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Abstract Understanding the effect of edge removal on the basic reproduction
number R0 for disease spread on contact networks is important for disease man-
agement. The formula for the basic reproduction number R0 in random network SIR
models of configuration type suggests that for degree distributions with large variance,
a reduction of the average degree may actually increase R0. To understand this phe-
nomenon, we develop a dynamical model for the evolution of the degree distribution
under random edge removal, and show that truly random removal always reduces R0.
The discrepancy implies that any increase in R0 must result from edge removal
changing the network type, invalidating the use of the basic reproduction number
formula for a random contact network. We further develop an epidemic model incor-
porating a contact network consisting of two groups of nodes with random intra- and
inter-group connections, and derive its basic reproduction number. We then prove that
random edge removal within either group, and between groups, always decreases the
appropriately defined R0. Our models also allow an estimation of the number of edges
that need to be removed in order to curtail an epidemic.
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218 D. Koch et al.

1 Introduction

The problem of mathematically describing the progression of an SIR disease is usu-
ally simplified by assuming that individuals in the population are well mixed (Ellner
and Guckenheimer 2006). Transmission events are then governed by a mass-action
law, with the underlying assumption that encounters between any two individuals in
the population occur with equal probability. Individuals belong to one of three states:
susceptible, infective, and removed/recovered with immunity; the fraction of the pop-
ulation contained in each state is denoted by S, I , and R, respectively. A pairing of
(or contact between) individuals is sufficient for the disease to jump from an infective
to a susceptible, and all such pairings are assumed to happen with equal likelihood. If
β is the rate in time at which pairings leading to infection occur, and γ is the rate of
recovery, then the familiar Kermack–McKendrick SIR model, which is a special case
of a much more general model presented in Kermack and McKendrick (1927), is

S′ = −βSI, I ′ = βSI − γ I, R′ = γ I. (1)

However, in a real world population certain pairings almost never happen, while
other pairings are exceedingly common. Encounters between family members,
spouses, and friends, for example, are far more probable than the average random
pairing. By accounting for these close-knit connections in the population structure,
one can expect to model disease spread more realistically. There are other pairings
which occur less frequently but reliably, for example encounters with doctors or nurses
in a clinic or hospital. These latter pairings become particularly important during an
epidemic, and while the rate of transmission for such pairings may be different from the
rate for more casual encounters, pairings with hospital employees cannot be prevented
during time of disease.

A contact network is a network representation of the contact structures in a popula-
tion, where individuals are represented by nodes, and if there are contacts between two
individuals, there is an edge connecting the two corresponding nodes; see, for example,
Newman (2002). Following Newman (2002), we will call such a random network a
network of configuration type if there is a degree distribution Pk , k = 0, 1, 2, . . . such
that a randomly chosen network node (a vertex) has, with probability Pk , k connec-
tions to other nodes. To construct a random graph with these properties, first chose the
desired number of vertices N , then draw a degree sequence {ki } from the distribution
and attach ki “stubs” to the i th node. Finally, randomly choose pairs of these stubs
from two nodes that are not already neighbours, and connect them to form edges. The
process of stub connection is repeated until no edge can be formed. Any remaining
stubs are then discarded.

Disease threshold conditions, i.e., conditions that determine whether a disease can
invade a population, are of tremendous public health interest. Traditionally, the basic
reproduction number R0, which is the average number of secondary infections caused
by a typical infectious individual during one’s course of infection in a completely
susceptible population, is the most commonly used one. Disease can invade if and
only if R0 > 1. For network models, another commonly used threshold is the crit-
ical transmissibility Tc. Disease can invade if and only if the per edge transmission
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Edge removal in random contact networks 219

probability T > Tc. Assuming exponentially distributed waiting times for transmis-
sion and recovery events, T = β

β+γ
. For disease dynamics on configuration type

contact networks, the basic reproduction number R0 and the critical transmissibility
Tc are defined below.

Using bond percolation theory, Newman (2002) studied the final state of an epi-
demic on a random contact network of configuration type without degree correlation
or clustering. The critical transmissibility was shown to be

Tc = 〈k〉
〈
k2

〉 − 〈k〉 .

Newman further found that the disease may cause an epidemic if and only if the
transmissibility along an edge is large enough, which is equivalent to R0 > 1, where

R0 = T

(〈
k2

〉

〈k〉 − 1

)

= T

(
〈k〉 − 1 + Var [k]

〈k〉
)

. (2)

Here 〈k〉, 〈
k2

〉
, and Var [k] = 〈

k2
〉 − 〈k〉2 are the average, the second moment, and

the variance of the degree distribution. Note that, at the beginning of an epidemic
on a random network, because the degree distribution of a node found by following a
random edge is {k Pk/〈k〉} where Pk is the network degree distribution, the factor inside
the parentheses is the average number of transmissible neighbors of the node after it is
infected by one of its neighbors. Thus R0 is the basic reproduction number. Equation
(2) shows that, in contact network models, R0 depends on both the transmissibility
and the degree distribution. R0 > 1 is equivalent to the transmissibility threshold
condition

T > Tc = 〈k〉
〈
k2

〉 − 〈k〉 .

