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Abstract We consider evolutionary game dynamics in a finite population of size N .
When mutations are rare, the population is monomorphic most of the time. Occa-
sionally a mutation arises. It can either reach fixation or go extinct. The evolutionary
dynamics of the process under small mutation rates can be approximated by an embed-
ded Markov chain on the pure states. Here we analyze how small the mutation rate
should be to make the embedded Markov chain a good approximation by calculat-
ing the difference between the real stationary distribution and the approximated one.
While for a coexistence game, where the best reply to any strategy is the opposite
strategy, it is necessary that the mutation rate μ is less than N−1/2 exp[−N ] to ensure
that the approximation is good, for all other games, it is sufficient if the mutation rate is
smaller than (N ln N )−1. Our results also hold for a wide class of imitation processes
under arbitrary selection intensity.
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804 B. Wu et al.

1 Introduction

For evolutionary dynamics in finite populations with mutations, one can think of the
evolutionary dynamics on two time scales. In the short run, what is the likelihood that
a single mutant or a group of mutants takes over a population? If there is a single A
type individual in a population of type B, the probability of fixation of A is termed φA.
This quantity has been analytically characterized in population genetics (Crow and
Kimura 1970; Karlin and Taylor 1975; Ewens 2004) and has more recently also been
applied to evolutionary games (Nowak et al. 2004; Taylor et al. 2004; Fudenberg and
Imhof 2006; Nowak 2006; Ohtsuki et al. 2006; Traulsen et al. 2006; Chalub and Souza
2009). On a longer time scale, one can address the average abundance of the available
strategies over time (Antal et al. 2009a,b,c; Tarnita et al. 2009). Fudenberg and Imhof
(2006), following the work of Foster and Young (1990); Fudenberg and Harris (1992)
and Kandori et al. (1993), have developed an approach to deal with this issue. For
small mutation rates, the time required for a mutation to occur is much larger than
that required for fixation itself. Thus there are at most two strategies in the popula-
tion simultaneously most of the time. In this case the original stochastic evolutionary
process can be approximated by an embedded Markov chain on those states where
the population is homogeneous for one strategy. The probability of transition from
one homogenous population to another is the corresponding mutation rate multiplied
by the fixation probability of the mutant strategy. For simplicity, we assume that all
mutation rates are identical.

In particular, when there are only 2 types of strategies, A and B, the 2 × 2 payoff
matrix is given by

( A B

A a b
B c d

)
, (1)

where, a is the payoff of A against A, b is the payoff of A against B, c is the payoff of
B against A, and finally, d is the payoff of B against B. In a well mixed population,
an individual interacts with all other individuals with the same probability. A special
case would be b = c. In this case, one can interpret the game as the interaction of two
alleles A and B at a diploid locus (Crow and Kimura 1970; Hofbauer and Sigmund
1998; Bürger 2000; Cressman 1992; van Veelen 2007). Excluding self interactions,
the average payoff for each individual of each strategy is given by

πA(i) = a
i − 1

N − 1
+ b

N − i

N − 1
and (2)

πB(i) = c
i

N − 1
+ d

N − i − 1

N − 1
. (3)

Here, i is the number of individuals playing strategy A. Since often the payoff differ-
ence is of interest, we substitute πA(i) − πB(i) by ui + v, where u = a−b−c+d

N−1 and

v = N (b−d)−a+d
N−1 .
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How small are small mutation rates? 805

In this case, the pure population states are ‘All play A’ and ‘All play B’. The tran-
sition probability from ‘All play A’ to ‘All play B’ is the mutation rate μ times the
fixation probability of strategy B, φB (Goel and Richter-Dyn 1974; Nowak 2006).
In analogy to this, the transition probability from ‘All play B’ to ‘All play A’ is the
mutation rate μ times the fixation probability of strategy A, φA. Thus, the stationary
distribution for this Markov chain is

(
φA

φA + φB
,

φB

φA + φB

)
(4)

The first element is the average proportion of time spent in state “All play A” while
the second element is the average proportion of time spent in state “All play B”. This
approach opens up a way to analytically investigate the evolutionary dynamics under
mutation, selection and drift provided the mutation rate is sufficiently small (Imhof
et al. 2005; Hauert et al. 2007; Van Segbroeck et al. 2009; Wang et al. 2010; Sigmund
et al. 2010). However, how small do the mutation rates have to be? Numerical simu-
lations and time scale separation analysis show that μN 2 � 1 ensures the validity of
the approach if the game does not show any stable coexistence (Antal and Scheuring
2006; Hauert et al. 2007; Traulsen et al 2009). However, time scale arguments are often
viewed as intuitive tools from physics and are hard to cast into the form of a mathe-
matical proof. Moreover, they do not provide a precise bound for the mutation rate.

Here, by perturbation analysis, we analytically investigate how small the mutation
rate must be to make this embedded Markov chain a good approximation of the original
one. To this end, we use the total variation distance of probability measures to mea-
sure the quality of the approximation of the stationary distribution. For simplicity, we
employ the Fermi process (Blume 1993; Szabó and Tőke 1998; Traulsen et al. 2006),
a specific yet widely used imitation process. We show that for all games except for
the coexistence game, it is sufficient that the mutation rate is smaller than (N ln N )−1

to ensure that the approximation of small mutation rates is good, i.e. μN ln N � 1.
For a coexistence game, however, it is necessary that the mutation rate μ is less than
N−1/2 exp[−N ]. Our result is not only valid for the Fermi process, but also for other
imitation processes with continuous derivative of the imitation function (Wu et al.
2010) as well as for the Moran process with different fitness mappings (Traulsen et al
2008; Wu et al. 2010). For any birth death processes with mutations, we also provide
a numerically accessible quantity to determine how small the mutation rate should be
to make the approximation good.

