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Abstract One of the first quantities to be estimated at the start of an epidemic is the
basic reproduction number, R0. The progress of an epidemic is sensitive to the value
of R0, hence we need methods for exploring the consequences of uncertainty in the
estimate. We begin with an analysis of the SIR model, with R0 specified by a proba-
bility distribution instead of a single value. We derive probability distributions for the
prevalence and incidence of infection during the initial exponential phase, the peaks
in prevalence and incidence and their timing, and the final size of the epidemic. Then,
by expanding the state variables in orthogonal polynomials in uncertainty space, we
construct a set of deterministic equations for the distribution of the solution throughout
the time-course of the epidemic. The resulting dynamical system need only be solved
once to produce a deterministic stochastic solution. The method is illustrated with R0
specified by uniform, beta and normal distributions. We then apply the method to data
from the New Zealand epidemic of H1N1 influenza in 2009. We apply the polynomial
expansion method to a Kermack–McKendrick model, to simulate a forecasting system
that could be used in real time. The results demonstrate the level of uncertainty when
making parameter estimates and projections based on a limited amount of data, as
would be the case during the initial stages of an epidemic. In solving both problems
we demonstrate how the dynamical system is derived automatically via recurrence
relationships, then solved numerically.
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1 Introduction

The basic reproduction number, R0, is probably the most important quantity in epide-
miology (Diekmann and Heesterbeek 2000; Roberts 2007), and during the emergence
of a new infectious disease it is one of the first quantities to be estimated. Some estima-
tion schemes are essentially deterministic (Roberts and Heesterbeek 2007; Wallinga
and Lipsitch 2007), deriving a value of R0 from the rate of exponential increase at the
beginning of the epidemic. Others also provide a measure of the uncertainty around
the estimate, see for example Roberts and Nishiura (2011) and the references cited
therein. Given an estimate of R0 we can project the future course of the epidemic.
Here we present a method for doing that, while taking the uncertainty of the estimate
into account.

To illustrate the concept and method, we first consider a simple problem: the SIR
epidemic model (Diekmann and Heesterbeek 2000; Roberts 2007) of the form:

ẋ(t) = − (R0 + ρθ) xy (1)

ẏ(t) = (R0 + ρθ) xy − y

with initial conditions x(0) = x0 and y(0) = y0 � 1; where x(t) is the proportion
of the population susceptible at time t , and y(t) is the proportion of the population
infectious. Time has been scaled so that the mean generation interval is one. The basic
reproduction number, R0, is assumed to be subject to some uncertainty, represented
by the random variable θ , and ρ > 0 is a scaling parameter. We derive expressions
for the prevalence of infection during the initial exponential growth phase, the peaks
in prevalence and incidence and their timing, and the final size of the epidemic. These
are presented as probability density functions (PDFs), depending on the underlying
distribution of the random variable θ . We focus on the situations where θ is either uni-
formly or beta distributed on the interval [−1, 1]. We also present the results obtained
when θ is normally distributed for comparison. We then take the model described by
Eq. (1) and expand the state variables as truncated series of orthogonal polynomials
in θ , then numerically solve the problem for a complete epidemic.

As a more applied example, we derive a discrete-time version of the Kermack–
McKendrick model (Diekmann and Heesterbeek 2000) with local and imported cases.
We use this to make a retrospective projection of the initial part of the epidemic curve
for influenza H1N1 in New Zealand, that could have been made on June 22 2009,
using the reported incidence of infection up to that date. In doing this we adopt the
gamma distribution estimated for the mean generation interval from overseas data
(Fraser et al. 2009). Hence we are using information that would have been available
at that stage in the epidemic. This illustrates the potential application of the model as
a means of real-time forecasting.
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Epidemic models with uncertainty in the reproduction number 1465

1.1 Properties of the SIR model

If ρ = 0 we have the well-known results for a deterministic model (see Diekmann and
Heesterbeek 2000; Roberts 2007): an epidemic occurs if R0x0 > 1; the proportion of
the population that is infected may be approximated initially by y(t) = y0eR0x0t−t ;
during the epidemic y + C(x) is a conserved quantity, where C(x) = x − R−1

0 log x ;
and the proportion of the population that is infected during the epidemic, P = x0−x∞,
solves the final size equation

