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Abstract An adaptation of the definition of the basic reproduction number R0 to
time-periodic seasonal models was suggested a few years ago. However, its biological
interpretation remained unclear. The present paper shows that in demography, this
R0 is the asymptotic ratio of total births in two successive generations of the family
tree. In epidemiology, it is the asymptotic ratio of total infections in two successive
generations of the infection tree. This result is compared with other recent work.
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1 Introduction

Seasonality is an important aspect of animal or plant demography and of some parts
of epidemiology, e.g., vector-borne diseases and air-borne diseases. Following the
earlier attempt in Heesterbeek and Roberts (1995), we proposed a few years ago an
adaptation of the definition of the basic reproduction number R0 to continuous-time
models that are periodic in time (Bacaër and Guernaoui 2006). The idea was to focus
on the renewal equation satisfied by the birth rate β(t) (or by the disease incidence in
epidemiology):
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602 N. Bacaër, E. H. Ait Dads

β(t) =
∞∫

0

K (t, x) β(t − x) dx . (1)

The kernel K (t, x), which may be a matrix function, is T -periodic with respect to t
for models including seasonality. R0 was defined as the spectral radius of the operator

L : u(t) �−→
∞∫

0

K (t, x) u(t − x) dx (2)

on the space of continuous T -periodic functions. It was shown that: this R0 coincides
with the familiar definition of R0 as the spectral radius of the next-generation matrix
for models with no seasonality (Diekmann et al. 1990); the position of R0 with respect
to 1 determines whether the population will be increasing or decreasing; for the sim-
plest seasonal model dp/dt = a(t)p(t)−b(t)p(t), where the birth rate per capita a(t)
and the death rate per capita b(t) are T -periodic functions, β(t) = a(t)p(t) satisfies
(1) with the kernel K (t, x) = a(t) exp(− ∫ t

t−x b(s) ds) and the spectral radius R0 of

(2) is equal to (
∫ T

0 a(t) dt)/(
∫ T

0 b(t) dt).
Bacaër and Guernaoui (2006) applied these ideas to a coupled system of ordinary

and partial differential equations. After that, a number of works have discussed R0 in
various classes of periodic population models: ordinary differential equations (Bacaër
2007; Wang and Zhao 2008; Bacaër and Gomes 2009) (particular applications can be
found in Gedeon et al. 2010; Parham and Michael 2010; Wesley et al. 2010), delay
differential equations (Bacaër and Ouifki 2007; Bacaër and Abdurahman 2008), other
infinite-dimensional models (Thieme 2009), models with pulses (van den Berg et al.
2011). Numerous works also study persistence using this R0: see Rebelo et al. (2012)
and references therein. But none of these references says anything about the biological
meaning of R0 in a periodic setting.

In Bacaër (2009), the case of periodic discrete-time matrix models of the form
p(t + 1) = (A(t) + B(t))p(t), A(t)p(t) being the births and T being an integer
period, was considered using the same renewal equation approach. R0 was defined as
the spectral radius of the operator

u(t) �−→
∞∑

x=1

K (t, x) u(t − x)

on the space of continuous T -periodic functions, where K (t, x) = A(t)B(t −1)B(t −
2) · · · B(t − x + 1). It was shown that R0 is also the spectral radius of the matrix
Ω = AB−1, where

A =

⎛
⎜⎜⎜⎜⎝

A(0) 0 · · · 0

0 A(1)
. . .

...
...

. . .
. . . 0

0 · · · 0 A(T − 1)

⎞
⎟⎟⎟⎟⎠, B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−B(0) I 0 · · · 0

0 −B(1) I
. . .

...
...

. . .
. . .

. . . 0

0
. . .

. . . I
I 0 · · · 0 −B(T − 1)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
,

123



The parameter R0 in periodic population models 603

with I standing for the identity matrix. Bacaër (2009, §3.4) suggested without giving
details that the matrix Ω might be seen as a kind of next-generation matrix, where the
season of birth is included in the state space.

The question of computing R0 for seasonal models received some impetus when
the 2009 H1N1 influenza “pandemic” broke out. According to standard mathematical
epidemiology (in a constant environment), it should have been enough for govern-
ments to order a number of vaccine doses so as to vaccinate a fraction 1 − 1/R0 of
the population. An overestimation of R0 leads to millions of unused vaccine doses,
while an underestimate might lead to unsuccessful epidemic control. However, esti-
mates published at the beginning of the epidemic in late spring and early summer
2009 did not take seasonality into account even though these estimates were supposed
to help predicting whether the epidemic would continue during the summer (when
schools are closed) and predicting the size of a possible second wave in falls or winter.
Strangely enough, many governments—e.g., those in the UK, in France, and in the
Netherlands—finally did not base the size of their vaccine orders on R0 estimates at
all: they ordered much more vaccine doses than if they had applied a “1 − 1/R0 rule”,
and much more than were finally needed (Assemblée Nationale 2010).

Nevertheless, in order to facilitate possible applications of the periodic R0 theory
described above to real public health problems, Bacaër and Ait Dads (2011) tried to
clarify the biological interpretation of R0 for seasonal models. Returning to the ter-
minology of demography, let β(n, t) be the birth rate due to generation n at time t . It
satisfies the renewal equation

β(n + 1, t) =
t−t0∫

0

K (t, x) β(n, t − x) dx, (t ≥ t0), (3)

where t0 stands for the initial time. When K (t, x) is a scalar function the total births
due to generation n, i.e., the size of generation n+1 is given by g(n) = ∫ ∞

t0
β(n, t) dt .

Notice however that the functions t �→ β(n, t) in (3) are not periodic. So the connection
between g(n) defined through (3) and the definition of R0 as the spectral radius of the
operator (2) is not obvious. Bacaër and Ait Dads (2011) showed that lim sup n

√
g(n) =

R0, suggesting that R0 can be interpreted as an asymptotic per generation growth rate
but in a somewhat weak sense. The stronger result lim n

√
g(n) = R0 could be obtained

only for the simplest periodic model dp/dt = a(t)p(t) − b(t)p(t), a(t)p(t) being
the birth rate.

Besides, it was recently brought to our attention that a different definition of “R0”
has been developed in the periodic case, with a different interpretation and with dif-
ferent properties. This approach may be traced back to Hunter and Caswell (2005,
Appendix), Caswell (2009, pp. 1772–1773), and Ackleh and Chiquet (2009, §2.2). It
has recently been generalized in Cushing and Ackleh (2011). See also Ackleh et al.
(2011), Caswell (2011). Finally the usual definition of R0 in autonomous models has
also been recently criticized (Li et al. 2011).

