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Abstract The primary CD8 T cell immune response, due to a first encounter with
a pathogen, happens in two phases: an expansion phase, with a fast increase of T
cell count, followed by a contraction phase. This contraction phase is followed by the
generation of memory cells. These latter are specific of the antigen and will allow a
faster and stronger response when encountering the antigen for the second time. We
propose a nonlinear mathematical model describing the T CD8 immune response to
a primary infection, based on three nonlinear ordinary differential equations and one
nonlinear age-structured partial differential equation, describing the evolution of CD8
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264 E. Terry et al.

T cell count and pathogen amount. We discuss in particular the roles and relevance of
feedback controls that regulate the response. First we reduce our system to a system
with a nonlinear differential equation with a distributed delay. We study the existence
of two steady states, and we analyze the asymptotic stability of these steady states.
Second we study the system with a discrete delay, and analyze global asymptotic sta-
bility of steady states. Finally, we show some simulations that we can obtain from the
model and confront them to experimental data.

Keywords Immune response · CD8 T cell · Ordinary differential equations ·
Delay equations

Mathematics Subject Classification (2000) 34D20 · 34K60 · 35L60 · 35Q92 ·
92C37

1 Introduction

Immune response to an infection by a pathogen is supported by different populations
of cells (macrophages, B cells, CD4 T cells, CD8 T cells. . .). Here we focus on a
specific response, the CD8 T cell response.

The T CD8 lymphocytes involved in this response are produced by differentiation
from hematopoietic stem cells in the thymus, and are maintained in a naive state in
secondary lymphoid organs. T CD8 immune response begins when naive CD8 T cells
encounter activated antigen-presenting cells that present antigen derived epitopes, sig-
naling the presence of the pathogen. This process leads to an immune response char-
acterized by three phases in the response of T CD8 population: cellular expansion,
contraction and memory cell generation (Appay and Rowland-Jones 2004; Murali-
Krishna et al. 1998). Indeed, the encounter with the antigen results in differentiation
of naive CD8 T cells into an other state, called effector. In this state, CD8 T cells have
acquired cytotoxic capacities allowing to kill infected cells (Appay and Rowland-Jones
2004; Hermans et al. 2000). Effector cells proliferate, with a strong and fast increase
of T cell count, during the so-called expansion phase. For example, for a lymphocytic
choriomeningitis virus infection, effector cell count increases from around 100 cells
specific for the epitope encountered in the spleen of a mouse, up to 107 cells (Antia
et al. 2003; Murali-Krishna et al. 1998). With an Influenza A virus infection in humans,
a peak of virus is observed at 2–3 days post-infection, and effector cells are detected
at 6–14 days post-infection (Baccam et al 2006; Ennis et al. 1981). These observa-
tions give an idea of the time ranges necessary for the beginning of the response, with
pathogen recognition by naive cells, followed by their differentiation in effector cells
and expansion phase. The expansion phase is followed by a cellular contraction where
most of effector cells, about 90% of the population (Murali-Krishna et al. 1998), die
by apoptosis: a programmed cell death. Indeed, contraction phase occurs when infec-
tion seems to be controlled. For instance, effector cells clear the virus in 7–8 days for
lymphocytic choriomeningitis virus infection (Murali-Krishna et al. 1998). With an
Influenza A virus infection, effector cells disappear 21 days post-infection (Baccam
et al 2006; Ennis et al. 1981). During the response, there is also generation of memory
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Mathematical model of the primary CD8 T cell immune response 265

Fig. 1 Schematic representation of the T CD8 immune response mechanisms. Differentiation (of naive
cells into effector cells, and effector cells into memory cells) is represented by thick arrows, proliferation
(of pathogen and effector cells) by dashed arrows, and death by straight lines. Positive feedback controls
are represented by thin arrows. Biological justifications of this scheme are mentionned in the beginning of
Sect. 2, and referenced here by numbers ([1] Antia et al. 2003, [2] Appay and Rowland-Jones 2004, [3]
Kemp et al. 2004, [4] Su et al. 1993)

cells that in numbers amount to 5–10% of the effector population (Antia et al. 2003;
Murali-Krishna et al. 1998). These cells are specific of the antigenic epitope and will
support a faster and stronger response when re-encountering the antigen in the future
(Arpin et al. 2002; Veiga-Fernandes et al. 2000; Wodarz et al. 2000). Different hypoth-
eses are discussed about generation of memory cells. The main hypothesis remains
that memory cells are generated from the differentiation of effector cells, previously
differentiated from naive cells (Appay and Rowland-Jones 2004; Bannard etal. 2009;
Jenkins et al. 2008; Sprent and Surh 2001), see Fig. 1.

In this paper, we are interested in modelling a primary CD8 immune response to an
acute infection, that is to say the pathogen has never been encountered by the organism
before, and the infection does not result in a chronic infection. For the last 10 years,
several models of such an immune response have been proposed. Bidot et al. (2008)
focused on activation of CD4 and CD8 T cells, with description of the dynamics of
the T cell receptor. They modeled the molecular mechanisms involved in activation
and proliferation of T cells, such as production of IL2 and kinetics of expression of
co-receptors on T cells, by ordinary differential equations. Hence, they described the
beginning of the response, when a T cell encounters an antigen-presenting cell. Yet
they did not consider modelling kinetics of a complete population of T cells on the
total duration of the response, with their different states, naive, effector and memory.
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Other works focused on the modelling of the evolution of infected cells, target cells,
and free virus by linear ordinary differential equations. In these models, target cells
become infected by the free virus, which is produced in the infected cells (Baccam
et al 2006; Saenz et al. 2010). Other mechanisms were studied in this type of models,
such as interferon response, effects of a drug and influence of an eclipse phase during
which cells are infected but the virus cannot replicate in these cells (Baccam et al 2006;
Beauchemin et al. 2008). Adams et al. (2005), Perelson (2001) and Wodarz et al. (2000)
considered the same type of mechanisms than Baccam et al (2006), Beauchemin et al.
(2008) and Saenz et al. (2010) but they added equations for immune cells, with either
a unique state or two states, resting and activated. These different models focused
on the virus titer, so that kinetics of immune cells were not considered in detail. The
expansion and contraction phases were not modeled, and there was no study of mem-
ory cells. Let us mention an other model which took into account a large amount of
actors of the immune response, not only virus, target and infected cells, but also den-
dritic cells, CD4 and CD8 T cells, and B cells (Lee et al. 2009). CD8 T cells could be
naive or effector cells in this model, but there was no memory cell. The model focused
in particular on the influence of the presentation of antigen and activation of T cells
by antigen-presenting cells, such as dendritic cells. Lee et al. (2009) also described
migrations of effector cells between tissue and lymphoid compartments with a delay,
effects of a drug, and effects of immune cell depletion.

