I + μ̂I ). We do not expect these conditions to be
satisfied in natural systems. Thus, we do not expect evolution to maximize R0 when
there are multiple routes of transmission.

3.4 Frequency dependent selection

The above conditions can be extended to include the case where selection is frequency
dependent. Here we present the results for a system with a single infectious class and
discuss how the results can be extended for more complex systems. Additional details
and the analysis of a particular example are included in Appendix F.

Consider a system with a single infectious class. Let θ denote the resident’s trait
and let (S∗, I ∗, R∗) denote the endemic equilibrium of the resident. When selection
is frequency dependent, the dynamics of an invading pathogen with strain θi at the
endemic equilibrium of the resident are

d Ii

dt
= Ii FI (S

∗, I ∗, R∗, θ, θi )− Ii V −
I (S

∗, I ∗, R∗, θ, θi ). (28)

Here, Ii is the density of individuals infected with the invading strain, F is the per
capita transmission rate of the invading strain, and V − is the per capita exit rate. The
reproductive number of the invading strain is

R(S∗, I ∗, R∗, θ, θi ) = FI (S∗, I ∗, R∗, θ, θi )

V −
I (S

∗, I ∗, R∗, θ, θi )
. (29)

The basic reproductive number of the invading strain is R(θi ) = R(N , 0, 0, θi , θi ).
The reproductive number factors as in Eq. (4) under the following conditions

(D1) FI (S, I, R, θ, θi ) = f I (S, I, R, θ)η(θi )ξ f (S, I, R, θ, θi )

(D2) V −
I (S, I, R, θ, θi ) = v−

I (S, I, R, θ)ν(θi )ξv(S, I, R, θ, θi )

(D3) ξ f = ξv
(D4) f I (S, 0, 0, θ1) = f I (S, 0, 0, θ2) and v−

I (S, 0, 0, θ1) = v−
I (S, 0, 0, θ2) for all

θ1 and θ2

These conditions are similar to conditions (A1) and (A3) but two key differences arise.
First, the terms that define the environmental effects ( f I and v−

I ) now depend on the
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trait value of the resident. Note that from the perspective of the invader, the resident
is part of the environment. Second, condition (D4) imposes an additional constraint
on the effects of the host density and the invading pathogen strain in completely
susceptible populations.

The biological interpretations of the conditions are the following. Condition (D3)
implies that the genotype-by-environment interactions are the same for transmission,
mortality, and recovery. Condition (D3) also implies that the genotype-by-genotype
interactions are the same. Here, genotype-by-genotype interactions refer to interac-
tions between the traits of the resident and invading strain. We do not expect genotype-
by-environment and genotype-by-genotype interaction to be the same for all processes
in natural systems. Thus, condition (D3) is only likely to be satisfied in systems where
the effects of the invader’s trait are independent of the host class densities and the resi-
dent’s trait, i.e. ξ f = ξv = 1. Condition (D1) implies that the pathogen can only utilize
one transmission pathway. Condition (D3) implies that either mortality is density inde-
pendent or mortality is density dependent and recovery is not possible. Condition (D4)
implies the effects of host density and the pathogen trait are independent in completely
susceptible populations.

The conditions for R0 maximization in any system with frequency independent
selection can be extended to the frequency dependent selection case in an analogous
way. First, all terms representing environmental effects need to depend on both the
host class densities and the trait value of the resident. Second, terms representing trait
effects can only depend on the invader’s trait. Third, a condition like condition (D4)
must hold for all functional responses. The biological interpretation of these conditions
remains essentially unchanged.

4 Discussion

In this study we presented a set of sufficient conditions for R0 maximization in
terms of the functional forms used to model epidemiological processes. We also dis-
cussed how those mathematical conditions relate to the biological characteristics of
natural systems. Our analysis yields three mathematical conditions under which evo-
lution maximizes R0 in SIR-type systems. First, each functional response must factor
into terms representing environmental, trait, and genotype-by-environment interaction
effects [conditions (A1) through (A2) for system (5)]. Second, for each species the
pathogen infects, the effects of genotype-by-environment (or genotype-by-density)
interactions must the same for all epidemiological processes [condition (A3)]. Third,
the per capita mortality, recovery, and infection progression rates must have the same
density dependence or the same trait dependence [conditions (A2.1) through (A2.4)].

These mathematical conditions yield three general biological constraints on when
evolution is expected to maximize R0 in natural systems. First, the pathogen can only
utilize one transmission pathway, e.g. horizontal, vertical, or vector transmission.
Second, there are no genotype-by-environment interaction effects. That is, the host
class densities and the pathogen trait have independent effects on all epidemiological
processes. Third, either the per capita mortality, recovery and disease progression
rates are density independent or mortality is density dependent and (i) there is a single
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infectious class that individuals cannot recover from, (ii) mortality in the infectious
class is entirely density dependent, and (iii) the rates of recovery, infection progression,
and mortality in the exposed classes are independent of the pathogen trait.

It is important to note that the conditions presented in this study are only sufficient
conditions for R0 maximization. Other studies have considered particular systems that
do not satisfy our conditions but result in R0 maximization (Thieme 2007; Metz et al.
2008; Gyllenberg et al. 2011). However, while our conditions do not capture all of the
cases in which R0 maximization occurs, our conditions do identify what character-
istics of natural systems inhibit or promote R0 maximization. We now interpret our
results in the context of one-dimensional environmental feedbacks. In particular, Metz
et al. (2008) found that R0 maximization required a one-dimensional environmental
feedback. We focus on the biological mechanisms that yield higher dimensional envi-
ronmental feedbacks and inhibit R0 maximization.

When multiple transmission pathways are present, each pathway yields an addi-
tional environmental feedback. Previous studies have shown that evolution does not
maximize R0 when a pathogen can be transmitted both horizontally and vertically
(Nowak 1991; Lipsitch et al. 1996). For this case, the susceptible class is the feedback
variable for horizontal transmission and the infectious class, via the density regu-
lated birth rate, is the feedback variable for vertical transmission. Our results show
that this conclusion extends to indirectly transmitted pathogens as well. In particular,
when vector transmission is also possible, the susceptible vector population becomes
a feedback variable. This suggests we should not expect evolution to maximize R0
when a pathogen utilizes multiple pathways.

Previous work has also shown that host heterogeneity can inhibit R0 maximiza-
tion (Dwyer et al. 1997; Gandon et al. 2001). In our models, host heterogeneity is
represented via multiple susceptible classes; see Appendix B. When the effects of the
pathogen trait on transmission differ across susceptible classes, then each susceptible
class acts as an independent feedback variable and evolution will not maximize R0.
However, if the pathogen trait affects transmission uniformly (e.g. increasing trans-
mission by a constant factor across all susceptible classes) then host heterogeneity
will not prevent R0 maximization. Thus, the underlying structure dictating the hetero-
geneity and its interaction with the pathogen trait will determine if R0 maximization
is possible.

Density dependent mortality has been shown to add additional feedback variables
(Thieme 2007; Metz et al. 2008; Gyllenberg et al. 2011). However, this is true only
when the pathogen trait affects pathogen-induced mortality, recovery, density depen-
dent mortality, or all of the above in a given class. For example consider system (5)
where there is a single infectious class. The feedback variable for density indepen-
dent pathogen-induced mortality and recovery is the susceptible class. The feedback
variable for density dependent mortality is the total population size. If density depen-
dent mortality is present with density independent mortality or recovery, then the
environmental feedback will have dimension two. But, if recovery is not possible
and density independent mortality is negligible, then the environmental feedback will
be one-dimensional. Furthermore, as shown in system (15) and Example 5, density
dependent and density independent sources of mortality can arise in exposed classes
so long as those processes are not affected by the pathogen trait. Thus, our results
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show that the dimension of the environmental feedback depends on the characteristics
of the system when mortality is density dependent.

Our approach also shows that the structure of the host population can influence the
dimension of the environmental feedback. Differences in the progression of infection
can inhibit R0 maximization. When newly infected hosts can enter different infected
classes, multiple life cycle pathways are accessible to the pathogen. Each new path-
way can potentially result in the pathogen trait affecting the environmental feedback.
When this occurs, the environmental feedback has dimension two. Differences in the
infectiousness of infectious individuals can also inhibit R0 maximization. In partic-
ular, if transmission processes differ mechanistically across the infectious classes of
a given species, then each transmission mechanism will create a new feedback; see
Appendix C. In this case the environmental feedback will depend on the pathogen trait
and have a dimension greater than one. This is particularly important for pathogens of
organisms in stage or age structured populations. If the pathogen can be spread during
different life stages, then the transmission mechanisms could differ, preventing R0
maximization.

The conditions for R0 maximization for every model we considered included a
requirement for the genotype-by-environment interaction effects to be the same for all
functional responses. Genotype-by-environment interactions arise when the effect of
the environment is conditional on the pathogen trait. In most cases, this implies that
the feedback must be at least two dimensional. Many previous studies have implicitly
assumed there are no genotype-by-environment interactions via density dependent,
frequency dependent, or mass action transmission functions and density independent
mortality and recovery rates (Anderson and May 1982; Bremermann and Thieme 1989;
Lenski and May 1994; Dieckmann et al. 2002; Boots and Sasaki 2003; Basu and Gal-
vani 2009; Medlock et al. 2009). Each of these cases found that evolution maximized
R0. However, those transmission functions do not accurately capture the dynamics of
all host–pathogen systems (McCallum et al. 2001; Smith et al. 2009). Other functional
forms like the negative binomial (Knell et al. 1996; Barlow 2000; Briggs and Godfray
1995) and asymptotic transmission functions (Barlow 2000; Diekmann and Kret-
zschmar 1991; Roberts 1996; Heesterbeek and Metz 1993) have been used to model
host–pathogen systems. Depending on how the pathogen trait is incorporated, these
transmission functions may contain terms that represent genotype-by-environment
interactions. In such cases, we do not expect evolution to maximize R0.

Finally, we return to our initial assumptions about complete cross immunity and
single strain infections. Previous studies have shown that superinfection and coinfec-
tion of multiple strains (May and Nowak 1995; Nowak and May 1994; Mosquera and
Adler 1998) and assumptions about cross immunity (Gog and Grenfell 2002) can also
affect evolutionary outcomes. In these cases the infectious classes of other strains
can become environmental feedback variables. Furthermore, interactions between
pathogen strains can result in evolution selecting for strains that do not maximize
R0. These genotype-by-genotype interactions are related to additional conditions for
R0 maximization that arise when selection is frequency dependent. In particular, as
with genotype-by-environment interactions, genotype-by-genotype interactions tend
to create higher dimensional environmental feedbacks. Understanding how prevalent
genotype-by-genotype interactions are in host–pathogen systems is an important area
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of future research that can determine how applicable R0 maximization theory is to
natural systems.

The conditions in this study hold for systems where any pathogen strain can invade
the resident as long as invasion implies replacement. Other studies have focused on gra-
dient dynamic evolutionary models where only pathogen strains close to the resident
can attempt to invade the resident (Abrams et al. 1993; Dieckmann and Law 1996). In
these models, the pathogen evolves in the direction of increasing fitness by climbing
the fitness gradient. As shown in Appendix G, the conditions under which evolution
maximizes R0 in a system with a single infectious class are very similar to those of
system (5). In particular, each functional response must factor into terms represent-
ing environmental and trait effects and there can be no genotype-by-environment
interaction terms. This suggests that conclusions about R0 maximization in those
host–pathogen evolutionary models may also be useful in identifying other mecha-
nisms through which higher dimensional environmental feedbacks arise.

