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Abstract An optimal control problem for cancer chemotherapy is considered that
includes immunological activity. In the objective a weighted average of several quan-
tities that describe the effectiveness of treatment is minimized. These terms include
(i) the number of cancer cells at the terminal time, (ii) a measure for the immuno-
competent cell densities at the terminal point (included as a negative term), (iii) the
overall amount of cytotoxic agents given as a measure for the side effects of treatment
and (iv) a small penalty on the terminal time that limits the overall therapy horizon
which is assumed to be free. This last term is essential in obtaining a well-posed
problem formulation. Employing a Gompertzian growth model for the cancer cells,
for various scenarios optimal controls and corresponding responses of the system are
calculated. Solutions initially follow a full dose treatment, but then at one point switch
to a singular regimen that only applies partial dosages. This structure is consistent with
protocols that apply an initial burst to reduce the tumor volume and then maintain a
small volume through lower dosages. Optimal controls end with either a prolonged
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period of no dose treatment or, in a small number of scenarios, this no dose interval is
still followed by one more short burst of full dose treatment.

Mathematics Subject Classification (2000) 49K15 · 92B05 · 93C95

1 Introduction

Stepanova (1980) proposed a classical mathematical model of two ordinary differen-
tial equations that describe the interactions between cancer cell growth and the activity
of the immune system during the development of cancer. Despite its simplicity, the few
parameters incorporate many medically important features and the underlying equa-
tions have been widely accepted as a basic model. There exist numerous extensions and
generalizations of this model, most notably the one by Kuznetsov et al. (1994), who,
employing a logistic model for cancer growth, estimate the parameters based on in
vivo data of B-lymphoma BC L1 in the spleen of mice and then analyze both local and
global bifurcations for the underlying dynamical system for realistic nearby parameter
values. In a paper by de Vladar and González (2004), logistic growth on cancer cells
is replaced with a Gompertzian model. In each case, the models exhibit both stable
microscopic and macroscopic equilibria and a comprehensive analysis of the dynamic
behavior of the underlying systems and its bifurcations is carried out in the respective
papers. More recently, d’Onofrio (2005, 2006) formulated and investigated a general
class of models that incorporates all these dynamical models. These papers share the
following important theoretical findings: while the immune system can be effective in
the control of small cancer volumes, for large volumes the cancer dynamics suppresses
the immune dynamics and the two systems effectively become separated (de Vladar
and González 2004, appendix B). In the first case, so-called immune surveillance,
what medically would be considered cancer never develops; in the latter one, only a
therapeutic effect on the cancer (e.g., chemotherapy, radiotherapy, etc.) needs to be
analyzed. However, tumor–immune system interactions matter for the interesting case
“in between” when both a benign (microscopic) and a malignant (macroscopic) stable
equilibrium exist or uncontrolled cancer growth is seen. The underlying models are
Morse–Smale systems (Guckenheimer and Holmes 1983) and the stable manifold of
an unstable equilibrium point separates the benign from the malignant region. Thus
the question is: how can an initial condition that lies in the malignant region be moved
towards and hopefully into the region of benign growth through therapy? This question
can naturally be formulated and analyzed as an optimal control problem and this will
be the topic of our mathematical analysis here.

In recent years, there has been a strong renewed interest in the application of meth-
ods from optimal control to the scheduling of novel cancer therapies. For example, in
our own work we have analyzed mathematical models for tumor anti-angiogenesis,
an indirect treatment approach that targets the vasculature of a growing tumor
(e.g., Ledzewicz and Schättler 2007, 2008; Ledzewicz et al. 2010). Optimal sched-
uling of anti-angiogenic agents is also considered, for example, by d’Onofrio et al.
(2009) or by Swierniak (2008). An example from immunotherapy is the optimal bolus
type scheduling of dendritic cell transfection that has been considered as an optimal
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control problem by Castiglione and Piccoli (2006). More generally, an optimal con-
trol approach to immunotherapy is taken in the papers by Burden, Ernstberger and
Fister Burden et al. (2004) and by Fister and Hughes Donnelly (2005) who build on
a classical model for tumor–immune interactions by Kirschner and Panetta (1998).
Combinations of these novel therapies with classical approaches such as radio- and
chemotherapy also have been considered as optimal control problems, for example,
by Ergun et al. (2003) or by d’Onofrio et al. (2009) and Ledzewicz et al. (2009). In the
context of tumor–immune interactions, chemotherapy has been analyzed as optimal
control problem by de Pillis and Radunskaya (2001). In that paper, a more detailed
and complex model for the immune system than the one we shall be employing here
was considered and optimal controls were computed numerically.

In this paper, we consider a lower dimensional dynamic model based on Stepanova’s
(1980) model in which the main features of tumor–immune system interactions are
aggregated into two principal variables, the tumor volume and immunocompetent cell
densities relating to the activities of various kind of T -cells. While giving up on some
level of modeling accuracy, a small model has the advantage that analytical methods
can be brought in yielding qualitatively robust results. In our approach, we are using
geometric methods of optimal control theory that have not been applied to these prob-
lems before. The motivation for the cost function we propose in the problem is based
on the stable manifold of the saddle point that describes the separatrix between the
regions of benign and malignant growth. The aim is to move the state of the system
across this boundary using chemotherapy with the dosage of a cytotoxic agent as con-
trol variable. Our mathematical objective thus is strongly motivated by the underlying
structure of the dynamical system and ultimately by its biology. Since this stable man-
ifold rarely can be determined analytically, it becomes necessary to approximate the
separatrix by its tangent space. This approximation is generally excellent if very small
and very large numbers of cancer cells are excluded. And these are cases when the
model does not well represent the underlying biology anyway. Hence we include in
our objective a penalty term that induces the system to move across this easily com-
puted tangent line along with an integral term that measures the drug usage and thus
indirectly the side effects associated with it.