In order to strengthen the interpretation of our definition of R0 and to help the
reader balance the advantages and disadvantages of the different approaches, we first
improve the results of Bacaër (2009), Bacaër and Ait Dads (2011) by showing in the
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604 N. Bacaër, E. H. Ait Dads

present paper that g(n + 1)/g(n) → R0 as n → +∞ under quite general conditions.
Thus R0 is the asymptotic “ratio of total births in two successive generations”, fol-
lowing the same terminology as in the original article that introduced the notation R0
(Dublin and Lotka 1925). In epidemiology, “total births” should be replaced by “total
infections”. This is proved for discrete-time models in Sect. 2 and for continuous-time
models in Sect. 3, the details being in the appendices A and B. A comparison between
the proof in Appendix B and an alternative but essentially equivalent proof may be
found in a recent article (Inaba 2012). Section 4 focuses on another interpretation of
R0, namely as the minimal control effort on the “reproduction coefficients” to bring
the population to extinction, using the discrete-time framework. A remark considers
the case of periodic continuous-time models with spatial diffusion. The interpretation
of Sect. 4 is particularly useful for applications in epidemiology as it shows that our
approach gives the critical threshold 1 − 1/R0 for vaccination coverage. Estimating
this critical coverage is arguably one of the main real world applications of the con-
cept of basic reproduction number. In Sect. 5, we compare our approach with the one
adopted in Cushing and Ackleh (2011).

2 R0 and the next-generation matrix in a discrete-time framework

We shall note ρ(·) the spectral radius of a matrix. For a real vector w of any size,
we set ||w|| = ∑

i |wi |. Let the period T ≥ 1 be an integer, for example T = 12
for a seasonal model with a time step of 1 month. Let A(t) and B(t) be nonnegative
T -periodic square matrix functions. A(t) is a reproduction matrix and B(t) a survival
matrix. Set

M(t) = A(t) + B(t).

Assume that the population vector at time t satisfies the equation

p(t + 1) = M(t)p(t) ∀t ≥ t0

with the nonnegative column-vector initial condition p(t0) at time t0. Without loss of
generality, we can assume that 0 ≤ t0 ≤ T − 1. Let us set τ0 = t0 − 1 if t0 	= 0
and τ0 = T − 1 if t0 = 0, so that τ0 is the season preceding time t0: this notation
will be used in the definition of p̂ below. Let us call “compartments” the different
components of the population vector p(t).

We shall assume that ρ(B(T − 1) · · · B(1)B(0)) < 1: the population dies out if
there is no reproduction. For the survival matrix B(t) to make sense biologically, we
should also assume that max j

∑
i Bi, j (t) ≤ 1 for all t . But the latter assumption will

not be used anywhere below.
Assume that the initial population at time t0 belongs to generation 0. Let π(n, t) be

the population belonging to generation n at time t , given for all t ≥ t0 and all n ≥ 0 by

π(0, t0) = p(t0), π(0, t + 1) = B(t) π(0, t), (4)

π(n + 1, t0) = 0, π(n + 1, t + 1) = A(t) π(n, t) + B(t) π(n + 1, t). (5)
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The parameter R0 in periodic population models 605

Thus
∑

n≥0 π(n, t) = p(t) for all t ≥ t0. Similarly, let β(n, t) be the births due to
generation n between time t and time t + 1, given for all t ≥ t0 and all n ≥ 0 by

β(n, t) = A(t) π(n, t). (6)

Let us say that a newborn was born in season τ if it was born between time τ and time
τ + 1 modulo T . Let

G(n, τ ) =
∑
q≥qτ

β(n, τ + qT ) with qτ =
{

0 if t0 ≤ τ ≤ T − 1
1 if 0 ≤ τ ≤ t0 − 1

(7)

be the total birth vector due to generation n in season τ . Define the “big” column
vectors Ĝ(n) and p̂ from the smaller column vectors G(n, τ ) and p(t0) by

Ĝ(n) =

⎛
⎜⎜⎜⎝

G(n, 0)

G(n, 1)
...

G(n, T − 1)

⎞
⎟⎟⎟⎠ , p̂ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0
...
0

p(t0)
0
...
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

where p(t0) is in “row” τ0 and where the 0 are zero vectors (the “rows” of the different
blocks are numbered from 0 to T − 1). Ĝ(n) is the total birth vector due to generation
n structured by the seasons where the births occur. Let

g(n) = ||Ĝ(n)|| =
∑
t≥t0

‖β(n, t)‖

be the total births due to generation n, i.e., the size of generation n + 1.
Recall that the matrices A,B, and Ω = AB−1 were defined in Sect. 1 and that

R0 = ρ(Ω), as in Bacaër (2009). Given all this notation and preliminary remarks, we
arrive at:

Proposition 1 For all n ≥ 0, we have Ĝ(n) = Ωn+1 p̂. Thus Ω can be interpreted
as a next-generation matrix, the season of birth serving as an additional structuring
type.

Proof See Appendix A.

Corollary 1 If Ω is primitive, if U is a right eigenvector and V a left eigenvector of
Ω associated with R0, if p(t0) 	= 0, then

Ĝ(n) ∼
n→+∞(R0)

n+1 〈V, p̂ 〉
〈V, U 〉 U and

g(n + 1)

g(n)
−→

n→+∞ R0,

where 〈·, ·〉 stands for the usual scalar product of real vectors. Thus R0 can be inter-
preted as the asymptotic ratio of total births in two successive generations. It is inde-
pendent of the initial condition and of the initial starting time.
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606 N. Bacaër, E. H. Ait Dads

Remarks

– Recall that if R > 0 is a constant and if (un) is a sequence of positive real numbers,
then un+1/un → R implies n

√
un → R (Hardy 2007, Chap. IX). So Corollary 1

implies that n
√

g(n) → R0. Recall that the converse of “un+1/un → R implies
n
√

un → R” is not true: take for example un = 2n(2+(−1)n), for which n
√

un → 2
while un+1/un oscillates between two values and therefore has no limit. For exam-
ple, if the matrix Ω in Proposition 1 is irreducible but not primitive, the ratio
g(n + 1)/g(n) may oscillate.

