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Abstract Body size (≡ biomass) is the dominant determinant of population dynam-
ical processes such as giving birth or dying in almost all species, with often drastically
different behaviour occurring in different parts of the growth trajectory, while the lat-
ter is largely determined by food availability at the different life stages. This leads
to the question under what conditions unstructured population models, formulated
in terms of total population biomass, still do a fair job. To contribute to answering
this question we first analyze the conditions under which a size-structured model col-
lapses to a dynamically equivalent unstructured one in terms of total biomass. The
only biologically meaningful case where this occurs is when body size does not affect
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890 A. M. De Roos et al.

any of the population dynamic processes, this is the case if and only if the mass-
specific ingestion rate, the mass-specific biomass production and the mortality rate of
the individuals are independent of size, a condition to which we refer as “ontogenetic
symmetry”. Intriguingly, under ontogenetic symmetry the equilibrium biomass-body
size spectrum is proportional to 1/size, a form that has been conjectured for marine
size spectra and subsequently has been used as prior assumption in theoretical papers
dealing with the latter. As a next step we consider an archetypical class of models in
which reproduction takes over from growth upon reaching an adult body size, in order
to determine how quickly discrepancies from ontogenetic symmetry lead to relevant
novel population dynamical phenomena. The phenomena considered are biomass over-
compensation, when additional imposed mortality leads, rather unexpectedly, to an
increase in the equilibrium biomass of either the juveniles or the adults (a phenomenon
with potentially big consequences for predators of the species), and the occurrence of
two types of size-structure driven oscillations, juvenile-driven cycles with separated
extended cohorts, and adult-driven cycles in which periodically a front of relatively
steeply decreasing frequencies moves up the size distribution. A small discrepancy
from symmetry can already lead to biomass overcompensation; size-structure driven
cycles only occur for somewhat larger discrepancies.

Keywords Physiologically structured population · Ontogenetic symmetry ·
Size-structure · Biomass overcompensation · Population cycles · Size spectrum

Mathematics Subject Classification (2000) 92D25

1 Introduction

Text books in ecology define population dynamics as the change in density of pop-
ulations in space and time with density referring only to the number of individuals,
without taking into account e.g. their body size (e.g. Begon et al. 1996). In classical
theory the key processes in the life history of individual organisms driving population
dynamics hence include only reproduction and mortality. More recently, population
dynamic models have also been formulated that use total population biomass as a
descriptor of abundance (Yodzis and Innes 1992); models which subsequently have
been used widely to study dynamics of larger foodwebs (McCann et al. 1998; Brose
et al. 2006). In the same textbooks higher dimensional representations of populations
generally take the form of matrix models that describe the dynamics of age class or
stage densities over time (Caswell 2001), but these models are typically limited to the
dynamics of a single population. For interacting populations the majority of ecological
models use a single quantity to represent a population, be it the number of individuals
in the population or their total biomass. In the remainder of this paper we will refer to
such models in terms of a single population quantity as “unstructured”.

Actual life histories of individuals comprise more than reproduction and mortality.
In particular, ontogenetic development and growth in body size during an individ-
ual’s life span is an energetic necessity before production of offspring can occur. This
increase should minimally amount to a doubling in body size, but exceeds an order of
magnitude for the majority of species (De Roos and Persson 2013). Given that growth
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Ontogenetic symmetry and asymmetry 891

in body size is necessary before reproduction can take place and that a substantial
fraction of all newborn individuals do not survive till the reproductive stage, ontoge-
netic development, in particular growth in body size, can even be considered the most
prominent process in an individual’s life history after mortality.

Physiologically structured population models (PSPMs, Metz and Diekmann 1986;
De Roos 1997) were specifically developed to allow accounting for the full complexity
of individual life cycles. After some early work on size-structured models mainly for
cell populations (VonFoerster 1959; Tsuchiya et al. 1966; Bell and Anderson 1967;
Fredrickson et al. 1967; Sinko and Streifer 1967, 1969, 1971; Bell 1968; Anderson
et al. 1969; VanSickle 1977; Murphy 1983) in the wake of McKendrick (1926), the
work on general PSPMs got in full swing during the last three decades after their
general formulation by Odo Diekmann and collaborators in the mid 80’s (summarised
in Metz and Diekmann 1986). This has resulted not only in applications of PSPMs to a
variety of systems but also in the development of a rigorous mathematical basis for the
formulation of these models (Diekmann et al. 1998, 2001), methods for computation of
their steady states (Diekmann et al. 2003) and for analysis of their stability (Diekmann
et al. 2010), and special numerical techniques for their time integration (De Roos 1988)
and bifurcation analysis (Kirkilionis et al. 2001). In contrast to unstructured models,
population dynamics in PSPMs results from a bookkeeping of events in the lives of
all individuals making up a population. The actual modeling hence takes place at the
individual level as opposed to the population level and consists of formulating math-
ematical descriptions of processes such as individual growth in body size, fecundity
and mortality. Because PSPMs faithfully account for the biological details and com-
plexity of the individual life cycle they can be considered the appropriate framework
to formulate models of ecological interactions, with the level to which these details
and complexities are represented in a particular case a matter of scientific judgement.

The contrast between an ecological theory based on unstructured models and the
fact that PSPMs allow capturing more complexity and hence are more realistic natu-
rally leads to the question to what extent and in what respect this additional complexity
truly matters for our understanding of ecological dynamics. Analysis of PSPMs for
size-dependent interactions between consumers and their resource has, for example,
revealed that size-dependent competition can induce novel phenomena not found in
unstructured models, such as particular types of population cycles (De Roos et al.
1990; De Roos and Persson 2003; Diekmann et al. 2010). Another phenomenon, with
potentially large ecological repercussions, is the occurrence of an increase in the bio-
mass in a particular class of individuals when mortality is increased (De Roos et al.
2007 so-called “biomass overcompensation”). What are the general conditions under
which such structure-related phenomena occur? More specifically, under what condi-
tions can the dynamics of a size-structured model be described in terms of an ordinary
differential equation (ODE) for a single population variable, either the total number of
individuals or total population biomass? And, do structure-related phenomena, such
as biomass overcompensation and size-structure driven population cycles, occur so
widely that it is generally necessary to account for the size structure of populations in
order to understand their dynamics? Such questions are central to attempts at unravel-
ing how size-structured population models relate to unstructured ones and assessing
the conditions under which ecological theory based on unstructured models can apply.
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892 A. M. De Roos et al.

As a first answer we below derive the conditions for which a generic size-structured
model can be simplified to a single differential equation for the total biomass. Next
we embed the thus delimited class of models in an archetypical larger family of size-
structured models to determine the conditions for the appearance of the just described
size-structure dependent population dynamical phenomena.