2 The Fermi process with mutations

The Fermi process is a particular birth-death process used to model evolutionary game
dynamics in a finite population. In each time step, a random individual is selected. With
probability μ < 1/2, a mutation or exploration event occurs and the focal individual
chooses the opposite strategy. With probability 1 − μ, no mutation occurs. In this
case, the focal individual compares its payoff to another randomly chosen individual.
If the focal player is playing A and the other plays B, then the focal player adopts the
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806 B. Wu et al.

strategy of the other player with probability

1

1 + exp [+β (πA(i)− πB(i))]
(5)

where β is the intensity of selection. For small β, selection is weak and strategy
changes occur almost at random. For large β, only strategies with higher payoff are
adopted. Let i be the number of strategy A individuals in the population. Then the
transition probabilities from i to i ± 1, T ±

i , are given by

T +
i = (1 − μ)

i

N

N − i

N

1

1 + exp [−β(πA(i)− πB(i))]
+ μ

N − i

N

T −
i = (1 − μ)

i

N

N − i

N

1

1 + exp [+β(πA(i)− πB(i))]
+ μ

i

N
. (6)

The probability to stay in state i is 1 − T +
i − T −

i .
When the mutation rate is nonzero and β is finite, this Markov process has no

absorbing states. Our birth-death process satisfies the detailed balance condition

ψ j−1T +
j−1 = ψ j T

−
j for 1 ≤ j ≤ N (7)

whereψ j is the probability that the system is in state j (Kampen 1997; Gardiner 2004;
Claussen and Traulsen 2005). The stationary distribution is given by (see Appendix A)

ψ j =
T +

0
T −

j

∏ j−1
i=1

T +
i

T −
i

1 +∑N
k=1

T +
0

T −
k

∏k−1
i=1

T +
i

T −
i

, 1 ≤ j ≤ N , (8)

where the empty product is one,
∏0

i=1
T +

i

T −
i

= 1. For j = 0, we have

ψ0 = 1

1 +∑N
k=1

T +
0

T −
k

∏k−1
i=1

T +
i

T −
i

. (9)

For μ → 0, we obtain T +
0 = μ = T −

N → 0 and thus ψ0 →
(

1 +∏N−1
i=1

T +
i

T −
i

)−1

. On

the other hand, the numerators of Eq. (8) approach zero for 0 < j < N due toμ → 0.
Thusψ j approach zero asμ → 0 for 0 < j < N . Considering the normalization con-
dition,

∑N
j=0 ψ j = 1, we haveψN → 1−ψ0. Therefore, the ratio betweenψ0 andψN

is ψ0
ψN

= ∏N−1
i=1

T +
i

T −
i

. Since
∏N−1

i=1
T +

i

T −
i

= φB
φA

(Nowak 2006), this recovers Eq. (4).
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How small are small mutation rates? 807

3 Estimating the error in the approximation of the stationary distribution

For our Markov chain, all possible stationary distributions form a set S denoted by

S = {(ψ0, ψ1 · · ·ψN ) |ψi ≥ 0,
N∑

i=0

ψi = 1}. (10)

We follow Durrett (1996) (See also Brémaud 1999; Kallenberg 2002; Levin et al.
2009) to define a measure for the similarity of two such distributions.

Definition Let z = (z0, z1 · · · zN ) and w = (w0, w1 · · ·wN ) ∈ S be two distribu-
tions. The total variation distance dT V (z, w) between v and w is defined by

dT V (z, w) = 1

2

N∑
i=0

|zi − wi | (11)

In particular, two distributions are identical if and only if the total variation distance
between them is zero. If they are maximally different, we have dT V (z, w) = 1. We use
this total variation distance as a measure for the quality of the approximation based
on the embedded Markov chain described above.

As discussed above, we have from Eqs. (8) and (9)

lim
μ→0

ψ0(μ) = φB

φA + φB

lim
μ→0

ψi (μ) = 0 for 0 < i < N

lim
μ→0

ψN (μ) = φA

φA + φB
(12)

This is consistent with the approach of Fudenberg and Imhof (2006), Eq. (4), which
can be viewed as a zeroth order term of an approximation for small mutation rates.

Up to first order, ψ j (μ) can be approximated by

ψ j (μ) ≈ ψ j (0)+ d

dμ
ψ j (0)μ. (13)

Our goal is to show under which circumstances the second term can be neglected
compared to the first one. Based on Eqs. (8) and (9), we can address the derivative in
Eq. (13) (See Appendix B.1), which involves the terms

d

dμ
ψ0(μ)|μ=0 = − (ψ0(0))

2 (C1 + C2) (14)

d

dμ
ψ j (μ)|μ=0 =

⎛
⎝ 1

T −
j

j−1∏
i=1

T +
i

T −
i

⎞
⎠
∣∣∣∣∣∣
μ=0

ψ0(0), 0 < j < N , (15)
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where

C1 =
(

N−1∑
k=1

1

T −
k

k−1∏
i=1

T +
i

T −
i

)∣∣∣∣∣
μ=0

(16)

=
N−1∑
k=1

N 2 {1 + exp [(uk + v) β]}
k(N − k)

exp
[(u

2
(k − 1)2 +

(u

2
+ v

)
(k − 1)

)
β
]

(17)

and

C2 = d

dμ

(
N−1∏
i=1

T +
i

T −
i

)∣∣∣∣∣
μ=0

(18)

= N exp

[(
N − 1

2
(uN + 2v)

)
β

]
exp[−vβ] (1 − exp [(uN + 2v)β])

×
N−1∑
i=1

exp [−uiβ]

i
(19)

Here, we have replaced πA(i)−πB(i) by ui +v. The normalization of the distribution,∑N
j=0 ψ j = 1, is determined by the zeroth order term, cf. Eq. (12). Thus, we have∑N
j=0

d
dμψ j = 0, which implies

d

dμ
ψN (μ)|μ=0 = −

N−1∑
j=0

d

dμ
ψ j (μ)|μ=0 (20)

We emphasize that Eqs. (14), (15), (16), (18), and (20) are valid for all the birth
death processes with mutations. Equations (17), (19) are the special cases obtained by
substituting the transition probabilities for the Fermi process, Eqs. (6).

In the following, we denote ψ(μ) = (ψ0(μ), . . . , ψN (μ)) and ψ(0) =
limμ→0 ψ(μ). Next, we state our main theorem.

Theorem Assume that the population size N is sufficiently large compared
to the product of the selection intensity β and the payoff entries in Eq. (1).
Evolutionary game dynamics is given by the Fermi process described above.
Given an arbitrary ε > 0, for all games with a > c or d > b there exists a

μ∗ = ε/G1(N ), with G1(N ) of the order of N ln N, such that if the mutation
rate fulfills μ < μ∗, then dT V (ψ(μ),ψ(0)) < ε.
For games with a < c and d < b, however, there exists μ∗ = ε/G2(N ), where
G2(N ) is of order

√
N exp[N ], such that if dT V (ψ(μ),ψ(0)) < ε thenμ < μ∗.