– Bacaër (2009) already showed that the matrix B is invertible and that B−1 and
Ω are both nonnegative matrices, as should be. More precisely, for all τ and σ ,
set Y (τ, σ ) = I if τ < σ and Y (τ, σ ) = B(τ )B(τ − 1) · · · B(σ ) if τ ≥ σ . Set
Z(σ ) = Y (σ, σ − T + 1). Then Bacaër (2009) showed that Ω is the block matrix
(Ω(τ, σ ))0≤τ,σ≤T −1 with

Ω(τ, σ ) =
{

A(τ ) (I − Z(τ − 1))−1 Y (τ − 1, σ + 1) if 0 ≤ σ ≤ τ − 1,

A(τ ) (I − Z(τ − 1))−1 Y (τ − 1, σ − T + 1) if τ ≤ σ ≤ T − 1.

With this notation, Proposition 1 proves that Ωi, j (τ, σ ) is the average number of
children born in season τ in compartment i of an individual born in season σ in
compartment j , as suggested in Bacaër (2009, §3.4).

– Proposition 1 can be generalized to the case where the M(t) are linear operators
in ordered Banach spaces (Thieme 2009).

– If the matrices A(t) and B(t) for all 0 ≤ t ≤ T − 1 do not depend on time t (call
them A and B), then the spectral radius of the matrix Ω is equal to the spectral
radius of A(I − B)−1, as in the autonomous theory (Caswell 2001). For a proof,
see the last paragraph of Appendix A.

Example The simplest example is that where the population vector p(t) and the matri-
ces A(t) and B(t) are scalars and where T = 2. Then

Ω =
(

A(0) 0
0 A(1)

) (−B(0) 1
1 −B(1)

)−1

=
( A(0)B(1)

1−B(0)B(1)
A(0)

1−B(0)B(1)

A(1)
1−B(0)B(1)

A(1)B(0)
1−B(0)B(1)

)
. (8)

One individual born in season 0 will have on average A(1) children in the first time
step, A(0)B(1) children in the next time step as B(1) is the probability of surviving
season 1, then A(1)B(0)B(1) children, then A(0)B(1)B(0)B(1) children, etc. So he
has A(0)B(1)+ A(0)B(1)B(0)B(1)+· · · = A(0)B(1)

1−B(0)B(1)
children born in season 0 and

A(1) + A(1)B(0)B(1) + · · · = A(1)
1−B(0)B(1)

children born in season 1. This is the first
column of Ω . Similarly, we can check that one individual born in season 1 will have

A(0)
1−B(0)B(1)

children born in season 0 and A(1)B(0)
1−B(0)B(1)

children born in season 1, as in
the second column of Ω .

The matrix Ω2 gives the average number of grandchildren born in season 0 and in
season 1 (first and second line respectively) of an individual born in season 0 or in
season 1 (first and second column respectively). The matrix Ω3 gives the number of
great-grandchildren in the same way, etc.
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The parameter R0 in periodic population models 607

As for the interpretation of R0, imagine for example that we start with one
individual—the “ancestor”—born in season 0 (so t0 = 1 and p(t0) = 1). The number
of his children g(0) is the sum of the first column of Ω , i.e., g(0) = A(0)B(1)+A(1)

1−B(0)B(1)
. The

number of grandchildren g(1) is the sum of the first column of Ω2. The number of
great-grandchildren g(2) is the sum of the first column of Ω3, etc. Proposition 1 shows
that g(n + 1)/g(n) converges to R0, the spectral radius of Ω: the family tree grows
asymptotically like (R0)

n . If the ancestor had been born in season 1, g(n + 1)/g(n)

would have converged to the same R0.

3 R0 and the next-generation operator in continuous-time models

Linear systems of ordinary or delay differential equations in population dynamics and
the linear age-structured systems of partial differential equations of McKendrick and
von Foerster can usually be rewritten in the form of integral renewal equations for the
birth rate.

In this section, the period T is a positive real number. Assume that the birth rate
β(n, t) due to generation n at time t satisfies for n ≥ 0 and t ≥ t0 the renewal equation

β(n + 1, t) =
t−t0∫

0

K (t, x) β(n, t − x) dx, (9)

where K (t, x) is a continuous nonnegative square matrix kernel, T -periodic with
respect to t , and such that there exists c > 0 and γ > 0 with Ki, j (t, x) ≤ c e−γ x for
all i, j . Let

G(n, τ ) =
∑
q≥qτ

β(n, τ + qT ) with qτ =
{

0 if t0 ≤ τ < T
1 if 0 ≤ τ < t0

(10)

be the total birth rate due to generation n at time τ modulo T , i.e., in season τ . Extend
the function G(n, τ ) by periodicity to all real values of τ . The total births g(n) due to
generation n is given by

g(n) =
T∫

0

‖G(n, τ )‖ dτ =
∞∫

t0

‖β(n, t)‖ dt. (11)

The following proposition is analogous to Proposition 1 and Corollary 1.

Proposition 2 For all n ≥ 0 and all τ , we have

G(n + 1, τ ) =
∞∫

0

K (τ, x) G(n, τ − x) dx .
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608 N. Bacaër, E. H. Ait Dads

If the integral operator L given by (2)—defined on the space of continuous T -peri-
odic functions—is strongly positive, if R0 is its spectral radius, and if β(0, t) is not
identically zero, then

g(n + 1)

g(n)
−→

n→+∞ R0.

So R0 can once again be interpreted as the asymptotic ratio of total births in two
successive generations.

Proof See Appendix B.

Remarks

– Recall that a linear mapping is strongly positive if it maps nonnegative functions
into positive functions. The space of continuous T -periodic functions is equipped
with the norm || f ||∞ = maxi max{| fi (τ )|; 0 ≤ τ ≤ T }.

– If K (t, x) does not depend on time—call it K (x)—then R0 is also the spectral
radius of the next-generation matrix

∫ ∞
0 K (x) dx (Bacaër and Guernaoui 2006).

If this matrix is primitive, then R0 is the asymptotic ratio of total births in two
successive generations. Notice that considering the asymptotic ratio is not specific
to time-periodic models: it already appears in autonomous structured models (a
similar remark could have been made in the discrete-time case). However, if K (x)

is a scalar, then R0 = ∫ ∞
0 K (x) dx and g(n + 1) = R0 g(n): R0 is not just the

asymptotic ratio but the exact ratio of total births in two successive generations.
In this case the common definition of R0 in epidemiology, namely as the “average
number of secondary cases infected by an index case”, is appropriate.

– Proposition 2 can be generalized to the case where the kernel K (t, x) is a linear
operator in an ordered Banach space, as in the case of epidemic models with a
continuous age or space structure (Thieme 2009, §6).