2 Ontogenetic symmetry in ingestion, biomass production and loss

The abstract conditions under which a structured population model can be faithfully
represented by a finite system of ODEs are described in Metz and Diekmann (1991,
last paragraph of Sect. 4). Below these conditions are worked out, with an eye on their
interpretation, for the special case where the end result is a single differential equation
for the population biomass. The conditions take the form of a set of invariances of the
model ingredients.

Let s denote the body size of an individual organism, which we assume to fully
characterize its state of development. Growth in body size is determined by the function
g(R, s) representing the growth rate in size for an individual of size s living in an
environment with food or resource density R. We assume that all individuals are born
with a fixed size at birth, sb. Development of a single individual in isolation hence
follows the ODE

ds

dt
= g(R, s), s(0) = sb (1)

Individual reproduction is modeled with the function β(R, s), representing the fecun-
dity of an individual with body size s, experiencing a food density R. Similarly,
mortality is determined by a function d(R, s), representing the instantaneous mortal-
ity rate of such an individual. Finally, to model the feedback of individuals on their
resource environment we define the function I (R, s) as the rate at which an individual
with body size s ingests the resource at density R.

Denote the population size distribution as c(t, s). Then the foregoing specifications
of individual life history functions lead to the following set of equations describing
the dynamics of the population size distribution and the resource density:

∂c(t, s)

∂t
+ ∂g(R, s)c(t, s)

∂s
= −d(R, s) c(t, s) (2a)

g(R, sb)c(t, sb) =
∞∫

sb

β(R, s) c(t, s) ds (2b)

d R

dt
= G(R) −

∞∫

sb

I (R, s) c(t, s) ds (2c)

(see Metz and Diekmann 1986; De Roos 1997). The function G(R) in the equations
above specifies the autonomous dynamics of the resource in the absence of any indi-
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Ontogenetic symmetry and asymmetry 893

viduals consuming it. To complete the model specification the set of Eq. (2) has to
be supplemented with initial conditions for the size distribution c(0, s) and resource
density R(0), but for the remainder of this paper we shall not pay further attention to
these initial conditions or the transient dynamics following from it.

The central question we address in this section is under which conditions the size-
structured population model (2) can be reduced to an ODE for a single quantity rep-
resenting the density of the consumer population in addition to the ODE describing
the resource dynamics. Given the importance of body size in individual life history,
we ignore the trivial case that all life history functions g(R, s), β(R, s), d(R, s) and
I (R, s) are independent of body size s, when it is straightforward to simplify the
model (2) to an unstructured model in terms of the total number of individuals in the
population. Instead, we focus on describing the consumer dynamics in terms of the
total population biomass B, defined as

B(t) =
∞∫

sb

s c(t, s) ds (3)

Differentiating this expression with respect to time yields after substitution of Eq. (2a)
the ODE

d B

dt
= −

∞∫

sb

s
∂g(R, s)c(t, s)

∂s
ds −

∞∫

sb

s d(R, s) c(t, s) ds

Partial integration of the first integral on the right-hand side of this ODE yields

d B

dt
= sb g(R, sb) c(t, sb) − lim

s→∞ s g(R, s) c(t, s)

+
∞∫

sb

g(R, s) c(t, s) ds −
∞∫

sb

s d(R, s) c(t, s) ds (4)

The second term on the right-hand side of this equation is necessarily equal to 0 in
any realistic, ecological model, whereas the first term on the right-hand side can be
rewritten using the boundary condition (2b), resulting in

d B

dt
=

∞∫

sb

(
sb β(R, s) + g(R, s)

s
− d(R, s)

)
s c(t, s) ds (5)

The above ODE only reduces to a closed equation for B if

d

ds

(
sb β(R, s) + g(R, s)

s
− d(R, s)

)
= 0 for s ≥ sb (6)
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894 A. M. De Roos et al.

This condition is formulated in terms of the balance between the rate at which new
biomass is produced per unit biomass through either reproduction or somatic growth,
(sb β(R, s)+g(R, s))/s, and the rate at which biomass is destroyed through mortality,
d(R, s). Since there is little reason to suppose a close coupling between the biological
mechanisms underlying an individual’s mass-specific production of new biomass and
the mortality to which it is exposed, we shall in the following focus on conditions on
these terms separately that together guarantee (6). In addition, to be able also to write
the ODE (2c) for the resource dynamics in terms of R and B the ingestion rate per
unit biomass, I (R, s)/s, should be independent of individual body size as well.

Reduction of the size-structured consumer-resource model (2) to a coupled set of
ODEs for resource and consumer biomass is hence possible if the following three
conditions hold:

Ingestion invariance: the mass-specific rate of resource ingestion is independent of
body size

∂

∂s

(
I (R, s)

s

)
= 0 for s ≥ sb (7)

Biomass production invariance: the mass-specific rate at which new biomass is pro-
duced is independent of body size

∂

∂s

(
sb β(R, s) + g(R, s)

s

)
= 0 for s ≥ sb (8)

Mortality invariance: the mortality rate is independent of body size

∂

∂s
d(R, s) = 0 for s ≥ sb (9)

The three invariance conditions determine a symmetry between individuals of dif-
ferent body sizes in mass-specific ingestion, mass-specific biomass production and
mortality, respectively, to which we refer together as ontogenetic symmetry. If there
is such ontogenetic symmetry the size-structured dynamics can be simplified to

d B

dt
= h(R) B − d(R) B (10a)

d R

dt
= G(R) − f (R) B (10b)

with h(R) = (sb β(R, s) + g(R, s))/s and f (R) = I (R, s)/s, which functions
only depend on R by assumption. Given the assumption of ontogenetic symmetry we
furthermore drop the dependence on body size from the mortality rate d(R). This
system of ODEs resembles a classical, unstructured model and becomes with specific
choices for h(R), d(R), G(R) and f (R) in fact identical to the model proposed by
Yodzis and Innes (1992), which has recently been used widely to study dynamics of
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Ontogenetic symmetry and asymmetry 895

foodwebs (McCann et al. 1998; Brose et al. 2006). Ontogenetic symmetry in mass-
specific ingestion, mass-specific biomass production and mortality is therefore a useful
starting point to compare unstructured models with size-structured models, as under
these conditions they are dynamically equivalent. It provides the natural reference
point for answering the question how quickly deviations from ontogenetic symmetry
lead to novel dynamic phenomena that are induced by the population size structure
and hence how quickly predictions from size-structured and unstructured population
models start to deviate.

3 Equilibrium characteristics under ontogenetic symmetry

In this section we consider the characteristics of the population equilibrium in the case
of ontogenetic symmetry and in particular the consequences of ontogenetic symmetry
for the population size structure. We make the ecologically plausible assumption that
consumer life histories are composed of a juvenile stage with sb ≤ s < sm, for which
β(R, s) = 0 and an adult stage with s ≥ sm for which β(R, s) > 0. The size threshold
sm represents the body size at maturation.