The first model describing the disease dynamics on contact networks was developed
by Pastor-Satorras and Vespignani (2002) and is related to work of May et al. (1988).
The Pastor-Satarrass and Vespignani model divides the population into degree classes
(the number of contacts that an individual has), and assumes random mixing among
these classes. It yields a larger basic reproduction number than (2), and thus predicts a
faster growth of disease epidemic, because this model does not consider the fact that
the disease cannot transmit along an edge more than once until one of its nodes recov-
ers and becomes susceptible again. A few extensions of this model (see, for example,
Ball and Neal 2008; Lindquist et al. 2010) keep track of the number of “effective”
(i.e., transmissible) neighbors, and yield basic reproduction numbers as in (2). These
models employ a large number of equations and are therefore difficult to analyze. For
SIR epidemics, Volz (2008) developed a much simpler model tracking the number of
edges that connect nodes of different infection status. This model was further sim-
plified by Miller (2011), who arrived at an effectively one-dimensional model. Both
models yield basic reproduction numbers equivalent to (2). These papers thus confirm
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that, under the assumption of random contact networks with no degree correlation
and clustering, the basic reproduction number of an SIR epidemic is given by (2).
Lindquist et al. (2010) showed that for diseases with no acquired immunity (SIS), the
disease threshold is different from (2). However, for simplicity, in this present work
we restrict ourselves to SIR epidemics.

It is a question of some significant practical relevance how the basic reproduction
number will behave if the network is altered. These alteration may be caused by find-
ing or losing friends, a change of jobs, or more interestingly, interventions such as
vaccination, isolation and quarantine, and social distancing. It is a challenge to study
the disease spread on an evolving network, because of the coupling of the disease
dynamics and the network evolution dynamics. In this paper, we study the effect of
dropping contacts (edges) before an epidemic. Doing so effectively decouples the
two dynamics. Because the transmission probability T is independent of the network
structure, Eq. (2) shows that the change of R0 is determined by the change of 〈k〉 and
Var [k].

1.1 Counterintuitive results from a simple analysis of bi-modal
networks: a paradox?

Common sense states that R0 should decrease as edges are severed (this is the basic
tenet of quarantine and isolation). In other words, one would expect R0 to be an
increasing function of the average degree 〈k〉, and this is indeed true if the degree
distribution of the random contact network is Poisson. In that case,

〈
k2

〉 = 〈k〉2 + 〈k〉,
and R0 = β

β+γ
〈k〉. However, for other distributions this calculation does not apply.

As x edges are randomly removed, 〈k〉 decreases with x . Var [k] is also a function of
x, and therefore

d

dx
R0 = T

[(
1 − Var [k]

〈k〉2

)
d

dx
〈k〉 + 1

〈k〉
d

dx
Var [k]

]
. (3)

This suggests that, if the variance of the degree distribution is kept constant, then
R0 could increase when 〈k〉2 < Var [k], i.e., when the variance is large, dropping
edges may accelerate the epidemic. In fact, this effect becomes exaggerated if Var [k]
increases with edge removal.

To illustrate this possibility we present a simple example of a network with bimodal
degree distribution, i.e., a fraction p of the nodes with degree k1, the other (1− p) with
degree k2 > k1. Assuming that T and p remain constant, we ask how R0 responds to
changes in k1 and k2 in the following two scenarios.

1.1.1 Constant variance

Let k1 and k2 both increase by the same amount, keeping d = k2 − k1 constant.
Consequently, the variance, V ar [k] = d2 p(1 − p) stays constant while the average
degree increases.
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Using k2 = k1 + d, we can write Eq. (2) as

R0 = T

(
k2

1 p + (k1 + d)2(1 − p)

k1 p + (k1 + d)(1 − p)
− 1

)

As we are interested only in the sign of ∂R0
∂k1

, we discard the positive-valued factors T
and the denominator of the derivative after differentiation. This yields

∂

∂k1
R0 ∝ 2[k1 + d(1 − p)]2 −

[
k2

1 p + (k1 + d)2(1 − p)
]

∝ k2
1 + 2k1d(1 − p) + d2(1 − p)(1 − 2p).

We can read off this formula that R0 decreases with k1 > 0 if p > 1/2 and

0 < k1 < d
[
(p − 1) + √

p(1 − p)
]
.

Note that the right hand side is positive if p > 1/2. Conversely, R0 will increase as
k1 decreases inside the computed range.

1.1.2 Constant high degree

Here we let k1 change, while k2 is held constant. Thus, the standard deviation increases
linearly with k1, while the variance (k2 −k1)

2 p(1− p) increases quadratically. Again,
we have

R0 = T

(
k2

1 p + k2
2(1 − p)

k1 p + k2(1 − p)
− 1

)

and as we increase k1,

∂

∂k1
R0 ∝ k2

1 p2 + 2k1k2 p(1 − p) − k2
2 p(1 − p),

a quadratic in k1. Thus, R0 decreases with increasing k1 > 0 if

k1 < k2

√
1 − p − (1 − p)

p
.

We found that by manipulating the edge distribution in certain ways, R0 as defined
above can increase in value despite a decreasing 〈k〉. This contradicts the basic tenet
of quarantine—or does it? By decreasing the total number of edges in the network we
are, in a sense, limiting the number of paths available to the disease, so one would
expect a reduced growth rate. We leave the resolution of this paradox to the end of
the paper, but give a hint. The problem with the above reasoning is that the removal
of edges subject to the rules given above leaves us with networks which are no longer
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configuration type (see the discussion at the end), and in a network which is not of
this class, R0 as defined above is no longer the basic reproduction number—one has
to use a different definition.

In Sect. 2 we provide an argument which shows that R0 will always decrease if the
edge removal is truly random. In fact, we can show that Newman’s R0 is a Lyapunov
functional for the system relative to a variable measuring random edge removal.

