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Abstract Many if not all models of disease transmission on networks can be linked
to the exact state-based Markovian formulation. However the large number of equa-
tions for any system of realistic size limits their applicability to small populations. As
a result, most modelling work relies on simulation and pairwise models. In this paper,
for a simple SI S dynamics on an arbitrary network, we formalise the link between
a well known pairwise model and the exact Markovian formulation. This involves
the rigorous derivation of the exact ODE model at the level of pairs in terms of the
expected number of pairs and triples. The exact system is then closed using two dif-
ferent closures, one well established and one that has been recently proposed. A new
interpretation of both closures is presented, which explains several of their previously
observed properties. The closed dynamical systems are solved numerically and the
results are compared to output from individual-based stochastic simulations. This is
done for a range of networks with the same average degree and clustering coefficient
but generated using different algorithms. It is shown that the ability of the pairwise
system to accurately model an epidemic is fundamentally dependent on the underlying
large-scale network structure. We show that the existing pairwise models are a good fit
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for certain types of network but have to be used with caution as higher-order network
structures may compromise their effectiveness.

Keywords Network · Epidemic · Markov chain · Moment closure

Mathematics Subject Classification (2000) 60J27

1 Introduction

The spread of diseases within a population depends not only on the nature of the
pathogen but also on the way in which infectious individuals come into contact with
susceptible individuals. The network of these contacts provides the supporting struc-
ture on which the disease transmission process takes place. There is a large body of
research examining network epidemic models with the aim of understanding how net-
work properties impact on disease invasion, spread and control (Keeling and Eames
2005). Many different modelling approaches have been proposed, which fall into three
broad classes: exact Markovian or state-based models (Simon et al. 2011), individual-
based stochastic simulation or micro models (Keeling and Eames 2005) and deter-
ministic ODE-based macro models (Sato et al. 1994; Rand 1999; Keeling 1999; van
Baalen 2000). This classification is not application specific and it simply refers to the
scale (e.g. individual level or population level) at which the modelling is being carried
out. The links between state-based, micro and macro models are explored in detail by
Gustafsson and Sternad (2010).

State-based systems, given by the master equation, or Kolmogorov equation, con-
tain information about all possible states of the system along with the associated rates
of transition from one state to another. Solving the resulting set of differential equa-
tions provides a full system description with no need for simulation. This approach
has typically been used for small networks (Keeling and Ross 2008) due to the number
of equations increasing exponentially with system size (e.g. SI S type dynamics on a
network with N individuals results in 2N − 1 equations). With significant increases
in computing power, this approach provides a realistic alternative to individual-based
stochastic simulation of small populations, although we are unable yet to solve a full
state-based set of ODEs for realistic network sizes. For special classes of graphs how-
ever, using the lumping technique discussed by Simon et al. (2011), large reductions
in the system size can be achieved and the state-based models become a viable alter-
native even for large networks. However, for problems involving large networks with
complex structure, individual-based simulation remains the most realistic approach.

The advantages offered by individual-based modelling come at the cost of little
or no analytical tractability. To overcome this problem, ‘moment-closure’ type ODE-
based models have been developed and formulated, offering faster computational time
and more analytical tractability. These differ from classic compartmental-based ODE
models in that the evolution equations for the expected number of individuals involves
the expected number of pairs and higher-order structures. Many such models have
been derived heuristically (Sato et al. 1994; Rand 1999; Keeling 1999; van Baalen
2000; House and Keeling 2010) but recently their direct link to Markovian models
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From Markovian to pairwise epidemic models 1023

has also been highlighted (Simon et al. 2011). These systems are of a tractable size,
however they do not form a closed set of equations since lower moments depend on
higher moments. Much work has been done on deriving moment closure approxima-
tions where the expected number of triples is approximated by a combination of the
expected number of pairs and individuals (Sato et al. 1994; Rand 1999; Keeling 1999;
van Baalen 2000; House and Keeling 2010). This closes the system and leads to a
set of numerically tractable equations. Another approach to modelling epidemics on
networks through a closed set of ODEs uses a probability generating function for-
malism (Volz 2008; Miller 2009), although this has so far only been used for SI R
type dynamics. A recent paper by House and Keeling (2010) presents a review and
summary of many of the current approaches to modelling epidemics on networks.

In this paper, we build on the work of Simon et al. (2011) who rigorously derived
the exact system of ODEs (i.e. Kolmogorov forward equations) corresponding to SI S
type dynamics on an arbitrary graph. Here we start from the same exact formulation
and derive the system of ODEs that describe the dynamics at the level of pairs. We then
provide a new justification for two pairwise closures, one well established (Keeling
1999; Rand 1999) and one that has been recently proposed (House and Keeling 2010),
to approximate this exact system and we test the qualitative performance of these clo-
sures for networks with identical average degree and clustering but generated using
different algorithms. Results from individual-based simulation are compared to those
from the closed pairwise equations and finally, potential extensions to pairwise and
closure models are discussed.

2 Exact formulation of the disease transmission model

The work carried out in this paper is based upon a model describing SI S type dynam-
ics on an arbitrary network with N nodes. Each node is either infected or susceptible
at any one time, and infection and recovery are modelled by two independent Poisson
processes. This follows the exact same formulation used in our previous work (Simon
et al. 2011) and reference should be made to that paper for a rigorous definition of the
model, however, for ease of reference, Table 1 summarises all of the notations used
and defines the modelling framework used in this paper.