Example 1 Let A(t) and B(t) be T -periodic continuous matrix functions. Assume
that A(t) is nonnegative for all t and that the off-diagonal elements of B(t) are non-
positive. Assume, as e.g. in Wang and Zhao (2008), that the population satisfies in the
linear approximation the ODE system dp

dt = (A(t) − B(t))p(t), A(t)p(t) being the
birth rate, with the nonnegative initial condition p(t0) at time t0 (0 ≤ t0 < T ). We
shall assume that the periodic matrix system dz

dt = −B(t)z(t) with the initial condition
z(0) = I (the identity matrix) is such that ρ(z(T )) < 1. In other words, the dominant
Floquet multiplier is less than 1; the population dies out if there is no reproduction.
Assume that the initial population at time t0 belongs to generation 0. Let π(n, t) be
the population belonging to generation n at time t , given for all t > t0 and all n ≥ 0
by

π(0, t0) = p(t0),
dπ

dt
(0, t) = −B(t) π(0, t), (12)

π(n + 1, t0) = 0,
dπ

dt
(n + 1, t) = A(t) π(n, t) − B(t) π(n + 1, t). (13)
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The parameter R0 in periodic population models 609

We have
∑

n≥0 π(n, t) = p(t) for all t ≥ t0. Let β(n, t) be the birth rate due to
generation n at time t , given for all t ≥ t0 and all n ≥ 0 by β(n, t) = A(t) π(n, t). Con-
sider the matrix function Φ(τ, σ ) such that for all τ > σ, ∂Φ

∂τ
(τ, σ ) = −B(τ )Φ(τ, σ )

and Φ(σ, σ ) = I . Then (13) implies that β(n, t) satisfies a renewal equation (9) with
the kernel K (t, x) = A(t)Φ(t, t − x) satisfying the preliminary assumptions of Prop-
osition 2. To emphasize the similarity with Proposition 1 in this case, Proposition 2 can
also be written as G(n +1, ·) = L G(n, ·), where L = AB−1 and the operators A and
B are as in Thieme (2009, §5): (Au)(τ ) = A(τ )u(τ ) and (Bu)(τ ) = du

dτ
+ B(τ ) u(τ ).

The proof given in Appendix A for discrete-time models can be adapted to get a
proof of Proposition 2 for ODE models that is simpler than the general proof given in
Appendix B.

Example 2 Let a(t) and b(t) be positive T -periodic scalar functions. Consider the
model dp/dt = (a(t) − b(t))p(t), a(t)p(t) being again the birth rate, with the
initial condition p(t0). This is just a special case of Example 1. Here, K (t, x) =
a(t) exp(− ∫ t

t−x b(s) ds). Bacaër and Guernaoui (2006, Sect. 5) showed that R0 =∫ T
0 a(t) dt/

∫ T
0 b(t) dt and that U (t) = a(t) e

∫ t
0 [a(s)/R0−b(s)]ds is an eigenfunction

of the operator L associated with R0. Considering the scalar product 〈u, v〉 =∫ T
0 u(t) v(t) dt for any T -periodic continuous functions u(t) and v(t), the adjoint

of the operator L is given by (L∗v)(t) = ∫ ∞
0 K ′(t + x, x) v(t + x) dx , where

K ′(t, x) is (in the general case) the transpose of K (t, x). The positive eigenfunc-
tions of L∗ associated with the eigenvalue R0 satisfy (L∗V )(t) = R0 V (t). Taking
the derivative of this integral equation as in Bacaër and Guernaoui (2006, Sect. 5),
we get −dV/dt = (a(t)/R0 − b(t))V (t). So these eigenfunctions are proportional

to V (t) = e− ∫ t
0 [a(s)/R0−b(s)]ds . As in Inaba (2012), it then follows from the theory of

positive operators and from Proposition 2 that

G(n, τ ) ∼
n→+∞(R0)

n

∫ T
0 V (t) G(0, t) dt∫ T

0 V (t) U (t) dt
U (τ ). (14)

But since π(0, t) = e
− ∫ t

t0
b(s) ds

p(t0), one can easily check that G(0, t) =
(L δ̂t0)(t) p(t0), where δ̂t0 is the T -periodic extension of Dirac’s measure at t = t0.
So

∫ T
0 V (t) G(0, t) dt = ∫ T

0 (L∗V )(t) δ̂t0(t) dt p(t0) = R0 V (t0) p(t0). In summary,
(14) shows that

G(n, τ ) ∼
n→+∞(R0)

n+1 a(τ ) e
∫ τ

t0
[a(t)/R0−b(t)] dt

∫ T
0 a(t) dt

p(t0),

which implies that

g(n) ∼
n→+∞(R0)

n+1

∫ T
0 a(τ ) e

∫ τ
t0

[a(t)/R0−b(t)] dt
dτ∫ T

0 a(τ ) dτ
p(t0). (15)
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610 N. Bacaër, E. H. Ait Dads

This last asymptotic result can be checked on specific numerical examples: first
compute π(n, t) either by solving the system (12)–(13) or directly by using the formula

π(n, t) = e
− ∫ t

t0
b(s) ds 1

n!

⎛
⎝

t∫

t0

a(s) ds

⎞
⎠

n

p(t0)

proved in Bacaër and Ait Dads (2011, Lemma 4); then recall that g(n) =∫ ∞
t0

a(t) π(n, t) dt . Formula(15) is more precise than the inequalities c1(R0)
n ≤

g(n) ≤ c2(R0)
n obtained in Bacaër and Ait Dads (2011, p. 749). Example 2 is related

to the linearization of many SIS- or SIR-type epidemic models near the disease-free
state, with p(t) standing for I (t).

Example 3 Consider the system of McKendrick and von Foerster

∂p

∂t
+ ∂p

∂x
= −b(t, x) p(t, x), p(t, 0) =

∞∫

0

a(t, x) p(t, x) dx ,

where a(t, x) and b(t, x) are positive scalar functions that are T -periodic with respect
to t . Then the birth rate p(t, 0) satisfies a renewal equation with the kernel K (t, x) =
a(t, x) exp(− ∫ x

0 b(t − x + y, y) dy). So the basic reproduction number R0 is the
spectral radius of the integral operator (2) with kernel K (t, x) and it is the asymptotic
ratio of total births in two successive generations. Notice that there is one major dif-
ference between Examples 1 and 3. In the former, R0 was the spectral radius of the
operator L = AB−1, which is also the spectral radius of the operator B−1A (the latter
approach being the one emphasized in Wang and Zhao 2008). In contrast, there is no
such decomposition for the operator L in Example 3.