On the contrary, some authors modeled in detail kinetics of different populations of
CD8 T cells, naive, effector and memory cells, with linear systems of differential equa-
tions. De Boer et al. (2001) proposed two systems of ordinary differential equations. In
the first one, they assumed that CD8 T cell response was only driven by the pathogen
count, hence defining two threshold times, Ton and Toff . The parameter Ton was taken
as a recruitment time, which allowed to not consider explicitly naive cell population,
supposed to become activated at Ton. The period after the time Toff corresponds to the
end of the response, as antigen stimulation is assumed to be insufficient to maintain
proliferation of effector cells after Toff . In the second model, differentiation of T cells
depends on a saturation function of the viral load. Moreover, CD8 T cells were not
supposed to act on the viral load. Naive cells were explicitly modeled, but only their
kinetics of activation were taken into account. However, it seems clear that immune
response is not strictly dependent on pathogen amount, since the end of the response
does not correspond exactly to the elimination of the pathogen (Antia et al. 2003;
Kaech and Ahmed 2001; Stipdonk et al. 2001). It has been observed that even with
a brief pathogen encounter, T cells begin a complete programmed response, with the
different phases of differentiation, proliferation and generation of memory cells. This
process seems to be relevant for efficient generation of memory cells, and protection
against a future infection by the same pathogen. It is also relevant for vaccinations,
for which only one injection may be needed to allow efficient generation of memory
cells. Rouzine et al. (2005) proposed a system of ordinary differential equations, with
a viral load parameter depending on time, given by experimental data. This parameter
modeled influence of the pathogen on the immune response, such as proliferation of
CD8 T cells or activation of antigen presenting cells. Controls between CD8 T cell
differentiation and antigen presenting cell count were also modeled. Kim et al (2007)
proposed a more complex model, which is however difficult to study and to confront
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Mathematical model of the primary CD8 T cell immune response 267

to experimental data, taking into account CD4 and CD8 T cells, antigen-presenting
cells, in the different organs, lymph nodes and tissues, where the response takes place.
It can be noticed that none of these models is formed by nonlinear systems, since
the different biological rates are taken constant, and do not depend on cell population
kinetics.

Here, we will in particular focus on the model of Antia et al. (2003, 2005), which has
inspired our model with its structure in age for effector cell equation. They modeled
a programmed proliferative response of the CD8 T cells after a pathogen encounter,
according to the fact that even with a brief pathogen encounter, a complete response
is initiated. They proposed the following model,

d N

dt
(t) = −bN (t)P(t),

∂y(t, τ )

∂t
+ ∂y(t, τ )

∂τ
= [ρ(τ) − d(τ )]y(t, τ ),

d P

dt
(t) = r P(t)

(
1 − P(t)

c

)
− h P(t)E(t),

with

y(t, 0) = bN (t)P(t),

where N (t) corresponds to the naive T cell number at time t , P(t) corresponds to the
pathogen count, and y(t, τ ) is the effector cell number at time t and age τ . The total
numbers of effector cells E(t) and memory cells M(t) at time t are respectively given
by

E(t) =
τ∗∫

0

y(t, τ ) dτ and M(t) =
∞∫

τ∗
y(t, τ ) dτ.

Parameter b describes the differentiation of naive cells into effector cells, accord-
ing to the mass action law, ρ(τ) is the cell division rate and d(τ ) the apoptosis rate
of effector cells with age τ . The amount of pathogen increases with a rate r , with a
limitation by carrying capacity c, and pathogen is eliminated according to a coeffi-
cient of proportionality h such that death is proportional to pathogen and effector cell
counts. This system is formed with two ordinary differential equations and a linear
age-structured partial differential equation. In this model, one can first notice that the
naive cell population is not supplied, neither continuously nor punctually, by stem
cell differentiation. Only a pool of naive cells is considered which is emptied by T
cell differentiation under the action of the pathogen P(t). Second, memory cells are
produced from “old” effector cells which did not die before reaching the age τ = τ ∗.
Finally, no nonlinear dependency of the different rates is considered, only cell age is
assumed to act on effector cell proliferation and differentiation.

In our current work, we model kinetics of the immune response for the populations
of CD8 T cells described above, naive, effector and memory cells, and kinetics of
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Fig. 2 Model of the T CD8 cell immune response with a distributed delay. Feedbacks were omitted from
the figure for clarity

the pathogen (see Fig. 1). Inspired by Antia et al. (2005), our model is based on a
system with an age-structured partial differential equation for effector cell population
dynamics, and the age represents time since cells have differentiated into effector cells.
However, our system is nonlinear since we consider an other mechanism, the regu-
lation of cell dynamics by feedback controls. These controls describe real biological
influences of a cell population on differentiation, proliferation and death of the other
populations, and on its own fate. For example, the pathogen amount can influence pro-
liferation of effector cells (Appay and Rowland-Jones 2004; Kemp et al. 2004; Kim
et al 2007), while effector cell population regulates itself by killing not only pathogen,
but also immune cells (Guarda et al 2007; Kemp et al. 2004; Su et al. 1993). These
mechanisms influence the kinetics of the expansion and contraction phases and the
switch between these two stages of the response. We consider also that differentiation
of effector cells into memory cells is dependent on effector cell age, increasing with
cell age, as differentiation of an effector into memory cell is progressive (see Fig. 2).
As a result, the two populations can be present at the same time during the response,
which is more realistic than to model a period with only effector cells and then a period
with only memory cells.

In the next section, we present the model, which is formed by three nonlinear
ordinary differential equations and one age-structured partial differential equation.
Then we reduce this age-structured equation to a nonlinear delay differential equation
using the method of characteristics. In Sect. 4, we study existence and uniqueness of
solutions for this system, and we determine steady states of our model. Then, in Sect. 5,
we analyse the local asymptotic stability of these steady states. Our model can be sim-
plified considering the delay as an average time since effector cells have differentiated.
With this modification, we study global asymptotic stability of the system. Finally, we
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illustrate on some numerical simulations how the model is able to reproduce a CD8 T
cell response, before discussing our work in a conclusion.

2 Mathematical model of the CD8 immune response

This section is devoted to the presentation of a mathematical model of the T CD8
immune response to a primary infection. We consider three types of cells involved in
the response, naive T cells, that are resting CD8 T lymphocytes able to react to the
stimulation by an antigen; effector cells, that are antigen-specific cells able to eliminate
infected cells; memory cells, that are resting cells specific of an antigen, generated
during the CD8 immune response. We also consider a pathogen amount. These pop-
ulations interact, so cell fate (here, cell differentiation, proliferation and death) is
strongly controlled by feedback loops. They appear with dependencies in the different
variables for the functions presented below. Hence these dependencies are based on
real biological phenomena, this yields more realistic mechanisms in the model.

We denote by N (t) the naive cell number at time t . These cells are regularly pro-
duced by differentiation of hematopoietic stem cells, with a flow H assumed to be
constant and positive. Naive cells die with a constant rate μN , positive, and differ-
entiate in effector cells with a rate δ(P(t)) which depends on the pathogen amount
denoted by P(t) (Appay and Rowland-Jones 2004).

We denote by e(t, τ ) the effector cell number at time t , with age τ . We consider
a limit τ̄ for effector cell age, at which cells necessarily become memory cells, so
τ ∈ [0, τ̄ ). Effector cells are killer cells which eliminate not only pathogen but also
cells of immune system as soon as they express the antigen and are then recognized
as targets. Hence effector cells die with a rate μE which depends on total effector cell
number (Kemp et al. 2004; Su et al. 1993)

E(t) =
τ̄∫

0

e(t, τ ) dτ, (1)

they proliferate with a rate ρ which depends on pathogen amount P(t) (Appay and
Rowland-Jones 2004; Kemp et al. 2004; Kim et al 2007), and finally, effector cells
differentiate into memory cells with a rate k(τ ) which depends on cell age, in agree-
ment with the hypothesis of a linear model of differentiation, in which cells become
effector before differentiating into memory cells (Appay and Rowland-Jones 2004;
Bannard etal. 2009; Jenkins et al. 2008; Sprent and Surh 2001).

We consider the pathogen amount P(t) at time t . As pathogen may reproduce
within the organism, we denote by I (t) the production rate of pathogen. Later, we will
consider the particular case of a nonproliferating pathogen, as in a vaccine injection
for example, so we will no longer consider the parameter I in the system. Pathogen
is eliminated with a rate μP which depends on the total number of effector cells E(t)
(Antia et al. 2003).