In total, the conditions for R0 maximization presented in this study have shown that
there are many biological mechanisms that inhibit R0 maximization in natural systems.
This suggests that additional theoretical studies involving more realistic functional
forms and fewer simplifying biological assumptions are necessary to understand if
R0 maximization in natural systems. The approach taken in this study may also be
useful in identifying biological conditions under which optimization principles beyond
R0 maximization arise. An important area of research is understanding if optimization
principles of any kind are expected to arise in natural systems.
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Appendix A: Review of theory

Here we review the next generation technique in van den Driessche and Watmough
(2002) for computing a pathogen’s reproductive number and the optimization theory
in Mylius and Diekmann (1995). Note that in order to account for vector transmission
systems, the notation in this appendix is slightly different from that in the main text.

A.1 Computing the reproductive number

Let S and R denote the susceptible and recovered classes. Note that S and R can be
multidimensional variables, e.g. as is the case in vector-borne systems where there
are susceptible hosts and susceptible vectors. Denote all infected classes by C j for
1 ≤ j ≤ n. Let θ be the one dimensional trait that characterizes the pathogen.
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The equations for the general host–pathogen system are

d S

dt
= GS(S, C, R, θ)− US(S, C, R, θ)

dC j

dt
=

n∑

k=1

CkF (k)
C j
(S, C, R, θ)+C j−1V+

C j
(S, C, R, θ)−C jV−

C j
(S, C, R, θ)

d R

dt
= GR(S, C, R, θ)− UR(S, C, R, θ)

(30)

where C = (C1, . . . ,Cn). The functions GS and US denote the rates at which hosts
enter and leave the susceptible classes, respectively. The corresponding rates for the
recovered class are GR and UR . The functions CkF (k)

C j
denote the rates at which newly

infected individuals enter class C j due to transmission caused by individuals in class

Ck . F (k)
C j

= 0 if class Ck is an exposed class or does not contribute to the influx
of newly infected individuals in class C j . Note that at this point we do not make
any assumptions about which classes newly infected individuals enter. C j−1V+

C j
and

C jV−
C j

are the rates at which already infected individuals enter and leave class C j .
We assume all functions are positive and finite when evaluated at point where

C j = 0 for all j . We assume that in the absence of the pathogen, system (30) converges
to a disease free equilibrium where C j = R = 0 and S = N . We assume that for any
fixed value of the pathogen trait, system (30) tends to an endemic equilibrium or to
the disease free equilibrium.

For notational convenience define

F̄C j (S, C, R, C̄) =
n∑

k=1

C̄kF (k)
C j
(S, C, R, θ) (31)

V̄C j (S, C, R, C̄ j−1, C̄ j ) = −C̄ j−1V+
C j
(S, C, R)+ C̄ jV−

C j
(S, C, R). (32)

where C̄ = (C̄1, . . . , C̄n). Let MF and MV be the matrices

MF =
[
∂F̄C j

∂C̄k

]

j,k

=
[
F (k)

C j

]

j,k
and MV =

[
∂VC j

∂C̄k

]

j,k
. (33)

Then the reproductive number for a pathogen with trait θ in a population with host
class densities S, C, and R is

R(S, C, R, θ) = ρ(MF M−1
V ) (34)

whereρ(M) is the spectral radius of a matrix M (Diekmann et al. 1990; van den Driess-
che and Watmough 2002). The basic reproductive number for a pathogen invading the
disease free equilibrium is R0(θ) = R(N , 0, 0, θ) where C = 0 implies that C j = 0
for all j .
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A.2 Evolution

To study the evolutionary dynamics of the pathogen in system (30), we assume that
evolution occurs on a slower time scale than the epidemiological dynamics of the
system and assume that selection is frequency independent. We then ask when a
nonresident strain of the pathogen can invade the endemic equilibrium of the resident
strain. We assume that all pathogen strains can potentially invade the resident. We
further assume that an individual host cannot be infected by more than one strain of the
pathogen and that recovered individuals are immune to all pathogen strains. Finally,
we assume that any invading pathogen strain that successfully invades the resident
strain replaces the current resident strain and becomes the new resident strain.

Let S∗, C∗, and R∗ be the densities of the susceptible, infected, and recov-
ered classes, respectively, at the endemic equilibrium of the resident pathogen with
trait value θr . When selection is frequency independent, an invading strain of the
pathogen with trait θi can only invade the endemic equilibrium of the resident if
R(S∗, C∗, R∗, θi ) > 1. Note that the reproductive number for a pathogen invading
its own endemic equilibrium is R(S∗, C∗, R∗, θr ) = 1. Our goal is to find trait val-
ues that are Evolutionary Stable Strategies (ESSs, Smith and Price 1973) and that
maximize R0.

Under the above assumptions and assuming frequency independent selection, evo-
lution maximizes R0 when R(S, I, R, θ) can be written as

R(S, C, R, θ) = g(S, C, R)R0(θ) (35)

where g(S, R) is a positive function (Mylius and Diekmann 1995). The following
proof is taken from Mylius and Diekmann (1995). We know that

1 = R(S∗, C∗, R∗, θr ) = g(S∗, C∗, R∗)R0(θr ) ⇒ g(S∗, C∗, R∗) = 1

R0(θr )
. (36)

Substitution into Eq. (35) yields

R(S∗, C∗, R∗, θi ) = g(S∗, C∗, R∗)R0(θi ) = R0(θi )

R0(θr )
. (37)

Thus, a pathogen can invade the endemic equilibrium of the resident, i.e.R(S∗, C∗, R∗,
θi ) > 1, if the basic reproductive number of the invader is greater than the resident.
This result is a special case of one theorem in Metz et al. (2008). In particular, if the
basic reproductive number can be written in the form R(X, θ) = exp[α(ψ(θ), X))]
where α is increasing in ψ , then evolution maximizes R0 (Metz et al. 2008).

Appendix B: Systems with a single infectious class

In the following we derive results for host–pathogen systems where infected individ-
uals pass through a single infectious class. We first consider system (5) where there
is one susceptible, one infectious class, and one recovered class. Then we address
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two different types of systems where there are multiple susceptible classes (i.e. host
heterogeneity). In the first case, we consider systems where all infectious hosts are the
same. Biologically, this would arise when host are heterogeneous in their susceptibility
to the pathogen and homogeneous in how they transmit the pathogen once infected. In
the second case, we consider systems where newly infected individuals from different
susceptible classes enter different infectious classes. This would arise in natural sys-
tems where hosts have different genotypes that affect both their susceptibility to the
pathogen and their transmissibility of pathogen to other hosts (e.g. clonal species).

B.1 One susceptible and one infectious class

The model with a single susceptible class and a single infectious class is

d S

dt
= GS(S, I, R, θ)− US(S, I, R, θ)

d I

dt
= IFI (S, I, R, θ)+ IV+

I (S, I, R, θ)− IV−
I (S, I, R, θ)

d R

dt
= GR(S, I, R, θ)− UR(S, I, R, θ). (38)

Since there is only one infected class, V+
I = 0. We assume FI and V−

I are finite and
positive when evaluated at points where I = 0. We define VI (S, I, R, Ī ) = ĪV−

I .
We compute the reproductive number, R(S, I, R, θ), for a pathogen with trait θ

using the next generations technique from van den Driessche and Watmough (2002).
For system (38), the matrices MF and MV are the scalar functions FI (S, I, R, θ) and
V−

I (S, I, R, θ), respectively. Thus, R(S, I, R, θ) is

R(S, I, R, θ) = FI (S, I, R, θ)

V−
I (S, I, R, θ)

. (39)

The basic reproductive number for a pathogen invading the disease free equilibrium
is R0(θ) = R(N , 0, 0, θ).

The reproductive number factors as R(S, I, R, θ) = g(S, I, R)R0(θ) under the
following conditions

(a1) FI (S, R, θ) = f I (S, I, R)ηI (θ)ξ(S, I, R, θ)
(a2) V−

I (S, R, θ) = v−
I (S, I, R)ν−

I (θ)ξ(S, I, R, θ).

The interpretation of the conditions is included in the main text. Note that condition
(A3) from the main text is present in conditions (a1) and (a2) via the shared genotype-
by-environment interaction term ξ(S, I, R, θ).

The function V−
I can be decomposed into mortality, DI , and transfer, TI , rates as

V−
I = DI + TI . Transfer rates include recovery and progression of the disease (when

there are multiple infected classes) as well as stage structure in the host population.
Under this decomposition, the reproductive number is
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R(S, I, R, θ) = FI (S, I, R, θ)

TI (S, I, R, θ)+ DI (S, I, R, θ)
(40)

and condition (a2) becomes

(a2.1) TI = tI (S, I, R)τ (θ)ξ(S, I, R, θ) and DI = 0
(a2.2) TI = 0 and DI = dI (S, I, R)δ(θ)ξ(S, I, R, θ)
(a2.3) TI = tI (S, I, R)τ (θ)ξ(S, I, R, θ), DI = dI (S, I, R)δ(θ)ξ(S, I, R, θ), and

τ = δ

(a2.4) TI = tI (S, I, R)τ (θ)ξ(S, I, R, θ), DI = dI (S, I, R)δ(θ)ξ(S, I, R, θ), and
tI = dI

The biological interpretation of these conditions is also included in the main text.

B.2 Multiple susceptible classes

We now consider systems with multiple susceptible classes. We assume there are nS

susceptible classes denoted by S j . At the disease free equilibrium, the density of the
class S j is N j .

Single Infectious Class

First we consider the case where all newly infected individuals from any susceptible
class enter the same infectious class I . The dynamics of the infectious class are given
by

d I

dt
= IFI (X, θ)− IV−

I (X, θ)

=
nS∑

j=1

IF j (X, θ)− IV−
I (X, θ) (41)

where X = (S1, . . . , SnS , I, R). The functions IF j are the recruitment rates of sus-
ceptible individuals in class S j into the infectious class. We assume F j and V−

I are
positive and finite when evaluated at any point where I = 0.

The reproductive number for the pathogen is

R(X, θ) =
∑nS

i=1 F j (X, θ)

V−
I (X, θ)

(42)

where X = (S1, . . . , SnS , I, R). The basic reproductive number for the pathogen
invading the disease free equilibrium is R0(θ) = R(N1, . . . , NnS , 0, 0, θ). For
R(X, θ) to factor as in Eq. (35) and for evolution to maximize R0, condition (a1)
becomes

(a1.1) F j = f j (X)η j (θ)ξ(X, θ)
(a1.2) Either f j = fk for all j, k or η j (θ) = ηk(θ) for all j, k
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As with condition (a1), the factorization in condition (a1.1) implies that there are
no genotype-by-environment interaction effects and that the pathogen only utilizes
a single transmission pathway for each susceptible class. The equalities in condition
(a1.2) also have biological interpretations. If the equality f j = fk in condition (a1.2)
is satisfied, then the recruitment rates from each susceptible class must have the same
density dependence. Biologically, this is unlikely to occur in any system. If the equality
η j (θ) = ηk(θ) in condition (a1.2) is satisfied, then the pathogen trait must affect the
recruitment from each susceptible class the same. Biologically, this would arise in
systems where pathogen evolution that increased the transmission rate by fifty percent
for one class also increase the transmission rate by fifty percent for all other classes as
well. Note that this condition implies that R0 maximization will not occur in systems
where there is a trade-off between the recruitment rates from two different susceptible
classes.