Using the notation outlined in Table 1, the evolution of the epidemic in the state
space, S = {S, I }N , can be described by a continuous time Markov-process and the
transitions between different states can be described by the Kolmogorov equations

Ẋ = P X,

with

P =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

B0 C0 0 0 0 0

A1 B1 C1 0 0 0

0 A2 B2 C2 0 0

0 0 A3 B3 C3 0

0 0 · · · · · · · · · 0

0 0 0 0 AN B N

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (1)
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Table 1 Notation for model formulation and parameters

N Number of nodes in the network

G = (gi j )i, j=1,2,...,N ∈ {0, 1}N2
Adjacency matrix with gi j = 1 if node i and j are connected, gi j = 0
otherwise. The network is bi-directional and has no self loops such
that G = GT and Gii = 0 for all i

τ Rate of infection per (S, I ) edge

γ Rate of recovery

S = {S, I }N State space of the network, with nodes either susceptible, S, or
infected, I and |S| = 2N

Sk =
{
Sk

1 , Sk
2 , . . . , Sk

ck

}
The ck = ( N

k

)
states with k infected individuals in all possible

configurations, with k = 0, 1, . . . , N
Xk

j (t) Probability of being in state Sk
j at time t , where k = 0, 1, . . . , N and

j = 1, 2, . . . , ck
Ak

i, j Rate of transition from Sk−1
j to Sk

i , where k = 0, 1, . . . , N and
i, j = 1, 2, . . . , ck . Note that only one individual is changing (i.e. in
this case an S node changes to an I through infection)

Ck
i, j Rate of transition from Sk+1

j to Sk
i , where k = 0, 1, . . . , N and

i, j = 1, 2, . . . , ck . Note that only one individual is changing (i.e. in
this case an I node changes to an S through recovery)

Bk
i, j Rate of transition out of Sk

j , where Bk
i, j = 0 if i �= j , with k =

0, 1, . . . N and i, j = 1, 2, . . . , ck
NAB

(Sk
j

)
Number of (A, B) type edges in state Sk

j , where A, B ∈ {S, I }, with
k = 0, 1, . . . N and j = 1, 2, . . . , ck

where the sub-matrices Ak, Ck and Bk capture all transitions into Sk via infection,
into Sk via recovery and out of Sk via both infection and recovery, respectively. By
utilising the block tri-diagonal form of P , the Kolmogorov equations can be written as

Ẋ k = Ak Xk−1 + Bk Xk + Ck Xk+1, k = 0, 1, . . . , N , (2)

where A0 and C N are zero matrices. A full definition of the roles and derivation of the
Ak, Bk and Ck matrices can be found in Simon et al. (2011), with a brief description
given in Table 1. When manipulating the Kolmogorov equations in later sections, the
properties of the tri-diagonal matrix P are exploited and three features in particular
are often used later on in this paper. These translate into three identities as follows:

ck∑
i=1

Ak
i, j = τ NSI (Sk−1

j ), (3)

ck∑
i=1

Ck
i, j = γ (k + 1), (4)

Bk
i,i = −

ck+1∑
j=1

Ak+1
j,i −

ck−1∑
j=1

Ck−1
j,i . (5)
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From Markovian to pairwise epidemic models 1025

The first result, Eq. 3, implies that the sum of the j th column of sub-matrix Ak is
proportional to NSI (Sk−1

j ), with τ being the constant of proportionality. This can be

intuitively understood by considering that Ak
i, j is the rate of transition from state Sk−1

j

to state Sk
i , which differ only at one node. The particular node that changes from S

to I does it at a rate equal to τ multiplied by the number of I nodes to which it is
connected, in other words, the number of (S, I ) edges with this particular S node as
part of the pair. Thus, the sum of the j th column of Ak accounts for every possibly
transition that could change Sk−1

j to a particular member of the set of states Sk . By

doing so, we are considering the rate at which every S node in state Sk−1
j can become

an I . Hence every (S, I ) link in Sk−1
j is accounted for, leading to the result stated

in Eq. 3. The second result, Eq. 4, is easily understood by considering that there are
k + 1 infected individuals in state Sk+1

j , and each recovers independently at a rate γ ,
leading to Eq. 4. The third result, Eq. 5, ensures that the columns of P sum to zero.
This is necessary, as any transitions into a state must be balanced by transitions out of
a state. Since we are dealing with a closed system, every transition out of a particular
state has to have a destination state, hence Eq. 5 follows. These three properties of P
give us a way to not only link the A, B and C matrices together, as in Eq. 5, but also
allow us to link the matrices with some countable properties of the system, as in Eqs. 3
and 4.

The Kolmogorov equations, a simple system of linear ODEs, can be conveniently
programmed into a code that will automatically generate the transition matrix, P ,
and provide numerical solutions for networks of reasonable size. However, the system
given by Eq. 2 consists of 2N linear differential equations that are impractical to solve,
or cannot be solved, for large N . It is not always necessary, however, to determine
all probability functions, and in many situations, the expected values of the number,
or proportion, of susceptible (S) and infectious (I ) nodes or individuals is equally
valuable. These expected values at time t are denoted by [S](t) and [I ](t) and can be
expressed as follows,

[I ](t) =
N∑

k=0

k
ck∑

j=1

Xk
j (t), [S](t) =

N∑
k=0

(N − k)

ck∑
j=1

Xk
j (t). (6)

It is now necessary to derive evolution equations for [S] and [I ]. This can be done
in an exact way if Eq. 2 is used and the process is illustrated in the next sub-section.
As expected, the evolution equations for the expected values at the individual level
involves knowledge of the expected values at the level of pairs and above. This will
require the derivation of equations for the new variables and doing this in an exact
way is more challenging.