In Sect. 3 we extend the Miller network SIR model (Miller 2011) to describe a
population split into two subnetworks in order to allow random edge removal from
just a subset of the entire population. We then derive the basic reproductive number
R0 for the model and prove that R0 will indeed always decrease under random edge
removal. The result from Sect. 2 is a critical ingredient in this analysis.

In summary, the conclusion of our work is that the basic tenet of quarantine holds
rigorously for the models under consideration, and that conceivable exceptions are
based on logical errors as are common in probabilistic models. We have chosen to
include this “paradox” for motivational and pedagogical reasons.

2 Random edge removal in a random network

In this section we discuss random edge removal and its effect on the disease dynam-
ics. Here we discuss two processes: one is to simply uniformly choose an edge for
removal, the other is to first uniformly choose a node (disregarding its degree) and
then uniformly choose one of its edges for removal. In the latter approach the edges
are not uniformly chosen for removal. In fact, edges of low degree nodes will have a
larger probability for removal than edges of high degree nodes. However, the second
scenario may be more relevant for disease dynamics, as edge removal decisions are
normally individual based rather than edge based.

2.1 Uniform edge removal

Assume that a fraction p of the edges will be removed. Because we assume that these
edges are uniformly chosen for removal, each edge removal is thus a Bernoulli trial
with success probability p. Assuming that the contact network has a degree distribu-
tion Pk (i.e., the probability that a node has degree k is Pk), its probability generating
function is

G(x) =
∞∑

k=0

xk Pk,

After the removal, the probability generating function for the degree distribution is
then

Gr (x) = G(p + x(1 − p))
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Thus, after removal, the average degree is

〈k〉r = d

dx
Gr (1) = (1 − p)G ′(1) = (1 − p) 〈k〉 ,

where 〈k〉 is the average degree before removal. In addition, the second moment is

〈k(k − 1)〉r = d2

dx2 Gr (1) = (1 − p)2G ′′(1) = (1 − p)2 〈k(k − 1)〉 .

Thus, the basic reproduction number R0 as a function of the removal probability p is

R0(p) = β

β + γ

〈k(k − 1)〉r

〈k〉r
= (1 − p)

β

β + γ

〈k(k − 1)〉
〈k〉

which is a decreasing function of p. That is, truly random edge removal reduces R0.

2.2 Edge removal of a random node

When a random edge of a uniformly chosen node is removed, the above moment gen-
erating function method cannot be easily applied. In this case, we develop a model for
the dynamics of degree distribution with edge removal.

Given the transmission probability T along an edge, the basic reproduction number
(2) is only a function of the network degree distribution Nk (the number of nodes of
degree k). We thus need to model how degree distribution evolves with edge removal.
Let N = ∑∞

k=0 Nk be the total number of nodes, and L = ∑∞
k=0 k Nk be the sum

of degrees (twice the number of edges) in the network. Here we use a simplified
network evolution model (Lindquist et al. 2009) to describe the evolution of the net-
work degree distribution. For simplification, we pick the time scale such that the edge
removal process occurs with rate one.

The probability that a random node of nonzero degree, selected for edge removal,
has degree k ≥ 1 is Nk/(N − N0). Having selected one of its edges, the probability
that the neighbor has degree k ≥ 1 is proportional to the sum of the degrees of all
nodes in Nk , i.e., k Nk/L . Both nodes reduce their degree by one, thus entering Nk−1
if they are in Nk . Hence, the dynamics of the degree distribution Nk can be modeled
as

d

dτ
Nk = 1

N − N0
(Nk+1 − Nk) + 1

L
[(k + 1)Nk+1 − k Nk], k ≥ 1, (4)

d

dτ
N0 = N1

N − N0
+ N1

L
, (5)

123



224 D. Koch et al.

2.3 The rate of change of the basic reproduction number

From Eq. (2),

R0 = T

( 〈k2〉
〈k〉 − 1

)
= T

(∑∞
k=0 k2 Nk∑∞
k=0 k Nk

− 1

)
. (6)

Using Eqs. (4) and (5), it can be derived that (see Appendix A),

d

dτ
R0 = 2T

(
1

L
− 1

N − N0

)
< 0. (7)

In fact, because by definition τ is a measure of the number of edges removed, given
that the initial total degree is L(0), the total degree at time τ is L(τ ) = L(0) − 2τ .
During the initial phase of edge removal, the probability that a node loses all its
edges is small, and thus N0 can be treated as a constant. We can thus solve Eq. (7)
approximately for small τ ,

R0(τ ) − R0(0) = −T

[
log

(
1 − 2τ

L(0)

)
+ 2τ

N − N0

]
. (8)

Note that this fails as a good approximation of R0 when N0 becomes large.
Equation (7) shows that the basic reproduction number R0 will decrease under

random edge removal. This holds for any random network without degree correlation
and clustering, regardless of degree distribution. Thus we find some disparity with the
examples of bimodal degree distributions in section 1.