From (10a) it follows that the equilibrium resource density R̃ satisfies the identity

h(R̃) = d(R̃) (11)

This condition makes clear that at equilibrium the mass-specific production rate of new
biomass equals the biomass loss rate. Equations (8) and (9) then lead to the ecologically
important conclusion that under conditions of ontogenetic symmetry in equilibrium
the mass-specific turnover of biomass is 0 over any size range of consumers. Among
others, this implies that both the juvenile and the adult stage are zero net-producing
stages in any consumer equilibrium, that is, losses through mortality in each stage
exactly equal the production of new biomass through either growth or reproduction.

An expression for the population size distribution at equilibrium, which we denote
with c̃(s), can be derived from (2a):

c̃(s) = g(R̃, sb) c̃(sb)

g(R̃, s)
exp

⎛
⎝−

s∫

sb

d(R̃, ξ)

g(R̃, ξ)
dξ

⎞
⎠ (12)

(see e.g. Metz and Diekmann 1986; De Roos 1997). Let b̃ represent the birth rate in
terms of number of individuals in equilibrium:

b̃ = g(R̃, sb) c̃(sb) (13)

Under conditions of ontogenetic symmetry the size distribution for juveniles simplifies
to

c̃(s) = b̃

g(R̃, s)
exp

⎛
⎝−

s∫

sb

d(R̃, s)

g(R̃, s)
ds

⎞
⎠
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= b̃

d(R̃)s
exp

⎛
⎝−

s∫

sb

1

ξ
dξ

⎞
⎠ ⇒

c̃(s) = sbb̃

d(R̃)

1

s2 (14)

The product sbb̃ in the above expression can be interpreted as the production rate of
new biomass through reproduction by the adult individuals. Total juvenile biomass in
equilibrium, J̃ , then equals

J̃ =
sm∫

sb

s c̃(s) ds = sbb̃

d(R̃)
ln

(
sm

sb

)
(15)

More generally, the biomass in any juvenile size range between s1 and s2 equals

s2∫

s1

s c̃(s) ds = sbb̃

d(R̃)
ln

(
s2

s1

)
(16)

To derive an expression for the adult biomass at equilibrium, we make the rather
general and biologically plausible assumption that individuals after maturation invest
a size-dependent fraction κ(s) of their net production of new biomass into somatic
growth, while investing the remaining fraction 1 − κ(s) of this production into repro-
duction. The reproduction rate in terms of biomass of an adult individual is then related
to its somatic growth rate by:

sbβ(R, s)

g(R, s)
= 1 − κ(s)

κ(s)
(17)

Under conditions of ontogenetic symmetry we can then derive from (8), (11) and (17)
that in equilibrium

d(R̃)

g(R̃, s)
= 1

κ(s)s
(18)

and for the size distribution of adult individuals:

c̃(s) = g(R̃, sm)c̃(sm)

g(R̃, s)
exp

⎛
⎝−

s∫

sm

d(R̃, s)

g(R̃, s)
ds

⎞
⎠ ⇒

c̃(s) = sbb̃

d(R̃)

s−1
m

κ(s) s
exp

⎛
⎝−

s∫

sm

1

κ(ξ)ξ
dξ

⎞
⎠ (19)
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in which g(R̃, sm)c̃(sm) represents the rate at which individuals are recruited to the
adult stage (cf. 12). This rate is related to the population birth rate b̃ by:

sb b̃ = sm g(R̃, sm)c̃(sm) (20)

because the condition of ontogenetic symmetry ensures that the juvenile stage is a zero
net-production stage of new biomass. The rate at which biomass is recruited to the
adult stage therefore equals the rate at which adult individuals produce new biomass
through reproduction. The total adult biomass is now given by:

Ã = sbb̃

d(R̃)

∞∫

sm

s−1
m

κ(s)
exp

⎛
⎝−

s∫

sm

1

κ(ξ)ξ
dξ

⎞
⎠ ds (21)

Partial integration of the integral on the right-hand side leads to

Ã = sbb̃

d(R̃)

⎛
⎜⎝− s

sm
exp

⎛
⎝−

s∫

sm

1

κ(ξ)ξ
dξ

⎞
⎠

∣∣∣∣∣∣
∞

sm

+ s−1
m

∞∫

sm

exp

⎛
⎝−

s∫

sm

1

κ(ξ)ξ
dξ

⎞
⎠ ds

⎞
⎟⎠

= sbb̃

d(R̃)

⎛
⎝1 + s−1

m

∞∫

sm

exp

⎛
⎝−

s∫

sm

1

κ(ξ)ξ
dξ

⎞
⎠ ds

⎞
⎠ (22)

where we have used that

lim
s→∞ s exp

⎛
⎝−

s∫

sm

1

κ(ξ)ξ
dξ

⎞
⎠

is necessarily 0 in any realistic, ecological model. (A mathematical expression of this
requirement of biological realism could be that lims→∞ κ(s) < 1.)

The relative size distribution in equilibrium, c̃r (s), which we define as the ratio
between the equilibrium size distribution c̃(s) and the total biomass at equilibrium
B̃ = J̃ + Ã, then follows from (14), (15), (19) and (22), resulting in:

c̃r (s) =

⎧⎪⎪⎨
⎪⎪⎩

�−1 s−2 for sb ≤ s ≤ sm

�−1 s−1
m

κ(s) s
exp

⎛
⎝−

s∫

sm

1

κ(ξ)ξ
dξ

⎞
⎠ for s > sm .

(23)

with � defined as:

� = ln

(
sm

sb

)
+ 1 + s−1

m

∞∫

sm

exp

⎛
⎝−

s∫

sm

1

κ(ξ)ξ
dξ

⎞
⎠ ds (24)
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Under conditions of ontogenetic symmetry the consumer biomass distribution at equi-
librium, s c̃(s), thus follows over the juvenile size range a power law as a function
of body size, more in particular, is proportional to s−1 (cf. Eq. 23). This implies that
the biomass within logarithmically spaced size groups is constant over the juvenile
size range, which interestingly corresponds to a conjecture by Sheldon et al. (1972)
about the scaling of the size spectrum in the marine environment, and which in previ-
ous studies of community size spectra has been assumed prior to analysis (Andersen
and Beyer 2006). Here we identify this assumption with the condition of ontogenetic
symmetry. From Eq. (23) we furthermore conclude that the relative size distribution
in equilibrium only depends on the size at birth sb, the size at maturation sm and
the fraction of biomass production that adults invest in somatic growth κ(s). Most
importantly, this implies that changes in the environment that consumers experience,
such as changes in mortality or changes in the productivity of resource biomass G(R̃),

will not affect the relative consumer population composition. In particular, the ratio of
juvenile and adult biomass in equilibrium is under conditions of ontogenetic symmetry
independent of the mortality rate d(R̃).