We denote by M(t) the memory cell number at time t . These cells die with a rate μM

assumed to be constant and positive, and are produced by differentiation of effector
cells.
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Cell population numbers N (t), e(t, τ ), M(t) and pathogen count P(t) satisfy the
following system, for t > 0 and τ ∈ [0, τ̄ ):

d N

dt
(t) = H − μN N (t) − δ(P(t))N (t), (2a)

∂e(t, τ )

∂t
+ ∂e(t, τ )

∂τ
= [ρ(P(t)) − μE (E(t)) − k(τ ) ]e(t, τ ), (2b)

d P

dt
(t) = I (t) − μP (E(t))P(t), (2c)

d M

dt
(t) =

τ̄∫
0

k(τ )e(t, τ ) dτ − μM M(t). (2d)

One can note that the term k(τ )e(t, τ ) expresses number of effector cells with age
τ that differentiate in memory cells at time t . Hence, the first term in the right hand
side of Eq. (2d) corresponds to the total number of cells differentiated from effector
to memory cells at time t and these cells supply the memory cell compartment.

System (2) is completed with the following initial conditions:⎧⎪⎪⎨
⎪⎪⎩

N (0) = N0,

e(0, τ ) = e0(τ ), τ ∈ [0, τ̄ ),

P(0) = P0,

M(0) = M0,

with N0 ≥ 0, e0(τ ) ≥ 0, P0 ≥ 0, M0 ≥ 0, and the following boundary conditions:

e(t, 0) = δ(P(t))N (t), t > 0, (3a)

e(t, τ̄ ) = 0, t > 0. (3b)

Boundary condition (3a) describes naive cell differentiation into effector cells due to
the presence of pathogen, whereas condition (3b) describes the fact that all effector
cells have already died or differentiated into memory cells at age τ̄ , so there are no
more effector cells with age τ̄ .

Let us discuss properties of the functions δ, ρ, μE , k and μP defined above. First,
regarding naive cells, we can assume that the more pathogen, the stronger the differ-
entiation of naive into effector cells (Appay and Rowland-Jones 2004), so the function
δ(P) is assumed to be increasing. As it has been observed that cellular expansion is not
completely dependent on pathogen amount (Antia et al. 2003; Kaech and Ahmed 2001;
Stipdonk et al. 2001), the hypothesis that differentiation is not completely dependent
on pathogen is also discussed, but remains a more complex mechanism. Indeed, differ-
entiation of naive cells into effector cells is the main process following the encounter of
the pathogen by naive cells, so differentiation is released by pathogen and seems to be
greatly dependent on its presence. Hence we assume here that, if there is no pathogen,
there is no differentiation of naive into effector cells, so δ(0) is assumed to vanish.

Second, regarding effector cells, the more pathogen, the more effector cell pro-
liferation (Appay and Rowland-Jones 2004; Kemp et al. 2004; Kim et al 2007), so
the function ρ(P) is assumed to be increasing. We also suppose ρ(P) nonnegative,
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for all P . As told above, cellular expansion is not completely dependent on pathogen
amount (Antia et al. 2003; Kaech and Ahmed 2001; Stipdonk et al. 2001). In partic-
ular, the end of the response does not correspond strictly to elimination of pathogen.
Hence we can assume that ρ(0) is positive, that is to say proliferation of effector cells
can occur even if pathogen has been removed. Regarding effector cell death, the more
effector cells, the more important their action of killer cells on their own population
(Guarda et al 2007; Kemp et al. 2004; Su et al. 1993) and the more important the death
rate μE (E), so μE (E) is assumed to be increasing. We also define the natural death
rate of effector cells as a positive constant μ0

E , so that even in absence of cytotoxic
activity, effector cells can die, that is to say μE (0) = μ0

E . This yields μE (E) ≥ μ0
E

for all E . In addition, older cells are more enclined to differentiate in memory cells.
This follows the hypothesis of a linear model of differentiation, in which cells become
effector before differentiating into memory cells (Appay and Rowland-Jones 2004;
Bannard etal. 2009; Jenkins et al. 2008; Sprent and Surh 2001). Hence we suppose
the function k : τ ∈ [0, τ̄ ) �→ k(τ ) positive and increasing on [0, τ̄ ). All effector cells
should have died or differentiated in memory cells at age τ̄ , so we also suppose

τ̄∫
0

k(τ ) dτ = +∞.

Finally, regarding pathogen amount, the more effector cells, the more important
their action of killer cells on pathogen (Antia et al. 2003), so the function μP (E) is
increasing. We also define the natural death rate of pathogen as a positive constant
μ0

P , so that even in absence of effector cells, pathogen is eliminated, that is to say
μP (0) = μ0

P . This yields μP (E) ≥ μ0
P for all E .

System (2) is formed with three nonlinear ordinary differential equations and
one nonlinear age-structured partial differential equation. Contrary to the model of
Antia et al. (2005), these nonlinearities model the regulation of cell dynamics by real
biological feedback controls. As Antia et al. (2005), we consider that differentiation
of effector cells into memory cells is dependent on effector cell age, even though the
dependency is not completely similar.

In the following, we reduce Eq. (2b) to a delay differential equation with a distrib-
uted delay. Thus we will work on a system based on evolution of total number of cells,
in particular for effector cells. Such a reduction is relevant, since total number of cells
corresponds to quantities which can be measured experimentally. Hence the reduced
model will be better confronted with experimental results. We can also notice that
Eq. (2d) describing evolution of memory cells is not coupled with other equations and
its dynamics have no influence on dynamics of the other cell populations. Hence we will
not consider it in the following study and we will only focus on Eqs. (2a), (2b) and (2c).

3 Reduction to a delay differential system

We use the method of characteristics (Webb 1985) to reduce Eq. (2b) to a delay dif-
ferential equation. We integrate Eq. (2b) over the age, with boundary conditions (3),
to obtain:
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d E(t)

dt
= [ρ(P(t)) − μE (E(t))] E(t) + δ(P(t))N (t) −

τ̄∫
0

k(τ )e(t, τ ) dτ, (4)

where E(t) is expressed by (1).
We can explicitly write the term e(t, τ ) in (4) as a function of E(t), N (t) and P(t),

by using the method of characteristics and Eq. (2b). Characteristic curves of Eq. (2b)
are given by

⎧⎪⎨
⎪⎩

dτ

dt
(t) = 1,

τ (0) = τ0, τ0 ∈ R.

We set

v(t) = e(t, τ (t)) = e(t, t + τ0), for t ≥ t0 := max{0,−τ0}.

Then, using Eq. (2b),

dv

dt
(t) = [ρ(P(t)) − μE (E(t)) − k(t + τ0)] v(t).

We solve this equation to obtain

v(t) = v(t0) exp

⎛
⎝

t∫
t0

[ρ(P(s)) − μE (E(s)) − k(s + τ0)] ds

⎞
⎠ ,

where, when τ0 = τ − t > 0,

v(t0) = e0(τ0),

and when τ0 = τ − t ≤ 0, from (3a),

v(t0) = e(−τ0, 0) = δ(P(−τ0))N (−τ0).

Since τ0 = τ − t and using the change of variable s � s + τ − t in the first integral
term, we finally obtain, for t < τ :

e(t, τ ) = e0(τ − t) exp

⎛
⎝

t∫
0

[ρ(P(s)) − μE (E(s))] ds −
τ∫

τ−t

k(s) ds

⎞
⎠,

and for t ≥ τ :
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e(t, τ ) = δ(P(t − τ))N (t − τ) exp

⎛
⎝

t∫
t−τ

[ρ(P(s))−μE (E(s))] ds−
τ∫

0

k(s) ds

⎞
⎠ .