In earlier papers, we have already introduced this idea (Ledzewicz et al. 2011a,b).
It was shown that there exists a locally optimal singular arc (the response of the sys-
tem to specific time-varying partial doses) for the optimal control problem and that
trajectories that are concatenations of singular and bang pieces (responses to full or no
dose controls) achieve the underlying objective of moving the state of the system into
the benign region. However, the existence of a benign, locally asymptotically stable
equilibrium point causes a “free pass” phenomenon in the sense that in some cases
the trivial control u = 0 (no drug given) can be used to improve the value of the
objective (while incurring no penalty). This indeed allows for controlled trajectories,
the system responses to drug dosages, that are defined over arbitrary long time inter-
vals and improve the objective. As a result, while the optimal control approach clearly
points in the direction of good treatment schedules that achieve the underlying aim
of moving the state of the system from the malignant into the benign region, in some
cases optimal controls do not exist since the infimum is only realized in the limit as
T → ∞. This no longer is possible if we include a small penalty on the terminal time
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since this forces the objective to diverge as T → ∞. Hence in this way we obtain
a well-posed mathematical problem formulation. Here we consider this formulation
and calculate optimal controlled trajectories for various initial conditions based on a
theoretical analysis of the singular arc. Explicit formulas that define this singular arc
and its corresponding singular control will be given. However, their analytic solutions,
although they can still be computed, become rather cumbersome. Thus optimal solu-
tions will be calculated numerically. In all our computations we find optimal solutions
that initially follow a full dose treatment, but then at one point switch to the singular
regimen that only applies partial dosages. Since we limit the maximum dosage, this
structure corresponds to protocols that give an initial burst to reduce the tumor vol-
ume and then maintain this volume through lower partial dosages. If we increase the
allowable maximum dose in the model, then optimal controls precisely will follow
such a structure with the burst designed to reach the singular arc. The partial dosages
then are determined to follow this special trajectory and optimal protocols end with a
prolonged period of no dose treatment, possibly still followed by one more short burst
of full dose treatment.

2 Stepanova’s model for tumor–immune interaction

We briefly review Stepanova’s (1980) model for tumor–immune interactions. While
Stepanova uses exponential growth for the tumor, various other models are realis-
tic and have been considered in the literature as well. We therefore use a general
growth function of the form x F(x) where x denotes the tumor volume and F is a
positive, twice continuously differentiable function defined on an interval (0, x∞)

with x∞ ≤ ∞ denoting a fixed carrying capacity for the cancer. With y representing
the immunocompetent cell densities, a non-dimensional, order of magnitude quantity
related to various types of T -cells activated during the immune reaction, Stepanova’s
model takes the form

ẋ = μC x F(x) − γ xy, (1)

ẏ = μI (x − βx2)y − δy + α, (2)

with all Greek letters denoting constant coefficients.
Equation (2) summarizes the main features of the immune system’s reaction to

cancer. The coefficient α models a constant rate of influx of T -cells generated through
the primary organs and δ is simply the rate of natural death of the T -cells. The first
term in this equation models the proliferation of lymphocytes. For small tumors it is
stimulated by the tumor antigen which can be assumed to be proportional to the tumor
volume x . It is argued in Stepanova (1980) that large tumors suppress the activity
of the immune system. The reasons lie in a for this case inadequate stimulation of
the immune forces as well as a general suppression of immune lymphocytes by the
tumor (see Stepanova 1980 and the references therein). This feature is expressed in the
model through the inclusion of the term −βx2. Thus 1/β corresponds to a threshold
beyond which the immunological system becomes depressed by the growing tumor.
The coefficients μI and β are used to calibrate these interactions and in the product
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Fig. 1 Phase portraits of the uncontrolled system (1) and (2) (on the left) and the fully controlled system
(5) and (6) (on the right) with u ≡ 1 and κ = 1 for a Gompertzian growth function F(x) = − log( x

x∞ )

with y collectively describe a state-dependent influence of the cancer cells on the
stimulation of the immune system. The first equation, (1), models tumor growth. The
coefficient γ denotes the rate at which cancer cells are eliminated through the activity
of T -cells and the term γ xy thus models the beneficial effect of the immune reaction
on the cancer volume. Lastly, μC is a tumor growth coefficient.

In our formulation F is a functional parameter that allows to specify various growth
models for the cancer cells. In Stepanova’s original formulation this term F is simply
given by FE (x) ≡ 1, i.e., exponential growth of the cancer cells is considered. While
there exists a time frame when exponential growth is realistic, over prolonged periods
usually saturating models are preferred. For instance, there exists medical evidence that
many tumors follow a Gompertzian growth model (Norton and Simon 1977; Norton
1988) in which case the function F is given by FG(x) = − ln( x

x∞ ) with x∞ denoting a
fixed carrying capacity for the cancer. But also logistic and generalized logistic growth
models of the form FL(x) = 1 − ( x

x∞ )ν with ν > 0 have been considered for tumor
growth (Kuznetsov et al. 1994). We thus formulated the model with a general growth
term F only assuming that F is a positive, twice continuously differentiable function
defined on the interval (0, x∞). While some structural properties of the system will
be valid in this generality, to obtain the more detailed results about optimal controls
considered in this paper, the function F needs to be specified further and we use a
Gompertzian growth model.