Multiple Infectious Classes

Now consider the case where individuals from different susceptible classes enter dif-
ferent infectious classes. We will focus on the case where there are only two suscep-
tible classes because the analysis of the reproductive number becomes analytically
intractable for more than two susceptible classes. In the case where there are two
susceptible classes, newly infected individuals that were in class S1 enter into class I1
and newly infected individuals that were in class S2 enter into class I2. Individuals in
classes S1 and I1 cannot transfer to classes S2 or I2 and vice versa. We refer to hosts
in classes S1 and I1 as clonal type 1. Similarly, we refer to hosts in classes S2 and I2
as clonal type 2.

Let X = (S1, S2, I1, I2, R). The dynamics of the infectious classes are given by

d I1

dt
= I1FI1(X, θ)+ I2HI1(X, θ)− I1V−

I1
(X, θ)

d I2

dt
= I2FI2(X, θ)+ I1HI2(S1, S2, I1, I2, R, θ)− I2V−

I2
(X, θ) (43)

where the functions I jFI j denotes recruitment due to transmission between individuals
of the same clonal type and IkHI j denotes recruitment due to transmission between
individuals of different clonal types. For example, I2HI1 denotes the recruitment of
newly infected individuals of clonal type 1 due to the transmission of the pathogen from
individuals of clonal type 2. Note that we will ignore the special case where HI j = 0.
In that case, transmission cannot occur between clonal types and we would expect the
pathogen to evolve independently in each clonal population. We assume FI j , HI j ,
and V−

I j
are positive and finite when evaluated at any point where I1 = I2 = 0.

The reproductive number for the pathogen is

R(X, θ) = HI1

2V−
I1

+ HI2

2V−
I2

+ 1

2

√√√√
(

HI1

V−
I1

− HI2

V−
I2

)2

+ 4
FI1FI2

V−
I1

V−
I2

. (44)
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The basic reproductive number for the pathogen invading the disease free equilibrium
is R0(θ) = R(N1, N2, 0, 0, 0, θ). Evolution maximizes R0 when all of the following
conditions hold

(b1) FI j (X, θ) = f I j (x)ηI j (θ)ξ j (X, θ)
(b2) V−

I j
(X, θ) = v−

I j
(x)νI j (θ)ξ j (X, θ)

(b3) HI j (X, θ) = hI j (x)ηI j (θ)ξ j (X, θ)

and when one of the following is satisfied

(b4.1) f I j = hIk and v−
I j

= v−
Ik

for all j and k

(b4.2) ηI j = ηIk and ν−
I j

= ν−
Ik

for all j and k

As with conditions (a1) and (a2), conditions (b1) through (b3) require the derivatives of
the functions to factor into components that represent the effects of the densities of the
uninfected classes, the trait, and genotype-by-environment interactions. The biological
interpretation of conditions (b1) through (b3) is the same as that for conditions (a1)
and (a2).

Conditions (b4.1) and (b4.2) require all recruitment rates to have either the same
dependence on the uninfected classes or the same dependence on the pathogen trait.
Those conditions also require the exit rates for the two infectious classes to have the
same dependence either on the densities of the uninfected classes or the pathogen
trait. Biologically, we do not expect condition (b4.1) to be satisfied as it implies that
all recruitment rates into I1 and I2 must depend on both susceptible classes. Condition
(b4.2) is satisfied in systems where the trait affects the recruitment and exit rates for
both infectious classes the same. For example, evolution resulting in a fifty percent
increase in transmissibility to one susceptible class would automatically result in a fifty
percent increase in transmissibility to all susceptible classes. Note that this implies
that there are no nonlinear interactions between the pathogen trait and the host clonal
type. It is unclear how often these conditions will be satisfied by natural systems.

Appendix C: Systems with multiple infectious classes

In this appendix we consider host–pathogen systems where there are nI infected
class, all of which are infectious. We first consider systems where all newly infected
individuals enter through the first infectious class. Then we consider systems where
newly infected individuals enter the class of the infectious individual that infected
them. We do not include an analysis for systems where newly infected individuals
enter any infectious class because the calculations become analytically intractable for
more than two infectious classes. Finally, we examine a system with two infectious
classes where newly infected individuals enter the first infectious class and can revisit
that class.

C.1 Single entry class

Consider a system with a single susceptible class, a single recovered class, and nI

infectious classes. We assume all newly infected individuals enter through class I1.
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We also assume that infectious individuals move through the classes sequentially. Note
that individuals can recover from any infectious class.

Let X = (S, I1, . . . , InI , R). The equations for the infectious classes are

d I1

dt
=

nI∑

j=1

I jF ( j)
I1
(X, θ)− I1V−

I1
(X, θ)

d I j

dt
= I j−1V+

I j
(X, θ)− I jV−

I j
(X, θ), 2 ≤ j ≤ nI (45)

where I jF ( j)
I1

is the rate newly infected individuals enter class I1 due to transmission
caused from individuals from class I j . We assume the following functions are finite

when evaluated at I j = 0 for all j : F ( j)
I1

, V+
I j

, and V−
I j

. An example of system (45) is

d I1

dt
=

nI∑

j=1

γ j S I j − ν1 I1 − μ1 I1 − ω1 I1

d I j

dt
= ν j−1 I j−1 − ν j I j − μ j I j − ωi Ii (46)

where the γ j are the transmission coefficients, 1/ν j is the mean time spent in infectious
class I j , μ j is the stage specific per capita death rate, ω j is the recovery rate for
individuals in class I j , and all parameters are potential functions of θ .

The reproductive number for a pathogen with trait θ can be computed using the
methods in van den Driessche and Watmough (2002); see Appendix A. The matrix
MF is composed of zeros except along the first row where the terms are F ( j)

I1
(X, θ).

In the matrix MV , the main diagonal has entries V−
I j
(X, θ) and the subdiagonal has

entries V+
I j
(X, θ). All other entries of MV are zero. The only nonzero eigenvalue of

the product MF M−1
V is the reproductive number,

R(X, θ) =
nI∑

j=1

⎛

⎝F ( j)
I1

V−
I1

j∏

k=2

V+
Ik

V−
Ik

⎞

⎠ . (47)

where all functions are evaluated at (X, θ). The basic reproductive number for
a pathogen invading the disease free equilibrium is R0(θ) = R(N , 0, . . . , 0, θ).
R(X, θ) factors when the following conditions hold

(c1) F ( j)
I1

= f ( j)
I1
(X)η( j)

I1
(θ)ξ1(X, θ)

(c2) V−
I j

= v−
I j
(X)ν−

I j
(θ)ξ j (X, θ)

(c3) V+
I j

= v+
I j
(X)ν+

I j
(θ)ξ j (X, θ)

(c4) f ( j)
I1

= f (k)I1
for all j, k or η( j)

I1
= η

(k)
I1

for all j, k.

(c5) v−
I j

= v+
I j

for all j ≥ 2 or ν−
I j

= ν+
I j

for all j ≥ 2.
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System (46) is an example of a system that satisfies all conditions.
Conditions (c1) through (c5) have a particular structure. First, each function factors

into terms representing the effects of the environment ( f ( j)
I1
, v−

I j
, and v+

I j
), the trait

(η( j)
I1
, ν−

I j
and ν+

I j
), and genotype-by-environment interactions (ξ j ). Second, for each

infectious class, the genotype-by-environment interaction effects are the same for all
rates. Third, all transmission rates have the same dependence either on the trait or the
host classes. The same holds for the entry (V+

I j
) and exit (V−

I j
) rates for each infectious

class. Note that this structure will arise in all later cases where there are multiple
infectious classes.

We now give the biological interpretation of conditions (c1) through (c5). Note
that the entry rate into class I j is equal to the transfer rate out of class I j−1. Because
the genotype-by-environment interaction terms are the same within each class, this
implies that the genotype-by-environment interaction terms must be the same across all
classes. We do not expect this to be the case in natural systems, thus R0 maximization
will only occur in systems where there are no genotype-by-environment interactions.
The equality of the transfer rates in combination with condition (c5) implies that the
entry and exit rates for all classes must have either the same dependence on the trait or
the same dependence on the densities of the host classes. We do not expect all of the
entry and exit rates to have the same dependence on the trait nor do we do not expect
the per capita transfer rates to depend on the host population size. Thus, evolution
will maximize R0 under two cases: either (i) the per capita transfer rates and death
rates for all classes are constant with respect to the host classes or (ii) the pathogen
trait only affects the transfer and mortality rates of the first infectious class. System
(46) satisfies the first condition. The second condition could arise in stage-structured
or age-structured host populations. In particular, this can arise when the pathogen is
only contracted during a single stage, the host pays a trait dependent fitness cost only
during that stage, and the pathogen can be transmitted for part or the rest of the host’s
life. Note that while the contraction of the pathogen earlier in life can result in a loss
of fitness in later stages, that fitness loss cannot depend on the pathogen trait.

C.2 Multiple entry classes

We now consider the case where newly infected individuals enter into the class of the
individual that infected them. For example, a susceptible individual that was infected
by an individual in class I j enters through class I j . Then, each individual passes
through classes Ik for k > j sequentially. The equations for the infected classes are

d I1

dt
= I1F (1)

I1
(X, θ)− I1V−

I1
(X, θ)

d I j

dt
= I jF ( j)

I j
(X, θ)+ I j−1V+

I j
(X, θ)− I jV−

I j
(X, θ), 2 ≤ j ≤ nI (48)

where X = (S, I1, . . . , InI , R). F ( j)
I j

is the rate at which newly infected individuals
enter class I j due to transmission of the pathogen from individuals in class I j . We

123



1562 M. H. Cortez

assume the following functions are finite and nonzero when evaluated at I j = 0 for

all j : F ( j)
I j
, V+

I j
, and V−

I j
. A example of such a system is

d I1

dt
= γ1SI1 − ν1 I1 − μ1 I1 − ω1 I1

d I j

dt
= γ j S I j + ν j−1 I j−1 − ν j I j − μ j I j − ω j I j (49)

where γ j is the transmission coefficient for class I j , 1/ν j is the mean times spent in
class I j , μ j is the stage specific per capita death rate, and ω j is the recovery rate for
individuals in class I j . All of the parameters are potentially functions of θ .

Using the methods in van den Driessche and Watmough (2002), we have that the
matrix MF is a diagonal matrix with entries F ( j)

I j
. The matrix MV has entries V−

I j
along

the diagonal, −V+
I j

along the subdiagonal, and zeros elsewhere. The eigenvalues of

the product MF M−1
V are the collection

⎧
⎨

⎩
F ( j)

I j
(X, θ)

V−
I j
(X, θ)

⎫
⎬

⎭
1≤ j≤nI

(50)

The reproductive number for the pathogen is the maximum of these values. The
basic reproductive number is the maximum of the values evaluated at (X, θ) =
(N , 0, . . . , 0, θ).