R0 + 1

P
log

(
1 − P

x0

)
= 0 (2)

Peak prevalence occurs when t = tpp, where xpp = R−1
0 and ypp = y0 + C(x0) −

C(xpp). Hence

tpp =
x0∫

xpp

dx

R0x (y0 + C(x0) − C(x))
(3)

The incidence of infection, ı(t) = R0x(t)y(t), solves

dı

dt
= ı (R0x − R0 y − 1)

Peak incidence occurs when xpi = ypi + R−1
0 = x(tpi). As x(t) is a decreasing func-

tion of time, tpi < tpp. The value of xpi may be found by solving xpi + C(xpi) =
R−1

0 + y0 + C(x0). The time to peak incidence may be found from a similar equation
to (3), simply replace the lower limit of integration with xpi. In the next section, we
investigate the changes in these results, and in the dynamics of the system, when θ is
chosen from a probability distribution with mean zero.

2 The effect of uncertainty in R0

We emphasize the dependence of solutions of Eq. (1) on the random variable θ , by
writing the dependent variables x(t, θ) and y(t, θ). We refer to x(t, 0), y(t, 0) as
the deterministic solution, as it is the solution obtained when R0 is set to the mean
estimated value.

2.1 Exponential growth

The solution for the proportion infectious during the initial exponential phase is
y(t, θ) = y0e(R0+ρθ)x0t−t . If θ is chosen from a distribution with PDF w(θ), then the
expected value of y(t, θ) is
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E(y) =
∫
�

y(t, θ)w(θ) dθ = y0eR0x0t−t W (t)

where � is the support of w. The function W (t) = ∫
�

eρθx0tw(θ) dθ is a correction
factor that multiplies the deterministic solution. As the exponential function is con-
cave, if E(θ) = 0 then W (t) > 1 for t > 0 by Jensen’s inequality (Grimmett and
Stirzaker 1992).

Example 1 If θ is uniformly distributed on � = [−1, 1], then w(θ) = 1
2 and W (t) =

sinh ρx0t
ρx0t .

Example 2 If θ has a standard normal distribution, then w(θ) = 1√
2π

e−θ2/2, � = R,

and W (t) = e(ρx0t)2/2. Note that for this example R0 + ρθ is less than one, or even
less than zero, for some values of θ . This problem may be overcome by approximating
the normal distribution with a beta distribution over a finite interval.

Example 3 If θ has a symmetric beta distribution, then w(θ) = k(1 − θ2)β , � =
[−1, 1], and k is a normalising constant (see Appendix). The correction factor W (t) =
e−ρx0t

1 F1(β+1; 2β+2; 2ρx0t), where 1 F1 is the confluent hypergeometric function
of the first kind (see Abramowitz and Stegun 1970, Chapter 13).

Results similar to the first two examples may be found in Xiu and Karniadakis
(2002). For Example 3, note that limρ→0 1 F1(β + 1; 2β + 2; 2ρx0t) = 1; and that
for large β, w(θ) → δ(θ), and limβ→∞ 1 F1(β + 1; 2β + 2; 2ρx0t) = eρx0t . Hence
the deterministic solution is reached both in the limit of the distribution and as the
parameter ρ tends to zero. When the normal and beta distributions are compared, the
beta distribution with β = 1.19 is seen to approximate the normal distribution with
σ = 1

2 on (−1, 1).

As y is an increasing function of θ , the PDF for y at time t is f (y) = w(θ(y))
ρx0t y , where

θ(y) is the solution of y = y0e(R0+ρθ)x0t−t . The function f (y), with w(θ) specified
by each of the example distributions is shown in Fig. 1a.