Figure 1 (on the left) gives an example of the phase portrait of (1) and (2) for the
parameter values given by α = 0.1181, β = 0.00264, γ = 1, δ = 0.37451, μC =
0.5618, μI = 0.00484, and x∞ = 780. The parameters α through δ are directly taken
from the paper by Kuznetsov et al. (1994) who estimate these parameters based on in
vivo experimental data for B-lymphoma BC L1 in the spleen of mice. In that paper, a
classical logistic term is used for cancer growth and we therefore adjusted the remain-
ing parameters to account for Gompertzian growth using linear data fitting. Also, the
functional form (x −βx2)y used in Stepanova’s model in Eq. (2) is a quadratic expan-
sion of the term used in Kuznetsov et al. (1994). Following Kuznetsov et al. (1994),
x is given in multiples of 106 cells and y is a dimensionless quantity that describes
the immunocompetent cell density as an order of magnitude relative to base value
1. The time scale is taken relative to the tumor cell cycle and and is in terms of
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Table 1 Variables and parameter values used in numerical computations

Variable/
parameters

Interpretation Numerical
value

Dimension Reference

x Tumor volume 106 cells Stepanova (1980)

x0 Initial value for x 600 106 cells

y Immunocompetent Orders of magnitude Stepanova (1980)

cell density Non-dimensional

y0 Initial value for y 0.10 Non-dimensional

α Rate of influx 0.1181 Non-dimensional Kuznetsov et al. (1994)

β Inverse threshold for
tumor suppression

0.00264 Non-dimensional Kuznetsov et al. (1994)

γ Interaction rate 1 107 cells/day Kuznetsov et al. (1994)

δ Death rate 0.37451 Non-dimensional Kuznetsov et al. (1994)

μC Tumor growth parameter 0.5618 107 cells/day

μI Tumor stimulated
proliferation rate

0.00484 Non-dimensional

x∞ Fixed carrying capacity 780 106 cells

κ Chemotherapeutic
killing parameter

1 107 cells/day

0.11 days (Kuznetsov et al. 1994). For the specified parameter values there exist three
equilibria: a locally asymptotically stable focus at (xb, yb) = (72.961, 1.327) whose
region of attraction corresponds to the benign situation, a saddle point at (xs, ys) =
(356.174, 0.439) whose stable manifold is the separatrix between the benign and
malignant regions, and an asymptotically stable node at (xm, ym) = (737.278, 0.032)

whose region of attraction defines the malignant situation. Clearly such a structure
depends on the particular parameter values chosen and it is not generally valid for the
underlying system. However, it is correct for a large range of values. Throughout our
paper these specific parameter values will be used, but they only serve to illustrate our
results and computations numerically. The values are summarized in Table 1.

3 Formulation of treatment as an optimal control problem

We consider this dynamics under the application of a chemotherapeutic agent and,
following de Vladar and González (2004), assume that the elimination terms are pro-
portional to the tumor volume (the so-called log-kill hypothesis). Hence we subtract a
term κxu from the x dynamics. The coefficient κ allows to normalize the control set,
i.e., we assume that 0 ≤ u ≤ 1 with u = 1 representing a full dose treatment and u = 0
the uncontrolled system when no chemotherapy is given. In earlier papers (Ledzewicz
et al. 2011a,b), we also allowed for a cytotoxic effect of the chemotherapeutic agent
on the immunocompetent cell densities with a similar elimination term active on the y
dynamics in the form εκyu with ε being a parameter. Mathematically, however, this
brings in a number of additional complexities and difficulties related to bifurcation
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phenomena (Ledzewicz et al. 2010) that need to be considered separately. Therefore, in
this paper we focus on the case when the elimination effects on the immunocompetent
cells are much smaller than on the tumor cells, ε � 1, and for simplicity we then set
ε = 0. Also, throughout the paper we only consider R

2+ = {(x, y) : x > 0, y > 0},
the region of interest for the problem.

The right hand side of Fig. 1 shows the phase portrait of the system for a constant
full dose therapy (u = 1) when κ = 1. Again, these values are for illustrative pur-
poses only. In this case, the new system has only one globally asymptotically stable
equilibrium, a focus, with positive values at (x̄, ȳ) = (43.017, 0.622). If a cytotoxic
effect on the immunocompetent cell densities were to be considered as well, then the
coordinate ȳ of the equilibrium would be smaller since the beneficial effect on the
cancer volume will be diminished and thus x̄ would be larger. But also in this case, in
the mathematical model it is in principle (ignoring side effects) possible to reduce the
cancer volume to a small enough chronic state.