Evolution maximizes R0 under two cases. For the first case, assume one element
of the set (50) is greater than all others for all values of S, I j , R, and θ . That is,

for some k, assume F (k)
Ik
/V−

Ik
> F ( j)

I j
/V−

I j
for all j . Biologically, this means that

stage Ik is the most important stage for lifetime transmission of the pathogen. This
condition also means that stage Ik is most important stage regardless of the pathogen’s
trait value. In this case, R(X, θ) factors under conditions (a1) and (a2) in Appendix
B. For the second case, assume for all j that F ( j)

I j
(X, θ) = f (X)η(θ)ξ j (X, θ) and

V−
I j

= v(X)ν(θ)ξ j (X, θ). In this case, all of the transmission rates have the same
dependence on the host classes and the trait. Similarly, all of the exit rates have the
same dependence on the host classes and the trait. This case is biologically degenerate
in the sense that the trait value that maximizes fitness for a particular infectious class
maximizes fitness for all classes. We do not expect the second to case to arise in natural
systems.

C.3 Revisiting infectious classes

We now consider a system where there are only two infectious classes. We assume
newly infected individuals enter into the first infectious class and that infectious indi-
viduals can return to the first infectious class after entering the second infectious class.
This particular system shows the additional constraints that arise when individuals can
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enter previous infectious classes. This case can arise in systems where the disease or
pathogen goes into remission. The equations for the infectious classes are

d I1

dt
= I1F (1)

I1
(X, θ)+ I2F (2)

I1
(X, θ)+ I2V+

I1
(X, θ)− I1V−

I1
(X, θ)

d I2

dt
= I1V+

I2
(X, θ)− I2V−

I2
(X, θ) (51)

where X = (S, I1, I2, R). We assume the following functions are finite and nonzero
when evaluated at I j = 0 for all j = 1, 2: F ( j)

I j
, V+

I j
, and V−

I j
.

Following the methods in Appendix A, the top row of the matrix MF has entries
F ( j)

I j
and the bottom row is zeros. The matrix MV has entries V−

I j
along the diagonal,

−V+
I2

in the bottom left entry and −V+
I1

in the top right entry. The eigenvalue of the

product MF M−1
V is the reproductive number

R(X, θ) = F (1)
I1

V−
I2

+ F (2)
I1

V+
I2

V−
I1

V−
I2

− V+
I1

V+
I2

. (52)

The basic reproductive number for a pathogen invading the disease free equilibrium
is R0(θ) = R(N , 0, 0, 0, θ). R(X, θ) factors when the following conditions hold

(d1) F ( j)
I1

= f ( j)
I1
(X)η( j)

I1
(θ)ξ(X, θ)

(d2) V−
I j

= v−
I j
(X)ν−

I j
(θ)ξ(X, θ)

(d3) V+
I j

= v+
I j
(X)ν+

I j
(θ)ξ(X, θ)

and one of the following conditions holds

(d4.1) f (1)I1
= f (2)I1

and v−
I j

= v+
I j

(d4.2) η(1)I1
= η

(2)
I1

and ν−
I j

= ν+
I j

The biological consequences and interpretation of conditions (d1) through (d3) are
the same as in the previous subsection of this appendix. Condition (d4.2) is unlikely
to hold because we do not expect the pathogen trait to have the same effect on the
per capita transfer, recovery and mortality rates. The first equality in condition (d4.1)
implies that pathogen transmission does not differ mechanistically for different infec-
tious classes. The second equality in condition (d4.1) implies the per capita entry and
exit rates of the classes must have the same dependence on the host classes. This is
only likely to occur when when mortality is not density dependent and the per capita
recovery and transfer rates are independent of the host class sizes. Thus, when infected
individuals can revisit previous infectious classes, evolution maximizes R0 only when
all pathogen related processes except for transmission are density independent.

Appendix D: Systems with multiple exposed and infectious classes

In this appendix we consider host–pathogen systems with multiple exposed classes.
We first consider the case where there are nE exposed classes and one infectious class.
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Then we consider the case where there are multiple exposed and multiple infectious
classes. In all cases we assume that all of the exposed classes come before the infec-
tious classes. We also assume each newly infected individual enters through the first
exposed class and then passes through the other infected class sequentially. Finally,
we consider the case where individuals can revisit a previously visited exposed class
in a model with one exposed and one infectious classes.

D.1 One infectious class

Let nE be the number of exposed classes. Assume there is one infectious class. The
equations for the infected classes are

d E1

dt
= I1FE1(X, θ)− E1V−

E1
(X, θ)

d E j

dt
= E j−1V+

E j
(X, θ)− E jV−

E j
(X, θ), 2 ≤ j ≤ nE

d I1

dt
= EnE V+

I1
(X, θ)− I1V−

I1
(X, θ) (53)

where X = (S, E1, . . . , EnE , I, R). I1FE1 is the rate at which newly infected individ-
uals enter class E1 due to transmission via individuals in the infected class I1. Note
that V+

E1
= 0 because only newly infected individuals enter the first exposed class.

We assume that the following are finite when evaluated at at E j = I1 = 0 for all j :
FE1, V+

E j
, V−

E j
, V+

I1
, and V−

I1
. A simple example system (53) is

d E1

dt
= γ1SI1 − κ1 E1 − λ1 E1 − ε1 E1

d E j

dt
= κ j−1 E j−1 − κ j E j − λ j E j − ε j E j

d I1

dt
= κnE EnE − ν1 I1 − μ1 I1 − ω1 I1 (54)

where γ1 is the transmission coefficient, 1/κ j is the mean time spent in exposed class
E j , λ j is per capita death rate of exposed class E j , and ε j is the recovery rate for
individuals in class E j . The interpretation of the remaining parameters is as in system
(49). All of the parameters are potentially functions of θ .

We compute the reproductive number using the methods in van den Driessche
and Watmough (2002). In the matrix MF , the top right entry is FE1(X, θ) and all
other entries are zero. In the matrix MV , the main diagonal has entries V−

E j
(X, θ) and

V−
I1
(X, θ) and the subdiagonal of the matrix has entries −V+

E j
(X, θ) and −V+

I1
(X, θ).

All other entries of MV are zero. The only nonzero eigenvalue of the product MF M−1
V

is the reproductive number,
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R(X, θ) = FE1(X, θ)

V−
E1
(X, θ)

V+
I1
(X, θ)

V−
I1
(X, θ)

nE∏

j=2

V+
E j
(X, θ)

V−
E j
(X, θ)

. (55)

The basic reproductive number of the pathogen is R0(θ) = R(N , 0, . . . , 0, θ).
The reproductive number R(X, θ) factors and evolution to maximizes R0 under

the following conditions

(f1) FE1 = fE1(X)ηI1(θ)ξ1(X, θ)
(f2) V−

E1
= v−

E1
(X)ν−

E1
(θ)ξ1(X, θ)

(f3) V+
E j

= v+
E j
(X)ν+

E j
(θ)ξ j (X, θ) for j ≥ 2

(f4) V−
E j

= v−
E j
(X)ν−

E j
(θ)ξ j (X, θ) for j ≥ 2.

(f5) V+
I1

= v+
I1
(X)ν+

I1
(θ)ξI (X, θ)

(f6) V−
I1

= v−
I1
(X)ν−

I1
(θ)ξI (X, θ)

The structure for conditions (f1) through (f6) is the following. Each function factors
into terms representing the environmental, trait, and genotype-by-environment inter-
action effects. For any given infected class, the genotype-by-environment interaction
effects are the same across all rates. Note that the transfer rate into any infected class
is equal to the infection progression rate out of the previous infected class. Thus, as
a consequence of decomposing the exit rates into recovery, mortality, and infection
progression rates, all classes must have the same dependence either on the pathogen
trait or the densities of the uninfected host classes. The biological consequences for
the these conditions are similar to those of the previous cases.

D.2 Multiple infectious classes

Let us now consider a system with nE exposed classes and nI infectious classes. The
equations for the infected classes are

d E1

dt
=

nI∑

j=1

I jF ( j)
E1
(X, θ)− E1V−

E1
(X, θ)

d E j

dt
= E j−1V+

E j
(X, θ)− E jV−

E j
(X, θ), 2 ≤ j ≤ nE

d I1

dt
= EnE V+

I1
(X, θ)− I1V−

I1
(X, θ)

d I j

dt
= I j−1V+

I j
(X, θ)− I jV−

I j
(X, θ) 2 ≤ j ≤ nI (56)

where X = (S, E1, . . . , EnE , I1, . . . , InI , R). The functions I jF ( j)
E1

are the rates at
which newly infected individuals enter class E1 due to transmission of the pathogen
via individuals in I j . All other functions are interpreted as in systems (45) and (53).
Note that V+

E1
= 0 because only newly infected individuals enter the first exposed

class.
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We assume the following functions are finite when evaluated at E j = I j = 0 for all

j : F ( j)
E1
, V+

E j
, V−

E j
, V+

I j
, and V−

I j
. A example of a system satisfying these conditions

is

d E1

dt
=

nI∑

j=1

γi S I j − κ1 E1 − λ1 E1 − ε1 E1

d E j

dt
= κ j−1 E j−1 − κ j E j − λ j E j − ε j E j

d I1

dt
= κnE EnE − ν1 I1 − μ1 I1 − ω1 I1

d I j

dt
= ν j I j−1 − ν j I j − μ j I j − ω j I j (57)

where all terms are interpreted as in systems (46) and (54). All of the parameters are
potentially functions of θ .

We compute the basic reproductive number using the methods in van den Driessche
and Watmough (2002). In the matrix MF , the top row is zeros for the first nE entries
and the remaining nI entries of the top row are F ( j)

E1
(X, θ). All other entries are zero.

In the matrix MV , the main diagonal has entries V−
E j
(X, θ) and V−

I j
(X, θ) and the

subdiagonal of the matrix has entries −V+
E j
(X, θ) and −V+

I j
(X, θ). All other entries

of MV are zero.
The only nonzero eigenvalue of the product MF M−1

V is the basic reproductive
number,

R(X, θ) =
⎛

⎝
nE∏

j=2

V+
E j
(X, θ)

V−
E j
(X, θ)

⎞

⎠
[ nI∑

k=1

F (k)
E1
(X, θ)

V−
E1
(X, θ)

(
k∏

l=1

V+
Il
(X, θ)

V−
Il
(X, θ)

)]
(58)

The basic reproductive number for a pathogen is R0(θ). R(X, θ) factors and evolution
maximizes R0(θ) when the following conditions are met:

(g1) V+
E j

= v+
E j
(X)ν+

E j
(θ)ξE j (X, θ) for 2 ≤ j ≤ nE

(g2) V−
E j

= v−
E j
(X)ν−

E j
(θ)ξE j (X, θ) for 2 ≤ j ≤ nE

(g3) F ( j)
E1

= f ( j)
E1
(X)η( j)

E1
(θ)ξE1(X, θ) for 1 ≤ j ≤ nI

(g4) V−
E1

= v−
E1
(X)ν−

E1
(θ)ξE1(X, θ)

(g5) V+
Ii

= v+
Ii
(X)ν+

Ii
(θ)ξIi (X, θ) for 1 ≤ i ≤ nI

(g6) V−
Ii

= v−
Ii
(X)ν−

Ii
(θ)ξIi (X, θ) for 1 ≤ i ≤ nI

(g7) f ( j)
E1

= f (k)E1
for all j, k or η( j)

E1
= η

(k)
E1

for all j, k.

(g8) v−
I j

= v+
I j

for all j or ν−
I j

= ν+
I j

for all j, k.