Yet, for the first bimodal example, the number of edges removed from the low and
high degree nodes are proportional to �k1 p and �k1(1 − p), respectively. Clearly,
when p > 0.5, the number of edges removed from the low degree nodes exceed those
from high degree nodes. For the second example where the high degree is fixed while
the low degree is reduced, only low-to-low edges can be removed. On the other hand,
Eqs. (4)–(5) are only applicable for random edge removal from the whole network,
i.e., every node has the same probability to be selected for edge removal. We address
this problem in Sect. 3

3 Edge removal from part of the network

The apparent paradox presented at the end of Sect. 2 arises because the unintuitive
results presented in Sect. 1 are derived using the basic reproduction number formula
suitable only for random contact networks generated from configuration models, yet
the edge removal scenarios presented in Sect. 1 break the configuration model assump-
tion. Thus, if we derive the correct formula for R0 for contact networks that are
not of configuration model type, for example networks resulting from edge removal
restricted to a component of a network, we should still see R0 decrease with random
edge removal. In this section, we verify this conjecture.

123



Edge removal in random contact networks 225

We model edge removal from a network consisting of two groups of nodes, A and B,
with random intra- and inter-group edges. Let NA and NB be the number of nodes in
each group. For a node in group A, its edge is labeled either AA or AB if it connects to
a neighbor in group A or B, respectively. The BB and BA edges are similarly labeled
for target nodes in group B. We assume that the intra- and inter-group connections
are random with no degree correlation. Further, for individual nodes, there must be no
correlation between the number of intra and inter-group edges. Since each connection
between group A and B is both of type AB and BA, the total number of AB edges
must equal the total number of BA edges.

We assume that edge removal in either group, and between groups, may occur at
different rates. In this section, we model the disease dynamics, derive the basic repro-
duction number, and study the change of the basic reproduction number with edge
removal.

3.1 Disease dynamics

First we need to model the disease dynamics. We extend the Miller model (Miller
2011), which describes the SIR disease dynamics on a random network without degree
correlation and clustering, to two randomly connected subnetworks.

3.1.1 The Miller model

Consider a susceptible node with degree k. This node remains susceptible as long as
none of its k edges has transmitted disease. Let θ(t) be the probability that such an
edge has not transmitted disease by time t , then the probability that this node remains
susceptible is θk . We are interested in how fast this susceptible node becomes infected,
which is solely determined by the dynamics of θ . In addition, while this node remains
susceptible, the infection events along its edges are independent of each other. Thus,
to understand the dynamics of θ , we can restrict the analysis to one of its edges, and
assume that transmission can only be passed through this edge to the susceptible node.
That is, the edge can be considered as if it was connected to a degree-1 susceptible
node.

Let Pk be the degree distribution, which is generated by the probability generating
function

�(x) =
∞∑

n=0

xk Pk . (9)

Then the probability that a randomly selected node remains susceptible at time t is
�(θ). Thus, the fraction of nodes that are susceptible at time t is

S = �(θ). (10)

We now describe the dynamics of θ . Let PI (t) be the probability that the neighbor
connected by this edge is infectious at time t , and β be the transmission rate along an
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random edge. Then β PI is the attack rate on the edge, and θ is the survival probability,
thus,

θ ′ = −β PI θ.

Let φ = PI θ , which is the probability that a random edge connects a (degree-1, see
the paragraph above) susceptible node to an infectious node. Then, the above equation
becomes

θ ′ = −βφ. (11)

We need to describe the dynamics of φ, i.e., the class of edges connecting a degree-1
susceptible node to a infectious node. An edge leaves class φ either because trans-
mission occurred along it (with rate β), or the infectious node recovers (with rate γ ).
An edge of a susceptible node enters class φ because its other neighbor becomes
infected, which happens at a rate −h′(t), where h(t) is the probability that we arrive
at a susceptible node when following a random edge that has not transmitted disease.
Thus,

φ′ = −βφ − γφ − h′(t).

We now model h(t). Note that the probability that we arrive at a given node when
following a random edge is proportional to its degree (because of the random net-
work assumption). The probability that we arrive at a degree-k node is then qk =
k Pk/

∑∞
k=0 k Pk = k Pk/� ′(1). Thus, the probability that this node is susceptible is

θk−1qk and we arrive at

h(t) =
∞∑

k=0

θk−1 k Pk

� ′(1)
= � ′(θ)

� ′(1)
. (12)

The equation for φ′ can now be rewritten as

φ′ = −(β + γ )φ − � ′′(θ)

� ′(1)
θ ′ = −(β + γ )φ + βφ

� ′′(θ)

� ′(1)
. (13)

The dynamics of the disease are thus determined by (11) and (13). The fraction of
nodes which are infectious at time t changes according to

I ′(t) = −S′ − γ I = βφ� ′(θ) − γ I. (14)

3.1.2 Our two-group model

We now extend the Miller model to describe the disease dynamics on our two-group
network. Assume that, in this two-group network, the distribution PAA of the number
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of AA edges attached to a node in group A is generated by the probability generating
function �AA(x), defined as

�AA(x) =
∞∑

i=0

PAA(i)xi ,

The distributions PAB , PB A, and PB B and their generating functions �AB(x), �B A(x)

and �B B(x) can be similarly defined. Thus, the balance condition equating the number
of AB and B A edges can be written as

NA� ′
AB(1) = NB� ′

B A(1), (15)

where � ′
i j (1), i, j =A and B, are the average number of neighbors in each type.

Let α be the rate of transmission along edges between A and B; βA and βB be the
corresponding transmission rates within groups A and B, respectively. As before, we
define γ to be the per-infective recovery rate.