Obviously, side effects of the drugs invalidate this reasoning and the practical aim
is to investigate how an initial condition (x0, y0) that lies in the region of malignant
cancer growth for the uncontrolled system could be transferred in an efficient and
effective way into the region of attraction of the stable, benign equilibrium point.
Intuitively, such a transfer requires to minimize the cancer cells x while not depleting
the T -cell density y too strongly. The system under consideration is Morse–Smale
(Guckenheimer and Holmes 1983) and thus the boundary between the benign and
malignant regions consists of a union of smooth curves, the stable manifolds of unsta-
ble equilibria. For the classical version of Stepanova’s model with exponential growth
there exists one saddle point and this separatrix is given by the stable manifold of this
saddle. In general, it is not possible to give an analytic description of this manifold.
But its tangent space is spanned by the stable eigenvector of the saddle point and this
easily computable quantity can serve as a first approximation. In fact, the separatrix
shown in Fig. 1 on the left is well approximated by its tangent line in the region where
the tumor volume is not too large (otherwise the immune system will mostly be sup-
pressed anyway, de Vladar and González 2004) and also the example shown in Fig. 2
in de Vladar and González (2004) is almost linear. This motivates the choice of an
objective function that minimizes a penalty term of the form ax(T ) − by(T ) where a
and b are positive coefficients determined by the stable eigenvector vs of the saddle,

vs =
(

b
a

)
. (3)

For example, for the parameter values used earlier, normalizing b = 1, we have that
a = 0.00192. Minimizing this objective naturally steers the system towards the benign
region.

The formulation so far does not yet take into account side effects of the treatment.
There exist various options to do this. In Ledzewicz et al. (2011a) we limited the
overall amount of cytotoxic agents u to an a priori given quantity,

∫ T
0 u(t) dt ≤ A,

and then analyzed the problem of how this amount can be applied in an optimal
way. The time T does not correspond to a therapy horizon, but it merely denotes the
time when the minimum for the objective is realized. However, the existence of an
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asymptotically stable, benign equilibrium generates controlled trajectories that
improve the value ax(T ) − by(T ) of the objective along the trivial control u = 0
by taking a very long time horizon. In some sense, there exist trajectories that provide
a “free pass” and can take an arbitrary long time. For this reason, in fact no minimum
exists in this problem formulation. There only is an infimum that arises as the control
switches to follow u = 0 when the controlled trajectory intersects the separatrix, then
follows the separatrix for an infinite time to the saddle and then again leaves this sad-
dle point along the unstable manifold, once more taking an infinite time. This indeed
would be the optimal solution for this problem formulation, but it is not an admissi-
ble trajectory in our system. Also, from a practical point of view, it is not desirable
at all to have a trajectory that would stay on the boundary of the malignant region.
This phenomenon is caused by the dynamic properties of the underlying system and
it persists if, rather than limiting the overall amounts of cytotoxic agents a priori, the
integral

∫ T
0 u(t) dt is added into the objective to be minimized. Clearly, it is equally

possible to improve the value of the objective without incurring any additional cost
along u = 0 (Ledzewicz et al. 2010). Mathematically, it is preferable to have a well-
posed formulation in which optimal controls exist. Therefore, here we introduce a new
objective that consists of a weighted average of (i) the penalty term ax(T ) − by(T )

that induces the system to move from the malignant into the benign region of the state
space, (ii) the cumulative effects of the chemotherapeutic agent in the objective and
(iii) a penalty term on the terminal time T . We thus aim to minimize an objective of
the form

J (u) = ax(T ) − by(T ) + c

T∫
0

u(t) dt + dT

where a and b are positive coefficients determined by the stable eigenvector vs =
(b, a)T of the saddle and c and d are positive weights. Such an objective will strike a
balance between the benefit at the terminal time T, ax(T )−by(T ), and the overall side
effects measured by the total amount of drugs given,

∫ T
0 u(t) dt , while it guarantees

the existence of an optimal solution by also penalizing the free terminal time T . We
therefore consider the following optimal control problem in Bolza form:
[OC] for a free terminal time T , minimize the objective

J (u) = ax(T ) − by(T ) +
T∫

0

(cu(t) + d) dt, (4)

over all Lebesgue measurable functions u : [0, T ] → [0, 1] subject to the dynamics

ẋ = −μC x ln

(
x

x∞

)
− γ xy − κxu, x(0) = x0, (5)

ẏ = μI

(
x − βx2

)
y − δy + α, y(0) = y0. (6)
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It is easily seen that for positive initial conditions x0 and y0 and any admissible
control u the states x and y remain positive. For, since x = 0 is an equilibrium solution
of (5), the variable x cannot cross 0 and if y = 0, then we always have that ẏ > 0.
Thus there is no need to impose positivity as a separate state-constraint. We denote
the state by z = (x, y)T and express the dynamics in the form

ż = f (z) + ug(z) (7)

where

f (z) =
(

−μC x ln
(

x
x∞

)
− γ xy

μI
(
x − βx2

)
y − δy + α

)
and g(z) =

(−κx
0

)
(8)

are the drift and control vector field, respectively.