The structure for conditions (g1) through (g8) is a combination of the structure for
conditions (c1) through (c5) and conditions (f1) through (f6). As was the case for all
models, each function must factor into terms representing genotype, environment, and
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genotype-by-environment interaction affects. In addition, for each infected class the
genotype-by-environment interaction terms must be the same for all processes. This
further implies that genotype-by-environment interaction terms must be the same for
all classes. Condition (g7) implies that all transmission functions must either have
the same dependence on the trait or have the same dependence on the host classes.
Conditions (g8) implies that the entry and exit rates for each infectious classes have
the same dependence either on the host classes or the trait. Because entry rates into
one class are equal to disease progression rates out of the previous class, condition
(g8) implies that the entry and exit rates of all infectious classes have either the same
dependence on the host classes or the same dependence on the pathogen trait. The
biological constraints that arise from conditions (g1) through (g8) are the same as those
that arise from conditions (c1) through (c5) and conditions (f1) through (f6). Note that
system (57) satisfies conditions (g1) through (g8) and thus, evolution maximizes R0
in that system.

D.3 Revisiting exposed classes

We now consider a system where there is one exposed class and one infectious class.
We assume newly infected individuals enter into the exposed class and that infectious
individuals can return to the exposed class. This particular system shows the additional
constraints that arise when individuals can enter previous exposed classes. This case
can arise in systems where the disease or pathogen goes into remission. The equations
for the infectious classes are

d E

dt
= I1FE1(X, θ)+ I1V+

E1
(X, θ)− E1V−

E1
(X, θ)

d I1

dt
= E1V+

I1
(X, θ)− I1V−

I1
(X, θ) (59)

where X = (S, E1, E1, R). We assume the following functions are finite and nonzero
when evaluated at I1 = E1 = 0: FE1, V+

E1
, V+

I1
, V−

E1
, and V−

I1
.

Following the methods in Appendix A, the top right entry of matrix MF is FE1

and the remaining entries are zeros. The matrix MV has entries V−
E1

and V−
I1

along the

diagonal, −V+
I1

in the bottom left entry and −V+
E1

in the top right entry. The eigenvalue

of the product MF M−1
V is the reproductive number

R(X, θ) = FE1V+
I1

V−
E1

V−
I1

− V+
E1

V+
I1

. (60)

The basic reproductive number for a pathogen invading the disease free equilibrium
is R0(θ) = R(N , 0, 0, 0, θ). R(X, θ) factors when the following conditions hold

(h1) FE1 = fE1(X)ηE1(θ)ξ(X, θ)
(h2) V−

E1
= v−

E1
(X)ν−

E1
(θ)ξ(X, θ)

(h3) V+
E1

= v+
E1
(X)ν+

E1
(θ)ξ(X, θ)
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(h4) V−
I1

= v−
I1
(X)ν−

I1
(θ)ξ(X, θ)

(h5) V+
I1

= v+
I1
(X)ν+

I1
(θ)ξ(X, θ)

and one of the following conditions holds

(h6.1) v−
I j

= v+
I j

(h6.2) ν−
I j

= ν+
I j

Note that with a change in notation, these conditions are a subset of conditions (d1)
through (d4) for system (46) in Appendix C. The biological consequences and inter-
pretation of conditions (h1) through (h6) are the same after removing the conditions
regarding multiple infectious classes. Of particular importance is that condition (h6.2)
is unlikely to be satisfied in natural systems and condition (h6.1) is only likely to arise
when the per capita mortality, recovery, and transfer rates of the system are do not
depend on the density of the host classes, i.e. they are density independent.

Appendix E: Vector transmission systems

We now consider systems where the pathogen is spread via a transmission vector.
We will assume that transmission does not occur between conspecifics (i.e. no direct
transmission). Thus, a susceptible host can only become infected through contact
with an infectious vector and a susceptible vector can only become infected through
contact with an infectious host. The reason behind this assumption is illustrated at
the end of the first subsection. In that subsection we consider a system where direct
and vector transmission occur and find that the biological assumptions necessary to
have evolution maximize R0 are unlikely even in a simple case. Since incorporating
both direct and vector-borne modes of transmission into any of the models results in
biologically unlikely conditions, in the following we assume that direct transmission
does not occur.

We use the following notation in this appendix. Vector classes are denoted with
carets (ˆ). Let nÊ be the number of exposed vector classes and n Î be the number of

infectious vector classes. The disease free equilibrium is (N , 0, . . . , 0, N̂ , 0 . . . , 0)
where N̂ is the disease free equilibrium density of the vector.

We first consider a system where the host and vector have a single infectious class.
We then consider systems where there are multiple exposed and infectious host classes
and a single infectious vector class. Finally, we consider systems where there are
multiple exposed and infectious classes in the host and multiple exposed classes in
the vector populations. Note that due to symmetry, these cases also cover the case
where there are multiple exposed and infectious vector classes and only one infectious
host class. We do not consider the case where there are multiple infectious classes
in both the vector and the host because the computations of R become analytically
intractable.
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E.1 SIR host and SIR vector systems

Vector Transmission

We assume that there is one infected class for the host and vector populations. The
system is

d S

dt
= GS(X, θ)− US(X, θ)

d I

dt
= ÎFI (X, θ)− IV−

I (X, θ)

d R

dt
= GR(X, θ)− UR(X, θ)

d Ŝ

dt
= GŜ(X, θ)− UŜ(X, θ)

d Î

dt
= IF Î (X, θ)− ÎV−

Î
(X, θ)

d R̂

dt
= GR̂(X, θ)− UR̂(X, θ).

(61)

where X = (S, I, R, Ŝ, Î , R̂). Note that since there is a single infectious class for both
host populations, V+

I = V+
Î

= 0. We assume the following functions are finite when

evaluated at I = Î = 0: FI , F Î , V−
I , and V−

Î
.

Using the methods from van den Driessche and Watmough (2002), the only nonzero
eigenvalue of the product MF M−1

V is the reproductive number

R(X, θ) =
√

FI F Î

V−
I V−

Î

. (62)

The basic reproductive number for a pathogen invading the disease free equilibrium
is R0(θ) = R(N , 0, N̂ , 0, θ). When the following conditions are satisfied, R factors
as R(X, θ) = g(X)R0(θ),

(i1) FI (X, θ) = f I (X)ηI (θ)ξ(X, θ)
(i2) VI (X, θ) = vI (X)νI (θ)ξ(X, θ).
(i3) F Î (X, θ) = f Î (X)η Î (θ)ξ̂ (X, θ)

(i4) V Î (X, θ) = v Î (X)ν Î (θ)ξ̂ (X, θ).

Conditions (i1) through (i4) are analogous to conditions (a1) and (a2) in Appendix B.
In particular, each functional form must factor into terms representing environmental,
trait, and genotype-by-environment interaction effects. The genotype-by-environment
effects must be the same across all rates for each species. The biological interpretation
of these conditions is the same as conditions (a1) and (a2) with the added consequence
that transmission cannot be both direct and vector-borne (see below).
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Direct and Vector Transmission

We now consider the case where direct transmission between conspecifics can occur.
The equations for the infected classes are

d I

dt
= ÎFI (X, θ)+ IHI (X, θ)− IV−

I (X, θ)

d Î

dt
= IF Î (X, θ)+ ÎH Î (X, θ)− ÎV−

Î
(X, θ) (63)

where X = (S, I, R, Ŝ, Î , R̂). The functions IHI and ÎH Î denote transmission due
to contact with conspecifics. In addition to the assumptions made about system (61),
we HI and H Î are finite and nonzero when evaluated at I = Î = 0.

The reproductive number, R(X, θ), for the pathogen in system (63) is

R(X, θ) = HI

2VI
+ H Î

2V Î

+ 1

2

√(HI

VI
− H Î

V Î

)2

+ 4
FI FÎ

VI V Î

. (64)

The basic reproductive number for a pathogen invading the disease free equilibrium
is R0(θ) = R(N , 0, N̂ , 0, θ).

The reproductive number factors as R = g(X)R0(θ) under the following condi-
tions

(j1) FI (X, θ) = f I (X)ηI (θ)ξ(X, θ)
(j2) VI (X, θ) = vI (X)νI (θ)ξ(X, θ)
(j3) F Î (X, θ) = f Î (X)η Î (θ)ξ̂ (X, θ)

(j4) V Î (X, θ) = v Î (X)ν Î (θ)ξ̂ (X, θ)
(j5) HI (X, θ) = hI (X)ζI (θ)ξ(X, θ)
(j6) H Î (X, θ) = h Î (X)ζ Î (θ)ξ̂ (X, θ)

One of the following must also hold

(j7.1) vI = v Î and h2
I = h2

Î
= f I f Î

(j7.2) νI = ν Î and ζ 2
I = ζ 2

Î
= ηIη Î

Condition (j7.1) is unlikely to be met in natural systems since in most cases hI and
h Î will not depend on the host and vector classes in the same way. Condition (j7.2) is
unlikely to be met in natural systems because it requires the trait to affect horizontal
and vector-based transmission similarly. In total, this suggest that evolution does not
maximize R0 when a pathogen can be transmitted directly between conspecifics and
indirectly via vectors.

E.2 Multiple exposed and infectious host classes, one infectious vector class

We now assume there are nE exposed host classes and nI infectious host classes.
We assume that there is only one infectious vector class and that susceptible vectors
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become infectious when they come in contact with infectious hosts, i.e. exposed hosts
cannot transmit the pathogen to vectors. The equations for the infected classes are

d E1

dt
= ÎFE1(X, θ)− E1V−

E1
(X, θ)

d E j

dt
= E j−1V+

E j
(X, θ)− E jV−

E j
(X, θ), 2 ≤ j ≤ nE

d I1

dt
= EnE V+

I1
(X, θ)− I1V−

I1
(X, θ)

d I j

dt
= I j−1V+

I j
(X, θ)− I jV−

I j
(X, θ), 2 ≤ j ≤ nI

d Î1

dt
=

nI∑

j=1

I jF ( j)

Î1
(X, θ)− Î1V−

Î1
(X, θ) (65)

where X = (S, E1, . . . , EnE , I1, . . . , InI , R, Ŝ, Î , R̂) and F ( j)

Î1
is the rate at which

vectors become infected due to contact with hosts in class I j . We assume all functions
in system (65) are positive and finite when evaluated at points where the densities of
all infected class are zero.

An example of system (65) is

d E1

dt
= γ S Î − κ1 E1 − λ1 E1 − ε1 E1

d E j

dt
= κ j−1 E j−1 − κ j E j − λ j E j − ε j E j

d I1

dt
= κnE EnE − ν1 I1 − μ1 I1 − ω1 I1

d I j

dt
= ν j I j−1 − ν j I j − μ j I j − ω j I j

d Î1

dt
=

nI∑

j=1

γ̂ j Ŝ I j − ν̂1 Î1 − μ̂1 Î1 − ω̂1 Î1. (66)

Here, γ is the transmission coefficient for vector to host transmission and γ̂ j is the
transmission coefficient for I j to vector transmission. In system (66), 1/κ j , 1/νk , and
1/ν̂ are the average times spent in each class; λ j , μk , and μ̂ are the death rates of each
class; and ε j , ωk , and ω̂ are the recovery rates of each class.