For the proof of this Theorem, we have to infer when the total variation between
the distribution with and without mutation is smaller than ε. By Eqs. (11) and (13),
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we have

dT V (ψ(μ),ψ(0)) = 1

2

[
N∑

i=0

|ψ ′
i (0)|

]
μ (21)

Replacing ψ ′
N (0) by Eq. (20) leads to

dT V (ψ(μ),ψ(0)) = 1

2

[
N−1∑
i=0

|ψ ′
i (0)| + |

N−1∑
i=0

ψ ′
i (0)|

]
μ

≤ 1

2

[
N−1∑
i=0

|ψ ′
i (0)| +

N−1∑
i=0

|ψ ′
i (0)|

]
μ

=
N−1∑
i=0

|ψ ′
i (0)|μ (22)

First, note that ψ ′
i (0) > 0 for i = 1, . . . , N − 1, cf. Eq. (15). Thus, we have

N−1∑
i=1

|ψ ′
i (0)| =

N−1∑
i=1

ψ ′
i (0)

=
(

N−1∑
i=1

1

T −
i

i−1∏
k=1

T +
k

T −
k

)
|μ=0ψ0(0)

= C1ψ0(0). (23)

On the other hand, we have

|ψ ′
0(0)| = (ψ0(0))

2 |C1 + C2| (24)

Taking Eqs. (23) and (24) into Expression (22) as well as considering ψ0(0) ≤ 1
leads to

dT V (ψ(μ),ψ(0)) ≤ (|C1 + C2|ψ0(0)+ C1) ψ0(0)μ (25a)

≤ (|C1 + C2| + C1) μ (25b)

C1 is positive as seen directly from the definition Eq. (17). For C2, it is positive
when uN + 2v < 0 and it is negative otherwise. However, for the game fulfilling
uN + 2v > 0, we can look at a transformed game in which A and B are exchanged.
This leads to ũ = u and ṽ = (N (c − a)− d + a)/(N − 1). Using v+ ṽ = −ũN leads
to ũN +2ṽ < 0. Since the exchange of strategies does not affect our general result, we
thus always consider the game satisfying uN + 2v < 0. In this case, both C1 and C2
are positive, yielding

dT V (ψ(μ),ψ(0)) ≤ (2C1 + C2) μ (26)
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Thus, the scaling of 2C1 + C2 with N allows us to assess how the total variation
distance scales with N . For games except for the coexistence game, i.e. for a > c or
for b < d in Eq. (1), we can derive an upper bound for the mutation rate: 2C1 + C2
is smaller than a quantity G1(N ) of order N ln N for large N (See Appendices B.2.1
and B.2.2). Hence, we have dT V (ψ(μ),ψ(0)) ≤ G1(N )μ. For any ε > 0, we define
u∗ = ε/G1(N ) and whenever u < u∗, the error we are making when considering the
stationary distribution without mutations instead of the one with mutations is smaller
than ε, dT V (ψ(μ),ψ(0)) < ε. Since we can specify an upper bound for u∗, the con-
dition is sufficient.

For the coexistence game (a < c and b > d), we only find a lower bound: 2C1+C2 is
greater than a quantity G2(N ) of order

√
N exp[N ] for large N (See Appendix B.2.3).

For any ε > 0, we can define u∗ = ε/G2(N ). Only when u < u∗, the error of our
approximation can be small, dT V (ψ(μ),ψ(0)) < ε.

This completes the proof of our Theorem.

Corollary 1 As per the above Theorem, for games with a > c or d > b, i.e.
2 × 2 games except for the coexistence game, if μ is smaller than the error ε times
(N ln N )−1, then dT V (ψ(μ),ψ(0)) < ε. Thusμ < ε(N ln N )−1 is a sufficient condi-
tion to ensure that the embedded Markov chain is a good approximation of the original
one (See Fig. 1). In analogy to this, for coexistence game, the Theorem implies that
μ < ε exp[−N ]N−1/2 is only a necessary condition.

In the following we investigate what the mutation rate should be for neutral evo-
lution, β = 0. In this case, the selection is absent and the strategies evolve due to
mutation and neutral drift. Equation (24) still holds since we do not employ β to
obtain Eq. (24). In this case, we have C2 = 0 and

C1 =
N−1∑
i=1

2N 2

i(N − i)

= 2N
N−1∑
i=1

(
1

i
+ 1

N − i

)

= 4N HN−1 (27)

where HN−1 = ∑N−1
i=1 1/ i is the Harmonic number, which is of order ln N for large N .

Thus, for β = 0, we have 2C1 + C2 = 8N HN−1, which is of the order of N ln N .
From Eq. (26), we conclude that in this special case of neutral selection, a mutation
rate of the order of (N ln N )−1 is sufficient to make the approximation good.

Finally, we address the validity of our approach for other processes. The Fermi
process is a special imitation process whose imitation function is the Fermi function,
Eq. (5). In general, any meaningful imitation process must have an increasing imitation
function (Wu et al. 2010). Here, in addition we require differentiability, which is not
fulfilled for all such processes (Santos and Pacheco 2005; Szabó and Fáth 2007; Roca
et al. 2009). For a general imitation function, which is increasing and differentiable,
we show the Theorem is also valid, provided the first order derivative of the imitation
function is continuous (See Appendix C).
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How small are small mutation rates? 811

Fig. 1 Total variation distance dT V between the real stationary distribution and the approximation based
on small mutation rates. The plots show the exact total variation distance dT V as well as two approxima-
tion of dT V . The exact total variation distance is calculated for a co-ordination game with a = 1.2, b =
1.0, c = 1.0 and d = 1.1 and plotted as dT V (thick curve) given by Eq. (11). The stationary distribu-
tions were calculated from Eqs. (8) and (9). The dotted line is the right hand side of Eq. (25a) namely,
(|C1 + C2|ψ0(0) + C1)ψ0(0)μ. The dashed line is the right hand side of the inequality in Eq. (25b)
which approximates the dotted line by (|C1 + C2| + C1)μ. The numerical analysis was performed for a
population of size 100, for different values of the selection intensity β. As the selection intensity increases
the approximations deviates further from the exact result. The deviation is a quantitative distortion and not
qualitative as can be seen from the inset log–log plots

4 Discussion and conclusion

We have investigated how small the mutation rate should be to make the stationary
distribution obtained with a mutation rate going to zero a good approximation of the
“real” stochastic process with nonzero mutation rate. For a non-coexistence game, it
is sufficient that the mutation rate is smaller than a quantity of the order of (N ln N )−1.
For a coexistence game, however, it is necessary that the mutation rate μ is less than
a quantity of the order of N−1/2 exp[−N ]. These results are valid for any nonzero
selection intensity. When the selection intensity vanishes, the mutation rate μ of order
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812 B. Wu et al.