2.1 Exact equations at the level of individuals

The heuristic link between expected values at individual and pair level is well known,
as is the link between the expected values at pair and triple level. Until recently, these
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links had not been formally shown. However Simon et al. (2011), have formalized this
link and used the exact model to prove the following Lemma.

Lemma 1 The expected values [S] and [I ] satisfy the following system

˙[S] = γ [I ] − τ [SI ], (7)
˙[I ] = τ [SI ] − γ [I ]. (8)

This Lemma demonstrates rigorously the direct link between the Markov-process
described by Eq. 2 and the often heuristically justified system described by Eqs. 7–8.
As a first approximation, this system can be closed at the level of pairs by using the
simplest of closing relations [SI ] ≈ [S][I ] which is based on the statistical indepen-
dence of the state of individuals. By using this relation the well known mean-field
model is obtained which, for a fully connected graph, becomes exact in the limit of
large N (Simon et al. 2011).

3 Exact equations at the level of pairs

By using the closure at the level of pairs, the details of the underlying network struc-
ture are lost. As seen in Eqs. 7–8 the number of individuals depends on the number of
pairs (for example an S node can only become an I node if it is part of an (S, I ) pair).
Similarly the number of pairs in the system depends upon the arrangement of different
triples (for example an (S, S) pair changes to an (S, I ) pair due to infection coming
from a third (infected) node acting from outside the pair, an (S, S, I ) triple). The exact
relation between pairs and triples can be formulated in the following Theorem:

Theorem 1 The expected values of [S], [I ], [SI ], [I I ] and [SS] satisfy the following
system of differential equations

˙[S] = γ [I ] − τ [SI ], (9)

˙[I ] = τ [SI ] − γ [I ], (10)

˙[SI ] = γ ([I I ] − [SI ]) + τ([SSI ] − [I S I ] − [SI ]), (11)

˙[I I ] = −2γ [I I ] + 2τ([I S I ] + [SI ]), (12)

˙[SS] = 2γ [SI ] − 2τ [SSI ]. (13)

This is a result that is known and has been previously derived based on heuristic argu-
ments (Rand 1999; Keeling 1999). Simon et al. (2011) postulated that the statement
above can be rigorously proved using arguments similar to those used in the proof of
Lemma 1, but did not give a proof. Here, Theorem 1 is proved by the direct use of
Kolmogorov equations (Eq. 2).
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Proof of Theorem 1
The equations at the individual levels are exact and this has been shown in Simon et al.
(2011). This first part of the proof focuses on the derivation of Eq. 12, where [I I ] is
the expected number of (I, I ) pairs at a given time and is given by

[I I ] =
N∑

k=0

NI I (Sk)Xk, (14)

where NAB(Sk) is a row vector of length ck and denotes the number of (A, B) pairs
in all possible configurations with k infected individuals, i.e.

NAB(Sk) =
(

NAB(Sk
1 ), NAB(Sk

2 ), . . . , NAB(Sk
ck

)
)

.

Similarly, NABC (Sk) refers to the number of (A, B, C) triples. By differentiating
Eq. 14 we obtain that

˙[I I ] =
N∑

k=0

NI I (Sk)Ẋ k =
N∑

k=0

NI I (Sk)(Ak Xk−1 + Bk Xk + Ck Xk+1)

=
N∑

k=1

NI I (Sk)Ak Xk−1 +
N∑

k=0

NI I (Sk)Bk Xk +
N−1∑
k=0

NI I (Sk)Ck Xk+1

=
N∑

k=0

(
NI I (Sk+1)Ak+1 + NI I (Sk)Bk + NI I (Sk−1)Ck−1

)
Xk,

where matrices that are out of range (i.e. A0 and C N ) are zero matrices. The term that
involves Bk in the summation above can be written as

NI I (Sk)Bk = (NI I (Sk
1 )Bk

1,1, . . . , NI I (Sk
ck

)Bk
ck ,ck

),

where (NI I (Sk)Bk) j = NI I (Sk
j )Bk

j, j is the j th component of the NI I (Sk)Bk vector.

Matrices Bk are square and diagonal and are defined in terms of Ak+1 and Ck−1 as
given in Eq. 5. This allows us to write the j th component as

NI I (Sk
j )Bk

j, j = NI I (Sk
j )

(
−

ck+1∑
i=1

Ak+1
i, j −

ck−1∑
i=1

Ck−1
i, j

)
.

Using the definition of matrices A and C as given in Eqs. 3 and 4, the RHS of the
expression above can be written as

NI I (Sk
j )

(
−τ NSI (Sk

j ) − kγ
)

= −τ
(

NI I (Sk
j )NSI (Sk

j )
)

− kγ NI I (Sk
j ).
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This per-component identity can be written in vector form to give

˙[I I ] =
N∑

k=0

(
NI I (Sk+1)Ak+1 − τ

(
NI I (Sk) ∗ NSI (Sk)

)

−γ k NI I (Sk) + NI I (Sk−1)Ck−1
)

Xk (15)

where the ∗ operator stands for the per component multiplication of two vectors as
exemplified below

NI I (Sk) ∗ NSI (Sk) =
(

NI I (Sk
1 )NSI (Sk

1 ), . . . , NI I (Sk
ck

)NSI (Sk
ck

)
)

.