4 Necessary conditions for optimality

First-order necessary conditions for optimality of a control u are given by the
Pontryagin Maximum Principle (for some recent texts, see Bonnard and Chyba
2003; Bressan and Piccoli 2007): For λ0 ∈ R and a two-dimensional row-vector
λ = (λ1, λ2), define the Hamiltonian H = H(λ0, λ, x, y, u) as

H = λ0 (cu + d) + λ1

(
−μC x ln

(
x

x∞

)
− γ xy − κxu

)

+λ2 (μI (1 − βx) xy − δy + α) , (9)

or, equivalently, in terms of the vector fields f and g, as

H = 〈λ, f (z)〉 + u (λ0c + 〈λ, g(z)〉) + λ0d. (10)

If u∗ is an optimal control defined over an interval [0, T ] with corresponding trajec-
tory z∗ = (x∗, y∗)T , then there exist a constant λ0 ≥ 0 and an absolutely continuous
two-dimensional covector λ defined on [0, T ], such that the following conditions hold:

(a) λ0 and λ(t) = (λ1(t), λ2(t)) do not vanish simultaneously,
(b) λ1 and λ2 satisfy the adjoint equations

λ̇1 =−∂ H

∂x
=−λ1

(
−μC

(
1+ln

(
x

x∞

))
−γ y−κu

)
− λ2μI (1−2βx) y (11)

λ̇2 = −∂ H

∂y
= λ1γ x − λ2

(
μI

(
x − βx2

)
− δ

)
(12)

with terminal conditions λ1(T ) = λ0a and λ2(T ) = −λ0b,
(c) for almost every time t ∈ [0, T ], the optimal control u∗(t) minimizes the

Hamiltonian along (λ0, λ(t), x∗(t), y∗(t)) over the control set [0, 1] with mini-
mum value given by 0.
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Since the integral term of the objective does not depend on the state variables
x and y, the adjoint equations can be succinctly expressed in the form

λ̇(t) = −λ(t) (D f (z∗(t)) + u∗(t)Dg(z∗(t))) (13)

where D f and Dg denote the matrices of the partial derivatives of the vector fields f
and g, respectively.

We call a controlled trajectory ((x, y), u) consisting of an admissible control u with
corresponding trajectory (x, y) for which there exist multipliers λ0 and λ such that
the conditions of the Maximum Principle are satisfied with an extremal (pair) and the
triple ((x, y), u, (λ0, λ)) is an extremal lift (to the cotangent bundle). If the multiplier
λ0 = 0, the extremal is called abnormal while it is called normal if λ0 > 0. In this
case, by dividing by λ0 it is always possible to normalize λ0 = 1. For our problems
all extremals are normal and henceforth we shall set λ0 = 1.

Lemma 1 All extremals are normal.

Proof If λ0 = 0, then the terminal conditions are given by λ1(T ) = λ2(T ) = 0
and thus λ1(t) and λ2(t) vanish identically as solutions of a system of homogeneous
linear differential equations. This contradicts condition (a), the nontriviality of the
multipliers. �

Lemma 2 If the optimal control ends with a segment for u = 0, then the terminal
point (x(T ), y(T )) lies on the curve

a

(
−μC x ln

(
x

x∞

)
− γ xy

)
− b

(
μI

(
x − βx2

)
y − δy + α

)
+ d = 0, (14)

if it ends with a segment for u = 1, then it lies on the curve

a

(
−μC x ln

(
x

x∞

)
−γ xy−κx

)
−b

(
μI

(
x − βx2

)
y−δy+α

)
+c + d =0. (15)

Proof This follows from the terminal conditions λ1(T ) = a and λ2(T ) = −b and the
fact that H vanishes identically. �


By condition (c), the optimal control u∗(t) minimizes the Hamiltonian H(λ(t),
x∗(t), y∗(t), u) over the set 0 ≤ u ≤ 1 a.e. on [0, T ]. Since H is linear in u, and
defining the so-called switching function � as

�(t) = c + 〈λ(t), g(z∗(t))〉 = c − λ1(t)κx∗(t), (16)

it follows that

u∗(t) =
{

0 if �(t) > 0
1 if �(t) < 0

. (17)
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We refer to the constant controls u = 0 and u = 1 as the bang controls. The
minimum condition by itself does not determine the control at times when �(τ) = 0.
If �̇(τ ) �= 0, then at such a time the control switches between u = 0 and u = 1
depending on the sign of �̇(τ ) and thus also the name of bang-bang controls. How-
ever, if �(t) ≡ 0 on an open interval I , then also all derivatives of �(t) must vanish
and typically this does allow to compute the control. Controls of this kind are called
singular (Bonnard and Chyba 2003). Optimal controls then need to be synthesized
from these two classes of candidates.

This requires to analyze the zero set of the switching function. All we know about
the switching function a priori is that it is absolutely continuous and thus in principle its
zero set could be any closed subset of [0, T ] Golubitsky and Guillemin (1973). How-
ever, typically its structure is much simpler and can be determined through an analysis
of the derivatives of the switching function. The following well-known elementary
proposition summarizes the relevant computations.

Proposition 1 Let z(·) be a solution of the dynamics (7) for the control u and let λ be a
solution of the corresponding adjoint equation (13). For a continuously differentiable
vector field h define


(t) = 〈λ(t), h(z(t))〉. (18)

Then the derivative of 
 is given by


̇(t) = 〈λ(t), [ f + ug, h](z(t))〉, (19)

where [k, h](z) = Dh(z)k(z)− Dk(z)h(z) denotes the Lie bracket of the vector fields
k and h.

Proof Dropping the argument t , we have that


̇ = λ̇h(z) + λDh(z)ż

= −λ (D f (z) + u Dg(z)) h(z) + λDh(z) ( f (z) + ug(z))

= λ (Dh(z) f (z) − D f (z)h(z)) + uλ (Dh(z)g(z) − Dg(z)h(z))

= 〈λ, [ f + ug, h](z)〉.