2.2 The epidemic peaks

For a fixed θ , the quantity y(t, θ) + C(x(t, θ), θ) is conserved over t , where

C(x(t, θ), θ) = x(t, θ) − log x(t, θ)

R0 + ρθ

At peak prevalence xpp(θ)=(R0 + ρθ)−1 and ypp(θ)= y0+C(x0, θ)−C(xpp(θ), θ).
The PDFs of xpp and ypp, with w(θ) specified by each of the example distributions are
shown in Fig. 1b. Also shown are the distribution means, E(xpp) and E(ypp), calculated
numerically, and the deterministic peak values obtained when θ = 0. Note that xpp(θ)

and ypp(θ) are peak values, which occur at different times depending on the value of
θ . Hence their distributions do not necessarily correspond to the distributions of x or
y at any value of t . Adding uncertainty to Eq. (3) we obtain
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Epidemic models with uncertainty in the reproduction number 1467

a b

dc

Fig. 1 a Probability density functions (PDFs) for y(t, θ) at t = 4.8; b PDFs for xpp(θ) (right) and ypp(θ)

(left); c PDFs for tpp(θ); and d PDFs for P(θ); with w(θ) a uniform distribution (vertical sides) or a beta
distribution (β = 1.19). Also shown dotted are results with θ normally distributed (σ = 1 and σ = 0.5).
The solid markers are at the expected values of the distributions: uniform (square); beta (circle); nor-
mal σ = 0.5 (triangle pointing up); normal σ = 1 (triangle pointing down); and the deterministic solution
(θ = 0 diamond). The vertical displacement of the marker is only for clarity of display, and has no numerical
significance. Parameter values are R0 = 2, ρ = 0.2, x0 = 1 − y0, y0 = 10−5

tpp(θ) =
x0∫

(R0+ρθ)−1

dx

((R0 + ρθ) (x0 + y0 − x) + log (x/x0)) x

The PDFs of tpp are shown in Fig. 1c.
At peak incidence ypi(θ) = xpi(θ)− (R0 + ρθ)−1 = C(x0, θ)−C(xpi(θ), θ). For

fixed θ , x is a decreasing function of t , hence xpi(θ) > xpp(θ) and incidence always
peaks before prevalence. The PDFs of xpi, ıpi and tpi may be calculated numerically,
and presented in a similar manner to those at peak prevalence (results not shown).

2.3 The final size

Adding uncertainty to the final size equation, Eq. (2),

R0 + ρθ + 1

P(θ)
log

(
1 − P(θ)

x0

)
= 0
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1468 M. G. Roberts

The PDF of P , with w(θ) following each of the example distributions is shown in
Fig. 1d. Also shown are the distribution means, E(P), calculated numerically, and the
deterministic final size from Eq. (2).

2.4 The numerical solution

We now construct an approximate solution to Eq. (1) using a Galerkin method.
Let {φi (θ)} represent a basis for functions defined on �. Substitute x(t, θ) =∑∞

i=1 xi (t)φi (θ) and y(t, θ) = ∑∞
i=1 yi (t)φi (θ) in Eq. (1) to obtain

∞∑
i=1

ẋi (t)φi (θ) = − (R0 + ρθ)

∞∑
i=1

∞∑
j=1

xi (t)y j (t)φi (θ)φ j (θ)

∞∑
i=1

ẏi (t)φi (θ) = (R0 + ρθ)

∞∑
i=1

∞∑
j=1

xi (t)y j (t)φi (θ)φ j (θ) −
∞∑

i=1

yi (t)φi (θ)

We define an inner product by E(φiφ j ) = ∫
�

φi (θ)φ j (θ)w(θ) dθ . Hence we choose
our polynomial basis so that E(φiφ j ) = 0 if i �= j , and the choice of polynomial
depends on the distribution of θ. If we truncate the sequence of polynomials at i = n,
we have 2n differential equations to solve:

ẋ
(t) = −x. (R0A
 + ρB
) y (4)

ẏ
(t) = x. (R0A
 + ρB
) y − y


for 
 = 1, . . . , n with x = (x1, x2, . . . , xn)′, similarly y (prime is transpose).
The n × n matrices A
 and B
 have components

A
 i j = E
(
φiφ jφ


)
E

(
φ2




) B
 i j = E
(
θφiφ jφ


)
E

(
φ2




)

respectively. The initial conditions are x(0) = x0e and y(0) = y0e, where e is a unit
vector with ei = 0 for i > 1.