In Eq. 15 the first two terms govern infection and the second two terms govern recov-
ery. These terms can be equated to the appropriate terms in Eq. 12. Indeed if Eq. 12 is
rewritten as

˙[I I ] = −2γ

N∑
k=0

NI I (Sk)Xk + 2τ

N∑
k=0

NI SI (Sk)Xk + 2τ

N∑
k=0

NSI (Sk)Xk,

which is just using the same notation as above, then the proof for the equation gov-
erning the dynamics of [I I ] follows from the identities below:

N∑
k=0

(
−2γ NI I (Sk) + γ k NI I (Sk) − NI I (Sk−1)Ck−1

)
Xk(t) = 0,

N∑
k=0

(
2τ NI SI (Sk) + 2τ NSI (Sk) − NI I (Sk+1)Ak+1 +

(
NI I (Sk) ∗ NSI (Sk)

))

× Xk(t) = 0.

These have to hold for any t > 0 and for all Xk(t)s. This is equivalent to showing
that the coefficients of all terms involving Xk(t) are zero. Upon removing the sum-
mation, the above identities become equalities between vectors of the same size. This
means that the equality must hold for each of the ck elements of the vectors. Thus the
following Lemma has to be verified to complete the proof of the Theorem. ��
Lemma 2 For any k = 0, 1, . . . , N and j = 1, 2, . . . , ck the following identities
hold,

(k − 2)γ NI I

(
Sk

j

)
=

(
NI I (Sk−1)Ck−1

)
j
, (16)

2τ NI SI (Sk
j )+2τ NSI (Sk

j )=
(

NI I (Sk+1)Ak+1
)

j
−

(
NI I (Sk) ∗ NSI (Sk)

)
j

(17)

The proof of this Lemma needs the following two auxiliary Propositions that will be
stated and proved first.
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Proposition 1 For any k = 0, 1, . . . , N and j = 1, 2, . . . , ck we have

A : Ak
j,i �= 0 ⇒ Ck−1

i, j �= 0, for all i = 1, 2, . . . , ck−1, (18)

B :
ck−1∑
i=1

Ak
j,i = τ NI I (Sk

j ), (19)

C : NI SI (Sk
j ) = 1

τ 2

ck+1∑
i=1

Ak+1
i, j (Ak+1

i, j − τ). (20)

Proof

(A) In Eq. 18, Ak
j,i is the rate of moving from the i th arrangement of Sk−1 to the j th

arrangement of Sk . This means that Sk−1
i and Sk

j differ only at one position, say l,

where Sk
j (l) = I and Sk−1

i (l) = S and hence the reverse process is also possible, that

is a transition from Sk
j to Sk−1

i captured by Ck
i, j . Hence, Ak

j,i and Ck−1
i, j are reverse pro-

cesses leading into and out of the same state through infection and recovery. Therefore,
if infection is possible then also recovery can happen and Eq. 18 holds.

(B) Equation 19 gives the total rate of entering Sk
j by infection. This means that for

each of the k infected individuals in Sk
j , there is a corresponding state Sk−1

i that differs

only at one position, say at position l, where Sk
j (l) = I and Sk−1

i (l) = S. The rate at
which such a new infection happens is equal to the number of I neighbours of the S
node at position l multiplied by the individual transmission rate τ . If there are q such
neighbours, giving q (S, I ) pairs given that the S is at position l, then once the infec-
tion has taken place there will be q new (I, I ) pairs. If this is taken into account for
all new infections leading to Sk

j , then the sum of these transition rates gives τ NI I (Sk
j )

and Eq. 19 holds.

(C) Equation 20 gives the relationship between matrices A that govern the infection
process and the number of (I, S, I ) triples. If a node l is in state S and has q neighbours
that are infected then there are q(q − 1) (I, S, I ) triples centered around this S. As
Ak+1

i, j captures the infection rate from Sk
j to Sk+1

i , this is equal to τ multiplied by the
number of I neighbours connected to the susceptible node S that is being infected at
position l. Hence, the number of (I, S, I ) triples centered around this node l is given
by 1

τ 2 Ak+1
i, j (Ak+1

i, j − τ). This allows us to count NI SI (Sk
j ) by summing over all the

ck+1 possible Sk
j to Sk+1

i transitions, giving Eq. 20. ��

Furthermore, based on the arguments above it is straightforward to derive a relation
between the number of (I, I ) pairs in a particular state and the number in a preceding
or succeeding state. Namely, the following two identities hold.
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Proposition 2 For any k = 0, 1, . . . , N and j = 1, 2, . . . , ck we have

NI I (Sk+1
i )Ak+1

i, j =
(

NI I (Sk
j ) + 2

τ
Ak+1

i, j

)
Ak+1

i, j , for all i = 1, 2, . . . , ck+1, (21)

NI I (Sk−1
i )Ck−1

i, j =
(

NI I (Sk
j ) − 2

τ
Ak

j,i

)
Ck−1

i, j , for all i = 1, 2, . . . , ck−1. (22)

Proof We prove the first one, the proof of the second is similar. If the states Sk+1
i and

Sk
j differ at more than one position, then Ak+1

i, j = 0, hence the statement trivially holds.

In the case when the states Sk+1
i and Sk

j differ at one position, then there is a position l,

such that Sk+1
i (l) = I,Sk

j (l) = S, and Sk+1
i (m) = Sk

j (m) for ∀ m �= l. Moreover, we

also require that there ∃ r �= l such that Sk
j (r) = I and glr = 1 (i.e. there is an(S, I )

type edge between the nodes labelled l and r ) to ensure that a transition between the
two states via infection is possible. In this case one can prove that

NI I (Sk+1
i ) = NI I (Sk

j ) + 2

τ
Ak+1

i, j , for all i = 1, 2, . . . , ck+1.