(N ln N )−1 is sufficient to make the approximation good. Therefore, we can say that
the order of μ, which makes the approximation good, does not change compared to
the neutral case provided the game allows no coexistence.

In population genetics, the effective selection intensity Nβ plays an important role.
Our result is based on a fixed selection intensity β and a large, but finite population size
N . Diffusion approximation is based on a large population size, such that the discrete
process is approximated by a continuous one (Ewens 2004; Sella and Hirsh 2005).
Typically, this requires a rescaling of β in the limit of N → ∞, such that Nβ remains
constant. If we would assume that the effective selection intensity Nβ is of order 1,
we would find that the mutation bound is of order 1/(N ln N ) for all games. In fact,
all through the manuscript, we implicitly rescale β = 1. Here, we rewrite the critical
quantity 2C1 +C2 as a function of β, 2C1(β)+C2(β) = 2C1(Nβ/N )+C2(Nβ/N ).
If Nβ is of order 1, it is equivalent to consider the order of 2C1(1/N ) + C2(1/N ).
Similar to the calculations in the appendix, we would find that 2C1(1/N )+ C2(1/N )
is of order N ln(N ) for all games.

Antal and Scheuring (2006) have shown that the conditional fixation time for non-
coexistence games is of the order of N ln N . This provides the basis for a procedure
called time scale separation: Given that the time to fixation is much longer than the
time between two mutations, the system can be approximated by an embedded Markov
chain on the monomorphic states and in this way the average abundance can be calcu-
lated. Based on the result of Antal and Scheuring (2006), this requiresμ � (N ln N )−1

for non-coexistence games. This intuitive and powerful reasoning has been applied
in several models (Imhof and Nowak 2006; Hauert et al. 2007; Traulsen and Nowak
2007; Sigmund et al. 2010).

While our results lead to the same scaling with N , it allows to make a more con-
crete statement on the quality of the approximation. Instead of the somewhat intuitive
notion of “a good approximation” and “much smaller than”, we can now specify a
numerical error bound in the total variation distance, which leads to a numerical value
for the maximal mutation rate.

To formulate the problem mathematically, we have introduced the total variation
distance to measure how “good” the embedded Markov chain is compared to the
original one. We can also introduce other measures of distances. A natural question
arises: How much does the definition of the distance influence the results? In anal-
ogy to Eq. (11), the distance between z and w induced by the p−Norm is given
by

‖z − w‖p =
(

N∑
i=0

|zi − wi |p

) 1
p

, p ≥ 1 (28)

In particular, we have ‖ψ(μ) − ψ(0)‖1 = 2dT V (ψ(μ),ψ(0)) by the defini-
tion of the total variation distance. Since ‖ψ(μ) − ψ(0)‖p ≤ ‖ψ(μ) − ψ(0)‖1
for p > 1 as well as dT V (ψ(μ),ψ(0)) ≤ G1(N )μ for a non-coexistence
game, we have ‖ψ(μ) − ψ(0)‖p ≤ 2G1(N )μ for p > 1. By identical argu-
ments, the Theorem is also valid for non-coexistence games under this defini-
tion of distance. For a coexistence game, however, we have ‖ψ(μ) − ψ(0)‖p ≥
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How small are small mutation rates? 813

‖ψ(μ) − ψ(0)‖1/(N + 1) for p > 1. In analogy to the above discussion, the
Theorem should be reformed by replacing G2(N ) = √

N exp[N ] by exp[N ]/√N .
Therefore, our Theorem is robust with respect to the definition of distance for
a non-coexistence game while needs reformation for a coexistence game. But
the reformed theory illustrates that the critical mutation rate for a coexistence
game decreases more rapidly compared to that of the non-coexistence games.
Thus the results are qualitatively robust with respect to the definition of the dis-
tance.

In addition, our result based on the total variation distance is consistent with an intu-
itive measure in population genetics, the probability that a population is polymorphic.
On one hand, the polymorphic states are i = 1, . . . , N − 1, thus the probability that a
population is polymorphic is F1 = ∑N−1

i=1 ψi (μ) ≈ ∑N−1
i=1 ψ ′

i (0)μ by Eqs. (12) and

(13). The order of
∑N−1

i=1 ψ ′
i (0) is identical with that of C1ψ0(0) (see Appendix B).

On the other hand, the total variation distance is estimated by F2 = ψ ′
0(0)μ+ F1 by

Eq. (25a). The order of ψ ′
0(0) is identical with that of order ψ2

0 (0)C1, which is lower
than that ofψ0(0)C1. Hence F1 and F2 are identical in the order with large population
size N . Thus the Theorem is robust under this measure.

We have shown that the Theorem is not only valid for the Fermi process, but also
for a general imitation process with continuous derivative of the imitation function
(Wu et al. 2010). By definition an imitation process involves an imitator and a role
model and the strategy of the role model can be adopted by the imitator. Individuals are
more likely to imitate those with higher fitness. This has been termed as ‘monotonicity’
by Fudenberg and Imhof (2008). In addition, the Theorem is also valid for the Moran
process with continuous differentiable fitness mappings. The proof is quite similar to
that of the general imitation process and thus we do not show it in the appendix. For
the Moran process, the monotonicity of the payoff to fitness mapping is also needed.
This ensures that individuals with higher payoff have more chance to reproduce.