Two examples of the numerical solution of Eq. (4) are shown in Fig. 2. For Fig. 2a,
b, θ is uniformly distributed on [−1, 1], and the φi (θ) are Legendre polynomials. For
Fig. 2c, d, θ has a beta distribution on [−1, 1], and the φi (θ) are Jacobi polynomials.
See the Appendix for more details. Comparing Fig. 2a, b and c, d, we see that the
limits of the solutions and the deterministic solutions (ρ = 0) are identical, but the
eigenfunctions and expected values are different. As would be expected, the quartiles
either side of the mean are narrower when θ has a beta distribution (Fig. 2c, d) than
when θ has a uniform distribution (Fig. 2a, b). If we took θ to be normally distributed,
we would take φi (θ) to be Hermite polynomials (Xiu 2010). However, this led to
convergence problems, because Hermite polynomials are defined over the real line,
and regions of the parameter space then correspond to different qualitative dynamics.
For the solutions illustrated we have R0 + ρθ > 1 for all θ .
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a b

dc

Fig. 2 a, b Numerical solution of the SIR model with θ obeying a uniform distribution. a Time series for x ;
b time series for y; c, d numerical solution of the model with θ obeying a symmetric beta distribution. c Time
series for x ; d time series for y. Solid lines are expected values at time t , dashed lines are deterministic
solutions, θ = 0, dense points are values in the inner quartiles, |θ | < 1

2 , less dense points are values in the

outer quartiles, 1
2 < |θ | < 1. Thin lines show the eigenfunctions xi (t) (a, c) and yi (t) (b, d), diminishing

in magnitude with increasing i . Parameter values are R0 = 2, ρ = 0.2, x0 = 1 − 10−5, y0 = 10−5

3 Uncertainty in the Kermack–McKendrick model

In the continuous time domain, the incidence of an invading infection causing an
epidemic in a population of size N is given by Diekmann and Heesterbeek (2000),
Roberts and Nishiura (2011)

ı(t) = Rx(t) ( f ∗ ı + g ∗ j) (5)

where R is the effective reproduction number at the beginning of the epidemic, f (τ )

is the probability distribution of infection-generation intervals, j (t) is the incidence
of imported cases and g(τ ) is a modification of f (τ ) to account for delays in tran-
sit. Hence ı(t) refers only to locally transmitted cases. The convolution is defined by
f ∗ ı = ∫ ∞

0 f (τ )ı(t − τ) dτ . The proportion of the population that is susceptible at
time t is

x(t) = x0 − 1

N

t∫
0

ı(u) du (6)
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and we assume that N is constant. For an invading infectious disease, we cannot neces-
sarily assume that the population is susceptible at t = 0, hence the use of R instead of
R0. Also, data are often collected in daily incidence values, so a discrete-time model
is more compatible with observations. The equivalent model to Eqs. (5, 6) is

It = RXt (F ∗ It + G ∗ Jt ) (7)

where It and Jt are the daily incidences of locally-transmitted and imported cases
respectively, F ∗ It = ∑m

s=1 Fs It−s (similarly G ∗ Jt ), and Xt = X0 − 1
N

∑t−1
s=1 Is .

3.1 The numerical solution

We now analyse the discrete-time model (7) using the methodology described in
Sect. 2.4. Assume the estimated effective reproduction number at the beginning of the
epidemic to be R + ρθ , where θ is a random variable with mean zero. Let It (θ) =∑∞

i=1 Itiφi (θ) and Xt (θ) = ∑∞
i=1 Xtiφi (θ). Then Eq. (7) becomes

∞∑
i=1

Itiφi (θ) = (R + ρθ)

∞∑
i=1

Xtiφi (θ)

⎛
⎝

⎛
⎝ ∞∑

j=1

F ∗ It jφ j (θ)

⎞
⎠ + G ∗ Jt

⎞
⎠

Multiplying by φ
(θ)w(θ) and integrating over �, we obtain

It
 =
∞∑

i=1

∞∑
j=1

Xti

(
RE

(
φiφ jφ


)
E

(
φ2




) + ρ
E

(
θφiφ jφ


)
E

(
φ2




)
)

F ∗ It j

+
(

RXt
 + ρ

∞∑
i=1

E (θφiφ
)

E
(
φ2




) Xti

)
G ∗ Jt

Define row vectors It and Xt , such that the i th entry is equal to Iti or Xti respectively.
Then, after truncation

It
 = Xt (RA
 + ρB
) (F ∗ It )
′ + (RXt
 + ρXt c
) G ∗ Jt (8)

The matrices A
 and B
 are as defined in Sect. 2.4, the vector c
 has components
c
 i = E(θφiφ
)/E(φ2


 ), and Xt = X0 − 1
N

∑t−1
s=1 Is .