For a susceptible node in group A, let θAA(t) be the probability that one of its
edges has never transmitted disease by time t . The expression for θAA is similar to the
Miller model. That is, if φAA(t) denotes the probability that an edge connected to a
susceptible node in group A is connected to an infectious node and the edge has not
transmitted disease, then

θ ′
AA = −βAφAA, (16)

and

φ′
AA = −(β + γ )φAA − h′

AA(t),

where h AA(t) is the probability that we arrive at a susceptible node in group A when
following a random AA edge.

However, the dynamics of h AA must reflect the fact that a neighbor of a group A
node can be in either group A or group B. By the independence assumption made on
the intra- and inter-group connections, the generating function for the degree distribu-
tion of a given node in group A is the product of the generating functions for its AA
and AB degree distributions. Thus, having followed a random AA edge to arrive at a
different node in group A, the probability that this node has i neighbors in A and j
neighbors in B is

[

i PAA(i)

/ ∞∑

k=0

k PAA(k)

]

PAB( j),
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and

h AA(t) =
[ ∞∑

i=0

θ i−1
AA

i PAA(i)
∑∞

k=0 k PAA(k)

] ⎡

⎣
∞∑

j=0

θ
j
AB PAB( j)

⎤

⎦

= � ′
AA(θAA)

� ′
AA(1)

�AB(θAB).

Hence, the dynamics of φAA becomes

φ′
AA = − γφAA − βAφAA + [−h′

AA(t)
]

= − γφAA − βAφAA + βAφAA
� ′′

AA(θAA)

� ′
AA(1)

�AB(θAB)

+ αφAB
� ′

AA(θAA)

� ′
AA(1)

� ′
AB(θAB). (17)

We can follow the same reasoning and derive the probability that an edge of a group
A susceptible node connected to a group B node has not transmitted disease at time
t , θAB(t), and the probability that an edge of a susceptible group A node connected
to an infectious node in group B yet has not transmitted disease by time t , φAB(t). In
like manner we define θB A(t), φB A(t), θB B(t) and φB B(t).

θ ′
AB = − αφAB, (18)

θ ′
B A = − αφB A, (19)

θ ′
B B = − βBφB B, (20)

φ′
B B = − γφB B − βBφB B + βBφB B

� ′′
B B(θB B)

� ′
B B(1)

�B A(θB A)

+ αφB A
� ′

B B(θB B)

� ′
B B(1)

� ′
B A(θB A). (21)

φ′
AB = − γφAB − αφAB + αφB A

� ′′
B A(θB A)

� ′
B A(1)

�B B(θB B)

+ βBφB B
� ′

B A(θB A)

� ′
B A(1)

� ′
B B(θB B), (22)

φ′
B A = − γφB A − αφB A + αφAB

� ′′
AB(θAB)

� ′
AB(1)

�AA(θAA)

+ βAφAA
� ′

AB(θAB)

� ′
AB(1)

� ′
AA(θAA), (23)

Consider a node in group A that has i neighbors in A and j neighbors in B. The
probability that the node is susceptible is θ i

AAθ
j
AB . The probability that a random node

in group A is not infected from A is then
∑∞

i=0 θ i
AA PAA(i), and similarly for infections
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from B. Thus, the fraction of susceptible nodes in A is

SA =
[ ∞∑

i=0

θ i
AA PAA(i)

] ⎡

⎣
∞∑

j=0

θ
j
AB PAB( j)

⎤

⎦ = �AA(θAA)�AB(θAB),

Similarly,

SB = �B B(θB B)�B A(θB A),

The fractions of infectious individuals in groups A and B change according to

I ′
A = −S′

A − γ IA

= βAφAA� ′
AA(θAA)�AB(θAB) + αφAB�AA(θAA)� ′

AB(θAB) − γ IA. (24)

I ′
B = −S′

B − γ IB

= βBφB B� ′
B B(θB B)�B A(θB A) + αφB A�B B(θB B)� ′

B A(θB A) − γ IB . (25)

Equations (16)–(25) give the full model. Note that the dynamics of IA and IB are
determined by the dynamics of θ and φ.

3.2 Comparison with stochastic simulations

To verify our model, we compare the numerical solutions of the model (17)–(25) to
stochastic simulations of the underlying epidemic process. Given a network degree
distributions for group A, we construct a random network without degree correlation
and clustering using the configuration model (Bekessy et al. 1972; Bender and Canfield
1978; Newman et al. 2001). Specifically, each node is assigned a number of stubs from
the given degree distribution, then stubs from two different nodes which are not already
neighbors are randomly connected to form an edge; this process is repeated until no
stubs can be connected. Group B is constructed similarly. Then each node in A and B
is assigned a number of stubs from the AB and BA degree distributions, respectively,
and pairs of stubs from A and B are then connected at random to form inter-group
edges, until none remain. Notice that the balance condition (15) must be satisfied in
the choice of the AB and BA degree distributions. Each node is then labeled with a
infection status, i.e., one of susceptible, infectious, and recovered. An infectious node
stays infectious for an exponentially distributed time with mean 1/γ , then its status
is changed to recovered. A susceptible node stays susceptible for an exponentially
distributed time with mean 1/(βi) where i is the number of its infectious neighbors,
then its status is changed to infectious. Recovered nodes remain recovered. The status
of each node is updated until there is no infectious node or a given terminal time is
reached. The simulation is implemented using the Gillespie algorithm (Gillespie 1976,
1977).