Since the proof of the Theorem depends only on C1 and C2 as defined in Eqs. (16)
and (18) and the triangle inequality used in Eqs. (22), (25a) is valid for general evolu-
tionary processes that can be described by a birth death process with mutations. The
Moran processes with different fitness functions are of this kind (Wu et al. 2010).
Therefore, for any such process, given the error bound ε, the critical mutation bound
that ensures that the approximation by the embedded Markov chain is good, i.e.,
dT V (ψ(μ),ψ(0)) ≤ ε, is ε/(|C1 + C2| + C1). In other words, the numerical value of
|C1 +C2|+C1 is sufficient to determine the critical mutation bound. Considering that
|C1 + C2| + C1 is numerically accessible, it paves the way to determine the critical
mutation bound. This mutation bound for the Fermi process is given in Appendix B.3

In contrast to 2×2 games, it would be challenging to address what the mutation rate
has to be for more than two strategies. For multi-strategy games it is difficult to obtain
the exact stationary distribution. However, when there are at most two strategies in
the population, then pairwise competition between all strategies is the main force of
selection, therefore, our results for 2×2 can still shed light on how small the mutation
rate should be. In fact, for n × n games, we optimistically speculate that our Theorem
is also valid, whenever there are no stable internal equilibria in the simplex and the
sub-simplices.
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Appendix A: The stationary distribution

Here, we recall the calculation of the stationary distribution ψ j for a one dimensional
birth-death process without absorbing states (Kampen 1997; Gardiner 2004; Claussen
and Traulsen 2005). The stationary distribution fulfills the detailed balance condition
ψ j−1T +

j−1 = ψ j T
−
j . We rearrange this to

ψ j = T +
j−1

T −
j

ψ j−1. (29)

Therefore

ψ1 = T +
0

T −
1

ψ0

ψ2 = T +
1

T −
2

ψ1 = T +
0 T +

1

T −
2 T −

1

ψ0 (30)

ψ3 = T +
2

T −
3

ψ2 = T +
0 T +

1 T +
2

T −
3 T −

1 T −
2

ψ0.

In general, we have

ψ j = T +
0

T −
j

j−1∏
i=1

T +
i

T −
i

ψ0, 1 ≤ j ≤ N . (31)

On the other hand,
∑N

j=0 ψ j = 1. Thus, we have

1 =
N∑

j=0

ψ j = ψ0

⎛
⎝1 +

N∑
j=1

T +
0

T −
j

j−1∏
i=1

T +
i

T −
i

⎞
⎠ (32)

and hence

ψ0 = 1

1 +∑N
j=1

T +
0

T −
j

∏ j−1
i=1

T +
i

T −
i

. (33)
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Therefore, by Eq. (30)

ψ j =
T +

0
T −

j

∏ j−1
i=1

T +
i

T −
i

1 +∑N
k=1

T +
0

T −
k

∏k−1
i=1

T +
i

T −
i

, 1 ≤ j ≤ N . (34)

Appendix B: Estimating the critical mutation rate for the Fermi process

In this section, we consider the first order term of the Taylor approximation of the
stationary distribution for small mutation rates. This provides part of the proof of the
Theorem in the main text.

The first order term of the stationary distribution in the mutation rate

We calculate the first order expansion of the stationary distribution at state 0 under
small mutation. Since T −

N = μ = T +
0 , we have

ψ0(μ) = 1

1 + μ

(∑N−1
k=1

1
T −

k

∏k−1
i=1

T +
i

T −
i

)
+∏N−1

i=1
T +

i

T −
i

. (35)

Thus, d
dμψ0|μ=0 is given by

d

dμ
ψ0|μ=0 = −ψ2

0 (0)

⎡
⎢⎢⎢⎢⎣
(

N−1∑
k=1

1

T −
k

k−1∏
i=1

T +
i

T −
i

)
|μ=0

︸ ︷︷ ︸
C1

+ d

dμ

(
N−1∏
i=1

T +
i

T −
i

)
|μ=0

︸ ︷︷ ︸
C2

⎤
⎥⎥⎥⎥⎦ (36)

This equation is valid for all evolutionary birth-death processes. Substituting Eq. (6)
into C1 yields

C1 =
N−1∑
k=1

N 2 {1 + exp [(uk + v)β]}
k(N − k)

k−1∏
i=1

exp [(ui + v)β]

=
N−1∑
k=1

N 2 {1 + exp [(uk + v)β]}
k(N − k)

exp

[
k−1∑
i=1

(ui + v)β

]

=
N−1∑
k=1

N 2 {1 + exp [(uk + v)β]}
k(N − k)

exp
[(u

2
k + v

)
(k − 1)β

]
(37)
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Next, we address C2. Let g(μ) = ∏N−1
i=1

T +
i

T −
i

, therefore ln g(μ) = ∑N−1
i=1 (ln T +

i −
ln T −

i ). The derivative of this quantity is given by d
dμ ln g(μ) = g′(μ)

g(μ) , which results

in C2 = d
dμg(μ)|μ=0 = g(0) d

dμ ln g(μ)|μ=0. On the other hand, d
dμ ln g(μ) =

∑N−1
i=1 (

T +′
i

Ti
+ − T −′

i
Ti

− ). Therefore,

C2 =
N−1∏
i=1

(
T +

i

T −
i

)
|μ=0

N−1∑
i=1

(
T +′

i

Ti
+ − T −′

i

Ti
−

)
|μ=0. (38)

By Eq. (6), we have T +′
i |μ=0 = N−i

N − T +
i |μ=0 and T −′

i |μ=0 = i
N − T −

i |μ=0.
Substituting these expressions into Eq. (38) yields

C2 =
N−1∏
i=1

(
T +

i

T −
i

)
|μ=0

N−1∑
i=1

(
N − i

N Ti
+ − i

N Ti
−

)
|μ=0 (39)

= exp

[
N−1∑
i=1

(ui + v)β

]

×
[

N−1∑
i=1

N {1 + exp [−β(ui + v)]}
i

−
N−1∑
i=1

N {1 + exp [β(ui + v)]}
N − i

]

= exp

[(
u
(N − 1)N

2
+ v(N − 1)

)
β

]

×
[

N−1∑
i=1

N {1 + exp [−β(ui + v)]}
i

−
N−1∑
i=1

N {1 + exp [β(u(N − i)+ v)]}
i

]

(40)

where we have exchanged the summation variable in the second sum, i ↔ N − i .
Next, we can drop common terms in the two sums and arrive at

C2 = N exp

[(
N − 1

2
(uN + 2v)

)
β

]
exp[−vβ] (1 − exp [(uN + 2v)β])

×
N−1∑
i=1

exp [−uiβ]

i
(41)

Scaling of the first order term with N

Next, we estimate the order of 2C1 + C2. To facilitate the calculation, we classify the
2 × 2 games by the payoff difference parameters, u and v
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Classification of the game
Neither u nor v is zero (i) u < 0 and v < 0

(i i) u < 0 and v > 0, coexistence game
(i i i) u < 0 and v > 0, non-coexistence game
(iv) u > 0 and v > 0
(v) u > 0 and v < 0, coordination game
(vi) u > 0 and v < 0, non-coordination game