3.2 Example: influenza H1N1-2009 in New Zealand

During the 2009 epidemic of pandemic strain influenza A H1N1 in New Zealand,
cases were tested and confirmed up to June 22. The daily incidence data from May
19 to June 30 are shown in Fig. 3, subdivided into cases with a relevant history
of overseas travel, and cases that were presumed to arise from local transmission.
The data to June 21 (shown with a vertical line) were used to estimate R = 1.25,
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Epidemic models with uncertainty in the reproduction number 1471

Fig. 3 Influenza H1N1-2009 in New Zealand. Data points are daily incidence of imported cases (white
squares) and locally-transmitted cases (black circles). The horizontal axis is days, day one is 1 May 2009.
Data up to day 52 (June 21, vertical line) were used to estimate R. The projection is shown as an expected
value, with the range (1.05 < R < 1.45) shaded and the inner quartiles (1.15 < R < 1.35) more densely
shaded. The deterministic solution for R = 1.25 is shown dashed

with confidence intervals (1.07, 1.47) (Roberts and Nishiura 2011). If we had made
this estimate on June 22, and approximated the uncertainty around the estimate with
ρ = 0.2 and θ beta-distributed with β = 1.19, then we could have made the pro-
jection of future incidence presented in Fig. 3. In compiling Fig. 3 we assumed F =
G = (0.0300, 0.2397, 0.3307, 0.2321, 0.1328) in line with the gamma distribution
estimated for H1N1 early in the 2009 epidemic (Fraser et al. 2009), see also Roberts
and Nishiura (2011). The continued projection after June 22 is made on the basis of
no further imported cases, and if used in real time would be updated as further data
were obtained. The incidence of locally-transmitted and imported cases to the end of
June is shown for comparison.

4 Discussion

We have presented a method for incorporating uncertainty in the estimate of the basic
reproduction number in a deterministic model of an epidemic. Starting with the well-
known SIR model we can derive explicit solutions for the prevalence in the initial
growth phase, the timing and magnitude of the epidemic peaks, and the final size of
the epidemic. One interesting result is that the deterministic solution for the prevalence
of infection during the growth phase is always less than the ‘expected solution’. This
can be seen in Figs. 1a, 2b, d, and 3. Hence, using the mean of the R0 estimate in
a deterministic model results in a biased projection of the epidemic. Another inter-
esting result is that the peak in infection incidence always occurs before the peak in
prevalence, hence one should not refer to an infection peak without specifying which.
However, health authorities frequently want to know about the timing and magnitude
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of the peak or peaks, and our method provides a probability distribution for these
estimates.

The numerical solution presented in Sect. 2.4 provides a clear advantage over
repeated numerical solution of the deterministic equations, with R0 sampled a priori
from a distribution. It is true that if one only wanted the solution at the quartiles, then
just five numerical solutions of Eq. (1) would suffice. However, to find the expected
solution or other moments as functions of t , or the PDF at particular values of t , then
many more evaluations would be required. In contrast, although we have replaced
two equations with 2n equations, we only need to solve these once. The matrices A


and B
 are first evaluated numerically using the appropriate recurrence relationships
for the orthogonal polynomials. The resulting set of ordinary differential equations is
then solved, the entire operation requiring only a simple routine and the appropriate
numerical software. The results presented here were obtained using Matlab 2010a (The
MathWorks, Inc.). The choice of the uniform and beta distributions for our illustrations
was to demonstrate two aspects. First, if only a range of R0 is known, then the uniform
distribution is appropriate. Second, if the estimate is obtained with a likelihood profile
assumed to be normal, then this may be approximated by the beta distribution. If we
had taken θ to be normally distributed, then it would have been appropriate to use Her-
mite polynomials for the functions φ (Xiu 2010; Xiu and Karniadakis 2002). As these
do not have compact support, then R0 +ρθ can take values less than one, or even less
than zero. Including these values where different qualitative behaviour occurs in the
numerical solutions led to instabilities. Approximating the normal distribution with
the beta distribution over a finite interval overcame this problem.