(5)

We deduce the equation satisfied by E(t) depending only on the total counts of
populations E(t), N (t), P(t), from (4),

d E(t)

dt
= [ρ(P(t)) − μE (E(t))]E(t) + δ(P(t))N (t)

−

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

t∫
0

δ(P(t − τ))N (t − τ) exp

⎛
⎝

t∫
t−τ

[ρ(P(s)) − μE (E(s))] ds

⎞
⎠ f (τ ) dτ

+ exp

⎛
⎝

t∫
0

[ρ(P(s))−μE (E(s))] ds

⎞
⎠

τ̄∫
t

e0(τ −t)K (t, τ ) dτ, if 0 ≤ t ≤ τ̄ ,

τ̄∫
0

δ(P(t −τ))N (t − τ) exp

⎛
⎝

t∫
t−τ

[ρ(P(s))−μE (E(s))] ds

⎞
⎠ f (τ ) dτ, if τ̄ ≤ t,

(6)

where f is defined for τ > 0 by

f (τ ) = k(τ ) exp

⎛
⎝−

τ∫
0

k(s) ds

⎞
⎠ ,

and K is defined by

K (t, τ ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

f (τ ) exp

⎛
⎝

τ−t∫
0

k(s) ds

⎞
⎠, if t < τ,

f (τ ), if t ≥ τ.

One can note that f is a density with support [0, τ̄ ].
In Eq. (6), differentiation in memory cells of effector cells with age τ at time t is

expressed by the last term on the right hand side. When t ≤ τ̄ , initial number of cells
e0(τ ) is consumed to generate memory cells, so memory cells are produced both by
differentiation of the initial condition e0(τ ) and differentiation of “new” effector cells
at the same time (this latter event produces the delayed term δ(P(t − τ))N (t − τ)).
However, when t ≥ τ̄ , initial condition is totally consumed and memory cells can
appear only from differentiation of other cells, that is effector cells coming from the
differentiation of naive cells. We can also note that the exponential term acts as a
survival rate, and effector cells differentiate with a distribution f (τ ).
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Finally, N (t), E(t) and P(t) satisfy the following system:

d N

dt
(t) = H − μN N (t) − δ(P(t))N (t), (7a)

d E(t)

dt
= [ρ(P(t)) − μE (E(t))]E(t) + δ(P(t))N (t)

−
t∫

0

δ(P(t − τ))N (t − τ) exp

⎛
⎝

t∫
t−τ

[ρ(P(s)) − μE (E(s))] ds

⎞
⎠ f (τ ) dτ

− exp

⎛
⎝

t∫
0

[ρ(P(s)) − μE (E(s))] ds

⎞
⎠

τ̄∫
t

e0(τ − t)K (t, τ ) dτ, (7b)

d P

dt
(t) = I (t) − μP (E(t))P(t), (7c)

if 0 ≤ t ≤ τ̄ , and

d N

dt
(t) = H − μN N (t) − δ(P(t))N (t), (8a)

d E

dt
(t) = [ρ(P(t)) − μE (E(t))]E(t) + δ(P(t))N (t)

−
τ̄∫

0

δ(P(t−τ))N (t−τ) exp

⎛
⎝

t∫
t−τ

[ρ(P(s))−μE (E(s))] ds

⎞
⎠ f (τ ) dτ,

(8b)
d P

dt
(t) = I (t) − μP (E(t))P(t), (8c)

if τ̄ ≤ t , with initial conditions

N (0) = N0, E(0) = E0 :=
τ̄∫

0

e0(τ ) dτ, P(0) = P0. (9)

In the following, we will mathematically study this system, to verify existence and
uniqueness of solutions and to determine existence and stability of steady states.

4 Existence and uniqueness of solutions and steady states

We now introduce mathematical results for the system (7)–(8). First, we can verify
existence and uniqueness of solutions for this system.

Proposition 1 Suppose that functions μE , δ, μP , ρ are bounded on [0,+∞)

respectively by μ̄E , δ̄, μ̄P , ρ̄. We also suppose they are Lipschitz functions. Finally
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we suppose I ≥ 0 bounded by Ī . For any initial condition (N0, E0, P0) satisfying (9),
system (7)–(8) has only one solution on [0,+∞), denoted by (N (t), E(t), P(t)), and
this solution is bounded.

Proof From Hale and Verduyn Lunel (1993), for each continuous initial condition,
system (7)–(8) has a continuous maximal solution (N (t), E(t), P(t)), well-defined
for t ∈ [0, T ). We can prove that this solution is bounded.

We consider a solution (N (t), E(t), P(t)) of system (7)–(8), defined on [0, T ). We
can suppose that T > τ̄ . Then, it is straightforward, from (8a), that, for all t ∈ [0, T ),

|N (t)| ≤ |N (0)| + H

μN
:= CN .

We have also, integrating (8b) between τ̄ and t ,

E(t) = exp

⎛
⎝

t∫
τ̄

ρ(P(θ)) dθ

⎞
⎠ E(τ̄ ) +

t∫
τ̄

exp

⎛
⎝

t∫
u

ρ(P(θ)) dθ

⎞
⎠ δ(P(u))N (u) du

−
t∫

τ̄

exp

⎛
⎝

t∫
u

ρ(P(θ)) dθ

⎞
⎠ μE (E(u))E(u) du

−
t∫

τ̄

exp

⎛
⎝

t∫
u

ρ(P(θ)) dθ

⎞
⎠

⎡
⎣

τ̄∫
0

δ(P(u−τ))N (u−τ) exp

⎛
⎝

u∫
u−τ

[ρ(P(s))−μE (E(s))] ds

⎞
⎠ f (τ ) dτ

⎤
⎦ du.

We obtain, for all t ∈ [τ̄ , T ),

|E(t)| ≤ (|E(τ̄ )| + α) exp ((μ̄ + ρ̄)(T − τ̄ )),

where

α := δ̄CN

ρ̄

⎡
⎣1 +

τ̄∫
0

exp(ρ̄τ ) f (τ ) dτ

⎤
⎦ .

Finally, from (8c), we get, for all t ∈ [0, T ),

|P(t)| ≤ |P(0)| + Ī exp(μ̄P T )T .
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Hence the solutions (N (t), E(t), P(t)) of the system (7)–(8) are bounded on [0, T )

with

lim
t→T

(N (t), E(t), P(t)) < +∞.

Finally, from Hale and Verduyn Lunel (1993), since the maximal solution of the sys-
tem (7)–(8) is bounded on [0, T ) and limt→T (N (t), E(t), P(t)) < +∞, we conclude
that this solution is global, and we can prove this solution is unique for t ≥ 0. 	


In the following, we take I ≡ 0: we focus on the particular case of a nonprolifer-
ating pathogen, as in a vaccine injection for example. System (8) is now autonomous
and we can study existence and stability of steady states for this system.

A solution (N̄ , Ē, P̄) of system (8) is a steady state if and only if

d N̄

dt
= d Ē

dt
= d P̄

dt
= 0.

So, from (8), (N̄ , Ē, P̄) is a steady state if and only if

(μN + δ(P̄))N̄ = H, (10a)

[
ρ(P̄) − μE (Ē)

]
Ē =

⎛
⎝

τ̄∫
0

exp([ρ(P̄)−μE (Ē)]τ) f (τ ) dτ −1

⎞
⎠ δ(P̄)N̄ , (10b)

μP (Ē)P̄ = 0. (10c)

From (10c), μP (Ē) = 0 or P̄ = 0. Since we supposed that μP (Ē) > 0, then P̄ = 0.
We also supposed δ(0) = 0. Then (10b) becomes:

(ρ(0) − μE (Ē))Ē = 0.