�

5 Singular arc and control

Suppose an optimal control u∗ is singular on an open interval I . Then the switching
function � and all its derivatives vanish on I . Especially, we thus have that

�(t) = 〈λ(t), g (z∗(t))〉 + c ≡ 0

and using Proposition 1 with h = g we also get that

�̇(t) = 〈λ(t), [ f, g](z∗(t))〉 ≡ 0 (20)

123



568 U. Ledzewicz et al.

on I . The Hamiltonian H can be written in the form

H = 〈λ(t), f (z∗(t))〉 + �(t)u(t) + d

and the fact that H vanishes identically thus also implies that

H = 〈λ(t), f (z∗(t))〉 + d ≡ 0

on I . Hence we have that

〈λ(t), c f (z∗(t)) − dg(z∗(t))〉 ≡ 0. (21)

Since λ is nontrivial (otherwise the terminal values on λ(T ) cannot be satisfied), it
follows that the vector fields c f − dg and [ f, g] must be linearly dependent when the
optimal control is singular. The locus of these points is called a singular arc and it can
simply be computed as the zero set of the determinant

det (c f (z) − dg(z), [ f, g](z)) = 0. (22)

For our system, this expression becomes a quadratic polynomial in y of the form

det (c f (z) − dg(z), [ f, g](z)) = κx
(

a2(x)y2 + a1(x)y + a0(x)
)

(23)

with coefficients that are functions of x . Explicit computations verify that

a2(x) = −cγμI (x − 2βx2),

a1(x) = μI

[
dκ − cμC ln

(
x

x∞

)]
(x − 2βx2) + cμC

[
μI (x − βx2) − δ

]
,

a0(x) = αcμC > 0.

Thus for every value x the singular curve consists of possibly one or two values or no
singular arc is possible. For example, since a0(x) is a positive constant, for x < 1

2β
the

coefficient a2(x) is negative and thus there exist two real solutions, one positive, one
negative. Only the positive one is of interest for the problem and thus the singular arc
is the graph of a function over the interval (0, 1

2β
). Whether solutions exist for x > 1

2β
depends on the actual parameter values and analytic formulas for y as a function of x
can still be written down, but they get unwieldy.

Similar formulas can be derived for the singular control that keeps the singular arc
invariant and for the Legendre–Clebsch condition, a necessary condition for optimal-
ity of a singular arc (e.g., see Bonnard and Chyba 2003): It follows from Proposition 1
and Eq. (20) that the second derivative of the switching function is given by

�̈(t) = 〈λ(t), [ f, [ f, g]](z∗(t))〉 + u(t)〈λ(t), [g, [ f, g]](z∗(t))〉.
If 〈λ(t), [g, [ f, g]](z∗(t))〉 does not vanish, then it is a necessary condition for opti-
mality of a singular control u∗, the so-called Legendre–Clebsch (LC) condition, that

〈λ(t), [g, [ f, g]](z∗(t))〉 < 0 (24)
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holds along the optimal singular arc. In this case the singular control can then formally
be expressed as

usin(t) = −〈λ(t), [ f, [ f, g]](z∗(t))〉
〈λ(t), [g, [ f, g]](z∗(t))〉 . (25)

On the set where the vector fields g and [ f, g] are linearly independent, we can
express the second-order brackets [ f, [ f, g]] and [g, [ f, g]] as linear combinations of
this basis, say

[ f, [ f, g]](z) = ϕ1(z)g(z) + ϕ2(z)[ f, g](z) (26)

and

[g, [ f, g]](z) = θ1(z)g(z) + θ2(z)[ f, g](z). (27)

Since we have that 〈λ(t), g(z∗(t))〉 = −c < 0 and 〈λ(t), [ f, g](z∗(t))〉 = 0 along the
singular arc, Eq. (27) simplifies to

〈λ(t), [g, [ f, g]](z∗(t))〉 = −cθ1(z∗(t))

and thus the strengthened Legendre–Clebsch condition is satisfied if and only if
θ1(z∗(t)) is positive. Similarly, the singular control can be calculated explicitly as
the feedback function

usin(t) = −ϕ1(z∗(t))〈λ(t), g(z∗(t))〉 + ϕ2(z∗(t))〈λ(t), [ f, g](z∗(t))〉
θ1(z∗(t))〈λ(t), g(z∗(t))〉 + θ2(z∗(t))〈λ(t), [ f, g](z∗(t))〉

= −ϕ1(z∗(t))
θ1(z∗(t))

. (28)

For our system, direct calculations verify that

[ f, g](z) = Dg(z) f (z) − D f (z)g(z)

=
(

−κ 0

0 0

) (
−μC x ln

(
x

x∞

)
− γ xy

μI (x − βx2)y − δy + α

)

−
(

−μC

(
1 + ln

(
x

x∞

))
− γ y −γ x

μI (1 − 2βx) y μI
(
x − βx2

) − δ

) (
−κx

0

)

=
(

κμC x ln
(

x
x∞

)
+ κγ xy

0

)
−

(
κμC x

(
1 + ln

(
x

x∞

))
+ κγ xy

−κμI x (1 − 2βx) y

)

= κx

(
−μC

μI (1 − 2βx)y

)
.
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Similar computations show that

[g, [ f, g]](z) = −κ2xy

(
0

μI (1 − 4βx)

)

and

[ f, [ f, g]](z)

= κx

( −μ2
C + μI γ (x − 2βx2)y

−μCμI (1 − 4βx) ln
(

x
x∞

)
y + (α − μC y)μI (1 − 2βx)y − γμI (x − 4βx2)y2

)
.