Now consider the more relaxed condition when only ontogenetic symmetry in
mortality applies. Using (12) we can express the total juvenile biomass in equilibrium
J̃ , as

J̃ =
sm∫

sb

s c̃(s) ds

= g(R̃, sb) c̃(sb)

sm∫

sb

s

g(R̃, s)
exp

⎛
⎝−

s∫

sb

d(R̃)

g(R̃, ξ)
dξ

⎞
⎠ ds

Partial integration of the integral on the right-hand side yields:

J̃ = g(R̃, sb)c̃(sb)

d(R̃)

⎛
⎝sb−sm exp

⎛
⎝−

sm∫

sb

d(R̃)

g(R̃, s)
ds

⎞
⎠+

sm∫

sb

exp

⎛
⎝−

s∫

sb

d(R̃)

g(R̃, ξ)
dξ

⎞
⎠ds

⎞
⎠

(25)

Similarly, the adult biomass in equilibrium can be expressed as:

Ã =
∞∫

sm

s c̃(s) ds

= g(R̃, sm) c̃(sm)

∞∫

sm

s

g(R̃, s)
exp

⎛
⎝−

s∫

sm

d(R̃)

g(R̃, ξ)
dξ

⎞
⎠ ds

with g(R̃, sm)c̃(sm) representing the rate at which individuals recruit to the adult stage.
Partial integration in this case results in
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Ã = g(R̃, sm) c̃(sm)

d(R̃)

⎛
⎝sm +

∞∫

sm

exp

⎛
⎝−

s∫

sm

d(R̃)

g(R̃, ξ)
dξ

⎞
⎠ ds

⎞
⎠ (26)

As before this equation has been simplified using the fact that

lim
s→∞ s exp

⎛
⎝−

s∫

sb

d(R̃)

g(R̃, s)
ds

⎞
⎠ = 0

Using (12) once more to relate g(R̃, sm)c̃(sm) to the population birth rate in equilib-
rium, g(R̃, sb)c̃(sb), then yields the following expression for the ratio between juvenile
and adult biomass in equilibrium:

J̃

Ã
=

sb exp

(∫ sm

sb

d(R̃)

g(R̃, s)
ds

)
− sm +

∫ sm

sb

exp

(∫ sm

s

d(R̃)

g(R̃, ξ)
dξ

)
ds

sm +
∫ ∞

sm

exp

(
−

∫ s

sm

d(R̃)

g(R̃, ξ)
dξ

)
ds

(27)

In the case of ontogenetic symmetry both in net production of new biomass and
mortality and when adults invest a fraction κ(s) of their new biomass production into
growth (27) can be shown to simplify to:

J̃

Ã
=

ln

(
sm

sb

)

1 + s−1
m

∫ ∞

sm

exp

(
−

∫ s

sm

1

κ(ξ) ξ
dξ

)
ds

as can also be derived from (15) and (22).
If adults do not grow at all the adult biomass in equilibrium equals

Ã = sm g(R̃, sm) c̃(sm)

d(R̃)
(28)

in which the numerator represents the rate at which biomass is recruited to the adult
stage through maturation and 1/d(R̃) equals the average survival time of this biomass.
Comparing (26) and (28) shows that the integral in the denominator of (27) is related
to the increase in adult biomass due to somatic growth of adults. When adults do not
grow in body size (27) simplifies to:
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900 A. M. De Roos et al.

J̃

Ã
= sb

sm
exp

⎛
⎝

sm∫

sb

d(R̃)

g(R̃, s)
ds

⎞
⎠ − 1 + s−1

m

sm∫

sb

exp

⎛
⎝

sm∫

s

d(R̃)

g(R̃, ξ)
dξ

⎞
⎠ ds (29)

Both (27) and (29) are increasing functions of the mortality-growth rate ratio,
d(R̃)/g(R̃, s), in the juvenile size range sb ≤ s ≤ sm . This shows that deviations from
ontogenetic symmetry that will increase d(R̃)/g(R̃, s) for juveniles will increase the
juvenile biomass relative to the adult biomass in the population, when compared to the
ratio at ontogenetic symmetry. Deviations from ontogenetic symmetry that make the
juvenile stage a net loss stage of biomass in equilibrium will therefore lead to a higher
juvenile biomass in the population than expected in the case of ontogenetic symmetry.
Vice versa, if the juvenile stage becomes a net gain stage of biomass in equilibrium
the juvenile biomass will be lower than expected under ontogenetic symmetry.

4 Novel phenomena through ontogenetic asymmetry

If ontogenetic symmetry implies that the equilibrium size structure of the population
is independent of external factors like an imposed size-independent additional mor-
tality, the question arises how quickly breaking of this symmetry leads to changes
of the size structure in response to such an additional mortality. In physics symme-
try breaking gives rise to two differentiated states that are stable in the face of small
perturbations starting from a single, disorderly state that is unstable in the face of
such perturbations. Similarly, deviations from ontogenetic symmetry lead to either
positive relationships between juvenile biomass and mortality or adult biomass and
mortality (De Roos et al. 2007), with the corresponding adult and juvenile biomasses
showing the decrease expected from the symmetric case.We shall refer to such an
unexpected increase of biomass with mortality as biomass overcompensation. In this
section we investigate how quickly deviations from ontogenetic symmetry give rise to
such overcompensation. To this end we focus on a specific size-structured model, in
which the ingestion rate, growth rate and fecundity are based on simple energy budget
considerations.

Assume that individuals do not grow after maturing at size s = sm and there-
after invest their entire biomass production in reproduction. For simplicity we assume
ingestion of resources to be proportional to body size and to follow a Holling type II
functional response with an upper mass-specific ingestion rate M and half-saturation
density H. For juveniles this functional response is multiplied with a factor (2−q) and
for adults with q. The parameter q hence measures the extent of ontogenetic asymetry
in ingestion with q = 1 representing symmetry. In particular, ingestion of resources
per unit biomass is modeled for juveniles as

IJ (R) = (2 − q) ω(R) (30)

and for adults as

IA(R) = q ω(R) (31)
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in which ω(R) = M R/(H + R). Ingested resources are assumed to be assimilated
into new biomass with a conversion efficiency σ. Assimilated mass is first used to
cover maintenance costs, which are assumed to be proportional to body size as well
and amount to T s. The net production rate of new biomass per unit juvenile and adult
biomass hence equals

νJ (R) = σ IJ (R) − T (32)

and

νA(R) = σ IA(R) − T, (33)

respectively. Notice that by using an energy budget model to couple growth and fecun-
dity to ingestion, we also couple ontogenetic symmetry/asymmetry in production of
new biomass directly to ontogenetic symmetry/asymmetry in ingestion. We hence
from now on only distinguish between ontogenetic symmetry/asymmetry in either
mass-specific biomass production or mortality.