4 Another interpretation of R0

Let us return to the discrete-time framework of Sect. 2. It is important to notice that
the next-generation matrix Ω and its spectral radius R0 depend linearly upon the set
of matrices A(t): if we call Ω(μ) and R0(μ) the next-generation matrix and the basic
reproduction number of the model where all the matrices A(t) have been divided by μ,
then Ω(μ) = Ω/μ and R0(μ) = R0/μ (a similar remark for a particular continuous-
time periodic model appears in Bacaër (2007, pp. 1073,1079)). Thus R0(μ) < 1 if and
only if μ > R0. The basic reproduction number R0 can be interpreted as the minimal
control effort on the “reproduction terms” to bring the population to extinction. It is
precisely because of this property that R0 is so often used in epidemiology. In this con-
text the model p(t + 1) = (A(t) + B(t))p(t), A(t)p(t) being the disease incidence,
is the linearization near the disease-free state of a nonlinear epidemic model (Allen
and van den Driessche 2008). The matrices A(t) are transmission matrices while the
matrices B(t) include all other terms (death, recovery, migration. . .). In particular,
since the matrices A(t) are usually proportional to the susceptible populations in the
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disease-free state as a result of the “mass action” assumption for the incidence, we
see that disease eradication occurs when the susceptible populations are reduced by a
factor greater than R0. So the minimal vaccination coverage is 1 − 1/R0 in a periodic
environment as in a constant environment.

A somewhat different way of expressing this interpretation of R0 is given in Prop-
osition 3 below, which is similar to the case of ordinary differential equations in Wang
and Zhao (2008), but which we prove using a log-convexity argument. The discrete-
time autonomous case (corresponding to T = 1) was considered in Li and Schneider
(2002). Bacaër (2009, §3.3) showed under an unnecessary assumption of irreducibility
that ρ(NR0) = 1 (see notation below). Related work on nonlinear population models
may be found in a recent manuscript (Cao H, Zhou Y, The basic reproduction number
of discrete SIR and SEIS models with periodic parameters).

Proposition 3 Same notation and assumptions as for Proposition 1. For all μ > 0,
set Nμ = (

A(T −1)
μ

+ B(T −1))(
A(T −2)

μ
+ B(T −2)) · · · ( A(0)

μ
+ B(0)). Then either the

mapping μ �→ ρ(Nμ) is positive, nonincreasing and log-convex, or it is identically
zero. If R0 > 0, then there exists a unique μ∗ > 0 such that ρ(Nμ∗) = 1. Moreover,
μ∗ = R0.

Corollary 2 Let λ = ρ(N1)
1/T be the Malthusian parameter. Then R0 > 1 ⇔ λ >

1, R0 = 1 ⇔ λ = 1, R0 < 1 ⇔ λ < 1.

Proofs of Proposition 3 and Corollary 2 are given in Appendix C.

Remark As mentioned above, there exist analogues of Proposition 3 for ODE models
(Bacaër 2007, §3.4; Wang and Zhao 2008) and PDE models (see Bacaër 2012, §5.2 for
age-structured PDE models). As another example extending the autonomous model
in Allen et al. (2008), consider a linearized time-periodic epidemic model with spatial
diffusion such as

∂ I

∂t
(t, y)=a(t, y)I (t, y)−b(t, y)I (t, y) + c(t, y) · ∇y I (t, y)+D
y I (t, y) (16)

on a bounded domain Ω with homogeneous Dirichlet, Neumann or Robin boundary
conditions and with an initial condition I (t0, y). The coefficient a(t, y) (resp. b(t, y))
is an effective contact rate (resp. a recovery rate) that is positive (resp. nonnegative)
and T -periodic with respect to t, c(t, y) is a T -periodic vector field for convection,
and D is a positive diffusion coefficient. We assume that the principal eigenvalue �

associated with the parabolic equation (16) with a(t, y) ≡ 0 is positive: the epidemic
dies out without new infections like e−�t . For precise assumptions concerning the
function spaces, we refer to Hess (1991). Let us look for the renewal equation satisfied
by the incidence i(t, y) = a(t, y) I (t, y). The problem can be rewritten as

∂ I

∂t
(t, y) − D
y I (t, y) − c(t, y) · ∇y I (t, y) + b(t, y)I (t, y) = i(t, y).
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Its solution can be put in the form

I (t, y) =
t∫

t0

∫

Ω

k̂(t, x, y, y′) i(t − x, y′) dy′ dx +
∫

Ω

k̂(t, t − t0, y, y′) I (t0, y′) dy′

with some nonnegative Green function k̂(t, x, y, y′) (Alimov and Il’in 2011). So
i(t, y) = a(t, y) I (t, y) satisfies a renewal equation with the kernel k(t, x, y, y′) =
a(t, y) k̂(t, x, y, y′) and R0 can be defined as the spectral radius of the integral operator

u(t, y) �−→
∞∫

0

∫

Ω

k(t, x, y, y′) u(t − x, y′) dy′ dx .

on the space of continuous functions that are T -periodic with respect to t . The inci-
dence grows (resp. decays) exponentially in time if R0 > 1 (resp. R0 < 1). This R0 is
the asymptotic ratio of total infections in two successive generations. Besides, there
exists a unique positive number μ = μ∗ such that the operator

∂ I

∂t
(t, y) − D
y I (t, y) − c(t, y) · ∇y I (t, y) + b(t, y)I (t, y) − a(t, y)

μ
I (t, y)

with the boundary condition has a principal eigenvalue λμ equal to zero; indeed, it
follows from Hess (1991, Lemmas 15.4 and 15.5) that this eigenvalue is an increas-
ing continuous function of μ that tends to −∞ as μ → 0+ and to a positive limit
as μ → +∞. Moreover, I (t, y) grows or decays exponentially in time if and only
if i(t, y) does the same. So with the same notations as in the beginning of Sect. 4,
we have R0(μ

∗) = 1. But R0(μ
∗) = R0/μ

∗. So μ∗ = R0. Knowing how to com-
pute numerically the principal eigenvalue of a parabolic operator, it is thus possible
to compute R0 by a dichotomy method similar to that introduced in Bacaër (2007,
§3.4). If the coefficients do not depend on time, then this way of defining R0 coincides
with that in Allen et al. (2008, §2.3), Thieme (2009, §6), and Krkošek and Lewis
(2010), but not with that in Smith and Thieme (2011, §11.5.1).1 R0 for time-periodic
integrodifferential equations as in Jin and Lewis (2012) may be defined in a similar
way.