Either u or v is zero (vi i) u = 0 and v < 0
(vi i i) u = 0 and v > 0
(i x) u > 0 and v = 0
(x) u < 0 and v = 0

Both u and v are zero (xi) u = 0 and v = 0

With this classification, we have to prove that for case (i i), i.e. the coexistence
game, 2C1 + C2 is greater than G2(N ) which is of order

√
N exp [N ], whereas for all

the other cases, 2C1 + C2 is less than G1(N ) which is of order N ln N . We only show
the calculations for case (i) (i i) and (v), for the rest of the cases it can be proved by
identical techniques. For case (xi) though, it is identical with the case without selec-
tion intensity. Further, without loss of generality, we assume that the payoff entries
are of order 1. Thus u is of the order of 1/N and v as well as λ = uN + 2v < 0 are
of order 1 when N is large. On the other hand, for large N , λ < 0 is equivalent to the
risk dominance condition of strategy B. Also, since β can be absorbed into the payoff
entries in the transition probabilities, we let β be one for simplicity.

Dominance of strategy B with u < 0 and v < 0

For C1, we have

C1 =
N−1∑
i=1

N 2 (1 + exp[ui + v])
i(N − i)

exp
[u

2
(i − 1)2 +

(u

2
+ v

)
(i − 1)

]

<

N−1∑
i=1

2N 2

i(N − i)
exp

[u

2
(i − 1)2 +

(u

2
+ v

)
(i − 1)

]

< 2N 2
N−1∑
i=1

1

i(N − i)

= 2N

(
N−1∑
i=1

1

i
+

N−1∑
i=1

1

N − i

)

= 4N HN−1 (42)

The Harmonic number HN−1 is of order ln N for large N , thus C1 is smaller than a
quantity of order N ln N .
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For C2, we have (with λ = uN + 2v < 0)

C2 = N exp

[
N − 1

2
λ− v

]
(1 − exp [λ])

N−1∑
k=1

exp [−uk]

k

� N exp

[
N − 1

2
λ− v

]
(1 − exp [λ]) exp [−u(N − 1)]

N−1∑
k=1

1

k

= N exp

[
N − 1

2
λ− v

]
(1 − exp [λ]) exp [−u(N − 1)] HN−1 (43)

u < 0 is of order 1/N and λ < 0 is of order 1. Thus, N exp
[ N−1

2 λ− v
]
(1 − exp [λ])

exp [−u(N − 1)] HN−1 is of order N ln N exp[−N ], which is much smaller than
N ln N . Thus, C2 can be neglected compared to C1; G1(N ) = 8N HN−1 > 2C1 + C2
scales at most with N ln N .

Coordination game with u > 0 and v < 0

To estimate the order of C1, let

F(i) = u

2
i2 +

(u

2
+ v

)
i, (44)

We have F(0) = 0 and F(N − 1) = (N − 1)(uN + 2v)/2 = (N − 1)λ/2 < 0. On
the other hand, F ′′(i) = u

2 . Since u > 0, F(i) is a convex function which implies

F(i) = F

(
i

N − 1
(N − 1)+

(
1 − i

N − 1

)
0

)

≤ i

N − 1
F(N − 1)+

(
1 − i

N − 1

)
F(0)

≤ 0, (45)

where equality holds for i = 0 only. Therefore for C1, we have

C1 =
N−1∑
i=1

N 2 (1 + exp [ui + v])

i(N − i)
exp

[u

2
(i − 1)2 +

(u

2
+ v

)
(i − 1)

]
︸ ︷︷ ︸

F(i−1)

(46)

<

N−1∑
i=1

N 2 (1 + exp [ui + v])

i(N − i)

<

N−1∑
i=1

N 2 (1 + exp [u(N − 1)+ v])

i(N − i)
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= N (1 + exp [u(N − 1)+ v])

(
N−1∑
i=1

1

i
+

N−1∑
i=1

1

N − i

)

= 2 (1 + exp [u(N − 1)+ v]) N HN−1 (47)

Considering that u and v are of order 1/N and 1. C1 is less than a quantity of order
N ln N .

For C2, since u > 0, we have

C2 = N exp

[
N − 1

2
λ− v

]
(1 − exp [λ])

N−1∑
k=1

exp [−uk]

k

� N exp

[
N − 1

2
λ− v

]
(1 − exp [λ]) exp [−u]

N−1∑
k=1

1

k

= N exp

[
N − 1

2
λ− v

]
(1 − exp [λ]) exp [−u] HN−1 (48)

In analogy to the order analysis for Eq. (43), C2 is much smaller than C1. Hence,
2C1 + C2 scales with N as N ln N . Thus our quantity G1(N ) in the proof is 4(1 +
exp[u(N − 1)+ v])N HN−1.

Coexistence of strategy A and B with u < 0 and v > 0

We show that for a coexistence game, 2C1 + C2 is greater than a quantity of order√
N exp(N ). For C1, we have

C1 =
N−1∑
i=1

N 2 (1 + exp [ui + v])

i(N − i)
exp

[u

2
(i − 1)2 +

(u

2
+ v

)
(i − 1)

]

> 4
N−1∑
i=1

exp [ui + v] exp
[u

2
(i − 1)2 +

(u

2
+ v

)
(i − 1)

]

= 4
N−1∑
i=1

exp
[u

2
i2 +

(u

2
+ v

)
i
]

(49)

= 4 exp

[
−u

2

(
1

2
+ v

u

)2
]

N−1∑
i=1

exp

[
u

2

(
i + 1

2
+ v

u

)2
]

(50)

When the population size N is large, we can set x = i/(N − 1) and approximate the
sum in the above equation by an integral,

(N − 1)

1∫
0

exp

[
−1

2

(√−u

(
(N − 1)x + 1

2
+ v

u

))2
]

dx (51)
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Let t = √−u[(N − 1)x + 1
2 + v

u ], then the above integral is

1

N − 1

√
−2π

u

[
�

(√−u

(
N − 1

2
+ v

u

))
−�

(√−u

(
1

2
+ v

u

))]
(52)

where�(x) = 1√
2π

∫ x
−∞ e−t2/2 dt is the cumulative distribution function of the Gauss-

ian distribution. For a coexistence game, ui + v = 0 has a solution i between 1 and
N −1. Thus − v

u ≤ N −1. With this, we have 0 < N − 1
2 + v

u . Hence,
√−u(N − 1

2 + v
u )

is of order +√
N and approaches +∞ as the population size N goes to infinity. Thus,