As long as νJ (R) and νA(R) are positive, the somatic growth rate of juveniles
equals νJ (R)s, while the adult fecundity equals νA(R)sm/sb, given that all adults
have the same size sm at which they matured and sb is the mass of a single offspring
individual (we assume that all overheads to produce offspring have been subsumed in
the conversion parameter σ ). However, if νJ (R) < 0 we assume somatic growth of
juveniles to stop, hence

g(R, s) = max (νJ (R) s, 0) (34)

Similarly, we assume reproduction to stop when νA(R) is negative:

β(R, sm) = max

(
νA(R)

sm

sb
, 0

)
(35)

Finally, we assume background mortality to be constant within the juvenile and adult
stages, but potentially to differ between these two stages. When νJ (R) < 0, juve-
niles are moreover assumed to suffer from an additional starvation mortality equal
to −νJ (R). Similarly, when νA(R) < 0, adults suffer starvation mortality equal to
−νA(R). (This is admittedly a fudge, but among the possible choices for this hard to
determine relationship it has the singular virtue that it extends the overall mass bal-
ances of the model also into the starvation regime; see De Roos et al. 2008). Juvenile
and adult mortality hence follow

dJ (R) = (2 − p) μ − min (νJ (R), 0) (36)

and

dA(R) = p μ − min (νA(R), 0) , (37)
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respectively. The parameter p measures the extent of asymmetry in background (not
starvation) mortality, with p = 1 representing ontogenetic symmetry (in direct simi-
larity to our symmetry breaking assumption for the mass-specific biomass production
rate). Under conditions of ontogenetic symmetry in mortality both juveniles and adults
hence have a background mortality rate equal to μ when they are not starving. Finally,
we assume the resource in absence of consumers to follow semi-chemostat dynamics:

G(R) = ρ (Rmax − R) (38)

Based on the above assumptions we can formulate the population model as

∂c(t, s)

∂t
+ ∂g(R, s)c(t, s)

∂s
= −dJ (R) c(t, s) for sb ≤ s < sm (39a)

g(R, sb)c(t, sb) = β(R, sm) CA (39b)
dCA

dt
= g(R, sm) c(t, sm) − dA(R) CA (39c)

d R

dt
= G(R) −

⎛
⎝IJ (R)

sm∫

sb

s c(t, s) ds + IA(R) sm CA

⎞
⎠ (39d)

Because adults do not grow in body size, the PDE (39a) only describes the changes
in the juvenile size distribution, whereas the dynamics of the total density of adults,
CA, is governed by the ODE (39c), reflecting the balance between the rate at which
adults are recruited, that is, juveniles mature, g(R, sm)c(t, sm), and adults die.

We studied the dynamics of the full model (39), including starvation mortality,
using numerical methods specifically adapted for dealing with physiologically struc-
tured population models along the lines of De Roos (1988). As default values of
the parameters we assumed sb = 0.1, sm = 1.0, M = 1.0, H = 3.0, T = 0.1,

μ = 0.015, σ = 0.5, ρ = 0.1 and Rmax = 100.0 (De Roos and Persson 2013). (Note
that by scaling it can be seen that any qualitative model predictions depend only on
the dimensionless parameters z = sb/sm, M/T, μ/T, ρ/T and Rmax/H and σ, cf.
De Roos et al. 2008). In addition, the model contains two dimensionless symmetry
parameters, p and q, representing the asymmetry in mortality and mass-specific bio-
mass production, respectively. The default values for both symmetry parameters are
1, but our main interest is the effects of variations in these symmetry parameters on
any model predictions.

For analyzing changes in the population size structure at equilibrium with mortality,
the model can be simplified since the equilibrium resource density is necessarily
high enough to prevent starvation. By continuity the same holds good for a small
neighborhood of the equilibrium, so that starvation can also be ignored when analyzing
its stability. In the absence of starvation g(R, s) = νJ (R)s, β(R, s) = νA(R)sm/sb,

dJ = (2 − p)μ and dA = pμ. (Notice that we here drop the dependence of the
mortality rates on resource density as they are constant as long as starvation does
not occur). These simplifications allow the model to be reformulated as a system of
delay-differential equations in terms of the juvenile biomass:
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J (t) =
sm∫

sb

s c(t, s) ds (40)

and the adult biomass A(t) = sm CA(t), respectively. Following the procedures
described in Nisbet and Gurney (1983), this results in, with z = sb/sm the net size
increase from birth to maturation,

d J

dt
= νA(R(t))A(t) + νJ (R(t))J (t) − dJ J (t) − �(t) (41a)

d A

dt
= �(t) − dA A(t) (41b)

d R

dt
= G(R(t)) − IJ (R(t)) J (t) − IA(R(t)) A(t) (41c)

�(t) = νA(R(t − τ(t)))A(t − τ(t))νJ (R(t))

z νJ (R(t − τ(t)))
e−dJ τ(t) (41d)

− ln(z) =
t∫

t−τ(t)

νJ (R(ξ)) dξ (41e)

The ratio νJ (R(t))/νJ (R(t − τ(t))) in the expression for the maturation rate �(t)
(41d) accounts for the effect of the variation in specific growth at the times t and
t − τ(t), where τ(t) is the time delay between birth and maturation, with z the, fixed,
biomass increase during that time. Equation (41e) determines the time delay τ(t),
given that juveniles after birth grow in body size at a specific rate νJ (R).

To find the equilibrium we first derive from Eq. (41e) an expression for the time
delay between birth and maturation for constant resource density:

τ̃ = −ln(z)/νJ (R̃) (42)

Furthermore, we combine Eq. (41b) and (41d) to

dA = νA(R̃)

z
e−dJ τ̃ (43)

Finally, we combine (42) and (43) into an equation for the equilibrium resource density
R̃:

νA(R̃)zdJ /νJ (R̃)−1

dA
= 1 (44)

The left-hand side of (44) represents the expected number of offspring that a consumer
produces over a life time, which obviously at equilibrium has to be equal to 1.
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Fig. 1 Biomass overcompensation in juvenile (left, q = 0.65, p = 1.0) and adult biomass (right, q = 1.35,

p = 1.0) in response to mortality (dJ + m = dA + m = μ + m). Solid lines: juvenile biomass, dashed
lines: adult biomass

From Eq. (41a) and (41b) we can furthermore derive that juvenile and adult biomass
at equilibrium are related to each other as

J̃ = −νA(R̃) − dA

νJ (R̃) − dJ
Ã, (45)

which together with Eq. (41c) yields the following expressions for juvenile and adult
biomass at equilibrium:

J̃ =
G(R̃)

(
νA(R̃) − dA

)

IJ (R̃)
(
νA(R̃) − dA

)
− IA(R̃)