We compute the reproductive number for a pathogen using the methods in van den
Driessche and Watmough (2002). In the matrix MF , the top right entry is FE1 , the

bottom row has entries F ( j)

Î1
, and all other entries are zero. In the matrix MV , the main

diagonal has entries V−
J j

and the subdiagonal of the matrix has entries −V+
J j

where

J ∈ {I, E, Î }. All other entries of MV are zero. The only positive eigenvalue of the
product MF M−1

V is the reproductive number, R(X, θ). Below we give the square of
R(X, θ),
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[R(X, θ)]2 = FE1

V−
E1

⎛

⎝
nE∏

j=2

V+
E j

V−
E j

⎞

⎠

⎡

⎣
nI∑

k=1

F (k)

Î1

V−
Î1

(
k∏

l=1

V+
Il

V−
Il

)⎤

⎦ . (67)

The basic reproductive number for a pathogen invading the disease free equilibrium is
R0(θ) = R(N , 0, . . . , 0, N̂ , 0, θ). The conditions for R(X, θ) to factor and evolution
to maximize R0 are

(k1) FE1(X, θ) = fE1(X)ηE1(θ)ξE1(X, θ)
(k2) V−

E1
(X, θ) = v−

E1
(X)ν−

E1
(θ)ξE1(X, θ)

(k3) V+
E j
(X, θ) = v+

E j
(X)ν+

E j
(θ)ξE j (X, θ) for 2 ≤ j ≤ nE

(k4) V−
E j
(X, θ) = v−

E j
(X)ν−

E j
(θ)ξE j (X, θ) for 2 ≤ j ≤ nE

(k5) F (k)

Î1
(X, θ) = f (k)

Î1
(X)η(k)

Î1
(θ)ξ Î1

(X, θ) for 1 ≤ k ≤ nI

(k6) V−
Î1
(X, θ) = v−

Î1
(X)ν Î1

(θ)ξ Î1
(X, θ)

(k7) V+
I j
(X, θ) = v+

I j
(X)ν+

I j
(θ)ξI j (X, θ) for 1 ≤ j ≤ nI

(k8) V−
I j
(X, θ) = v−

I j
(X)ν−

I j
(θ)ξI j (X, θ) for 1 ≤ j ≤ nI

(k9) f ( j)

Î1
= f (k)

Î1
for all j, k or η( j)

Î1
= η

(k)

Î1
for all j, k.

(k10) v−
I j

= v+
I j

for all j ≥ 2 or ν−
I j

= ν+
I j

for all j ≥ 1.

where x = (S, R, Ŝ, R̂). The structure and interpretation of conditions (k1) through
(k10) is essentially identical to that of conditions (g1) through (g8).

E.3 Multiple exposed and infectious host classes, multiple exposed vector classes

We now compute the reproductive number for the case where there are multiple
exposed and infectious host classes, multiple exposed vector classes, and a single
infectious vector class. The notation is the same as the previous section except that
we denote the number of exposed vector classes by nÊ . The equations for the infected
classes are

d E1

dt
= Î1FE1(X, θ)− E1V−

E1
(X, θ)

d E j

dt
= E j−1V+

E j
(X, θ)− E jV−

E j
(X, θ), 2 ≤ j ≤ nE

d I1

dt
= EnE V+

I1
(X, θ)− I1V−

I1
(X, θ)

d I j

dt
= I j−1V+

I j
(X, θ)− I jV−

I j
(X, θ), 2 ≤ j ≤ nI

d Ê1

dt
=

nI∑

j=1

I jF ( j)

Ê1
(X, θ)− Ê1V−

Ê1
(X, θ)

d Ê j

dt
= Ê j−1V+

Ê j
(X, θ)− Ê jV−

Ê j
(X, θ), 2 ≤ j ≤ nÊ
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d Î1

dt
= Ên̂E V+

Î1
(X, θ)− Î1V−

Î1
(X, θ) (68)

where X is shorthand all host and vector classes. We assume all of the functions in
system (68) are positive and finite when evaluated at any point where the densities of
all infected classes are zero.

We now compute the reproductive number. In the matrix MF , the top right entry is
FE1 , the Ê1 row has entries F ( j)

Î1
, and all other entries are zero. In the matrix MV , the

main diagonal has entries V−
J j

and the subdiagonal of the matrix has entries −V+
J j

where

J ∈ {I, E, Ê, Î }. All other entries of MV are zero. The only positive eigenvalue of the
product MF M−1

V is the reproductive number, R(X, θ). The square of the reproductive
number is

[R(X, θ)]2 = FE1

V−
E1

V+
Î1

V−
Î1

⎛

⎝
nE∏

j=2

V+
E j

V−
E j

⎞

⎠

⎛

⎝
nÊ∏

j=2

V+
Ê j

V−
Ê j

⎞

⎠

⎡

⎣
nI∑

k=1

F (k)

Ê1

V−
Ê1

(
k∏

l=1

V+
Il

V−
Il

)⎤

⎦ . (69)

The basic reproductive number for a pathogen with trait θ isR0(θ)=R(N , 0 . . . , 0, N̂ ,
0, . . . , 0, θ).

The conditions under which R(X, θ) factors are below. With a slight change in
notation, the first ten conditions are the same as conditions (k1) through (k10). Two
additional conditions also arise due to the addition of the exposed vector classes.

(m1) FE1(X, θ) = fE1(X)ηE1(θ)ξE1(X, θ)
(m2) V−

E1
(X, θ) = v−

E1
(X)ν−

E1
(θ)ξE1(X, θ)

(m3) V+
E j
(X, θ) = v+

E j
(X)ν+

E j
(θ)ξE j (X, θ) for 2 ≤ j ≤ nE

(m4) V−
E j
(X, θ) = v−

E j
(X)ν−

E j
(θ)ξE j (X, θ) for 2 ≤ j ≤ nE

(m5) F (k)

Ê1
(X, θ) = f (k)

Ê1
(X)η(k)

Ê1
(θ)ξ(X, θ) for 1 ≤ k ≤ nI

(m6) V−
Ê1
(X, θ) = vÊ1

(X)ν Î1
(θ)ξ(X, θ)

(m7) V+
Ii
(X, θ) = v+

Ii
(X)ν+

Ii
(θ)ξIi (X, θ) for 1 ≤ i ≤ nI

(m8) V−
Ii
(X, θ) = v−

Ii
(X)ν−

Ii
(θ)ξIi (X, θ) for 1 ≤ i ≤ nI

(m9) f ( j)

Ê1
= f (k)

Ê1
for all j, k or η( j)

Ê1
= η

(k)

Ê1
for all j, k.

(m10) v−
I j

= v+
I j

for all j ≥ 2 or ν−
I j

= ν+
I j

for all j ≥ 2

(m11) V+
Ê j
(X, θ) = v+

Ê j
(X)ν+

Ê j
(θ)ξÊ j

(X, θ) for 2 ≤ j ≤ nÊ

(m12) V−
Ê j
(X, θ) = v−

Ê j
(X)ν−

Ê j
(θ)ξÊ j

(X, θ) for 2 ≤ j ≤ nÊ

The structure of these conditions is the same as the previous cases. The biological
consequences are the same as conditions (k1) through (k10).

Appendix F: Systems with frequency dependent selection

Here we show how our approach and results can be extended to systems where selec-
tion is frequency dependent. In the following we first present our frequency dependent
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selection model. We show how to calculate the reproductive number and restate the
theorem from Mylius and Diekmann (1995) in our notation. Next we analyze a sys-
tem with a single infectious class. This illustrates how the conditions for the frequency
dependent selection case and the frequency independent selection case are related. We
then discuss how the conditions for R0 maximization in the frequency independent
cases can be extended to incorporate frequency dependent selection. We also give a
biological interpretation to our conditions. Finally, we present an example where fre-
quency independent selection does not result in R0 maximization whereas frequency
dependent selection does result in R0 maximization.

We begin with the epidemiological dynamics for the resident strain,

d S

dt
= GS(S, C, R, θ)− US(S, C, R, θ)

dC j

dt
=

n∑

k=1

CkF (k)
C j
(S, C, R, θ)+ C j−1V+

C j
(S, C, R, θ)− C jV−

C j
(S, C, R, θ)

d R

dt
= GR(S, C, R, θ)− UR(S, C, R). (70)

We assume for every fixed value of θ that the dynamics of system (70) converge
to either an endemic equilibrium or the disease free equilibrium. Thus, in the limit
where evolution is much slower than the epidemiological dynamics of the system, the
dynamics of the invading strain are given by

dC̄ j

dt
=

n∑

k=1

C̄k F (k)C j
(S∗, C∗, R∗, θ, θi )+ C̄ j−1V +

C j
(S∗, C∗, R∗, θ, θi )

−C̄ j V −
C j
(S∗, C∗, R∗, θ, θi ) (71)

where θ is the resident trait, θi is the invader trait, and (S∗, C∗, R∗) is the endemic
equilibrium of the resident strain. The state variables C̄ j are the densities of hosts

infected with the invading strain of the pathogen. The functions F (k)C j
, V +

C j
, and V −

C j

describe the epidemiological processes of the invading strain when at low densities.
They are written such that they explicitly state how the resident trait value affects the
epidemiological dynamics of the invader. They are related to the functions F , V+

C j
,

and V−
C j

in the follow way

GS(S, C, R, θ, θ) = GS(S, C, R, θ)

US(S, C, R, θ, θ) = US(S, C, R, θ)

F (k)C j
(S, C, R, θ, θ) = F (k)

C j
(S, C, R, θ)

V +
C j
(S, C, R, θ, θ) = V+

C j
(S, C, R, θ)

V −
C j
(S, C, R, θ, θ) = V−

C j
(S, C, R, θ)

G R(S, C, R, θ, θ) = GR(S, C, R, θ)

UR(S, C, R, θ, θ) = UR(S, C, R, θ)
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We assume that all functions are finite and positive when evaluated at points where
C j = 0 for all j .

The reproductive number for a pathogen can be computed using the method in van
den Driessche and Watmough (2002). Define VC j (S, C, R, C̄ j−1, C̄ j ) = −C̄ j−1V +

C j
+

C̄ j V −
C j

. Let MF and MV be the matrices

MF =
[

F (k)C j

]

j,k
and MV =

[
∂VC j

∂C̄k

]

j,k
. (72)

Then the reproductive number for a pathogen with trait θ in a population with host
class densities S, C, and R is

R(S, C, R, θ) = ρ(MF M−1
V ) (73)

where ρ(M) is the spectral radius of a matrix M. The basic reproductive number for
a pathogen invading the disease free equilibrium is R0(θ) = R(N , 0, 0, θ, θ) where
C = 0 implies that C j = 0 for all j . When selection is frequency dependent, the
R0 maximization theorem from Mylius and Diekmann (1995) can be restated as:
If the reproductive number of a pathogen can be written in the form R(X, θ, θi ) =
g(X, θ)R0(θi ) then evolution maximizes R0(θ).

