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Abstract This paper investigates the stability of the power-law steady state often
observed in marine ecosystems. Three dynamical systems are considered, describing
the abundance of organisms as a function of body mass and time: a “jump-growth”
equation, a first order approximation which is the widely used McKendrick–von
Foerster equation, and a second order approximation which is the McKendrick–von
Foerster equation with a diffusion term. All of these yield a power-law steady state.
We derive, for the first time, the eigenvalue spectrum for the linearised evolution
operator, under certain constraints on the parameters. This provides new knowledge
of the stability properties of the power-law steady state. It is shown analytically that
the steady state of the McKendrick–von Foerster equation without the diffusion term
is always unstable. Furthermore, numerical plots show that eigenvalue spectra of the
McKendrick–von Foerster equation with diffusion give a good approximation to those
of the jump-growth equation. The steady state is more likely to be stable with a low
preferred predator:prey mass ratio, a large diet breadth and a high feeding efficiency.
The effects of demographic stochasticity are also investigated and it is concluded that
these are likely to be small in real systems.
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1 Introduction

It is well established that marine ecosystems often show roughly equal abundances
of biomass in logarithmically increasing weight intervals, when organisms are iden-
tified by body mass rather than by species identity (Sheldon et al. 1972; Boudreau
and Dickie 1992). This is equivalent to a power-law for the abundance density as
a function of body mass with exponent of approximately −2. Alternatively, plotting
log(abundance) against log(mass) gives a “size spectrum” (Sheldon and Parsons 1967;
Platt and Denman 1978) which is approximately linear with gradient near to −1.

This empirical pattern has motivated a programme of theoretical research. Silvert
and Platt (1978, 1980) developed a size-dependent partial differential equation model-
ling growth and death in a size spectrum, and established the existence of a power-law
steady state. The power-law steady state has also been shown in systems where pre-
dators are allowed to eat any prey smaller than themselves (Camacho and Solé 2001).
When predators are assumed to be more selective (i.e. eating only a certain range
of prey), the existence of a power-law steady state has also been proven, using an
integro-differential equation for the model instead of a partial differential equation;
the exponent generally depends on assimilation efficiency, external mortality and pred-
ator–prey interaction rates (Benoît and Rochet 2004). In these and other studies (e.g.
Andersen and Beyer 2006; Blanchard et al. 2009; Law et al. 2009), the McKendrick–
von Foerster equation is commonly used. However, a derivation from a stochastic
model of predation leads to a more general equation (Datta et al. 2010), which we
will refer to as the “jump-growth” equation in the following analysis. The McKend-
rick–von Foerster equation is the first order approximation (in an infinite series) to the
jump-growth equation when prey are typically much smaller than predators. The sec-
ond order approximation brings a diffusion term into the McKendrick–von Foerster
equation (Datta et al. 2010), the effects of which have not previously been studied.

Marine biologists need to understand the resilience of the power-law steady state to
perturbations caused by fishing and natural phenomena, such as springtime plankton
blooms. For instance, it has been shown that fishing increases the temporal variability
in abundance of marine species (Hsieh et al. 2006; Anderson et al. 2008). Fundamental
to this understanding are the stability properties of the power-law steady state, about
which very little is known. We do know from recent numerical studies on the jump-
growth equation and the McKendrick–von Foerster equation that there is a bifurcation
from a stable power-law steady state to a travelling-wave attractor under certain param-
eter conditions (Law et al. 2009; Datta et al. 2010). However, the only stability analysis
we are aware of assumed growth to be independent of prey density (Arino et al. 2004),
thereby excluding a key predator–prey interaction at the heart of the dynamics. The
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power-law steady state plays a pivotal role in marine ecosystems, and it is essential to
understand the factors that contribute to its stability and instablity.

This paper provides the first detailed stability analysis on the jump-growth equa-
tion and its low order approximations, the McKendrick–von Foerster equation and
the McKendrick–von Foerster equation with diffusion. It is also the first analysis
of the effects of including the second order diffusion term in the McKendrick–von
Foerster equation, and of the effects of demographic noise on the stable power-law
steady state. The results show that the first order approximation is unstable, whereas
the second order approximation can be stable, and gives a much better approximation
to the jump-growth equation. The steady state is shown to be more likely to be stable
when the preferred predator:prey mass ratio is reduced and the diet breadth and the
feeding efficiency are increased.

For readers interested in the mathematical derivation of the perturbation equations
and eigenvalue spectra, Sect. 2 shows the necessary steps taken. However, for those
more interested in the results of the stability analyses, Sect. 3 shows the behaviour
of the three models, and reading Sect. 2.1 should provide sufficient background to
understand the different models used.