(
νJ (R̃) − dJ

) (46)

Ã =
G(R̃)

(
νJ (R̃) − dJ

)

IA(R̃)
(
νJ (R̃) − dJ

)
− IJ (R̃)

(
νA(R̃) − dA

) (47)

Equations (46) and (47) give the equilibrium juvenile and adult consumer biomasses
as functions of the equilibrium resource biomass, with the latter determined by the
transcendental Eq. (44). Studying the response of these equilibrium biomass densities
to additional mortality can be achieved by replacing in Eqs. (44), (46) and (47) the
juvenile and adult mortality, dJ and dA, with dJ + m and dA + m, respectively, and
varying m. For the case p = 1, that is, dJ = dA = μ, Fig. 1 shows examples of the
dependence of the juvenile and adult biomass at equilibrium on the total consumer
mortality dJ +m = dA +m = μ+m. When q < 1, that is, when juvenile consumers
have a higher mass-specific biomass production rate than adults, adults dominate the
population biomass at low mortality. This corresponds to our conclusion at the end of
the previous section that in the case that the juvenile stage is a net gain stage of bio-
mass in equilibrium juvenile biomass makes up a smaller proportion of total biomass
than expected when ontogenetic symmetry applies. Increasing mortality then leads to
a change in population size structure such that juvenile biomass increases, while adult
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Fig. 2 Dynamics of the consumer size distribution in the stable limit cycle of consumers and resources
for q = 0.4 and p = 1.0 (left, so-called juvenile-driven cohort-cycles) and q = 1.6 and p = 1.0 (right,
adult-driven cohort-cycles)

biomass decreases. In contrast and equally in line with our conclusion at the end of the
previous section, for q > 1, that is, when adults have a higher mass-specific biomass
production rate than juveniles, juveniles dominate the population at low mortality.
Under the latter conditions, increases in mortality translate into an increase in adult
equilibrium biomass, whereas juvenile biomass decreases. The ontogenetic asymme-
try in biomass production, which occurs for q �= 1, thus translates into a positive
relationship between stage-specific equilibrium biomass and overall mortality, either
juvenile or adult biomass depending on whether q < 1 or q > 1. Below we shall say
that biomass overcompensation occurs when there is at least one value of m > 0 for
which the equilibrium biomass is larger than the equilibrium biomass for m = 0.

Figure 2 illustrates the dynamic consequences of ontogenetic asymmetry in mass-
specific biomass production. In the case of ontogenetic symmetry in ingestion, biomass
production and mortality, the model simplifies to the 2-dimensional model in terms of
total consumer biomass B and resource biomass R given by (10). The equilibrium in
the latter model is stable for our choice of the resource dynamics, G(R)=ρ(Rmax−R).
Ontogenetic asymmetry in biomass production, however, can give rise to stable pop-
ulation cycles of consumers and resources for both q < 1 and q > 1. Depending on

123



906 A. M. De Roos et al.

the value of q the dynamics of the population size structure is distinctly different. For
q < 1 juveniles have a higher mass-specific ingestion rate than adults and hence are
the main consumer stage driving the population cycle. This leads to a distinct cohort
structure in the population as a pulse of newborn juveniles suppresses food availability
for adult consumers and effectively precludes any consumer reproduction before the
main part of the dominating juvenile cohort has matured. This gives rise to a dynamics
in the consumer size structure which is dominated by a single extended cohort of indi-
viduals progressing through the juvenile size range. In contrast, for q > 1 adults have
a higher mass-specific ingestion rate than juveniles. As a consequence, reproduction
takes place continuously throughout the cycle, but a cohort of individuals that matures
to the adult stage suppresses food availability for juveniles and hence slows down
juvenile growth in body size. Because of this temporary slowing down of juvenile
growth a front builds up in the consumer distribution over the juvenile size range,
which front slowly progresses to the maturation threshold.

5 At which amount of asymmetry do the novel phenomena occur?

Ontogenetic asymmetry in biomass production thus leads to two distinct sets of phe-
nomena: overcompensation in juvenile biomass and juvenile-driven cohort cycles for
q < 1, and overcompensation in adult biomass and adult-driven cohort cycles for
q > 1 (assuming ontogenetic symmetry in mortality, p = 1). To assess the dependence
of these phenomena on the extent of asymmetry we analyzed (1) for which parameter
combinations p and q Eqs. (44), (46) and (47) predict an increase of juvenile or adult
biomass with increasing mortality and (2) for which parameter combinations p and q
the equilibrium of the model (41) destabilizes through a Hopf bifurcation. The results
of these calculations are shown in Fig. 3.

To study the response of the equilibrium juvenile or adult biomass to increasing,
additional mortality (i.e. on top of background mortality) we substituted dJ + m and
dA + m for dJ and dA, respectively, in Eqs. (44), (46) and (47) to get the (implicitly
defined) functions R̃ : R+ → R+ : m 	→ R̃(m), J̃ : R+ → R+ : m 	→ J̃ (m) and
Ã : R+ → R+ : m 	→ Ã(m), which we differentiated with respect to m to get

d J̃

dm
(m) = γ0 + γ1

d R̃

dm
(m) (48a)

d Ã

dm
(m) = α0 + α1

d R̃

dm
(m) (48b)

with γ0, γ1, α0 and α1 and the derivative d R̃
dm (m), determined by the implicit differ-

entiation of Eq. (44), given in the Appendix.
As it turns out, juvenile biomass overcompensation always already occurs at the low

end of the additional mortality m. Hence, for given values of the mortality asymmetry
p and otherwise default parameter values, we determined the limits to the occurrence
of juvenile biomass overcompensation by solving Eq. (44) for the equilibrium resource

density R̃ together with d J̃
dm (0) = 0 (using 48a) for the equilibrium resource density R̃
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and the threshold production asymmetry parameter q using the Newton-chord method
with Broyden update (see p. 418 Kuznetsov 1995) and a standard continuation tech-
nique.

In the case of adult biomass overcompensation it may be that the overcompensation
only starts at somewhat higher values of m. To delimit the set of parameter values for
which at least some m > 0 leads to equilibrium adult biomass densities higher than
the density at m = 0, we solved, given a particular value of p, Eq. (44) together with
the same equation once again, but now with dJ + m̄ and dA + m̄ substituted for dJ and
dA, respectively, the equation Ã(0) = Ã(m̄) (using (47) and the same equation once

more with dJ +m̄ and dA +m̄ substituted for dJ and dA, respectively) and d Ã
dm (m̄) = 0

(using 48b). These four equations determine the unknowns R̃(0), R̃(m̄), m̄ and q. The
curve in the (p, q)-plane determined by this system of equations was computed using
the same continuation technique as before.