This identity can be understood by considering the transition from Sk
j → Sk+1

i (i.e. a
single susceptible node becoming infected). If a single infection has occurred then the
increase in the number of (I I ) pairs can be calculated by examining the number of I s
or (SI ) links centered around the newly infected node, just before becoming infected.
The number of such (SI ) pairs is proportional to Ak+1

i j and is given by 1
τ

Ak+1
i j . Since,

all the (SI ) links, upon infection, become (I I ) links, and taking into account that (I I )
pairs must be counted twice, the identity follows immediately. ��
These Propositions allow us to prove Lemma 2.

Proof of Lemma 2 The RHS of (16) can be expressed as

(
NI I (Sk−1)Ck−1

)
j
=

ck−1∑
i=1

NI I (Sk−1
i )Ck−1

i, j .

Using Eq. 22, this can be written as

(
NI I (Sk−1)Ck−1

)
j
=

ck−1∑
i=1

(
NI I (Sk

j ) − 2

τ
Ak

j,i

)
Ck−1

i, j

= NI I (Sk
j )

ck−1∑
i=1

Ck−1
i, j − 2

τ

ck−1∑
i=1

Ak
j,i C

k−1
i, j

From Eq. 18 it follows that every non-zero element of Ak multiplies a non-zero ele-
ment of Ck−1. As every non-zero element in a C matrix is γ , each and every non-zero
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element in Ak is multiplied by γ . Hence using (19) and that
∑ck−1

i=1 Ck−1
i, j = kγ (see

Eq. 4), the RHS of Eq. 16 can be written as:

(
NI I (Sk−1)Ck−1

)
j
= kγ NI I (Sk

j ) − 2γ NI I (Sk
j ) = γ (k − 2)NI I (Sk

j ),

which completes the proof of the first part of Lemma 2.
In order to prove the identity given in the second part of Lemma 2, as given in

Eq. 17, let us start from the first term in the RHS of (17). Using (21) and (3) it can be
written as

(
NI I (Sk+1)Ak+1

)
j

=
ck+1∑
i=1

NI I (Sk+1
i )Ak+1

i, j =
ck+1∑
i=1

NI I (Sk
j )Ak+1

i, j + 2

τ

ck+1∑
i=1

(Ak+1
i, j )2

= NI I (Sk
j )

ck+1∑
i=1

Ak+1
i, j + 2

τ

ck+1∑
i=1

(Ak+1
i, j )2

= τ NI I (Sk
j )NSI (Sk

j ) + 2

τ

ck+1∑
i=1

(Ak+1
i, j )2

= τ
(

NI I (Sk) ∗ NSI (Sk)
)

j
+ 2

τ

ck+1∑
i=1

(Ak+1
i, j )2.

This can be rearranged to give the RHS of Eq. 17:

(
NI I (Sk+1)Ak+1

)
j
−

(
NI I (Sk) ∗ NSI (Sk)

)
j
= 2

τ

ck+1∑
i=1

(Ak+1
i, j )2. (23)

However, using Eqs. 20 and (3), Eq. 23 can be rewritten as follows:

(
NI I (Sk+1)Ak+1

)
j
−

(
NI I (Sk) ∗ NSI (Sk)

)
j
= 2τ

(
1

τ 2

ck+1∑
i=1

(Ak+1
i, j )2

)

= 2τ

(
NI SI (Sk

j ) + 1

τ

ck+1∑
i=1

Ak+1
i, j

)

= 2τ NI SI (Sk
j ) + 2

ck+1∑
i=1

Ak+1
i, j

= 2τ NI SI (Sk
j ) + 2τ NSI (Sk

j ),

which completes the proof of the Lemma. ��
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4 Moment closures

The exact system of Eqs. 9–13 that has been derived from the Kolmogorov equation
is not closed, as the dynamics of the pairs depends upon the number of triples in the
system. Either equations for the dynamics of the triples can be written down, but these
would be dependent on the number of four-motifs (House et al. 2009). This hierarchi-
cal dependence can be broken by approximating the number of triple as a function of
pairs and singles.

We assume here that every individual has the same neighbourhood size n (in the
case of networks with heterogeneous degree distribution we obtain an approximation
by taking n to be the real-valued mean degree, which is not rigorously interpretable)
and also define a clustering coefficient φ

n =
∑

j

Gi j ,∀i, φ =
∑

i, j,k Gi j G jk Gki∑
i, j,k Gi j G jk(1 − δik)

∈ [0, 1]. (24)

We will use these two real parameters n, φ in the formulation of different closure
approximations. In the absence of clustering (φ = 0) both approximations we will
consider agree that

[ABC] ≈ n(n − 1)pA|B pC|B, where pA|B := [AB]
n[B] . (25)

This closure implicitly assumes that the disease states of individuals around a node in
state B are given by independent trials, and so neighbourhood types are multinomially
distributed (Dangerfield et al. 2009). However, this assumption breaks down as corre-
lations will develop between the status of neighbouring nodes, as new infections are
bound to be the neighbours of their infectors. This will especially become an issue for
SI S type dynamics as, for example, if the middle node of an [I I I ] triple recovers, it is
likely to quickly become infected again, leading to more [I I ] pairs and [I I I ] triples
than would be expected if the infected nodes were distributed at random. This effect is
further exacerbated when the disease spreads on networks with heterogeneous degree
distributions (Durrett 2007). Furthermore, for the case of clustering, understanding
the implicit assumptions behind different closure methods is much harder. Here, we
present a new motivation of existing moment closure techniques, similar to the classic
statistical approach to clustering of Klotz (1973). This explanation makes it much
easier to see which kinds of network structure are assumed during moment closure,
and how different closures are related to each other.