To compare the stochastic simulations with our ODE model (16)–(25), the degree
distributions are fed into the model together with identical initial infections. The ODE
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(a) Poisson random network
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(b) Bimodal random network

Fig. 1 The epidemic curves of the ODE model (16)–(25) versus the ensemble averages of the stochastic
simulations on two random networks: a Poisson distributed (λ = 4, 2, 4, 10 for edge types AA, AB, BB,
and BA, respectively), and b bimodal (with degrees fixed at 3, 2, 7, 10 for edge types AA, AB, BB, and BA,
respectively). The population size of group A is NA = 25, 000, and group B NB = 5, 000, transmission
rates βA = βB = α = 0.014, recovery rate γ = 0.05. Note that the constraint (15) is satisfied

model is then numerically solved, and I (t) = IA + IB is compared with the average
of the epidemic curves from the stochastic simulations.

Figure 1 shows that, on contact networks with various degree distributions in groups
A and B, the epidemic curves from the ODE model agree well with the ensemble aver-
ages of the epidemic curves from the stochastic processes.

3.3 Basic reproduction number

For i, j =A or B, let

Ri j = βi j

βi j + γ

� ′′
i j (1)

� ′
i j (1)

,

and

ri j = βi j

βi j + γ
� ′

i j (1),

where βAA = βA, βB B = βB , βAB = βB A = α. Note that βi j/(βi j + γ ) is the trans-
mission probability along an edge between Groups i and j . At the beginning of an
epidemic, � ′′

i j (1)/� ′
i j (1) is the average number of transmissible neighbors in Group

j of a newly infected node in Group i that was infected by a node in Group j , and
thus Ri j is the number of secondary infections in Group j caused by infectious nodes
in Group i who have been infected by ones in Group j . Similarly, ri j is the number
of secondary infections in Group i caused by infectious nodes in Group i who have
been infected by ones not in Group j . Thus the matrix
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G =

⎡

⎢⎢
⎣

RAA 0 rAB 0
0 RB B 0 rB A

0 rB B 0 RB A

rAA 0 RAB 0

⎤

⎥⎥
⎦ (26)

is the second generation matrix. Its first two rows contain the secondary infections
caused by nodes in group A and B who have been infected by nodes in the same
group, respectively; and the last two rows are for cross-infected infectious nodes in
A and B, respectively.

Using the second generation matrix method (van den Driessche and Watmough
2002), the basic reproduction number for the two-group model is computed in
Appendix B to be the spectral radius of the matrix G, i.e., R0 = ρ(G). In gen-
eral, this is not equivalent to Eq. (2) because here the network has more structure than
a random network.

Note that, when the network is bipartite (i.e., every edge inter-connects nodes in
two groups), RAA, RB B , rAA, and rB B all vanish. In this case,

R0 = √
RABRB A.

It is shown in Appendix C Lemma 1 that R0 > RAA, R0 > RB B , and R0 >√RABRB A, i.e., R0 is larger than the basic reproduction number of the disease when
restricted to each component.

Assume that each type of edge is randomly removed (by choosing a node randomly
then removing a random edge from that node), and this may occur with different rates
for each type. Then the random edge removal model (4)–(5) describes the evolution
for the degree distribution for each type of edge. From Appendix A, 〈k〉 = � ′

i j (1)

and
〈
k2

〉
/ 〈k〉 = � ′′

i j (1)/� ′
i j (1) for all i, j =A and B decrease with edge removal.

In Appendix C it is shown that, because of this,

d

dτ
R0 < 0

with edge removal. As a special case, removing edges from any part of the network
reduces R0.

4 Discussion and conclusions

It would appear obvious that in any population if the total number of potentially dis-
ease-causing contacts were to drop before an epidemic (say, as a result of vaccinations
and the closing down of public places), so should the basic reproduction number. This
follows from reasoning that if the average individual has fewer contacts, then the dis-
ease has fewer channels available by which to spread. Indeed, we proved in Sect. 2
that if the edge removal process is truly random, as given by the system of differential
equations (4) and (5), then the basic reproduction number R0 decreases, as expected,
when edges are removed.
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In contrast, the mathematical arguments in the introduction seemed to indicate that
for certain networks, we may see the opposite effect. In the case of a simple bimodal
degree distribution, we described schemes for modifying the network in such a way
that the average degree decreases, yet R0 as defined by (2) increases. Apparently all
that is required is an edge-deletion process that causes either a tandem decrease in
both the low degree k1 and the high degree k2, or a decrease in k1 while k2 remains
fixed.

The reason for the “paradox” becomes clear if we pay closer attention to the defi-
nition of the basic reproduction number. The calculations from the introduction make
use of the fact that for a random contact network of configuration type the basic repro-
duction number R0 is defined in (2). However, as already indicated in the introduction,
once we begin to remove edges subject to constraints the network changes character.
Say, for example, we are ensuring that k1 and k2 change (or stay fixed) in a very
particular way. To accomplish this, the edge deletion process must be selective rather
than haphazard, and thus the network is no longer of the configuration type.

The R0 defined in (2) applies to networks which are randomly constructed from a
given degree distribution. So by artificially manipulating the degree distribution, we in
fact simulate a reconstruction of the network, rather than simple edge deletion. For this
reason we cannot use this formula to illustrate a before and after picture of the basic
reproduction number in networks which have had a few edges selectively deleted, but
are otherwise structurally the same. In fact we are modeling a reorganization of the
network, where the degree distribution is altered slightly and then the entire network
is rebuilt.