Figure 3 shows the parameter regions for which juvenile or adult biomass overcom-
pensation occurs, dependent on the mortality asymmetry p and the biomass production
asymmetry q. The occurrence of biomass overcompensation is mostly determined by
the production asymmetry q with significant influences of mortality asymmetry p
only for small p values (p � 0.4). For the case of ontogenetic symmetry in mortality
(p = 1.0) these boundaries were also calculated as a function of the ratio between
body size at birth and maturation, z, and the biomass production asymmetry q (Fig. 3,
right panel), showing that again the biomass production asymmetry mostly deter-
mines the occurrence of biomass overcompensation with only very small effects of
the birth/maturation size ratio z.

Hopf bifurcation curves for model (41) were computed as a function of two parame-
ters following the procedure outlined in De Roos and Persson (2003). Consider small
perturbations to the equilibrium values R̃, J̃ and Ã and to the equilibrium maturation
rate �̃, defined as:
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�̃ = νA(R̃) Ã e−dJ τ̃

z
(49)

and juvenile delay τ̃ (Eq. 42):

R(t) = R̃ + �Reλt (50)

J (t) = J̃ + �J eλt (51)

A(t) = Ã + �Aeλt (52)

�(t) = �̃ + ��eλt (53)

τ(t) = τ̃ + �τ eλt (54)

Substitution of these relationships in Eq. (41e) leads after linearization to the following
relationship between �τ and �R :

�τ = ν′
J (R̃)(e−λτ̃ − 1)

νJ (R̃)λ
�R (55)

Similarly, substitution of these relationships into Eq. (41d) leads after linearization to:

�� = ε0 Ã �R + ε1 �A (56)

in which

ε0 = dA

(
ν′

J (R̃)

νJ (R̃)

(
1 + dJ

λ

)
(1 − e−λτ̃ ) + ν′

A(R̃)

νA(R̃)
e−λτ̃

)

ε1 = dA e−λτ̃

These expressions for ε0 and ε1 have been simplified using the identities �̃ = dA Ã
(from Eq. 41b) and νA(R̃)e−dJ τ̃ = zdA (from Eq. 44).

Substitution of the perturbations (50)–(54) into Eqs. (41a)–(41c) subsequently lead
together with the expressions (55) and (56) for �τ and ��, respectively, to the fol-
lowing matrix equation:

K(R̃, λ)

⎛
⎝�R

�J

�A

⎞
⎠ = 0 (57)

with K(R̃, λ) defined as:

K(R̃, λ)=
⎛
⎝G ′(R̃)− I ′

J (R̃) J̃ − I ′
A(R̃) Ã−λ −IJ (R̃) −IA(R̃)

ν′
J (R̃) J̃ + ν′

A(R̃) Ã − ε0 Ã νJ (R̃)−dJ −λ νA(R̃)−ε1

ε0 Ã 0 ε1−dA−λ

⎞
⎠

(58)
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Note that J̃ , Ã and τ̃ in this matrix are explicit expressions in terms of the equilibrium
resource density R̃, given by Eqs. (46), (47) and (42), respectively.

Hopf bifurcation boundaries are now determined by the equilibrium condition (44)
for the equilibrium resource density together with the complex-valued equation:

det K(R̃, ıθ) = 0 (59)

which determines a pair of purely imaginary roots λ = ±ıθ of the characteristic
Eq. (57). Solutions as a function of two parameters were obtained by Newton iteration
and continuation, as described before for the computation of the limits to juvenile and
adult biomass overcompensation.

Figure 3 shows that by and large the equilibrium of model (41) is unstable, and
stable limit cycles occur, both for q < 1 and for q > 1, but not for ontogenetic
symmetry in biomass production (q = 1) except when mortality is strongly skewed
toward adult consumers (p � 1.6). The two distinct regions of parameters, for which
limit cycles occur, were identified on the basis of numerical integrations of the model
as representing juvenile-driven (q < 1) and adult-driven cohort cycles (q > 1, see
Fig. 2). Except when mortality is strongly skewed toward adult consumers (p �
1.6) the two regions of parameters with stable limit cycles are contained within the
parameter regions, for which juvenile and adult biomass overcompensation occurs,
but are substantially smaller. Ontogenetic asymmetry in biomass production is hence
less likely to induce dynamic effects (cohort cycles) than equilibrium effects (biomass
overcompensation). The right panel of Fig. 3 furthermore shows that the juvenile-
driven cycles no longer occur for larger ratios of the body size at birth and at maturation
(z � 0.25). Otherwise the effect of z on the occurrence of these cycles is small,
analogous to its effect on the occurrence of biomass overcompensation.

6 Concluding remarks

In this paper we analyzed the relationship between size-structured population models
and their unstructured counterparts that model dynamics solely on the basis of total
population biomass. This led to the following take-home messages:

– In case of ontogenetic symmetry in mass-specific ingestion, mass-specific biomass
production and mortality the dynamics of total population biomass decouples from
the dynamics of the population structure. Assuming ontogenetic symmetry is the
only biologically plausible way to assure this effect.

– In case of ontogenetic symmetry the equilibrium size distribution is always the
same, independent of external conditions such as mortality or resource productiv-
ity.

– In case of ontogenetic symmetry the net production of new biomass through
somatic growth or reproduction in every size range of consumers exactly equals
the loss rate through mortality in that size range. In particular, in equilibrium both
the juvenile and adult stage are zero net-producers of biomass.

– In contrast, with deviations from ontogenetic symmetry, if in equilibrium the juve-
nile stage becomes a net production stage of biomass juveniles make up a smaller
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proportion of total population biomass (juvenile biomass is underrepresented)
than expected when ontogenetic symmetry applies. Vice versa, if in equilibrium
the juvenile stage becomes a net loss stage of biomass juvenile biomass is over-
represented in the population, compared to when ontogenetic symmetry applies.

– On embedding a model with ontogenetic symmetry in a larger model family also
allowing ontogenetic asymmetry, the previous two conclusions can be violated
even for small deviations from the ontogenetically symmetric case (in the particular
model that we studied 5 % or even less difference between juveniles and adults in
mass-specific biomass productions was enough).

– In case of ontogenetic asymmetry two different domains could be distinguished,
in which the conclusions for the ontogenetically symmetric case no longer hold
good, with asymmetry in mass-specific biomass production being the main variable
along which the domains were separated:
• When juveniles have a higher mass-specific biomass production than adults,

juvenile biomass overcompensation occurs next to juvenile-driven cycles.
• Vice versa, when adults have a higher mass-specific biomass production rela-

tive to juveniles, adult biomass overcompensation occurs next to adult-driven
cycles.