Our starting point is the correlation matrix between different adjacent dynamical
states, which is equal to unity for homogeneous random mixing

CA,B := N

n

[AB]
[A][B] . (26)

Figure 1 shows the construction used in our closure derivation. We start by noting
that only triples of type [AB I ] need to be closed, and that this can be done in terms
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Fig. 1 Motivation for improved
pairwise closure. Triples of type
[ABI] are counted by
consideration of the
neighbourhood around a typical
[BI] pair. The states
X1, . . . , Xn−1 are chosen in
order, with the presence or
absence of potential transitive
links (red dotted lines) decided
simultaneously as outlined in
Eq. (27) of the main text (colour
figure online)

of the neighbourhood around each [B I ] pair. We consider each of the other n − 1
neighbours of a B in such a [B I ] pair in turn. For each such neighbour Xi , we decide
with probability φ whether it is connected to the I in the [B I ] pair or not. We then pick
its dynamical state, taking into account the correlations between the proposed state
and I if they are connected. Making use of Eq. 26, the fact that Xi state probabilities
have to sum to unity, and provided the identity

∑
a[aB] = n[B] is conserved by the

dynamics (as it was shown to in House and Keeling 2010), our explicit consistent local
assumption is that

Pr(Xi = A) =
{

pA|B with probability (1 − φ),

pA|BCA,I /
(∑

a pa|BCa,I
)

with probability φ.
(27)

Averaging over all neighbourhoods around [B I ] pairs gives the expected number of
relevant triples in the network as

[AB I ] ≈ (n − 1)[B I ]
(

(1 − φ)pA|B + φ
pA|BCA,I∑
a pa|BCa,I

)

≈ (n − 1)

(
(1 − φ)

1

n

[B I ][B A]
[B] + φ

[B A][I A]/[A]∑
a ([Ba][I a]/[a])

)
. (28)

This is the improved closure of House and Keeling (2010), which was originally moti-
vated by its satisfaction of two practical desiderata: the conservation of pair number and
consistent behaviour of [I I I ]-type triples. These properties can now be seen to flow
from the consistent probabilistic neighbourhood-based description of the improved
closure above.

The standard clustered pairwise closure of Rand (1999) and Keeling (1999) can be
recovered by making the assumption

(∑
a pa|BCa,I

) ≈ 1 so that

[AB I ] ≈ n − 1

n

[AB][B I ]
[B]

(
(1 − φ) + φ

N

n

[AI ]
[A][I ]

)
. (29)

This closure has the benefit of significantly reducing the complexity (and hence numer-
ical effort in integration) of the closed set of equations, but since the approximation
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used is logically inconsistent there is the possibility of serious pathologies creep-
ing into numerical results. This possibility partly motivates our comparison below of
both closures against a more comprehensive set of clustered networks than has been
previously considered.

In both the standard and improved closures, the now-explicit assumption made
about clustering is that each transitive link exists with independent probability φ, and
so we would expect networks where transitive links are themselves clustered together
into cliques as in Ball et al. (2010) or unclustered as in Volz (2010) where no triangles
overlap not to give good dynamical agreement with the proposed closures.

5 Simulation versus different moment closures approximations

The pairwise models aim to capture the local or small scale network properties such as
n, the average node degree, and φ, the clustering coefficient by using different moment
closures. However, as shown by Green and Kiss (2010), it is possible to produce net-
works that differ vastly in large scale properties even though the local properties are
identical. In this section, we explore how much of the underlying network structure is
captured by n and φ alone on networks generated by different algorithms by exam-
ining how well the pairwise models given in Eqs. 28 and 29 agree with results from
stochastic simulation.

The network generating algorithms used here are deliberately chosen such that
some agree well with the pairwise ODEs whilst other agree poorly, despite having the
same values of n and φ. This is done in order to demonstrate the limited ability of
these local metrics to accurately describe the full network structure. For each network
generating algorithm 100 distinct networks were produced. Thereafter, 5 realisations
of an epidemic were performed on each, leading to the mean number of individuals,
pairs and triples being averaged over 500 realisations for each family of network. For
all simulations, we set γ = 1 and τ = 0.5 to ensure that an epidemic will break out.
Each network has N = 10,000 nodes, and simulations were synchronously updated.
Initially 5 nodes are chosen at random to be infected. In fact, apart from the networks
themselves, the only differences between the simulations are the parameters n and φ,
with n ∈ {5, 10} and φ ∈ {0, 0.4}.