To illustrate the class of functions such that R0 maximize occurs, we consider a
system with a single infectious class. The dynamics of the invading strain are

d Ī

dt
= Ī FI (S

∗, I ∗, R∗, θ, θi )− Ī V −
I (S

∗, I ∗, R∗, θ, θi ) (74)

The reproductive number for a pathogen with trait θi in a population with resident trait
θ is

R(S, I, R, θ, θi ) = FI (S, I, R, θ, θi )

V −
I (S, I, R, θ, θi )

(75)

R(S, I, R, θ, θi ) factors when the following conditions are met

(n1) FI (S, I, R, θ, θi ) = f I (S, I, R, θ)ηI (θi )ξ f (S, I, R, θ, θi )

(n2) V −
I (S, I, R, θ, θi ) = v−

I (S, I, R, θ)ν−
I (θi )ξv(S, I, R, θ, θi )

(n3) ξ f = ξv
(n4) f I (S, 0, 0, θ1) = f I (S, 0, 0, θ2) and v−

I (S, 0, 0, θ1) = v−
I (S, 0, 0, θ2) for all

θ1 and θ2

Under these conditions the reproductive number of the invader at the endemic equi-
librium of the resident can be written as

R(S, I, R, θ, θi ) = FI (S, I, R, θ, θi )

V −
I (S, I, R, θ, θi )

= f I (S, I, R, θ)ηI (θi )ξ f (S, I, R, θ, θi )

v−
I (S, I, R, θ)ν−

I (θi )ξv(S, I, R, θ, θi )
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= ηI (θi )

ν−
I (θi )

f I (N , 0, 0, θi )

v−
I (N , 0, 0, θi )

ξ f (N , 0, 0, θi , θi )

ξv(N , 0, 0, θi , θi )︸ ︷︷ ︸
R0(θi )

v−
I (N , 0, 0, θi )

f I (N , 0, 0, θi )

f I (S, I, R, θ)ξ f (S, I, R, θ, θi )

v−
I (S, I, R, θ)ξv(S, I, R, θ, θi )

= R0(θi )
v−

I (N , 0, 0, θi )

f I (N , 0, 0, θi )

f I (S, I, R, θ)ξ f (S, I, R, θ, θi )

v−
I (S, I, R, θ)ξv(S, I, R, θ, θi )

= R0(θi )
v−

I (N , 0, 0, θ)

f I (N , 0, 0, θ)

f I (S, I, R, θ)

v−
I (S, I, R, θ)

= R0(θi )g(X, θ)

where in the last line we used the equalities in conditions (n3) and (n4).
The structure of conditions (n1) through (n4) is the following. Each function must

factors into terms that represent the effects of the environment (host classes and res-
ident trait), the invader trait (i.e. the genotype), and the genotype-by-environment
interactions. The genotype-by-environment interaction effects must be the same for
both processes. Finally, condition (n4) states that the effects of the environment on
the epidemiological processes of the system are independent of the pathogen trait in
a completely susceptible population.

There are two key structural differences between conditions (n1) through (n4) and
conditions (A1) through (A3) in the main text. First, when selection is frequency
dependent the functions factor into a term that is a function of the host classes and the
resident trait (the environment) and a term that is only a function of the invader’s trait.
The second structural difference is condition (n4). When analyzing more complex
epidemiological models, these structural differences are the only differences that arise
between the R0 maximization conditions for frequency independent and frequency
dependent selection models. Thus, for all of the conditions presented in the appendices
for models where selection is frequency independent, the conditions can be modified
to address frequency dependent selection by making two changes. First, the notation in
all of the conditions needs to be changed such that the term representing the “environ-
mental effects” includes the resident trait value. For example, let F(S, I, R, θ, θi ) be a
function representing some epidemiological process. Instead of writing that F factors
as F(S, I, R, θi ) = f (S, I, R)η(θi )ξ(S, I, R, θi ) as in the frequency independent
selection case, we now write F(S, I, R, θ, θi ) = f (S, I, R, θ)η(θi )ξ(S, I, R, θ, θi ).
Second, a condition analogous to condition (iv) needs to be appended. Note that
this condition would require all terms representing environmental effects to satisfy
f (S, 0, 0, θ1) = f (S, 0, 0, θ2) for all θ1 and θ2.

The biological interpretation of conditions (n1) through (n4) are similar to those
of the conditions (A1) through (A3) in the main text. Condition (n3) implies that
the genotype-by-environment interactions are the same for pathogen transmission,
host recovery, and host mortality. Since we do not expect this to be the case in most
natural systems, this implies that R0 maximization only occurs when there are no
genotype-by-environment effects. Condition (n3) also implies that the genotype-by-
genotype interactions between the resident and invader traits are the same for pathogen
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transmission, host recovery, and host mortality. Since we do not expect this to be the
case in most natural systems, this implies that R0 maximization only occurs when
there are no genotype-by-genotype effects. In total, condition (n3) implies that the
effects of the invader trait and the effects of the environment (i.e. both the host class
densities and the resident trait) are independent. After decomposing the exist rate, V−

I ,
into transfer and death rates, the biological consequences of condition (n2) are the
same as those for conditions (A2.1) through (A2.4) in the main text. Condition (n4)
implies that the effects of the invader’s trait and the environmental effects due to the
host density are independent in a completely susceptible population.

Example We consider a system with a single infectious class where the transmission
rate of the infectious class decreases as the density of the infectious class increases.
A similar functional form has been used to account for how the crowding of infectious
individuals or host behavioral changes (e.g. fear) decrease transmission rates (Capasso
and Serio 1978). The dynamics of the infectious class infected by the resident are

d I

dt
= β(θ)SI

1 + k(θ)I
− [μ(θ)+ ρ(θ)]I (76)

where k(θ) defines the level of inhibition infectious individuals exhibit on the trans-
mission rate. For large values of k(θ) the level of inhibition is large and for small values
of k(θ) the level of inhibition is small. For notational convenience, let X = (S, I, R).
The reproductive number of the pathogen is

R(S, I, R, θ, θi ) = β(θi )S

1 + k(θ)I

1

μ(θi )+ ρ(θi )
. (77)

The basic reproductive number is

R0(θi ) = R(N , 0, 0, θi , θi ) = β(θi )N

μ(θi )+ ρ(θi )
. (78)

We first consider the case where selection is frequency independent. In this case,
the dynamics of the invading strain, Ī , at the endemic equilibrium of the resident,
(S∗, I ∗, R∗), are given by

d Ī

dt
= β(θ)S∗ Ī

1 + k(θ)I ∗ − [μ(θ)+ ρ(θ)] Ī . (79)

This implies that FI (X, θ) = β(θ)S/[1+k(θ)I ] and V−
I (X, θ) = μ(θ)+ρ(θ). When

k(θ) does not depend on the trait θ , i.e. it is constant, then (7) satisfies conditions (A1)
through (A3) from the main text. In this case R(X, θ) can be written as in Eq. (4),

R(S, I, R, θ)= β(θ)S

1+k(θ)I

1

μ(θ)+ρ(θ)= S

1 + k I

1

N
R0(θ)=g(S, I, R)R0(θ) (80)
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When k(θ) does depend on the trait, β(θ)S/(1 + k(θ)I ) cannot be factored as in
condition (A1) from the main text. Because the function g(S, I, R) will depends on
S, I , and θ , it follows that R(S, I, R, θ) cannot be written as in Eq. (4). Thus, when
k(θ) depends on the trait and the selection is frequency independent, R0 maximization
is not guaranteed.

Now consider the case where selection is frequency dependent. We will focus on
the case where k(θ) depends on the pathogen trait. The dynamics of the invading strain
at the endemic equilibrium of the resident are given by

d Ī

dt
= β(θi )S∗ Ī

1 + k(θ)I ∗ − [μ(θi )+ ρ(θi )] Ī (81)

where θ is the trait value of the resident strain and θi is the strait value of the invading
strain. Note that the trait value in the denominator of the transmission function is deter-
mined by the resident strain. This is biologically reasonable because the (fear-driven
or crowding-based) behavioral dynamics of the host population should be dictated by
the resident strain, not the invader which is initially at low density.

Using the notation in system (74), we have that FI (S∗, I ∗, R∗, θ, θi )=β(θi )S∗/[1+
k(θ)I ∗] and V −

I (S
∗, I ∗, R∗, θ, θi ) = μ(θi ) + ρ(θi ). These two functions factor

as in conditions (n1) through (n3) with f I (X, θ) = S/[1 + k(θ)I ∗], ηI (θi ) =
β(θi ), v

−
I (X, θ) = 1, ν−

I = μ(θi ) + ρ(θi ), and ξ f = ξv = 1. Furthermore,
condition (n4) is satisfied because

f I (S, 0, 0, θ1) = S/[1 + k(θ1) · 0] = S/[1 + k(θ2) · 0] = f I (S, 0, 0, θ1)

and v−
I (S, 0, 0, θ1) = 1 = v−

I (S, 0, 0, θ2). This implies that reproductive number can
be written as

R(S, I, R, θ, θi ) = β(θi )S

1 + k(θ)I

1

μ(θi )+ ρ(θi )
= S

1 + k(θ)I

1

N
R0(θi )

= g(X, θ)R0(θi ). (82)

Thus, when selection is frequency dependent evolution always maximizes R0 in
system (76).

Appendix G: Gradient evolutionary models

As opposed to the previous models where evolution allowed for any pathogen strain
to arise, here we consider gradient dynamic models of evolution. In these models,
only strains of the pathogen with a trait value close to the trait value of the resident
can arise through mutation and potentially invade the system. The models follow
from the quantitative genetic approach derived in Lande (1982) and Abrams et al.
(1993). The theory assumes that evolution drives the trait in the direction of increasing
fitness, determined by the fitness gradient, at a rate that is proportional to both the
additive genetic variance of the trait and the fitness gradient. These models are a first
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approximation to many types of models (e.g. adaptive dynamic and clonal models)
and capture a range of behavior observed at the phenotypic level without having to
specify gene level processes Abrams (2001, 2005). We consider them here because
of their wide use and because the conditions necessary for evolution to maximize the
basic reproductive number are similar to those of the previous models.

In the following we will only consider epidemiological systems with a single infec-
tious class. We first consider the case where selection is frequency independent. We
then consider the case where selection is frequency dependent. In both cases, we
assume that ecological processes are occurring at a faster timescale than the evolu-
tionary processes.

G.1 Frequency independent selection

The gradient dynamic model for a system with a single infectious class and frequency
independent selection is

d S

dt
= GS(S, I, R, θ)− US(S, I, R, θ)

d I

dt
= IFI (S, I, R, θ)− IV−

I (S, I, R, θ)

d R

dt
= GR(S, I, R, θ)− UR(S, I, R, θ)

dθ

dt
= σ 2 ∂

∂θ

(
1

I

d I

dt

)
(83)

where σ 2 is the additive genetic variance of the pathogen population. The first three
equations of system (83) describe the epidemiological dynamics of the system. The
last equation describes the evolutionary dynamics of the system. In the trait equation,
1
I

d I
dt is the per capita fitness of a pathogen with trait θ . The derivative of the per capita

fitness defines the fitness gradient and the trait evolves in the direction of increasing
fitness. Note that because selection is frequency independent, the fitness gradient is
just the derivative of fitness with respect to the trait. We assume that for any fixed
value of the trait, the epidemiological dynamics of system (83) tend to a disease free
or endemic equilibrium. The disease free equilibrium is given by (N , 0, 0).