We have considered forms of ontogenetic asymmetry in mass-specific net produc-
tion of biomass that arise from factors intrinsic to the individual consumer, in particular
from differences in mass-specific maximum ingestion rate. Ontogenetic asymmetry
in biomass production can, however, also arise from extrinsic factors, for example,
when juveniles and adults feed on different resources and the availabilities of these
resources differ. In case of such extrinsically induced ontogenetic asymmetry the bio-
mass production of juveniles and adults are decoupled and competition for resources
between the stages is absent. Like asymmetry induced by factors intrinsic to the indi-
vidual, such asymmetry induced by different resource availabilities has been shown
also to result in juvenile biomass overcompensation and juvenile-driven cycles, when
resource availability is higher for juveniles than for adults, whereas adult biomass
overcompensation and adult-driven cycles may result when resource availability is
higher for adults than for juveniles (De Roos and Persson 2013).

In view of the dedication of this paper we highlight the contribution of Odo Diek-
mann to the insights presented in this paper, which pertain to the occurrence of different
types of population cycles in case of ontogenetic asymmetry. In Diekmann et al. (2010)
it was shown using a general size-structured model that the maturation delay on its own
does not lead to oscillations. More specifically, if adults and juveniles only differ in that
juveniles convert substrate into growth and adults convert it into offspring, with fixed
conversion factors, then the stability properties of the size-structured model exactly
mimic those of an unstructured model. Population cycles hence do not occur with
semi-chemostat resource dynamics if there are no differences between juvenile and
adult consumers in either resource ingestion rate or mortality. This result corresponds
to our result that the size-structured model simplifies to an unstructured model in case
of ontogenetic symmetry in net biomass production and mortality. Diekmann et al.
(2010) furthermore analyzed the special case when only juveniles competed for the
resource while adult reproduction was constant, in which case limit cycles occurred
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with a period between one and two times the juvenile delay. This result agrees with
our result that adult-driven cohort cycles occur in case of ontogenetic asymmetry with
adults having a larger net biomass production rate than juveniles. Diekmann et al.
(2010) also found that population cycles could occur when only adults compete for
the resource and juveniles hence have a larger net biomass production rate, which is
in line with our prediction that juvenile-driven cohort cycles occur under such con-
ditions. However, the period of the cycles identified by Diekmann et al. (2010) was
between two and four times the juvenile delay, whereas the cycle period of juvenile-
driven cohort cycles is between one and two times the juvenile delay. The cycles
found by Diekmann et al. (2010) hence represent so-called “delayed-feedback cycles”
as opposed to the “single-generation” cycles that we identified (Gurney and Nisbet
1985). This discrepancy may, however, have resulted from the assumption in Diek-
mann et al. (2010) of quasi-steady-state dynamics of the resource density, which has
been shown to potentially lead to the disappearance of population cycles (De Roos
and Persson 2003).
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7 Appendix: The explicit expressions for γi and αi and d R̃
dm

In this appendix we give the missing ingredients of formulas (48a) and (48b).

γ0 =
G(R̃)

(
νA(R̃) − dA − m

) (
IJ (R̃) − IA(R̃)

)
(

IJ (R̃)
(
νA(R̃) − dA − m

)
− IA(R̃)

(
νJ (R̃) − dJ − m

))2

− G(R̃)

IJ (R̃)
(
νA(R̃) − dA − m

)
− IA(R̃)

(
νJ (R̃) − dJ − m

)

γ1 =
G ′(R̃)

(
νA(R̃) − dA − m

)
+ G(R̃)ν′

A(R̃)

IJ (R̃)
(
νA(R̃) − dA − m

)
− IA(R̃)

(
νJ (R̃) − dJ − m

)

−
G(R̃)

(
νA(R̃) − dA − m

)2
I ′

J (R̃)

(
IJ (R̃)

(
νA(R̃) − dA − m

)
− IA(R̃)

(
νJ (R̃) − dJ − m

))2

+
G(R̃)

(
νA(R̃) − dA − m

)
I ′

A(R̃)
(
νJ (R̃) − dJ − m

)
(

IJ (R̃)
(
νA(R̃) − dA − m

)
− IA(R̃)

(
νJ (R̃) − dJ − m

))2

−
G(R̃)

(
νA(R̃) − dA − m

) (
IJ (R̃)ν′

A(R̃) − IA(R̃)ν′
J (R̃)

)
(

IJ (R̃)
(
νA(R̃) − dA − m

)
− IA(R̃)

(
νJ (R̃) − dJ − m

))2 (60)

123



912 A. M. De Roos et al.

α0 =
G(R̃)

(
νJ (R̃) − dJ − m

) (
IA(R̃) − IJ (R̃)

)
(

IA(R̃)
(
νJ (R̃) − dJ − m

)
− IJ (R̃)

(
νA(R̃) − dA − m

))2

− G(R̃)

IA(R̃)
(
νJ (R̃) − dJ − m

)
− IJ (R̃)

(
νA(R̃) − dA − m

)

α1 =
G ′(R̃)

(
νJ (R̃) − dJ − m

)
+ G(R̃)ν′

J (R̃)

IA(R̃)
(
νJ (R̃) − dJ − m

)
− IJ (R̃)

(
νA(R̃) − dA − m

)

−
G(R̃)

(
νJ (R̃) − dJ − m

)2
I ′

A(R̃)

(
IA(R̃)

(
νJ (R̃) − dJ − m

)
− IJ (R̃)

(
νA(R̃) − dA − m

))2

+
G(R̃)

(
νJ (R̃) − dJ − m

)
I ′

J (R̃)
(
νA(R̃) − dA − m

)
(

IA(R̃)
(
νJ (R̃) − dJ − m

)
− IJ (R̃)

(
νA(R̃) − dA − m

))2

−
G(R̃)

(
νJ (R̃) − dJ − m

) (
IA(R̃)ν′

J (R̃) − IJ (R̃)ν′
A(R̃)

)
(

IA(R̃)
(
νJ (R̃) − dJ − m

)
− IJ (R̃)

(
νA(R̃) − dA − m

))2 (61)

Determining the derivative d R̃(m)/dm using the implicit function theorem after
substitution of dJ + m and dA + m for dJ and dA, respectively, in Eq. (44) leads to

νA(R̃)z(dJ +m)/νJ (R̃)−1

dA + m

⎛
⎜⎝ν′

A(R̃)

νA(R̃)
− (dJ + m) ln(z)ν′

J (R̃)(
νJ (R̃)

)2

⎞
⎟⎠ d R̃

dm
(m)

+νA(R̃)z(dJ +m)/νJ (R̃)−1

dA + m

(
ln(z)

νJ (R̃)
− 1

dA + m

)
= 0 ⇒

d R̃

dm
(m) =

(
1

dA+m
− ln(z)

νJ (R̃)

)⎛⎜⎝ν′
A(R̃)

νA(R̃)
− (dJ + m) ln(z)ν′

J (R̃)(
νJ (R̃)

)2

⎞
⎟⎠
−1

(62)
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