5 Comparison with another approach

Following Ackleh and Chiquet (2009), Caswell (2009) and Hunter and Caswell (2005),
it was recently suggested (Cushing and Ackleh 2011) that the spectral radius of the
matrix

1 This reference notes that there exists y1 such that λ1 = � − a(y1) and defines “R0” as a(y1)/�. Notice
that if a(y) is divided by a constant, the corresponding “R0” is not necessarily divided by the same constant
since y1 may not be the same. This contrasts with our approach.
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(M∗(τ ) − B∗(τ ))(I − B∗(τ ))−1 (17)

where M(t) = A(t)+ B(t), M∗(τ ) = M(τ +T −1) · · · M(τ +1)M(τ ) and B∗(τ ) =
B(τ + T − 1) · · · B(τ + 1)B(τ ), was also a kind of “net reproductive number” for
discrete-time models. It was shown that its position with respect to 1 determined
population growth or decay. Here we just want to emphasize the properties, which
distinguish it from our approach:

– Our R0 does not depend on the season τ , unlike (17) which usually yields T dif-
ferent spectral radii for τ = 0, 1, . . . , T − 1. The notation R(τ )

0 used in Caswell
(2009) might be more appropriate than the notation “R0” used in Cushing and
Ackleh (2011). In the simple scalar example with period 2 of Sect. 2,

R(0)
0 = A(1)A(0) + B(1)A(0) + A(1)B(0)

1 − B(1)B(0)

=
∞∑

m=0

(A(1)A(0) + B(1)A(0) + A(1)B(0))(B(1)B(0))m

and R(1)
0 = R(0)

0 . Notice that the second and third term in the numerator of R(0)
0

appear on the diagonal of the matrix Ω given by (8), unlike the first term.
– Inspired by the definition of the type reproduction numbers for autonomous models

(Roberts and Heesterbeek 2003; Heesterbeek and Roberts 2007), it is possible to
define “seasonal type reproduction numbers” as follows. Take for example the
general discrete-time matrix model of Sect. 2. Define the next-generation matrix
Ω as in the introduction. For 0 ≤ τ ≤ T − 1, let �(τ) be the block-diagonal
projection matrix diag(0, . . . , 0, I, 0, . . . , 0) of the same size as Ω , with the iden-
tity matrix I in the “row” (and “column”) τ and the 0 standing for zero matrices
(see Sect. 2). Consider a nonempty subset of all the seasons E = {τ1, . . . , τk} ⊂
{0, 1, . . . , T − 1}, the idea being that we would like to measure the effort needed
to bring the population to extinction by decreasing the births during the seasons in
E . Set � = �(τ1) + · · · + �(τk). Define the seasonal type reproduction number
associated with E by

T (E) = ρ(�Ω (I − (I − �)Ω)−1) = ρ

(
�Ω

∞∑
m=0

((I − �)Ω)m

)
,

provided ρ((I −�)Ω) < 1. This assumption means the following: in some cases,
if E is a too small subset, it may be impossible to bring the population to extinc-
tion. Under this assumption, R0 = ρ(Ω) > 1 (resp. = 1 and < 1) is equivalent
to T (E) > 1 (resp. = 1 and < 1), as shown in Roberts and Heesterbeek (2003).
Notice that T ({0, 1, . . . , T − 1}) = R0. For the 2-periodic example of Sect. 2,
Ω = (Ω(τ, σ ))0≤τ,σ≤1 is given by (8) and we have the expressions
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T ({0}) = Ω(0, 0) + Ω(0, 1)Ω(1, 0)

1 − Ω(1, 1)

= Ω(0, 0) +
∞∑

m=0

Ω(0, 1)Ω(1, 1)mΩ(1, 0)

= A(0)(A(1) + B(1))

1 − (A(1) + B(1))B(0)

=
∞∑

m=0

A(0)[(A(1) + B(1))B(0)]m(A(1) + B(1)) (18)

provided Ω(1, 1) < 1, i.e., (A(1)+ B(1))B(0) < 1. There are similar expressions
for T ({1}) permuting the indices 0 and 1. Following the interpretation in Roberts
and Heesterbeek (2003), and as can be seen from the second expression for T ({0})
above, T ({0}) is the expected number of offspring (children, grandchildren. . .)
born in season 0 of a parent born in season 0, under the condition that no individual
in the family tree between the parent and the offspring be born in season 0 (in
other words, the branches of the family tree are cut just after any new birth in
season 0). This number would be infinite if Ω(1, 1) ≥ 1. Such an interpretation
holds not just for the example of Sect. 2 but in general. As with Proposition 3, one
can also prove—when T (E) is well defined—that

ρ

((
A(T − 1)

w(T − 1)
+ B(T − 1)

)
· · ·

(
A(0)

w(0)
+ B(0)

))
= 1 (19)

where w(τ) = 1 if τ /∈ E and w(τ) = T (E) if τ ∈ E . Indeed, for μ > 0, define
A(E;μ),Ω(E;μ) and T (E;μ) in the same way as A,Ω and T (E) except that
all the matrices A(τ ) with τ ∈ E are divided by the scalar μ. Since Ω(E;μ) =
A(E;μ)B−1, we see that �Ω(E;μ) = (�Ω)/μ while (I − �)Ω(E;μ) =
(I − �)Ω . So T (E;μ) = T (E)/μ. In particular, T (E; T (E)) = 1, which is
equivalent to (19). QED. One can also show as for Proposition 3 that (19) charac-
terizes T (E). For the 2-periodic scalar example, solving (19) easily leads to (18).
In summary, this seasonal type reproduction number focuses on generations as for
our R0 but may depend on the season as for R(τ )

0 .
– When A(t) and B(t) do not depend on t (call them A and B and set M = A + B),

we see that R(τ )
0 is the spectral radius of (MT − BT )(I − BT )−1, for all τ . This is

different from the spectral radius of A(I − B)−1, which is the standard definition
of R0 for autonomous models (Caswell 2001). It is only by specifying that T = 1
that the two formulas coincide. This contrasts with the last remark of Sect. 2.