As an example, consider the reorganization of a bimodal network where k1 decreases
and k2 stays fixed. Imagine trying to decrement the degree of a low-degree node, cho-
sen at random. We are required to select one of its edges and delete it. However,
it is forbidden to remove edges belonging to a high-degree node. So if it happens
that a high-to-low edge is selected, only the low-degree half may be discarded. The
other half, a stub belonging to the high-degree node, must be reconnected somewhere
else. The only way to “find a node” for it is to identify a second to-be-removed high-
to-low edge, discard the low-degree half and then connect the leftover high degree
stubs together, thus creating a new high-to-high edge. In this way we are reduc-
ing the average degree, while leaving k2 fixed, as intended. However, in the end we
have increased the proportion of edges that link high-degree nodes together, and the
effect of this restructuring seems to outweigh the effect of a reduction in 〈k〉 for
certain choices of k1 and k2. In a roundabout way, this illustrates the relative impor-
tance of connections amongst high-degree individuals to the spread of disease on
networks.

The key point is, of course, that the definition of R0 in (2) loses its meaning once
we introduce changes to the network that render the network “non-random”. At that
point one needs a different definition for a basic reproduction number.

To incorporate nonuniform edge removal, in Sect. 3, we extended the Miller model
(Miller 2011) for a contact network consisting two groups of nodes with random intra-
and inter-group connections; the transmission rates may differ inside and between the
different parts of the network; the edges could be randomly removed from any part
of the network. We then derive the basic reproduction number as appropriate for this
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scenario, and were able to show that R0 will always decrease under edge removal.
However this model may not be suitable for dividing a random network into two
subgroups, because the resulting inter-group degree distributions may be correlated
to intra-degree distributions, as confined by the total degree distribution (unless for
a Poisson random network). On the other hand, this model can be extended to such
cases by deriving the inter-group degree distribution from the total degree distribution
and intra-degree distributions.

Most importantly, the dynamical system approach for the evolution of degree distri-
bution under random edge removal allows us to estimate the point at which R0 drops
below unity along the edge removal dynamics. That is, it tells us how many edges
must be randomly removed to curtail an epidemic.

Acknowledgments This research is supported by NSERC Discovery grants (JM and RI), and University
of Victoria (DK). We wish to express our gratitude to the referees, whose comments led to revisions which
clarified matters and improved the paper.

Appendix A: The rate of change of the basic reproduction number

Formula (7) is obtained as follows. From Eq. (6), the rate of change of R0 along
solutions to Eqs. (4) and (5) is

d

dτ

(
T

∑∞
k=0 k2 Nk∑∞
k=0 k Nk

)
= T

(∑∞
k=0 k2 N ′

k

L
− (

∑∞
k=0 k2 Nk)(

∑∞
k=0 k N ′

k)

L2

)

(27)

We substitute (4) in place of the N ′
k terms. Notice that because of the coefficients k

and k2, all of the N ′
0 terms vanish in this substitution. We first compute

1

L

∞∑

k=0

k2 N ′
k = 1

L(N − N0)

∞∑

k=0

k2(Nk+1 − Nk) + 1

L2

∞∑

k=0

k2 [
(k + 1)Nk+1 − k Nk

]

= 1

L(N − N0)

∞∑

k=1

[
(k−1)2 Nk −k2 Nk

]
+ 1

L2

∞∑

k=1

[
k(k−1)2 Nk −k3 Nk

]

= 1

L(N − N0)

∞∑

k=1

(1 − 2k)Nk + 1

L2

∞∑

k=1

k(1 − 2k)Nk

= 2

L
− 2

N − N0
− 2

L2

∞∑

k=1

k2 Nk .
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Then we compute

∞∑

k=0

k N ′
k = 1

N − N0

∞∑

k=0

k(Nk+1 − Nk) + 1

L

∞∑

k=0

[
k(k + 1)Nk+1 − k2 Nk

]

= 1

N − N0

∞∑

k=1

[(k − 1)Nk − k Nk] + 1

L

∞∑

k=1

[k(k − 1)Nk − k2 Nk]

= − 1

N − N0

∞∑

k=1

Nk − 1

L

∞∑

k=1

k Nk

= −2.

Thus,

1

L2

( ∞∑

k=0

k2 Nk

)( ∞∑

k=0

k N ′
k

)

= − 2

L2

∞∑

k=0

k2 Nk .

It thus follows that

d

dτ
R0 = T

[
2

L
− 2

N − N0
− 2

L2

∞∑

k=1

k2 Nk + 2

L2

∞∑

k=0

k2 Nk

]

= 2T

(
1

L
− 1

N − N0

)
.

Note that

1

L
− 1

N − N0
= 1

∑∞
k=1 k Nk

− 1
∑∞

k=1 Nk
< 0.

Thus,

d

dτ
R0 < 0.

Appendix B: The basic reproduction number of the two-group model

To compute the basic reproduction number R0 for the two-group model (16)–(21),
we employ the second generation matrix method (van den Driessche and Watmough
2002). This method identifies R0 as the dominant eigenvalue of the second generation
matrix FV −1. Here, for a general disease model with some susceptible and infected
classes at the disease, we restrict our attention to the infected classes about the disease
free equilibrium. The matrix F is the new infection matrix, whose i j entry is the rate
of new infections entering class j caused by class i , and V is the transition matrix
whose i j entry is the rate at which class i transfers to class j . And thus the i j entry of
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V −1 is the amount of time staying in class i starting from class j . This implies that the
i j entry of the second generation matrix FV −1 is the average number of secondary
infections in class i caused by class j . For our model, the φ classes are treated as
“infected” classes.