The solution presented in Sect. 2.4 shows an epidemic running to its conclusion,
which would be unlikely as control measures or even the reaction of the public would
change its dynamics. However, such calculations are frequently presented as base-
line projections, so that the potential effects of different control interventions may
be assessed (Ferguson et al. 2005, 2006; Germann et al. 2006; Longini et al. 2005;
Roberts et al. 2007; Wu et al. 2006). It is also based on the SIR model, being the
simplest but also most widely used mathematical representation of an epidemic. The
retrospective projection of the influenza A H1N1 epidemic in New Zealand in 2009
illustrates the potential for this methodology to be used as a real-time forecasting sys-
tem in future epidemics. One such system was developed for Singapore (Ong et al.
2010). Tools such as these are in demand by health authorities, and we intend to apply
this methodology to the next pandemic of an emerging infectious disease.

Although the models discussed in this paper address uncertainty in the estimation
of the basic reproduction number, they are deterministic in nature. The variability of
solutions illustrated in Figs. 1, 2 and 3 could have been achieved by generating a large
number of solutions of Eq. (1) with different parameter values, chosen from a pre-
scribed distribution. Instead we have used an orthogonal expansion to derive a larger
set of differential equations, which we then solved once. Solutions of a stochastic
version of the model would show variability due to different realisations of the model
having a different outcome. The differences are usually due to individuals in the model
having contact with other individuals randomly in time, according to some stochastic
process. For an overview of stochastic epidemic models see Britton (2010). Note in
particular the qualitative similarity between the shapes of the final size distribution in
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Epidemic models with uncertainty in the reproduction number 1473

Fig. 1d, and the final size distribution of a major epidemic in Fig. 3 of Britton (2010).
However, with a stochastic model a minor outbreak (where the epidemic fails to ‘take
off’) is also a possible outcome, even when R0 > 1 (Britton 2010; Diekmann and
Heesterbeek 2000), whereas for the method presented here all epidemics are deter-
ministic with R0 > 1, and hence major outbreaks.

Acknowledgments The author would like to thank Carlo Laing for pointing out the book by Xiu (2010),
and two anonymous referees whose suggestions led to improvements in the manuscript.

Appendix

Legendre polynomials If θ is uniformly distributed on [−1, 1] then φi (θ) = Pi−1(θ),
the Legendre polynomial, and w(θ) = 1

2 . The first two polynomials are P0(θ) = 1 and
P1(θ) = θ ; all subsequent polynomials may be found from the recurrence relationship

P
+1(θ) = 2
 + 1


 + 1
θ P
(θ) − 



 + 1
P
−1(θ)

The orthogonality relationship is

E
(
φiφ j

) = E
(
Pi−1 Pj−1

) = δi j

2 j − 1

with δi i = 1, δi j = 0 if i �= j , and we have the integral identity E (θn) = 1
n+1 if n

even, and zero if n odd.

Jacobi polynomials If θ has a symmetric beta distribution on [−1, 1] then φi (θ) =
J (β)

i−1(θ), the symmetric Jacobi polynomial, and w(θ) = k(1 − θ2)β , where

1

k
=

1∫
−1

(1 − θ2)β dθ = 22β+1(β + 1)2

(2β + 2)

In Xiu (2010) the Jacobi polynomials are written P(α,β)
n (x). We are interested in sym-

metric distributions, so J (β)

 (θ)= P(β,β)


 (θ). The first two polynomials are J (β)
0 (θ)=1

and J (β)
1 (θ) = (β + 1) θ . All subsequent polynomials may be found from the recur-

rence relationship

J (β)

+1(θ) = (2
 + 2β + 1) (
 + β + 1)

(
 + 1) (
 + 2β + 1)
θ J (β)


 (θ) − (
 + β) (
 + β + 1)

(
 + 1) (
 + 2β + 1)
J (β)

−1(θ)

The orthogonality relationship is

E
(
φiφ j

) = E

(
J (β)

i−1 J (β)
j−1

)
= ( j + β + 1)2(2β + 2)δi j

j ! (2 j + 2β + 1) ( j + 2β + 1)(β + 1)2

and E
(
θn+2

) = n+1
n+2β+3E (θn) if n even, and zero if n odd.
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