– R(τ )
0 does not have a simple connection to the minimal vaccination coverage nec-

essary to eradicate an infectious disease, unlike our R0 which gives 1 − 1/R0 as
the threshold coverage. As far as we understand, the estimation of this coverage
is important for public health agencies. However, R(τ )

0 may be more useful in
ecology.
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Appendix A: Proofs for Sect. 2

Proof of Proposition 1 For all n ≥ 0 and 0 ≤ τ ≤ T − 1, set

F(n, τ ) =
∑
q≥qτ

π(n, τ + qT )

where qτ is defined in (7). Assume first that 0 ≤ τ ≤ t0 − 2 or t0 ≤ τ ≤ T − 2. In
both cases, qτ+1 = qτ . We get from (5) that

F(n + 1, τ + 1) =
∑

q≥qτ+1

π(n + 1, τ + 1 + qT )

=
∑
q≥qτ

A(τ + qT ) π(n, τ + qT ) + B(τ + qT ) π(n + 1, τ + qT ).

Since A(τ + qT ) = A(τ ) and B(τ + qT ) = B(τ ), we get

F(n + 1, τ + 1) = A(τ ) F(n, τ ) + B(τ ) F(n + 1, τ ).

Using π(n + 1, t0) = 0, we get in the same way

F(n + 1, t0) = A(t0 − 1)F(n, t0 − 1) + B(t0 − 1)F(n + 1, t0 − 1) if t0 	= 0,

F(n + 1, 0) = A(T − 1) F(n, T − 1) + B(T − 1) F(n + 1, T − 1).

In summary, we have

−B(τ ) F(n + 1, τ ) + F(n + 1, τ + 1) = A(τ ) F(n, τ ) , 0 ≤ τ ≤ T − 2,

−B(T − 1) F(n + 1, T − 1) + F(n + 1, 0) = A(T − 1) F(n, T − 1).

So if we set F̂(n) = (F(n, 0)′ F(n, 1)′ · · · F(n, T −1)′)′, then B F̂(n +1) = A F̂(n).
But

G(n, τ ) =
∑
q≥qτ

A(τ + qT ) π(n, τ + qT ) = A(τ ) F(n, τ ).

So Ĝ(n) = A F̂(n) = B F̂(n + 1). It follows that Ĝ(n + 1) = A F̂(n + 1) =
AB−1 Ĝ(n) for all n ≥ 0.
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Assume now that 0 ≤ τ ≤ T − 2. Using (4), we see that

−B(τ ) F(0, τ ) + F(0, τ + 1) = −
∑
q≥qτ

B(τ + qT ) π(0, τ + qT ) + F(0, τ + 1)

= −
∑
q≥qτ

π(0, τ + qT + 1) +
∑

q≥qτ+1

π(0, τ + qT + 1)

=
{

0 if τ 	= t0 − 1,

p(t0) if τ = t0 − 1.

Similarly, we get

−B(T − 1) F(0, T − 1) + F(0, 0) =
{

0 if t0 	= 0,

p(0) if t0 = 0.

So B F̂(0) = p̂ and Ĝ(0) = A F̂(0) = AB−1 p̂. Corollary 11 follows from the
theorem of Perron and Frobenius (Seneta 2006, Theorem 1.2). ��

Proof of the remark at the end of Sect. 2 We have Ω = AB−1, where A is the block
diagonal matrix diag(A, . . . , A) and where

B−1 = diag((I − BT )−1, . . . , (I − BT )−1)

⎛
⎜⎜⎜⎜⎝

BT −1 BT −2 · · · I

I BT −1 . . .
...

...
. . .

. . . BT −2

BT −2 · · · I BT −1

⎞
⎟⎟⎟⎟⎠ .

Now let r0 be the spectral radius of A(I − B)−1. Assume first that A and B are
positive matrices (all entries are positive). Let v be a positive right eigenvector of the
positive matrix A(I − B)−1 = A + AB + AB2 + · · · associated with r0 (Berman and
Plemmons 1994, Theorem 2.1.3). Set V = (v′ . . . v′)′, the vector v being repeated
T times and ′ standing for transposition. Then Ω V = (w′ . . . w′)′ with w = A(I −
BT )−1(I + B + · · · + BT −1)v = A(I − B)−1v = r0 v. So Ω V = r0 V and r0 = R0
since R0 is the only eigenvalue of the positive matrix Ω with a positive eigenvector
(Berman and Plemmons 1994, Theorem 2.1.4). If the matrix A or the matrix B is
not positive, consider the matrix E of the same size but full of 1 and the matrices
A(ε) = A + ε E and B(ε) = B + ε E for ε > 0 small enough. Define R(ε)

0 and r (ε)
0 in

the same way as R0 and r0 except that A and B are replaced by A(ε) and B(ε). Then
r (ε)

0 = R(ε)
0 as shown above. By continuity of the spectral radius as ε → 0, we get

r0 = R0. ��
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Appendix B: Proof of Proposition 2

Assume first that t0 ≤ τ < T . It follows from (9) and (10) that

G(n + 1, τ ) =
∑
q≥0

τ+qT −t0∫

0

K (τ, x) β(n, τ + qT − x) dx .

Reorganizing the double summation, we get

G(n + 1, τ ) =
∑
s≥0

τ−t0+sT∫

sT

∑
q≥s

K (τ, x) β(n, τ + qT − x) dx

+
∑
s≥0

T +sT∫

τ−t0+sT

∑
q≥s+1

K (τ, x) β(n, τ + qT − x) dx .

With the change of variable y = x − sT and r = q − s, we arrive at

G(n + 1, τ ) =
∑
s≥0

τ−t0∫

0

∑
r≥0

K (τ, y + sT ) β(n, τ + rT − y) dy (20)

+
∑
s≥0

T∫

τ−t0

∑
r≥1

K (τ, y + sT ) β(n, τ + rT − y) dy. (21)

In the first set of integrals (20), we have 0 ≤ y ≤ τ − t0, so t0 ≤ τ − y ≤ τ < T . In
the second set (21), we distinguish the case τ − t0 ≤ y ≤ τ (for which 0 ≤ τ − y ≤ t0)
from the case τ ≤ y ≤ T (for which t0 ≤ τ ≤ T + τ − y ≤ T ). With the definition
(10) of G(n, τ ), we arrive at

G(n + 1, τ ) =
∑
s≥0

τ−t0∫

0

K (τ, y + sT ) G(n, τ − y) dy

+
∑
s≥0

τ∫

τ−t0

K (τ, y + sT ) G(n, τ − y) dy

+
∑
s≥0

T∫

τ

K (τ, y + sT ) G(n, T + τ − y) dy.