Hence, in a first case, Ē =0. In a second case, μE (Ē)=ρ(0). We assumed μE (E) > 0
for all E and μE is increasing, so there exists a unique E∗ > 0 such that μE (E∗) =
ρ(0) if and only if

μ̄E > ρ(0) > μE (0). (11)

In all cases, we determine N̄ from (10a). Since P̄ = 0 and δ(0) = 0, then N̄ =
H/μN . Finally we obtain the following result,

Proposition 2 If ρ(0) ≤ μE (0), system (8) has a unique steady state, (N̄ , Ē, P̄) =
(H/μN , 0, 0), and if ρ(0) > μE (0), system (8) has two steady states, (N̄ , Ē, P̄) =
(H/μN , 0, 0) and (N̄ , Ē, P̄) = (H/μN , E∗, 0), where E∗ = μ−1

E (ρ(0)) > 0.

We assume the first inequality in (11), μ̄E > ρ(0), is always satisfied. Indeed,
if ρ(0)>μ̄E then proliferation always exceeds apoptosis for effector cells, hence it
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becomes impossible to observe an immune response with its typical contraction phase
and the model’s behavior is not biologically realistic.

From a biological point of view, Proposition 2 indicates that if, in the absence of
pathogens, proliferation rate of effector cells is lower than their natural death rate,
then the only steady state for system (8) corresponds to extinction of effector cell
population. This steady state also exists if, in the absence of pathogen, proliferation
rate of effector cells is greater than their natural death rate. Yet, in this second case, an
other steady state appears, in which effector cell population is still present and does
not completely die out. However, in the two cases, pathogen is completely eliminated
and naive cells remain because of a constant production by hematopoietic stem cells.
We can finally note that, from Eq. (2d) for memory cells M(t), using (5), we obtain,
for t ≥ τ̄ ,

d M

dt
(t) = −μM M(t) +

τ̄∫
0

δ(P(t − τ))N (t − τ)

× exp

⎛
⎝

t∫
t−τ

[ρ(P(s)) − μE (E(s))] ds

⎞
⎠ f (τ ) dτ.

Hence, since P̄ = 0 and δ(0) = 0, a solution M̄ of this equation is a steady state if
and only if

μM M̄ = 0.

This yields that the only steady state for memory cell population is M̄ = 0, which
corresponds to memory cell extinction. It is not a contradiction with generation of
memory cells, useful in a second infection by the same pathogen, because despite
their long-lived property memory cells die like other cells, at a natural death rate
denoted by μM here. Hence, on a long term (asymptotically), memory cells are not
expected to survive.

In the next section, we analyze the local asymptotic stability of the steady states.

5 Local asymptotic stability of steady states

We can now analyze the asymptotic behavior ot the solutions of system (8) by studying
the local asymptotic stability of its steady states. Let (N̄ , Ē, P̄) be a steady state of
system (8), defined in Proposition 2. We assume that all functions in system (8) are
continuously differentiable. The linearized system of (8) around (N̄ , Ē, P̄) is then

d N

dt
(t) = −μN N (t) − δ(P̄)N (t) − δ′(P̄)N̄ P(t),

d P

dt
(t) = −μP (Ē)P(t) − P̄μ′

P (Ē)E(t),
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d E

dt
(t)= [

ρ(P̄)−μE (Ē)− Ēμ′
E (Ē)

]
E(t)+δ(P̄)N (t)+[

Ēρ′(P̄)+ N̄δ′(P̄)
]

P(t)

−
τ̄∫

0

f (τ ) exp
(
(ρ(P̄) − μE (Ē))τ

)
⎡
⎣δ(P̄)N (t − τ) + N̄δ′(P̄)P(t − τ)

+δ(P̄)N̄

0∫
−τ

ρ′(P̄)P(s − t) − μ′
E (Ē)E(s − t) ds

⎤
⎦ dτ, (12)

where we still use, for the sake of simplicity, N (t), E(t) and P(t) instead of N (t)− N̄ ,
E(t)− Ē and P(t)− P̄ . Since P̄ is equal to zero for all steady states, and as we assumed
δ(0) = 0, then δ(P̄) = 0 in (12). The system (12) can be rewritten as

d X

dt
(t) = AX (t) −

τ̄∫
0

g(τ )B X (t − τ) dτ,

where g(τ ) = f (τ ) exp([ρ(0) − μE (Ē])τ ), X (t) = (N (t), E(t), P(t))T , and

A =
⎛
⎝−μN −δ′(0)N̄ 0

0 −μP (Ē) 0
0 Ēρ′(0) + N̄δ′(0) ρ(0) − μE (Ē) − Ēμ′

E (Ē)

⎞
⎠ ,

and

B =
⎛
⎝ 0 0 0

0 0 0
0 N̄δ′(0) 0

⎞
⎠ .

The characteristic equation associated with system (12) is then defined by

det

⎛
⎝λI3 − A +

τ̄∫
0

e−λτ g(τ )B dτ

⎞
⎠ = 0,

where λ ∈ C and I3 is the identity matrix in R
3. After calculations, this equation

reduces to

(λ + μN )(λ + μP (Ē))(λ − ρ(0) + μE (Ē) + Ēμ′
E (Ē)) = 0. (13)

We recall that the steady state (N̄ , Ē, P̄) of (8) is locally asymptotically stable if
all eigenvalues of (13) have negative real parts, and is unstable when eigenvalues with
positive real parts exist (Hale and Verduyn Lunel 1993). All eigenvalues of (13) are
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real, defined by

λ1 = −μN , λ2 = −μP (Ē), λ3 = ρ(0) − μE (Ē) − Ēμ′
E (Ē).

We assumed μN > 0 and μP (E) > 0 for all E , hence λ1 and λ2 are negative whatever
the value of Ē .

By Proposition 2, if ρ(0) < μE (0), then Ē = 0 is the unique steady state, and
λ3,0 = ρ(0) − μE (0) < 0, so the steady state (N̄ , Ē, P̄) = (H/μN , 0, 0) is locally
asymptotically stable.

On the other hand, if ρ(0) > μE (0), then Ē = 0 and Ē = E∗ are the two
possible steady states. In this case, one gets λ3,0 = ρ(0) − μE (0) and λ3,∗ = ρ(0) −
μE (E∗) − E∗μ′

E (E∗). Since ρ(0) > μE (0), we have immediatly λ3,0 > 0, so the
linearised system about Ē = 0 has a positive eigenvalue.

When ρ(0) > μE (0), we have μE (E∗) = ρ(0), hence λ3,∗ = −E∗μ′
E (E∗).

Furthermore, μE (E) is increasing, so μ′
E (E) > 0 for all E , and we finally obtain

λ3,∗ < 0. This yields that when Ē = E∗, all eigenvalues of (13) are negative.
These results lead to the following conclusion on asymptotic behavior of the solu-

tions of system (8).

Proposition 3 The steady state (N̄ , Ē, P̄) = (H/μN , 0, 0) is unstable if ρ(0) >

μE (0), and locally asymptotically stable if ρ(0) < μE (0). The steady state
(N̄ , Ē, P̄) = (H/μN , E∗, 0), which exists only if ρ(0) > μE (0), is locally asymptot-
ically stable.

Biologically, this indicates that if, in the absence of pathogen, proliferation rate of
effector cells is lower than their natural death rate, then effector cells and pathogen go
to extinction, whereas naive cells reach on a long term a steady state. It can be inter-
preted as the end of infection, with a return to a healthy organism. On the contrary, if
proliferation rate of effector cells is greater than their natural death rate, the previous
steady state becomes unstable. Moreover, the new steady state which appears, with
effector cells still present despite elimination of pathogen, is locally asymptotically
stable. It can also be interpreted as the end of infection, because pathogen is also elim-
inated in this case, but with an amount of effector cells which does not disappear. It is
a case less natural than the previous one, in our context of acute infection, in which
specific cells of immune response like effector cells should disappear after elimination
of disease.