The first networks explored were generated using the spatial algorithm (Read and
Keeling 2003) whereby nodes are distributed uniformly at random across a

√
N ×√

N
square with the probability of two nodes being connected given by some normal-like
connectivity kernel depending on the distance between them. A second set of networks
were generated by re-wiring the spatial networks using big-V rewiring (Green and Kiss
2010; House and Keeling 2010). This preserves the clustering coefficient and node
degree but removes other forms of structure. A third set of networks were generated
using the group-based algorithm (Newman 2003) which is based on a bipartite graph
where group size and group membership distributions are varied to obtain networks
with different desired properties. A fourth set of networks comes from applying big-V
rewiring to the group-based algorithm. A fifth set comes from an iterative algorithm
proposed by Eames (2007) where triple generation is followed by triangle generation
to obtain the right level of clustering. A final set is generated by unclustering the
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(a)

(b)
Fig. 2 Rewiring methods. a Shows the unclustering rewiring, which will evolve a network towards an
unclustered configuration-model network of the same degree distribution. b Shows the big-V rewiring,
which generates clustering of the type expected to agree with pairwise moment closure

networks generated by the iterative algorithm. Further details of all these algorithms
can be found in Green and Kiss (2010). The rewirings used are shown in Fig. 2, where
(a) shows the unclustering rewiring and (b) shows the big-V rewiring.

The different combinations of n and φ values leads to four versions of each net-
work type. For each of these, the prevalence of infection over time is compared with
the approximations from the two pairwise closures as well as the mean-field model.
Figure 3 shows results for the spatial networks and their reclustered counterparts,
Fig. 4 show results for the group-based networks and their reclustered versions and
Fig. 5 shows results for the iterative networks and their unclustered versions. Both of
the pair approximations agree best with simulation results when n = 10 and φ = 0
regardless of the network and this is in line with previous findings (Keeling 1999;
Simon et al. 2011). In this case, even the mean-field approximation provides a good
fit even though n << N . The figures show that reducing n or increasing φ reduce the
goodness of fit between the moment closure approximations and the simulation results
for all networks, although the amount they differ depends on the network generating
algorithm.

The networks that show the worst fit for the moment closures are the group-based
networks when n is low and φ is high, as seen in Fig. 4b. Here the epidemic picks
up much quicker than predicted even by the mean-field approximation but the final
epidemic size is much smaller. This is a result of the algorithm producing high degree
heterogeneity with many nodes remaining unconnected for higher values of φ, as
shown by Green and Kiss (2010). Indeed for all four combinations of n and φ there is
negligible difference between the results on the standard group-based networks and
those on their reclustered counterparts. For these group-based networks φ has a more
important role than n in determining whether or not the pairwise approximations are
in good agreement with simulations. Another interesting feature of the group-based

123



1036 M. Taylor et al.

0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

(a) (b)

(c) (d)
Fig. 3 Infection prevalence time series for networks generated using the spatial algorithm along with
results given by moment closure equations. In all plots N = 10,000, τ = 0.5 and γ = 1 with varying n and
φ. The solid black line is for simulation results from the spatial algorithm and the black dashed line is for
simulation results from the same spatial algorithm but with the networks reclustered using big-V rewiring.
The red line is the mean-field approximation, the blue line is the ordinary pairwise approximation (OPA)
and the green line is for the improved pairwise approximation (IPA). In the cases where φ = 0 the OPA
and IPA coincide (colour figure online)

networks is the limited impact of the big-V rewiring on the underlying structure, as
this simply rearranges the links within the existing groups and will not change the way
the two groups are linked together.

The somewhat simpler and more straightforward iterative algorithm shown in Fig. 5
shows good qualitative agreement between the simulations and ODEs, with the ODEs
overpredicting the initial growth in all cases but with agreement becoming good for
increasing n. Unclustering these networks returns simulation results that are simi-
lar to those seen in the cases where φ = 0 and this provides a good check for the
effectiveness of the unclustering algorithm.

The most interesting case is for networks generated by the spatial algorithm as
shown in Fig. 3. Here the ODEs overpredict final epidemic size in all cases, but not
by a significant amount. For the cases with φ > 0 the initial growth of the epidemic
is much slower than predicted by the ODEs, especially when n = 5. This type of
network, however, responds very well to being reclustered using big-V rewiring. The
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Fig. 4 Infection prevalence time series for networks generated using the group-based algorithm along
with the results given by moment closure equations. In all plots N = 10,000, τ = 0.5 and γ = 1 with
varying n and φ. The solid black line is for simulation results from the group-based algorithm and the black
dashed line is for simulation results from the same group-based algorithm but with the networks reclustered
using big-V rewiring. The red line is the mean-field approximation, the blue line is the ordinary pairwise
approximation (OPA) and the green line is for the improved pairwise approximation (IPA). In the cases
where φ = 0 the OPA and IPA coincide (colour figure online)

difference in agreement for the standard networks and their reclustered counterparts
when φ > 0 is very large, showing that there is much underlying network struc-
ture generated by the spatial algorithm that is not captured by n and φ. There are
remarkable differences between the results from these two networks, as seen in
Figs. 3b and 3d, and these show the importance of large scale spatial structure in
determining how an epidemic can invade. The goodness of agreement is directly
linked to the capability of the pairwise models to correctly describe the pair dynam-
ics. This is captured in Fig. 6 that shows the correlations, CSI , and the normalised
expected number of [I I ] and [SI ] pairs. It can be seen that the rewired networks
display much better agreement in both the growth of pairs and CSI when comparing
pairwise approximations to simulation results. This shows that the big-V rewiring has
successfully removed higher level structure, and in this case, the pairwise closures
correctly capture the evolution of correlations and pairs.
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Fig. 5 Prevalence time series for networks generated using the iterative algorithm along with the results
given by moment closure equations. In all plots N = 10,000, τ = 0.5 and γ = 1 with varying n and φ.
The solid black line is for simulation results from the iterative algorithm and the black dashed line is for
simulation results from the same iterative algorithm but with the networks unclustered. The red line is the
mean-field approximation, the blue line is the ordinary pairwise approximation (OPA) and the green line
is for the improved pairwise approximation (IPA). In the cases where φ = 0 the OPA and IPA coincide
(colour figure online)