The vector fields g and [ f, g] are linearly independent unless x = 1
2β

and away from
this value we have that

θ1(z) = κμC
1 − 4βx

1 − 2βx
and θ2(z) = −κ

1 − 4βx

1 − 2βx
.

Thus we have the simple criterion that a singular arc satisfies the strengthened
Legendre–Clebsch condition in the sets {(x, y) : 0 < x < 1

4β
} and {(x, y) : 1

2β
< x}

and it violates it in {(x, y) : 1
4β

< x < 1
2β

}. Overall, we therefore get the following
result:

Proposition 2 Singular arcs are solutions y = y(x) of the quadratic equation (23),
a2(x)y2 + a1(x)y + a0(x) = 0. The singular control that keeps the system on the
singular arc is given in feedback form as

usin(t) = −ϕ1(z∗(t))
θ1(z∗(t))

where the coefficients ϕ1 and θ1 are defined through the relations (26) and (27). (This
control is admissible if and only if its value lies in the interval [0, 1]). The strengthened
Legendre–Clebsch condition is satisfied for x < 1

4β
and 1

2β
< x, and it is violated for

1
4β

< x < 1
2β

. �

Based on the formulas derived above, the singular arc, the singular control, and

their admissible portions can easily be evaluated numerically. In Fig. 2 we give two
graphs that illustrate the structure of the singular curves for two parameter values for
which we shall later give the optimal controls.

6 Optimal controlled trajectories

In this section, we give several examples of optimal controlled trajectories for different
scenarios that show the typical structure of the solutions. There exists a large litera-
ture on algorithms to solve so-called non-singular optimal control problems when the
Hamiltonian is quadratic and positive definite in the controls, but numerical methods
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Fig. 2 Examples of singular curves with the admissible portions identified by the solid segments

and software for problems that also include optimal singular arcs are not as developed.
Here we used the classical ε-algorithm approach in which a quadratic penalty term

ε

T∫
0

u2(t) dt

is added to the objective and then the optimal controls for the underlying problem are
recovered in the limit as ε → 0 (Bell and Jacobson 1975). For the actual computations
we used GPOPS (General Pseudo-spectral OPtimal control Software), an open-source
MATLAB optimal controls software that implements the Gauss hp-adaptive pseudo-
spectral methods (http://www.gpops.org/, Rao et al. 2008). These methods approxi-
mate the state using a basis of Lagrange polynomials and collocate the dynamics at
the Legendre-Gauss nodes (Benson 2004; Benson et al. 2006; Huntington 2007). The
continuous-time optimal control problem is then transformed into a finite-dimensional
nonlinear programming problem that is being solved using well known and standard
algorithms. The algorithm generates local minima and, if there exist more than one,
a simple comparison of the values is done to obtain the optimal solution. In some
simple cases, that essentially are generated by choices c and d of the coefficients in
the objective (4) that skew the importance of the side-effects versus the terminal time,
optimal controls become constant full-dose regimens. Aside from these scenarios,
optimal solutions contain a time interval when the control is singular. The analytic
formulas derived above were checked against the numerically found values to verify
the accuracy of these solutions.

We want to illustrate the changes in the structure of the optimal controls as the
coefficients in the objective change and therefore in our computations we use the
same initial condition given by (x0, y0) = (600, 0.1). The initial tumor volume x0
is given as a multiple of some reference value and represents a tumor cell count that
is 600 times higher than some chosen base value (106 cells); y0 is a dimensionless,
order-of-magnitude quantity that represents a depletion of the immunocompetent cell
densities to 10% of a nominal value. For these initial conditions that lie well within
the malignant region, initially in each scenario considered below the control is given
by u ≡ 1 for some interval [0, t1].

123

http://www.gpops.org/


572 U. Ledzewicz et al.

0 100 200 300 400 500 600 700 800
0

0.5

1

1.5

2

2.5

3

x

y

 

 

Singular Arc, Admissible Part
Singular Arc, Inadmissible Part
Terminal Curve, u=1
Terminal Curve, u=0
Optimal Trajectory

150 200 250

0.1

0.2

0.3

0.4

0.5

0.6

 

 

w
0
=(x

0
,y

0
), Initial State

w
T
=(x

T
,y

T
), Terminal State

Fig. 3 The initial point (p0, q0) = (600, 0.1) is steered optimally with u = 1

Scenario 1 If the penalty on the terminal time T is taken large relative to the
side-effects of treatment, d � c, this term becomes dominant and the optimal control
is simply constant given by a full dose treatment, u ≡ 1. Figure 3 shows an example
for this kind of trajectory with d = 0.28 and c = 0.001. The optimal trajectory barely
crosses into the benign region. Yet, assuming the dynamics follows the uncontrolled
system after the final time T , the state then converges to the benign equilibrium point.
The figure also shows the singular arc which in this range is the graph of a func-
tion with its admissible portion identified as the solid green portion. But for these
parameter values the optimal solution terminates exactly at the time when the singu-
lar arc is reached. The figure, and also the ones given below, also identifies the two
curves defined in Eqs. (14) and (15) in Lemma 2 where an optimal control satisfies
the required transversality conditions for ending with u = 0 and u = 1, respectively.
The terminal point needs to lie on this curve according to the final value of the control
being used.