�(
√−u(N − 1

2 + v
u )) approaches 1 as N approaches infinity. Similarly, a coexistence

game implies 0 < − v
u and thus

√−u( 1
2 + v

u ) scales as −√
N . Therefore, the second

term �(
√−u( 1

2 + v
u )) approaches 0 as N approaches infinity. This means that the

sum in Eq. (50) is larger than
√

− 2π
u for large N , yielding a lower bound for C1,

C1 > 4

√
−2π

u
exp

[
−u

2

(
1

2
+ v

u

)2
]
. (53)

Now, u < 0 scales as 1/N , whereas v becomes independent of N for large N . Hence,
C1 scales as

√
N exp[N ], i.e. it increases more than exponentially with N . For C2,

the order estimation is identical to Eq. (43), C2 becomes infinitely small for large N .
Therefore, 2C1 + C2 scales as

√
N exp[N ] and the mutation rate has to go to zero

rapidly to ensure that the approximation remains good when the population size is

increased. Thus G2(N ) is 8
√

− 2π
u exp[− u

2 (
1
2 + v

u )
2].

A numerically accessible bound for the mutation rate

In this part of the Appendix, we show, for a given non-coexistence game, how the
critical mutation rate depends on the payoff entries. By the proof provided above, this
mutation rate is (2C1)

−1ε for large population size, where ε is the given tolerance
of the error. Thus we only need to derive the relationship between C1 and the payoff
entries.

For coordination games, Eq. (47) provides such a relationship. For dominance
games, however, it is not straightforward from Eq. (42). But based on Expression (42),
we have

C1 <

N−1∑
i=1

2N 2

i(N − i)
exp

[u

2
(i − 1)2 +

(u

2
+ v

)
(i − 1)

]
(54)
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By the Cauchy–Schwarz inequality,

C1 <

(
N−1∑
i=1

2N 2

i(N − i)

) 1
2

⎛
⎜⎜⎝

N−1∑
i=1

exp
[u

2
(i − 1)2 +

(u

2
+ v

)
(i − 1)

]
︸ ︷︷ ︸

R(i−1)

⎞
⎟⎟⎠

1
2

(55)

By using
∑N−1

i=1 R(i − 1) = ∑N−2
i=0 R(i) = ∑N−1

i=1 R(i) + R(0) − R(N − 1), the
above inequality can be rewritten as

C1 <

(
N−1∑
i=1

2N 2

i(N − i)

) 1
2
(

N−1∑
i=1

exp
[u

2
i2 +

(u

2
+ v

)
i
]

+ 1

− exp

[
(N − 1)

Nu + 2v

2

]) 1
2

(56)

The first factor of the r.h.s of the inequality, by Eq. (27), scales as 2
√

N ln N . The
second factor is similar to the expressions obtained by Eqs. (49), (50), (51), (52). It

can be approximated by the square root of exp[− u
2 (

1
2 + v

u )
2]
√

− 2π
u [�(√−u(N −

1
2 + v

u )) − �(
√−u( 1

2 + v
u )) + 1] for large N where �(x) is the standard Gaussian

distribution function. Thus

C1 < 2
√

N ln N 4

√
−2π

u
exp

[
−u

4

(
1

2
+ v

u

)2
]

×
√
�

(√−u

(
N − 1

2
+ v

u

))
−�

(√−u

(
1

2
+ v

u

))
+ 1 (57)

This allows us to estimate a numerical value for the critical mutation bound for given
payoff entries of a non-coexistence game and error tolerance without the need to eval-
uate sums. If the system is not too large such that sums can be evaluated numerically,
Eq. (46) gives a more precise estimate.

Appendix C: Estimating the critical mutation rate for general
imitation processes

For the general imitation process with mutations, an individual is picked up from the
well mixed population of size N . With probability 1 −μ, imitation occurs: The focal
individual imitates another random individual with a probability g(β	πi ), where
	πi = πA − πB and β is the selection intensity. Here g(x) is an increasing func-
tion. This implies that the more successful the opponent is, the more likely the focal
individual imitates it. With probability μ < 1/2, mutation or exploration occurs: The
focal individual switches to the opposite strategy.
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In analogy to the transition probabilities given by Eq. (6), we have

T +
i = (1 − μ)

i

N

N − i

N
g (+β	πi )+ μ

N − i

N

T −
i = (1 − μ)

i

N

N − i

N
g (−β	πi )+ μ

i

N
. (58)

and 1 − T +
i − T −

i . In this Appendix, we show that the Theorem is also valid for a
wide class of imitation processes. The only technical requirement is that the imitation
function is strictly increasing and that its derivative is continuous.

The form of the first order term

For the general imitation process with mutations, we still have C1 and C2 defined in
Eqs. (16) and (18). For C1, we obtain

C1 =
(

N−1∑
i=1

1

T −
i

i−1∏
k=1

T +
k

T −
k

)
|μ=0

=
N−1∑
i=1

N 2

i(N − i)

1

g(−β	πi )

i−1∏
k=1

g(+β	πk)

g(−β	πk)
(59)

By making use of the identity x = exp[ln x] for x = ∏i−1
k=1

g(+β	πk )
g(−β	πk )

, we arrive at

C1 =
N−1∑
i=1

N 2

i(N − i)

1

g(−β	πi )
exp

[
i−1∑
k=1

ln

[
g(+β	πk)

g(−β	πk)

]]
(60)

For C2, note that the derivation of Eq. (39) is independent of the imitation function
given, thus it is valid for all imitation processes. We have

C2 =
N−1∏
k=1

(
T +

k

T −
k

)
|μ=0

N−1∑
k=1

(
N − k

N Tk
+ − k

N Tk
−

)
|μ=0

=
N−1∏
k=1

g(+β	πk)

g(−β	πk)

N−1∑
k=1

N

N − k

(
1

g(+β	πN−k)
− 1

g(−β	πk)

)

= exp

[
N−1∑
k=1

ln

[
g(+β	πk)

g(−β	πk)

]] N−1∑
k=1

N

N − k

(
1

g(+β	πN−k)
− 1

g(−β	πk)

)

(61)

For C2, if 1
g(+β	πN−k )

− 1
g(−β	πk )

is non-negative for all the k, then C2 is non-nega-
tive. Since g(x) is an increasing function, this is equivalent to 	πN−k ≤ −	πk , i.e.,
uN + 2v ≤ 0. If this is not the case, we can exchange strategy A and B, as described
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in the main text. This yields a transformed game which fulfills ũN + 2ṽ ≤ 0 without
influencing the main results. Therefore, we always consider the case for uN +2v ≤ 0,
such that both C1 and C2 are non-negative.