When ρ(0) = μE (0), then, for Ē = 0, λ3,0 = 0 is an eigenvalue. From (13), this
eigenvalue is simple, so (N̄ , Ē, P̄) = (H/μN , 0, 0) is locally stable in this case, but
not locally asymptotically stable. Further analysis would be necessary to analyse the
asymptotic stability, yet since this case is unlikely to be biologically realistic, we will
not go deeper in such an analysis.

From system (10) and from characteristic equation calculated above, we have exis-
tence and stability of steady states for the system (8). This result deals with the local
asymptotic stability of system (8) endowed with general initial conditions defined on
the interval [0, τ̄ ]. In the next section, we focus on the global asymptotic stability of
system (7)–(8), that is we endow system (8) with particular initial conditions, described
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Fig. 3 Simplified model of the T CD8 cell immune response with a discrete delay

in system (7), corresponding to the biological situation we aim at modeling. In the fol-
lowing, since above stability and existence results are independent of the nature of the
delay, we simplify the system without losing its properties, considering τ̄ as an average
age at which effector cells differentiate and no more as a limit age (see Fig. 3). In the
delay differential system, we obtain a discrete delay τ̄ in spite of a distributed delay.

6 Global asymptotic stability

As in the previous analysis, we assume I ≡ 0. We modify system (7)–(8) to obtain a
system with a discrete delay. Then we determine an expression of E(t) solution of the
effector cell equation. Thus we obtain a useful expression to study global asymptotic
stability of a steady state of the system, in which effector cells go to extinction after
eliminating pathogen. System (7)–(8) with a discrete delay τ̄ becomes

d N

dt
(t) = H − μN N (t) − δ(P(t))N (t), (14a)

d E

dt
(t) =

[
ρ(P(t)) − μE (E(t))

]
E(t) + δ(P(t))N (t)

− exp

⎛
⎝

t∫
0

[ρ(P(u))−μE (E(u))] du

⎞
⎠ e0(τ̄ −t), if 0≤ t <τ̄, (14b)

d E

dt
(t) =

[
ρ(P(t)) − μE (E(t))

]
E(t) + δ(P(t))N (t)

− exp

⎛
⎝

t∫
t−τ̄

[ρ(P(u))−μE (E(u))] du

⎞
⎠ δ(P(t−τ̄ ))N (t−τ̄ ), if τ̄ ≤ t,

(14c)
d P

dt
(t) = −μP (E(t))P(t). (14d)
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with initial conditions (9). One can note that, contrary to system (7)–(8), the condition

e0(0) = δ(P0)N0

must be added to obtain continuity of the derivative of E for t = τ̄ .
Let (N (t), E(t), P(t)) be the unique solution of (9) and (14). Integrating (14b), for

all t ∈ [0, τ̄ ], we obtain

E(t) = exp

⎛
⎝

t∫
0

[ρ(P(u)) − μE (E(u))] du

⎞
⎠ E(0)

+
t∫

0

⎡
⎣δ(P(s))N (s) exp

⎛
⎝

t∫
s

[ρ(P(u)) − μE (E(u))] du

⎞
⎠

− exp

⎛
⎝

t∫
0

[ρ(P(u)) − μE (E(u))] du

⎞
⎠ e0(τ̄ − s)

⎤
⎦ ds.

Since, from (9), E(0) =
τ̄∫

0

e0(τ ) dτ , and using the change of variable τ = τ̄ − s in

the last term of the equality, we have, for all t ∈ [0, τ̄ ],

E(t) = exp

⎛
⎝

t∫
0

[ρ(P(u)) − μE (E(u))] du

⎞
⎠

τ̄−t∫
0

e0(τ ) dτ

+
t∫

0

δ(P(s))N (s) exp

⎛
⎝

t∫
s

[ρ(P(u)) − μE (E(u))] du

⎞
⎠ ds. (15)

We still denote E(t) the unique solution of (14b)–(14c), given by (15) on the interval
[0, τ̄ ]. We define, for all t ≥ τ̄ ,

V (t) =
t∫

t−τ̄

δ(P(s))N (s) exp

⎛
⎝

t∫
s

[ρ(P(u)) − μE (E(u))] du

⎞
⎠ ds. (16)

From the properties of the different functions δ, ρ, μE , μP , which are supposed con-

tinuously differentiable, the function (t, s) �→ δ(P(s))N (s) exp
(∫ t

s [ρ(P(u)) − μE

(E(u))] du) is continuous with respect to t and s, and differentiable with respect to t ,
so V (t) is differentiable for t ≥ τ̄ . Hence we obtain, for all t ≥ τ̄ ,

dV

dt
(t) = [ρ(P(t)) − μE (E(t))]V (t) + δ(P(t))N (t)

−δ(P(t − τ̄ ))N (t − τ̄ ) exp

⎛
⎝

t∫
t−τ̄

[ρ(P(u)) − μE (E(u))] du

⎞
⎠ .
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And using (14c), for all t ≥ τ̄ ,

d

dt
(V − E)(t) = [ρ(P(t)) − μE (E(t))](V − E)(t),

so, for all t ≥ τ̄ ,

V (t) = E(t) + [V (τ̄ ) − E(τ̄ )] exp

⎛
⎝

t∫
τ̄

[ρ(P(u)) − μE (E(u))] du

⎞
⎠ .

From (16),

V (τ̄ ) =
τ̄∫

0

δ(P(s))N (s) exp

⎛
⎝

τ̄∫
s

[ρ(P(u)) − μE (E(u))] du

⎞
⎠ ds,

and by (15)

E(τ̄ ) =
τ̄∫

0

δ(P(s))N (s) exp

⎛
⎝

τ̄∫
s

[ρ(P(u)) − μE (E(u))] du

⎞
⎠ ds = V (τ̄ ).

So, for all t ≥ τ̄ , V (t) = E(t). We finally obtain an expression of E(t), for all t ≥ 0,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

E(0) =
τ̄∫

0

e0(τ ) dτ,

E(t) = exp

⎛
⎝

t∫
0

[ρ(P(u)) − μE (E(u))] du

⎞
⎠

τ̄−t∫
0

e0(τ ) dτ

+
t∫

0

δ(P(s))N (s) exp

⎛
⎝

t∫
s

[ρ(P(u))−μE (E(u))] du

⎞
⎠ ds, for t ∈ [0, τ̄ ],

E(t) =
t∫

t−τ̄

δ(P(s))N (s) exp

⎛
⎝

t∫
s

[ρ(P(u)) − μE (E(u))] du

⎞
⎠ ds, for t ≥ τ̄ .

(17)

We can note that this is not an explicit expression of E(t), yet it defines E(t) as the
solution of a fixed point problem. This expression is useful to prove that

lim
t→+∞ E(t) = 0,

and we can finally prove the following result.

Proposition 4 The solution (N (t), E(t), P(t)) of system (14), with any non-negative
initial condition (N0, E0, P0) given by (9), converges to the steady state (H/μN , 0, 0).
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Proof First, from (14d), limt→+∞ P(t) = 0. Second, from (14a), since limt→+∞
P(t) = 0 and δ(0) = 0, then limt→+∞ N (t) = H/μN . Finally, we prove that
limt→+∞ E(t) = 0.