Scenario 2 For decreasing values of d, the trajectory starts from the initial condition
(x0, y0) with u = 1 until it hits the singular arc. At this time, the control switches
to the singular control and follows the singular arc across the separatrix. Then, at a
certain time τ the control switches to u = 0 and follows the uncontrolled trajectory
towards the benign equilibrium point. Because of the small penalty on the amount of
drugs used, the control in principle can switch to u = 1 once more and push the system
further away from the separatrix. We use the notation 1s0, respectively 1s01, to label
the concatenation sequences of the optimal controls. That is, an 1s01-trajectory starts
with a segment [0, t1] when the control is at maximum dosage, u ≡ 1, followed by an
interval [t1, τ ] where the control is singular and the trajectory follows an admissible
singular arc, then switches to an interval [τ, σ ] when no drugs are given, u ≡ 0, and
possibly ends with another full burst of chemotherapy on an interval [σ, T ].

This leads to the following three-dimensional minimization problem over variables
(τ, σ, T ) whose numerical solution then defines the optimal control:
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• τ denotes the time along the singular arc when the control switches from singular
to u = 0. At the corresponding point the trajectory leaves the singular arc and
follows the trajectory of the uncontrolled system.

• σ denotes the time along the trajectory for the uncontrolled system (u = 0) when
chemotherapy becomes reactivated. At this time the control switches from u = 0
to u = 1.

• T denotes the time along this trajectory of the controlled system (u = 1) that
minimizes the objective (4). The terminal point lies on the curve defined by (15).

Overall, a concatenation sequence for the control of at most the form 1s01 results.
Figure 4 illustrates three examples for (c, d) = (0.001, 0.23), (c, d) = (0.01, 0.2),
and (c, d) = (0.05, 0.2). The initial and terminal conditions are labeled as w0 and
wT , respectively, and the consecutive switching points are w1, w2 and w3. Again, in
the relevant range, the singular arc is the graph of a function and the figure identifies
its admissible segment.

Scenario 3 The other common structure of optimal controlled trajectories is of the form
1s0. As the parameter c increases, that is, the penalty on the chemotherapeutic agent
is increased, this gives prominent role to the side effects (and this in some sense is the
most important case) and then the last segment in the optimal control corresponding
to u = 1 no longer is present. In this case, the optimal control will be of the form 1s0
and the optimal trajectory ends on the curve (14) that defines the terminal values for
the control u = 0. This situation is rather typical and we illustrate it in Fig. 5.

7 Conclusion

Based on Stepanova’s mathematical model of immunological activity during cancer
growth, we formulated the problem of how to transfer a malignant initial condition
into a benign region through therapy as an optimal control problem. Clearly, the model
oversimplifies activation and action of the immune system and thus is not practically
relevant. But it nevertheless leads to interesting theoretical insights about optimal
therapies in the presence of tumor immune interactions. In this paper, by including a
penalty term on the final time T , we have given a well-posed formulation for which
optimal controls exist. If too much prominence is given to this penalty, optimal con-
trols simply will become constant and be given by the full dose controls u ≡ 1. More
realistically, as the coefficient at the terminal time is decreased, or, equivalently, the
coefficient at the integral of u that measures side-effects is increased, the responses
to optimal treatments typically are concatenations that start with a full dose trajectory
for u ≡ 1 and then are followed by a segment corresponding to partial dose treat-
ments (singular arc). In view of the fact that u = 1 denotes the maximum allowable
dose in the model, this solution structure agrees with protocols that initially apply a
burst of chemotherapy to reduce the tumor volume and then sustain a smaller volume
with reduced dosages. At the appropriate time, determined by the optimality condi-
tions, treatment in terms of giving cytostatic agents u ceases and the system follows
the uncontrolled trajectory corresponding to u ≡ 0 until the minimal value for the
objective is reached as the trajectory reaches the curve (14) where the transversality
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Fig. 4 Examples of optimal controlled trajectories whose controls follow the concatenation structure 1s01

conditions for ending with u = 0 are satisfied. In some cases, depending on the
relations between the coefficients c and d in (4) that define the objective, possibly one
more short trajectory corresponding to another full dose control segment u ≡ 1 at the
end is optimal.
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Fig. 5 Examples of optimal controlled trajectories whose controls follow the concatenation structure 1s0

With the prominent role played by a singular arc, these solutions for model [OC]
contrast with optimal controls for cell-cycle specific models for cancer chemotherapy
when no tumor–immune system interactions are taken into account and where optimal
controls are bang-bang (e.g., Ledzewicz and Schättler 2002; Swierniak et al. 2003).
Clearly, the underlying dynamical systems are difficult to compare, but it could be
speculated that it is the mitigating influence of the immune system that for smaller
tumor volumes leads to the abandonment of the strict bang-bang scheme that is seen
in the cell-cycle specific models. For these models the Legendre–Clebsch condition is
always violated and thus partial doses will never be optimal. In the model considered
here, optimal controls still are given by full dose segments when the tumor volume is
large, but then partial doses represented by the singular arc provide better results as
the tumor volume shrinks.

Despite the model’s simplicity, the paper addresses the important question how to
best schedule therapies over time. In clinical trials, because of the great complexity
of the underlying medical problem, the scheduling of drugs is pursued in expensive,
exhaustive, medically guided trial-and-error approaches. Hence there exists a strong
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opportunity for mathematical techniques to be useful here to give some guidance The
analysis presented can be considered a first step towards designing treatment protocols
for more complex models. It is hoped, that the structure of optimal protocols seen in
this simplified model gives an indication about their form for the mathematically more
general models.
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