Scaling of the first order term with N

To estimate the order of 2C1 + C2, we absorb the selection intensity β into the payoff
difference term in analogy to the proof above, i.e. we formally set β = 1. The quan-
tity u is of order 1/N and v is of order 1. Without loss of generality (see above),
uN + 2v ≤ 0 is also assumed to ensure C2 > 0.

For the coordination game, u > 0 and v < 0, we only need to prove that 2C1 + C2
is less than a quantity of order N ln N . For C1, we have

C1 =
N−1∑
i=1

N 2

i(N − i)

1

g (−	πi )
exp

[
i−1∑
k=1

ln

[
g(	πk)

g(−	πk)

]]

<

N−1∑
i=1

N 2

i(N − i)

1

g (−	πN )
exp

[
i−1∑
k=1

ln

[
g(	πk)

g(−	πk)

]]
(62)

By Lagrange mean value theorem, for every 1 ≤ k ≤ N − 1 there exists ξk ∈ [0, 1],
s.t.

ln [g (	πk)] − ln [g (−	πk)] = uN
g′(uNξk + v)

g(uNξk + v)
(	πk − (−	πk))

≤ 2uN
M

g(v)
	πk (63)

where M is the maximum of g′(x) for x ∈ [v, uN + v]. Since v and uN + v are
of order 1,M only depends on the imitation function and payoff entries rather than
the population size N for large N . Thus we can consider it to be of order 1 in what
concerns the scaling of N . On the other hand, since g′(x) is continuous as we assume,
there exists y∗ ∈ [0, 1] such that M = g′(y∗) > 0. Therefore, uN M

g(v) > 0 becomes
independent of N for large N . This implies

C1 <

N−1∑
i=1

N 2

i(N − i)

1

g (−	πN )
exp

[
2uN

M

g(v)

i−1∑
k=1

	πk

]
(64)

Therefore, it degenerates to Eq. (46) for coordination game of the Fermi process.
Following the proof therein, finally we arrived at

C1 < 2
1

g (−	πN )
N HN−1. (65)
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Since g(−	πN ) = g(−uN − v) is only dependent on the imitation function and the
payoff entries, it is independent of N . Thus, C1 is smaller than a quantity of order
N ln N .

Next, we consider C2. We have

C2 = exp

[
N−1∑
k=1

ln

[
g(	πk)

g(−	πk)

]]

︸ ︷︷ ︸
D1

N−1∑
k=1

N

N − k

(
1

g(	πN−k)
− 1

g(−	πk)

)

︸ ︷︷ ︸
D2

, (66)

which is a product of exp[D1] and D2. For D1, we have

D1 =
N−1∑
k=1

ln

[
g(	πk)

g(−	πk)

]

=
N−1∑
k=1

ln [g(	πk)] −
N−1∑
k=1

ln [g(−	πk)]

=
N−1∑
k=1

ln [g(	πk)] −
N−1∑
k=1

ln
[
g(−	πN−k)

]

=
N−1∑
k=1

(
ln [g(	πk)] − ln

[
g(−	πN−k)

])
(67)

Again, by Lagrange mean value theorem, for every 1 ≤ k ≤ N − 1, there exists
ζk ∈ [0, 1], s.t.

ln [g (	πk)] − ln
[
g (−	πN−k)

] = uN
g′(uNζk + v)

g(uNζk + v)
(	πk − (−	πN−k))

≤ uN
M

g(v)
(uN + 2v) (68)

where M > 0 is the maximum of g′(x) on [v, uN + v] as defined above. Thus we
have

N−1∑
k=1

ln

[
g(	πk)

g(−	πk)

]
< u(N − 1)N

M

g(v)
(uN + 2v) (69)

Remembering that uN + 2v is negative and of order 1, u(N − 1)N M
g(v) (uN + 2v) is

smaller than zero and of order N for large N . Therefore, exp
[∑N−1

k=1 ln
[

g(	πk )
g(−	πk )

]]
is smaller that a quantity of order exp[−N ].
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For D2, since u > 0,	πk is increasing with k. In addition, g(x) is increasing, we
have

1

g(+	πN−k)
− 1

g(−	πk)
= g(−	πk)− g(+	πN−k)

g(−	πk)g(+	πN−k)

<
g(−	πk)− g(+	πN−k)

g(−	πN )g(+	π0)
(70)

By Lagrange mean value theorem, there exists ηk ∈ [0, 1] s.t.

g(−	πk)− g(	πN−k) = g′ (−	πk + ηk (−	πk −	πN−k)) (−	πk −	πN−k)

< −H (uN + 2v) (71)

where H > 0 is the maximum of g′(x) on [−v,+v], where 	πk and −	πk lie. In
analogy to previous discussion, it is independent of N when N is large. Thus we have

1

g(+	πN−k)
− 1

g(−	πk)
<

−H (uN + 2v)

g(−uN − v)g(v)
(72)

Further, we have

N−1∑
k=1

N

N − k

(
1

g(+	πN−k)
− 1

g(−	πk)

)
<

( −H (uN + 2v)

g(−uN − v)g(v)

) N−1∑
k=1

N

N − k

=
( −H (uN + 2v)

g(−uN − v)g(v)

)
N HN−1 (73)

Note that −H(uN+2v)
g(−uN−v)g(v) positive and independent of N for large N .D2 is smaller than

a quantity of order N ln N . Finally, C2 = exp[D1]D2 is of order N ln N exp[−N ];
it becomes infinitely small for large N . This means that the scaling of 2C1 + C2 is
determined by the scaling of C1 and thus the critical mutation rate scales as N ln N .

For the coexistence game and dominance game, the procedure of the proof for
general imitation function is also identical to that of the coordination game: For C1,
we make use of Lagrange mean value theorem to establish a relationship between
ln[ g(	πk )

g(−	πk)
] and 	πk , then it can be deduced by the proof the corresponding game

for the Fermi process. For C2, for all games, it is infinitely small for large population
size. The proof is identical with that of the coordination game for general imitation
function.
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