By (17), for all t ≥ τ̄ ,

E(t) =
τ̄∫

0

δ(P(t − s))N (t − s) exp

⎛
⎝

s∫
0

[ρ(P(t − u)) − μE (E(t − u))] du

⎞
⎠ ds,

therefore, for all t ≥ τ̄ ,

|E(t)| ≤
τ̄∫

0

δ(P(t − s))N (t − s) exp(ρ̄s) ds.

We assumed δ(0) = 0, this yields

lim
t→+∞

τ̄∫
0

δ(P(t − s))N (t − s) exp(ρ̄s) ds = 0,

which proves that

lim
t→+∞ E(t) = 0.

We proved that for N0 ≥ 0, E0 ≥ 0 and P0 ≥ 0, the solution (N (t), E(t), P(t)) of
system (14) tends to the steady state (H/μN , 0, 0). 	


When we focused on local asymptotic stability of the steady states in Sect. 5, we
studied system (8) endowed with general initial conditions defined on the interval
[0, τ̄ ]. In this general situation, we obtained two steady states whose local asymptotic
stability is dependent on the sign of ρ(0) − μE (0). Above, we focused on the global
asymptotic stability of system (7)–(8), that is we endowed system (8) with the partic-
ular initial conditions described in (7). This particular case really corresponds to the
biological situation of the immune response we want to model. Consequently, the con-
vergence result obtained in Proposition 4 does not depend on the sign of ρ(0)−μE (0),
which may appear, at first, confusing, but only describes a situation in which there
is no other steady state than the trivial one (H/μN , 0, 0), due to the particular initial
conditions considered in the analysis.

Biologically, we have an acute infection which does not destabilize the system
on a long period of time, but only represents a perturbation, ended when pathogen
is eliminated and when other populations come back to a state corresponding to a
healthy organism. Hence, system (7)–(8) is able to correctly reproduce qualitatively a
primary CD8 T cell response to a non-proliferative infection. In the next section, we
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illustrate how this model can reproduce quantitatively the T CD8 kinetics, coherent
with experimental data found in the literature.

7 Simulations

We present here the results of simulations for the model presented in Sect. 6. We use
parameters able to reproduce data found in the literature (Murali-Krishna et al. 1998).
The goal of this approach is to study how the model can reproduce a CD8 T cell
immune response, characterized by its kinetics with the expansion and contraction
phases, generation of memory cells and elimination of pathogen. The parameters used
in simulations are described as follows.

The delay τ̄ is discrete. Only the flow H of naive cells produced from hematopoi-
etic stem cells, death rate of naive cells μN and death rate of memory cells μM are
constant. The death rate of effector cells μE , their proliferation rate ρ, the rate δ of dif-
ferentiation of naive cells into effector cells, and the pathogen death rate μP are taken
as Hill functions, that is, bounded, positive functions, according to their dependencies
on the different populations, and can be denoted

δ(P) = δ1
Pδ2

Pδ2 + δ3
, ρ(P) = ρ0 + ρ1

Pρ2

Pρ2 + ρ3
,

μE (E) = μ0
E + μE 1

EμE 2

EμE 2 + μE 3
, and μP (E) = μ0

P + μP 1
PμP 2

PμP 2 + μP 3
,

where the values of parameters H , μN , μM , constants ρ0, μ0
E , μ0

P , δi , ρi , μE i , μP i
(i = 1, 2, 3), and discrete delay τ̄ are given in Table 1. These values have been deter-
mined to fit correctly the data from Murali-Krishna et al. (1998), but there was no
systematic investigation of parameters to determine the best values able to fit the data.

We use experimental data given by Murali-Krishna et al. (1998), displayed in
Fig. 4. BALB/c mice were infected with lymphocytic choriomeningitis virus. CD8
T cells specific for lymphocytic choriomeningitis virus are counted at days indicated
on Fig. 4, in the spleen of mice. The authors obtain an expansion phase between days
1 and 8 post-infection, from about 4 × 102 cells to 2.8 ± 1.0 × 107 cells at the peak
of response. Then, between days 9 and 20 post-infection, a contraction phase occurs,
during which CD8 T cell population switches from the peak to 1.0 × 106 cells. After
these phases, CD8 T cell population keeps on dying out, but a part of the population is
relatively maintained on a long term. Indeed, about 5.0 × 105 cells remain at day 400,
which is a similar range to cell count at day 30. Hence, from day 30 post-infection,
authors consider that remaining CD8 T cells are memory cells.

Kinetics, experimentally obtained by Murali-Krishna et al. (1998), are reproduced
with the model presented and mathematically studied in Sect. 6. Results obtained from
the model are given in Fig. 4. The total CD8 T cell count, that is N (t) + E(t) + M(t)
with notations of the model, is represented by the continuous line on Fig. 4. The
same characteristic phases and ranges in time and CD8 T cell counts are obtained.
An expansion occurs, with the same ranges than Murali-Krishna et al. (1998) from
103 −104 to 107 −108 CD8 T cells. A contraction follows, during which effector cells
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Table 1 Parameter values for simulations (see Figs. 4, 5, 6) of the model described by system (14)

Biological parameter Associated parameters Value

Flow of naive cells produced from H 10
hematopoietic stem cells (number of
cells per day)

Death rate of naive cells (day−1) μN 0.1

Death rate of memory cells (day−1) μM 10−5

Differentiation rate of naive cells in effector cells (day−1) δ1 0.9

δ2 2

δ3 103

Proliferation rate of effector cells (day−1) ρ0 0.2

ρ1 2.1

ρ2 2

ρ3 102

Death rate of effector cells (day−1) μ0
E 0.2

μE 1 0.9

μE 2 1

μE 3 107

Death rate of pathogen (day−1) μ0
P 0.1

μP 1 0.7

μP 2 2.5

μP 3 104

Discrete delay (days) τ̄ 3.5

die by apoptosis and decrease from 107 to 105 − 106 CD8 T cells. Expansion occurs
between days 1 and 7 post-infection and contraction follows. During the response
against infection, most of the population is made of effector cells, because of their
great differentiation and proliferation rates from a relative small pool of naive cells.
Hence during the expansion and contraction phases of the response, total cell count
is mainly due to contribution of effector cells (represented by the continuous curve
on Fig. 5). After this complete response, as can be observed on Fig. 5, a pool of
105 − 106 cells is maintained on a long period of time, up to 400 days post-infection,
such as in experimental data of Murali-Krishna et al. (1998). In the model, we observe
that generation of memory cells has provided a pool of cells which contributes to
the total T cell count mostly after a long time, as this population is still maintained
400 days post-infection, while effector cell population decreases. Moreover, memory
cell count becomes greater than effector cell count after 30 days post-infection. This
result, dealing with the remaining of memory cells on a long time, is in agreement with
Murali-Krishna et al. (1998) explanation. Indeed, they observed that after expansion
and contraction phases, that is after day 30 in their data, a memory phase starts, where
CD8 T cells still present correspond to a pool of memory cells.