To determined the matrices F and V , we linearize (17)–(23) about the disease-free
equilibrium (φAA = φB B = φAB = φB A = 0 and θAA = θB B = θAB = θB A = 1) to
get

φ̇AA = −(βA + γ )φAA + βAφAA
� ′′

AA(1)

� ′
AA(1)

+ αφAB� ′
AB(1)

φ̇B B = −(βB + γ )φB B + βBφB B
� ′′

B B(1)

� ′
B B(1)

+ αφB A� ′
B A(1)

φ̇AB = −(α + γ )φAB + αφB A
� ′′

B A(1)

� ′
B A(1)

+ βBφB B� ′
B B(1)

φ̇B A = −(α + γ )φB A + αφAB
� ′′

AB(1)

� ′
AB(1)

+ βAφAA� ′
AA(1)

In matrix form, this is

d

dt

⎡

⎢⎢
⎣

φAA

φB B

φAB

φB A

⎤

⎥⎥
⎦ = (F − V )

⎡

⎢⎢
⎣

φAA

φB B

φAB

φB A

⎤

⎥⎥
⎦ .

Here the terms related to new infections give

F =

⎡

⎢⎢⎢⎢⎢⎢
⎣

βA
� ′′

AA(1)

� ′
AA(1)

0 α� ′
AB(1) 0

0 βB
� ′′

B B (1)

� ′
B B (1)

0 α� ′
B A(1)

0 βB� ′
B B(1) 0 α

� ′′
B A(1)

� ′
B A(1)

βA� ′
AA(1) 0 α

� ′′
AB (1)

� ′
AB (1)

0

⎤

⎥⎥⎥⎥⎥⎥
⎦

,

and the terms not related to new infections give

V =

⎡

⎢⎢
⎣

βA + γ 0 0 0
0 βB + γ 0 0
0 0 α + γ 0
0 0 0 α + γ

⎤

⎥⎥
⎦ .

Thus, FV −1 is the matrix specified in (26), and the basic reproduction number is its
spectral radius.
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Appendix C: The monotonicity of the basic reproduction number
of the two-group model

The characteristic equation of this matrix is a fourth order polynomial

f (x) = (RAA − x)[(RB B − x)(x2 − RABRB A) + rB BRABrB A]
+ rAArAB[(RB B − x)RB A − rB BrB A]

= 0. (28)

The basic reproduction number R0 is thus the the largest root of f (x) = 0.

Lemma 1 R0 > RAA, R0 > RB B, and R0 >
√RAARB B.

Proof Because of the symmetry of the system on A and B, i.e., exchanging A and
B yields the same system, without loss of generality, we assume that RAA ≥ RB B

(otherwise, we switch A and B in the proof).

f (RAA) = rAArAB[(RB B − RAA)RB A − rB BrB A] < 0

because both terms in the bracket are negative. Note that f (∞) = ∞. Thus, the largest
root of f (x) satisfies R0 > RAA. Because of symmetry on A and B, R0 > RB B .
Since f (R0) = 0, from (28),

R2
0 − RABRB A = (R0 − RAA)rB BRABrB A

(RAA − R0)(RB B − R0)

+ rAArAB[(R0 − RB B)RB A + rB BrB A]
(RAA − R0)(RB B − R0)

.

Note that each term on the right hand side is positive because R0 > RAA and R0 >

RB B . Thus, R0 >
√RAARB B . 	


As stated in Sect. 3, when the four types of edges are randomly removed (possibly with
different rates), for all i, j =A and B, d

dτ
Ri j < 0 and d

dτ
ri j < 0 with edge removal

(where, as in Sect. 2, τ is the time in the edge removal process). We differentiate the
expression f (R0) = 0 with respect to τ , which is equivalent to the number of edges
removed, to investigate how R0 changes under this process. The multivariable chain
rule gives

d

dτ
R0 = − R′

AA
(RB B − R0)(R2

0 − RABRB A) + rB BRABrB A

f ′(R0)

− R′
B B

(RAA − R0)(R2
0 − RABRB A) + rAARB ArAB

f ′(R0)

− R′
AB

[−RB A(RB B − R0) + rB BrB A](RAA − R0)

f ′(R0)

− R′
B A

[−RAB(RAA − R0) + rAArAB](RB B − R0)

f ′(R0)
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− r ′
AA

rAB[(RB B − R0)RB A − rB BrB A]
f ′(R0)

− r ′
B B

rB A[(RAA − R0)RAB − rAArAB]
f ′(R0)

− r ′
AB

rAA[(RB B − R0)RB A − rB BrB A]
f ′(R0)

− r ′
AB

rB A[(RAA − R0)RAB − rAArAB]
f ′(R0)

.

Because R0 is the largest root of f (x), which is a fourth order polynomial open-
ing upward, f ′(R0) > 0. Again, because R0 ≥ RAA and R0 ≥ RB B , the last six
fractions are all negative. And since f (R0) = 0,

(RB B − R0)(R2
0 − RABRB A) + rB BRABrB A

= −rAArAB[(RB B − R0)RB A − rB BrB A]
RAA − R0

< 0.

Similarly.

(RB B − R0)(R2
0 − RABRB A) + rB BRABrB A < 0.

Thus, the coefficients of all Ri j and ri j for i,=A and B are all positive. This implies
that, if all the derivatives R′

i j ≤ 0 and r ′
i j ≤ 0, and at least one is strictly negative,

then

d

dτ
R0 < 0.
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