In the case where the epidemiological dynamics of system (83) are fast and the
evolutionary dynamics are slow, the evolutionary dynamics of system (83) in the slow
evolutionary time scale are

dθ

dt
= σ 2 ∂

∂θ

[
FI (S, I, R, θ)− V−

I (S, I, R, θ)
]∣∣∣∣

S=S∗,I=I ∗,R=R∗
(84)

where S∗, I ∗, and R∗ are the endemic equilibrium values of the host classes for the
pathogen with trait θ . Values of θ that make the right hand side of Eq. (84) zero are
evolutionary equilibria. Because the trait dynamics are one dimensional, evolutionary
equilibria are attracting if they are local fitness maxima and repelling if they are local
fitness minima. We are interested in the conditions on the functional forms of FI and
VI that result in evolution maximizing the basic reproductive number of the pathogen.
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The basic reproductive number, R0(θ), for a pathogen in system (83) with
trait θ is

R0(θ) = FI (S, I, R, θ)

V−
I (S, I, R, θ)

∣∣∣∣∣
S=N ,I=R=0

(85)

The derivative of R0(θ) with respect to θ is

∂R0(θ)

∂θ
=
(
∂FI

∂θ
V−

I − F
∂V−

I

∂θ

)/
(V−

I )
2

∣∣∣∣∣
S=N ,I=R=0

. (86)

We are interested in the conditions on FI and V−
I that result in Eqs. (84) and (86)

having the same sign for all values of θ . When the two equations have the same sign
for all values of θ , the local maxima of the two are be the same and evolution will
maximize R0(θ) locally. Note that because the trait dynamics in system (83) are driven
by the fitness gradient, the trait cannot cross a fitness valley. Consequently, evolution
may end up a selecting for a local maximum of R0(θ) that is not the global maximum.
If one wanted to ensure that evolution always selected for the strain with the global
maximum value of R0(θ), then it is necessary to assume that R0(θ) is a unimodal
function with a single local (and hence global) maximum.

Equations (84) and (86) have the same sign for all values of θ under the following
conditions

(o1) FI = I f (S, I, R)η(θ)
(o2) V−

I = Iv(S, I, R)ν(θ).

Conditions (i1) and (i2) are a special case of the following conditions

(p1) FI = I f1(S, I, R)η(θ)+ I f2(S, I, R)ν(θ)
(p2) V−

I = Iv1(S, I, R)η(θ)+ Iv2(S, I, R)ν(θ)
(p3) ( f1v2 − f2v1)|(N ,0,0,θ) has the same sign as ( f1v2 − f2v1)|[S∗(θ),I ∗(θ),R∗(θ),θ]

for all values of θ .

Under conditions (o1) and (o2), Eqs. (84) and (86) have the same sign and evolution
maximizes R0(θ). The algebra justifying this statement is presented at the end of this
subsection. Note that condition (p3) is satisfied when f2 = 0 or v1 = 0.

Biologically, conditions (p1) and (p2) imply that the trait has the same effect on
different aspects of pathogen transmission and virulence. This seems unlikely to occur
in nature. Thus, we focus on the interpretation of conditions (o1) and (o2). Conditions
(o1) and (o2) have the same interpretation as conditions (A1) and (A2) from the main
text except that there are no genotype-by-environment interactions. Thus, these condi-
tions require that the effects of the environment and the pathogen trait are independent
for evolution to maximize R0(θ) in frequency independent selection gradient models.

The proof of conditions (p1) through (p3) is as follows. Under conditions (p1) and
(p2), R0(θ) for the pathogen in system (84) is

R0(θ) = f1(N , 0, 0)η(θ)+ f2(N , 0, 0)ν(θ)

v1(N , 0, 0)η(θ)+ v2(N , 0, 0)ν(θ)
. (87)
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Differentiating with respect to θ yields,

∂R0

∂θ
= ( f1η

′ + f2ν
′)(v1η + v2ν)− ( f1η + f2ν)(v1η

′ + v2ν
′)

(v1ηv2ν)2

∣∣∣∣
S=N ,I=R=0

= f1v2η
′ν + f2v1ην

′ − f2v1η
′ν − f1v2ην

′

(v1η + v2ν)2

∣∣∣∣
S=N ,I=R=0

= ( f1v2 − f2v1)(η
′ν − ην′)

(v1η + v2ν)2

∣∣∣∣
S=N ,I=R=0

(88)

where η′ = dη/dθ and ν′ = dν/dθ .
Under the same conditions, Eq. (86) becomes

dθ

dt
= σ 2( f1η

′ + f2ν
′ − v1η

′ − v2ν
′)|(S∗,I ∗,R∗,θ). (89)

Since d I
dt (S

∗(θ), I ∗(θ), R∗(θ), θ) = 0 by definition, we have

dθ

dt
= σ 2 ( f1η

′ + f2ν
′ − v1η

′ − v2ν
′)
∣∣
(S∗,I ∗,R∗,θ)

= σ 2
[

f1η
′ + f2ν

′ − f1η + f2ν

v1η + v2ν
(v1η

′ + v2ν
′)
]∣∣∣∣
(S∗,I ∗,R∗,θ)

= σ 2 ( f1η
′ + f2ν

′)(v1η + v2ν)− ( f1η + f2ν)(v1η
′ + v2ν

′)
(v1η + v2ν)

∣∣∣∣
(S∗,I ∗,R∗,θ)

= σ 2 ( f1v2 − f2v1)(η
′ν − ην′)

(v1η + v2ν)

∣∣∣∣
(S∗,I ∗,R∗,θ)

(90)

Equation (90) has the same sign as Eq. (88) when condition (c3) is met.

G.2 Frequency dependent selection

Following the notation in Appendix F, the gradient dynamic model for system with a
single infectious class where selection is frequency dependent is

d S

dt
= GS(S, I, R, θ, θi )− US(S, I, R, θ, θi )|θi =θ

d I

dt
= IFI (S, I, R, θ, θi )− IV−

I (S, I, R, θ, θi )|θi =θ
d R

dt
= GR(S, I, R, θ, θi )− UR(S, I, R, θ, θi )|θi =θ

dθ

dt
= σ 2 ∂

∂θi

(
1

I

d I

dt

)∣∣∣∣
θi =θ

(91)
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where θ is the trait value of the resident. Note that when selection is frequency depen-
dent the fitness gradient in the dθ/dt equation is calculated by differentiating the per
capita fitness of a pathogen with respect to the invader’s trait, θi . We assume that for any
fixed value of the trait, the epidemiological dynamics of system (91) tend to a disease
free or endemic equilibrium. The disease free equilibrium is given by (N , 0, 0).

In the limit where evolutionary dynamics are much slower than the epidemiolog-
ical dynamics of system (91), the evolutionary dynamics of system (91) in the slow
evolutionary time scale are given by

dθ

dt
= σ 2 ∂

∂θi

[
FI (S

∗, I ∗, R∗, θ, θi )− V−
I (S

∗, I ∗, R∗, θ, θi )
]∣∣∣∣
θi =θ

(92)

where S∗, I ∗, and R∗ are the endemic equilibrium densities of the host classes for the
pathogen with trait θ . We are interested in the conditions on the functional forms of
FI and V−

I that result in evolution maximizing the basic reproductive number of the
pathogen.

The basic reproductive number for a pathogen with trait θ in system (91) is

R0(θ) = FI (S, I, R, θ, θi )

V−
I (S, I, R, θ, θi )

∣∣∣∣∣
S=N ,I=R=0,θi =θ

(93)

The gradient of R0(θ) with respect to the trait is

∂R0(θ)

∂θ
=
[(
∂F
∂θ

+ ∂F
∂θi

)
V−

I −F
(
∂V−

I

∂θ
+ ∂V

−
I

∂θi

)]/
(V−

I )
2

∣∣∣∣∣
S=N ,I=R=0,θi =θ

. (94)

Equations (92) and (94) have the same sign for all values of θ under the following
conditions

(q1) FI (S, I, R, θ I, θi ) = f (S, I, R, θ)η(θi )

(q2) V−
I (S, I, R, θ I, θi ) = v(S, I, R, θ)ν(θi ).

(q3) f (S, 0, 0, θ1) = f (S, 0, 0, θ1) and v(S, 0, 0, θ1) = v(S, 0, 0, θ2) for all θ1
and θ2.

Conditions (q1) through (q3) fall under the more general conditions

(r1) FI (S, I, R, θ I, θi ) = I f1(S, I, R, θ)η(θi )+ I f2(S, I, R, θ)ν(θi )

(r2) V−
I (S, I, R, θ I, θi ) = Iv1(S, I, R, θ)η(θi )+ Iv2(S, I, R, θ)ν(θi ).

(r3) ( f1v2 − f2v1)|(N ,0,0,θ) has the same sign as ( f1v2 − f2v1)|[S∗(θ),I ∗(θ),R∗(θ),θ]
for all values of θ .

(r4) f j (S, 0, 0, θ1) = f j (S, 0, 0, θ2) and v j (S, 0, 0, θ1) = v j (S, 0, 0, θ2) for
j = 1, 2 and for all θ1 and θ2.

The algebra showing that conditions (r1) through (r4) yield R0 maximization is
included at the end of this subsection. Note that condition (r4) is satisfied when f2 = 0
or v1 = 0. An example of a function that satisfies condition (q1) and (q3) is

F = θi S I

K + θ I
. (95)
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Biologically, conditions (r1) and (r2) imply that the trait has the same effect on
different aspects of pathogen transmission and virulence. This seems unlikely to occur
in nature, thus we focus on the interpretation of conditions (q1) through (q3). The
interpretation of conditions (q1) and (q2) is analogous to that of the conditions for
the frequency independent case. The difference here is that the term representing the
effects of the environment also includes the effects due to the resident trait. Hence,
there are no genotype-by-genotype interactions. Condition (q3) implies that effects
of the pathogen trait and the host density are independent in completely susceptible
populations.

The proof for conditions (r1) through (r4) is as follows. Under conditions (r1) and
(r2), we have

R0(θ) = f1η + f2ν

v1η + v2ν

∣∣∣∣
S=N ,I=R=0

. (96)

Differentiating with respect to θ yields

∂R0

∂θ
= ( f1η

′ + f2ν
′)(v1η + v2ν)− ( f1η + f2ν)(v1η

′ + v2ν
′)

(v1η + v2ν)2

∣∣∣∣
S=N ,I=R=0

(97)

= ( f1v2 − f2v1)(η
′ν − ην′)

(v1η + v2ν)2

∣∣∣∣
S=N ,I=R=0

(98)

where η′ = dη/dθ and ν′ = dν/dθ .
Under the same conditions, Eq. (94) becomes

dθ

dt
= σ 2( f1η

′ + f2ν
′ − v1η

′ − v2ν
′)|(S∗,I ∗,R∗,θ,θ). (99)

Since d I
dt (S

∗, I ∗, R∗, θ) = 0, where θ is the resident pathogen’s trait, we have

dθ

dt
= σ 2 ( f1η

′ + f2ν
′ − v1η

′ − v2ν
′)
∣∣
(S∗,I ∗,R∗,θ,θ)

= σ 2
[

f1η
′ + f2ν

′ − f1η + f2ν

v1η + v2ν
(v1η

′ + v2ν
′)
]∣∣∣∣
(S∗,I ∗,R∗,θ,θ)

= σ 2 ( f1η
′ + f2ν

′)(v1η + v2ν)− ( f1η + f2ν)(v1η
′ + v2ν

′)
(v1η + v2ν)

∣∣∣∣
(S∗,I ∗,R∗,θ,θ)

= σ 2 ( f1v2 − f2v1)(η
′ν − ην′)

(v1η + v2ν)

∣∣∣∣
(S∗,I ∗,R∗,θ,θ)

(100)

Equation (100) has the same sign as Eq. (97) when condition (r4) is met.
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