Finally, the model allows to describe not only kinetics for total cell count, but
also kinetics per population, naive, effector and memory (see Fig. 5). Effector and
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Fig. 4 CD8 T cell immune response on 400 days postinfection. Experimental data, represented by circles,
correspond to a response to lymphocytic choriomeningitis virus infection, in BALB/c mice (Murali-Krishna
et al. 1998). The straight line corresponds to simulation of the kinetics of the total CD8 T cell population,
N (t) + E(t) + M(t), described by system (14)
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Fig. 5 Simulation of the model described by system (14) on the first 50 days postinfection (zoom of
Fig. 4 on the first 50 days). The dotted line corresponds to naive cell population kinetic, the straight line to
effector cell population kinetic and the dashed line to memory cell population kinetic
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Fig. 6 Proliferation rate of effector cells (straight line) and death rate of effector cells (dashed line) (day−1)
during the first 50 days of the immune response, illustrated on Fig. 4. Dotted line points out the switch
between the two phases of the response, expansion when proliferation rate of effector cells is greater than
their death rate, and contraction when death rate of effector cells is greater than their proliferation rate

memory counts are the main contributions to the total CD8 T cell population. Naive
cell population, which is at an equilibrium between production from hematopoietic
stem cells and natural death when infection occurs, undergoes a slight decrease during
expansion, because of the great differentiation of these cells into effector cells. Then
naive population almost returns to its steady state during contraction. Pathogen is elim-
inated during the time of expansion and contraction (not shown here), this was expected
since replication of the virus was not taken into account in the model. Information about
the different rates describing evolution of death, differentiation and proliferation of
cells during the phases of expansion and contraction of the immune response was also
obtained. For example, on Fig. 6, proliferation rate of effector cells, which is assumed
to be dependent on pathogen, is at maximum during the first 4 days of the response,
that is during the expansion phase, before the effector cell count reaches a maximum
on days 6–7 postinfection. Then proliferation rate strongly decreases during the con-
traction phase until days 8–9 postinfection, after that effector cell count decreases less
fast and proliferation rate is maintained at its minimum level. The death rate of effector
cells stays low during the beginning of the response, and increases between days 4–6
postinfection when effector cell proliferation is maximum. When effector cell popula-
tion begins to die strongly, during the contraction phase, its death rate decreases, and
is maintained at its minimum level after days 14–15 postinfection. It can be noticed
that proliferation rate is greater than death rate during the first 6 days of the response,
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and when the maximum of effector cell count is reached death rate becomes greater
than proliferation rate, due to the feedback loops included in the model.

8 Discussion

We developed a model of T CD8 immune response to study kinetics of the different
populations of CD8 T cells, naive, effector and memory cells, focusing in particular
on the importance of generation of memory cells from effector cells (see Fig. 1). This
model is based on the model of Antia et al. (2005), with an age-structured system to
take into account effector cell dynamics. Contrary to the model of Antia et al. (2005),
which is linear, in this model we introduced feedback loops to describe interactions
between the different CD8 populations and the pathogen. Hence most of the rates in our
model (differentiation, proliferation and death), are nonlinear. We took into account
the fact that the response is partly independent of pathogen, which means expansion,
with proliferation of effector cells and their regulation, is not completely determined
by the amount of pathogen. Antia et al. (2005) modeled generation of memory cells
with a fixed age considering that below this age, only naive and effector cells are
present in the pool of immune cells, and beyond this fixed age, all cells remaining in
the system are memory cells. In our model, we also consider that differentiation of
effector cells into memory cells is dependent on effector cell age, but differentiation
of an effector cell into memory cell is progressive and the two populations can be
produced at the same time, which seems more realistic. For example, recent studies
deal with memory precursors, which seem to be present with specific markers at the
beginning of the response, eventually as a special effector cell subset, so differentia-
tion of effector cells in memory cells seems to be very progressive and does not begin
only after a fixed time (Appay and Rowland-Jones 2004; Jenkins et al. 2008; Sprent
and Surh 2001).

We reduced this model to a system with a delay differential equation, and stud-
ied basic properties of the solutions. The analysis of existence and local asymptotic
stability of steady states, for the system (8), with general initial conditions on [0, τ̄ ],
brought existence of two steady states. One which leads to extinction of effector cells
always exists and can be locally stable or unstable. It corresponds to the complete reso-
lution of an infection, with on a mid-term, two populations remaining in the organism,
memory cells and naive cells, and asymptotically, only one population, the naive ones.
The second steady state, with a positive state for effector cells, exists only when, in
the absence of pathogen, proliferation rate of effector cells is greater than their natu-
ral apoptosis rate. In this case, this steady state is also locally stable. Finally, results
of local asymptotic stability being independent of the delay, an analysis of global
asymptotic stability was performed, with the system simplified by considering a dis-
crete delay instead of a distributed delay (see Figs. 2–3). This analysis showed that
the system (8) with particular initial conditions (7) on [0, τ̄ ], equivalent to the initial
structured system, always converges towards the healthy steady state. Let us briefly
comment on the existence and stability of the positive steady state of system (8). This
steady state exists (and is stable) under particular conditions, namely that prolifera-
tion of effector cells in the absence of pathogen is larger than their death by apoptosis.
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Moreover, in a “classical” situation, represented by initial conditions (7), this steady
state does not appear. The biological relevance of such a steady state, with persistence
of effector cells but not of memory cells, could be investigated. Apparently, such a
steady state is not observed during a primary infection, although one could think about
a chronic infection, rather than an acute one. However, even during chronic infections
the scenario expansion/contraction with generation of memory cells is preserved and
we found no clue regarding a sustained effector population (Althaus et al. 2007). Con-
sequently, this steady state may be relevant during a secondary immune response,
when the immune system starts to react with levels of effector and memory cells low
but non-zero. This should be further investigated.

This model allows to provide simulations we have confronted with experimental
data (Murali-Krishna et al. 1998), to verify whether kinetics of the different popu-
lations, with expansion and contraction phases and elimination of pathogen, may be
correctly reproduced by the model. The order ranges for total T CD8 population count
and durations of the different phases of the response obtained are coherent, and sim-
ulations also show generation of memory cells and a progressive convergence to the
expected steady state. We obtained, as in experimental data, a CD8 T cell immune
response characterized by expansion and contraction phases on the first 30 days after
infection. This response begins with an expansion phase during approximately 7 days.
This period is characterized by a great increase of CD8 T cell population, multiplied
by 103, because of differentiation of naive into effector, and of effector cell prolifer-
ation. After 8 days post-infection, we observe a contraction phase with a decrease of
the effector cell population, which begins to die while memory cell population is still
maintained, in agreement with the biological experiments (Murali-Krishna et al. 1998).
Hence, the model proposes kinetics for the response of total CD8 T cell population,
but also details about kinetics of the different populations, in particular proportions of
effector and memory cells in the organism according to the time after infection.

In this study, the viral replication was not considered, whereas it actually occurs
in the experimental setting. In order to obtain a more realistic behavior of the model,
one should therefore add the ability for the virus to replicate in the model. It brings
a more complex mathematical analysis but it also adds other biological questions,
such as analyzing if virus replication is dependent on the amount of effector cells,
or not. But before performing other mathematical studies, we have to complete the
present analysis of the model by an experimental work aimed at generating experimen-
tal data and fitting the model to these data. Indeed, what is presented here is almost
exclusively based on the mathematical study of the model. Numerical simulations
performed in Sect. 7 aimed at demonstrating the ability of the model to describe a
“typical” CD8 immune response, without considering a systematic investigation of
parameters. Although our present study brings relevant information on the biolog-
ical problem, particularly regarding the role of feedback responses, we will pursue
the confrontation with experimental data. Such an investigation will be the subject
of a forthcoming paper and will consider different types of nonlinearities, not only
Hill functions as presented in this work. We plan to compare systematically fit errors
between the different choices of nonlinearities to determine their shapes and ranges
of parameter values, needed to correctly reproduce the data. With the same method,
we will also have to validate kinetics of the three sub-populations of T cells. This
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last point requires to generate data which distinguish the different subtypes of T cells
(whether naive, effector/activated, or memory), sampled during the total duration of a
response, which involves massive experimental work. Experimental measurements of
the different rates used in the model (differentiation, proliferation, apoptosis) should
also bring valuable information on the relevance of linear models (De Boer et al. 2001;
Rouzine et al. 2005; Kim et al 2007; Antia et al. 2003, 2005) versus nonlinear models,
like the present one, for the description of the CD8 T cell response.
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