123



618 N. Bacaër, E. H. Ait Dads

With the change of variable σ = τ − y, we get

G(n + 1, τ ) =
T∫

0

Ω(τ, σ ) G(n, σ ) dσ . (22)

with Ω(τ, σ ) defined by

Ω(τ, σ ) =
{∑

s≥0 K (τ, τ − σ + sT ) if 0 ≤ σ < τ,∑
s≥1 K (τ, τ − σ + sT ) if τ ≤ σ < T .

(23)

When 0 ≤ τ < t0, a completely analogous computation also leads to (22). Finally, a
simple computation (see, e.g., Bacaër 2007, §2) using the fact that G(n, τ ) has been
extended by periodicity to all τ shows that

T∫

0

Ω(τ, σ ) G(n, σ ) dσ =
∞∫

0

K (τ, x) G(n, τ − x) dx .

It remains to use the theorem of Krein and Rutman (Dautray and Lions 1984,
Chap. VIII). The spectral radius of the strongly positive compact operator (22)—for
the compactness, see Bacaër and Ait Dads (2011, Appendix 1)—is a simple eigen-
value with a positive vector eigenfunction G̃(τ ) and this eigenvalue dominates all other
eigenvalues. So there exists a constant c > 0 such that ||G(n, ·)/Rn

0 − c G̃(·)||∞ → 0
as n → ∞. It follows that

g(n)

Rn
0

=
∫ T

0 ‖G(n, τ )‖ dτ

Rn
0

−→
n→∞ c

T∫

0

‖G̃(τ )‖ dτ

and that g(n + 1)/g(n) → R0. ��

Appendix C: Proofs for Sect. 4

Proof of Proposition 3 For all μ > 0, let Cμ be the matrix

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0 · · · 0 A(T −1)
μ

+ B(T − 1)
A(0)
μ

+ B(0) 0 · · · 0 0

0 A(1)
μ

+ B(1)
. . . 0 0

...
. . .

. . .
. . .

...

0 0 · · · A(T −2)
μ

+ B(T − 2) 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.
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One can check that (Cμ)T is the block diagonal matrix with the matrix product Nμ

and its circular permutations on the diagonal. So ρ(Nμ) = ρ((Cμ)T ) = (ρ(Cμ))T .
The mapping μ �→ Cμ is nonincreasing, i.e., all matrix elements are nonincreas-
ing functions of μ. So Berman and Plemmons (1994, Corollary 2.1.5) shows that
the mapping μ �→ ρ(Cμ) is nonincreasing. This mapping is also continuous. Fol-
lowing Kingman (1961), call S the set of real functions on (0,+∞) that are either
identically zero or positive and log-convex. For any a ≥ 0 and b ≥ 0, the function
μ �→ a/μ+b belongs to S since the second derivative of log(a/μ+b) with respect to
μ is positive. So each element of the matrix Cμ belongs to S. It follows from Kingman
(1961) that the mapping μ �→ ρ(Cμ) belongs to S. A product of log-convex func-
tions being also log-convex, it follows that the mapping μ �→ ρ(Nμ) also belongs
to S.

Assume that R0 > 0. If the matrix C1 is irreducible, then Bacaër (2009, §3.3)
showed that ρ(CR0) = 1; so ρ(NR0) = 1. If C1 is not irreducible, let E be the matrix
of the same size as the matrices A(t) but full of 1. Set A(ε)(t) = A(t) + εE for all
ε ≥ 0. Define A(ε), R(ε)

0 , N (ε)
μ and C (ε)

μ in the same way as A, R0, Nμ and Cμ except
that A(t) is replaced by A(ε)(t). Since R0 > 0 and by continuity of the spectral radius,
we see that R(ε)

0 > 0 for all ε ≥ 0 small enough. The matrix C (ε)
1 is irreducible for all

ε > 0. So applying the result above, we get ρ(N (ε)

R(ε)
0

) = 1 for all ε > 0 small enough.

By continuity as ε → 0+, we get ρ(NR0) = 1.
Imagine that there exists 0 < μ1 < μ2 such that ρ(Nμ1) = ρ(Nμ2) = 1. Since

ρ(Cμ) = (ρ(Nμ))1/T for all μ > 0, we have ρ(Cμ1) = ρ(Cμ2) = 1. As μ �→ ρ(Cμ)

is nonincreasing, we have ρ(Cμ) = 1 for all μ ∈ [μ1, μ2]. In the present case, the
mapping μ �→ ρ(Cμ) is not identically zero so it is positive and log-convex (and thus
convex). The mapping μ �→ ρ(Cμ) being nonincreasing but convex, it is impossible
to find μ3 > μ2 such that ρ(Cμ3) < 1. Thus ρ(Cμ) = 1 for all μ ≥ μ1 and we
get a contradiction with the fact that ρ(Cμ) → (ρ(B(T − 1) · · · B(1)B(0)))1/T < 1
as μ → +∞. So there is at most one μ such that ρ(Nμ) = 1. From the discussion
above on the case R0 > 0, we see in that case there is a unique such μ and that
μ = R0. ��

Remark If R0 = 0 (or equivalently if the matrix Ω is nilpotent so that the popula-
tion goes extinct in a finite number of generations), then the equation ρ(Nμ) = 1
has no solution μ > 0. Indeed, imagine that the equation ρ(Nμ) = 1 has a solution
μ > 0. Then ρ(Cμ) = 1 and Berman and Plemmons (1994, Theorem 2.1.1) shows
that there exists a nonnegative vector v 	= 0 such that Cμv = v. Let us write v =
(v(0)′ . . . v(T − 1)′)′. Then (A(t)/μ+ B(t))v(t) = v(t + 1) for all t = 0, . . . , T − 1,
where for convenience we set v(T ) = v(0). So A(t)v(t) = μv(t + 1) − μ B(t)v(t)
for all t = 0, . . . , T − 1. This shows that Av = μBv and hence B−1Av = μv. So
R0 = ρ(AB−1) = ρ(B−1A) ≥ μ > 0. Contradiction.

Proof of Corollary 2 Set λ = ρ(N1)
1/T . Assume for example that R0 > 1. As the

mapping μ �→ ρ(Nμ) is nonincreasing, it follows that 1 = ρ(NR0) ≤ ρ(N1) = λT .
But ρ(N1) 	= 1 since R0 	= 1 and since R0 is the unique μ such that ρ(Nμ) = 1.
Thus 1 < λT and 1 < λ. Similarly, reversing all inequalities, we can show that
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R0 < 1 implies λ < 1. Finally, since ρ(NR0) = 1, we see that R0 = 1 implies
λ = ρ(N1)

1/T = 1. So all the equivalences in Corollary 2 are in fact proved. ��
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