The performance of pairwise models does not depend solely on the structure of the
network but also on the dynamics (e.g. SI S, SI R, SI T S, where T stands for tracing
triggering individuals) that unfold on the network. For example, House and Keeling
(2010), show that for contact tracing models, the OPA does not account correctly for
the evolution of triangles with three infected individuals and this can lead to skewed
outcomes and they went on to address this via the IPA. In Fig. 7 we show that for sim-
ple SI S dynamics the IPA captures the initial growth of [I I I ] triples much better than
the OPA. This difference is emphasised when the values of the pairs and singles that
constitute the two different closures are taken directly from the simulation. Figure 7a
shows this difference most dramatically, with the OPA predicting a much more rapid
early growth of these [I I I ] triples, whereas the IPA describes their actual evolution
with a much higher degree of accuracy. However, the failure of the OPA to correctly
capture the evolution of [I I I ] triples does not translate to a significant difference in
the time evolution of the prevalence (see Fig. 3) but as House and Keeling (2010)
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Fig. 6 Figures a and c show time series for the correlation CSI as defined in Eq. 26. Figures b and d
show time series for proportion of pairs that are (S, I ) (circles) and (I, I ) (triangles). In all plots N =
10,000, τ = 0.5 and γ = 1. The solid black line is for simulation results from the spatial algorithm and the
black dashed line is for simulation results from the same spatial algorithm but with the networks reclustered
using big-V rewiring. The blue line is the ordinary pairwise approximation (OPA) and the green line is for
the improved pairwise approximation (IPA) (colour figure online)

point out, the evolution of these triples becomes important when more complicated
dynamics, e.g. SI T S, are playing out on the networks. The evolution of all other triples
is much better approximated by both the OPA and IPA and moreover, as noted before,
the big-V rewiring successfully removes higher level network structure and leads to an
overall better agreement between all approaches. Thus, these observations highlight
the importance of considering both network structure and the particular dynamics
when deriving macro-ODE models.

6 Discussion

The main result of the paper is the identification of the direct link between the
Markovian formulation of an SI S type epidemic on a network and the ODE system that
governs the dynamics of pairs. The key to the proof was provided by the special tri-diag-
onal structure and properties of the transition matrices from the Kolmogorov equations.
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Fig. 7 Showing [I I I ] triples counted in different ways for n = 5, 10 and φ = 0.4 on spatial networks and
their big-V rewired counterparts. The grey cloud shows actual counts of (I − I − I ) triple from individual
stochastic realisations. The blue and green line show [III] calculated using the OPA given by Eq. 29 and
the IPA given by Eq. 28 respectively with both using pair and individual values from solving the macro
ODE system (Eqs. 9–13). The red and black lines show the OPA and IPA respectively, but with values for
individuals and pairs as averages from the stochastic simulation (colour figure online)

The resulting system of ODEs is well known, having been derived heuristically before,
but here the link to the state based Markovian formulation is rigorously demonstrated.
This macro model is exact at the level of pairs but is not a closed system. We have
used two different moment closures approximations and compared results from these
ODEs to those from the micro modelling process of individual-based simulations. The
results reveal that moment closures heavily rely on exploiting local network structure
and for networks where higher order structure is present the agreement breaks down.
We have shown that using a special rewiring technique, that removes higher-order or
large-scale structure while keeping local properties unchanged, improves the agree-
ment between micro and macro models significantly for certain types of network but
has little effect on certain others.

Our analysis shows that large-scale network structure plays a crucial role when
deriving moment closure approximations. Existing closures often rely on local network
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properties alone and perform poorly in accounting for larger scale features. However,
much progress has been made in accounting for properties such as node degree and
degree distribution heterogeneity (Eames and Keeling 2002; Kiss et al. 2006), pref-
erential mixing (Eames 2006; Kiss et al. 2009), clustering (Eames and Keeling 2003)
and even directed or weighted edges (Sharkey 2008). While most of these models rely
on some form of pairwise closure, there is scope for better understanding and justifi-
cation of the approximations used, as well as working towards a unifying framework
for such approximation models.

This paper shows that it is worthwhile to consider alternative custom-made closures
for different networks, and to do this, it may be necessary to incorporate non-local net-
work properties especially when local network metrics such as n and φ fail to capture
the key network features. For example, Green and Kiss (2010) use network measures
other than n and φ to investigate the correlation between simulation results and non-
local network metrics. An alternative approach may rely on higher order motifs, such
as quadruples (House et al. 2009), and accounting for these could lead to improved
approximation models. One of the key challenges for generating valid and accurate
moment closure approximations is to account for the dependence of the state of a node
on the state of neighbouring nodes, and the correlations that arise as a result. Indeed
these dependencies will act on a larger scale than simply a node’s immediate neigh-
bours, so the challenge of finding appropriate closures may be very difficult. Such
approaches, at least in the initial stages of development, will rely on generating theo-
retical toy networks that can be used to assess the goodness of the approximations. If
these novel approximations will only yield satisfactory results for specific networks,
their practical benefits will be small but could form the building blocks to develop
models that are valid for larger or more realistic sets of networks. It is clear that only
by understanding the fundamental structures that underpin any network can moment
closure techniques be confidently used to model dynamical processes on networks.
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