2 Analysis of the power-law steady state

2.1 Three models of predation

The analysis focuses on perturbations around the power-law steady state of three equa-
tions: the jump-growth equation (1), the McKendrick–von Foerster equation (2) and
the McKendrick–von Foerster equation with diffusion (3). These equations describe
the rate of change in the density of organisms of weight w, which we call φ(w), with
dimensions M−1L−3, where M is the mass dimension and L is the length dimension.
This density is with respect to both mass and volume, so the number of organisms in
a volume V with weight between w and w + dw is Vφ(w)dw. The first equation is
based on the jump-growth equation of Datta et al. (2010),

∂φ(w)

∂t
=

∫ (−T (w,w′)φ(w)φ(w′)− T (w′, w)φ(w′)φ(w)

+T (w − Kw′, w′)φ(w − Kw′)φ(w′)
)

dw′ − μφ(w). (1)

T (w,w′) is proportional to the feeding rate of individuals of weight w on individuals
of weight w′, and 0< K < 1 is the conversion efficiency of biomass from prey to
predator (Law et al. 2009). There are three ways in which a feeding event can result in
a change in the density of individuals at a given weight w, corresponding to the three
terms in the integrand. The first term represents the loss of individuals of weight w
due to growth to a larger size (predation of w upon w′), the second term the loss of
individuals of weight w due to death (predation of w′ upon w), and the third term the
gain of individuals of weight w due to growth from from a smaller size (predation of
w − Kw′ on w′). Here we have also included a linear natural death rate μ (with the
dimension of inverse time) to allow for other sources of mortality.
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A Taylor expansion of the third term in the jump-growth equation in powers
of K gives an infinite series of approximations to the full jump-growth equation
(Datta et al. 2010). Expanding up to and including terms linear in K gives our second
model, the McKendrick–von Foerster equation,

∂φ(w)

∂t
= −

∫
T (w′, w)φ(w)φ(w′) dw′

− ∂

∂w

∫
Kw′ T (w,w′)φ(w)φ(w′) dw′ − μφ(w) (2)

and including terms quadratic in K gives our third model,

∂φ(w)

∂t
= −

∫
T (w′, w)φ(w)φ(w′) dw′

− ∂

∂w

∫
Kw′ T (w,w′)φ(w)φ(w′) dw′

+1

2

∂2

∂w2

∫
(Kw′)2 T (w,w′)φ(w)φ(w′) dw′ − μφ(w), (3)

which we will refer to as the McKendrick–von Foerster equation with diffusion. Note
that, as in Eq. (1), a linear death rateμ has been included in these two approximations.

We assume a feeding kernel of the form

T (w,w′) = Awαs
( w
w′

)
(4)

where A is the predator search volume per unit mass−α per unit time, α is the predator
search exponent, calculated to have a value of approximately 0.8 (see Ware 1978),
and s(w/w′) is the feeding preference function, centred around some preferred pred-
ator:prey mass ratio B. To make analytical progress in this paper we assume that
α = γ −1, where γ is the exponent of the power-law steady state (≈ 2). This assump-
tion then has the consequence that the steady state is a power-law (see below). In
addition, the eigenvalue spectrum can then be written as a closed form expression
and its properties analysed. Although probably not realistic from a biological point
of view (discussed in Sect. 4), the assumption places stability analyses of size spectra
on a firm mathematical foundation and provides a basis from which exploration of a
broader class of systems can begin.

Section 2.2 defines the power-law steady state for the jump-growth equation (1) and
its two approximations (2) and (3). Section 2.3 develops equations for the dynamics
of small perturbations to this steady state and Sect. 2.4 gives explicit equations for the
eigenvalue spectra. In Sect. 2.5, the effect of demographic noise on the system at steady
state is investigated. Finally, Sect. 2.6 incorporates a Gaussian feeding preference for
predators.
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2.2 The power law steady state

The steady state for Eqs. (1), (2) and (3) is given by

φ̂(w) = φ0w
−γ (5)

where φ0 is a constant. Below, it helps to transform the variable w to a dimensionless
log weight variable x = ln(w/w0) (for some arbitrary weight w0). For analysing the
steady state of the jump-growth equation (1) it is convenient to change the integration
variable of each of the three terms to the predator:prey mass ratio, which leads to the
transformed equation

∂v(x)

∂t
= Â

∫
s(er )(−eαrv(x)v(x − r)− v(x)v(x + r)

+eα(r+ψ(r))v(x − ψ(r))v(x − r − ψ(r))) dr − μv(x), (6)

where we have used Eq. (4) for the feeding kernel with α = γ − 1. Here v(x) has
the property that e−(α+1)xv(x) dx = φ(w) dw and has dimensions L−3, Â = Aw0

α ,
and r is the log of the predator:prey mass ratio with ψ(r) = ln(1 + K e−r ). In the
transformed jump-growth equation (6), the steady state is simply given by

v(x) = v0, (7)

where v0 = φ0w0
−α is a constant. Substituting this into Eq. (6) we get the steady state

condition,

∫
s(er )

(
−eαr − 1 + eα(r+ψ(r))) dr − η = 0 (8)

where η = μ/( Âv0) is dimensionless. This equation implicitly determines the value
of the search volume exponent α (and thus the steady state exponent γ ) for a given
choice of the parameters K and η and the feeding kernel s(er ). If we impose the con-
ditions that predators can only feed upon prey smaller than themselves and K �= 0,
we can prove analytically that there always exists a unique value for α that solves the
steady state condition. Without these conditions we verify its existence and unique-
ness numerically. Setting η determines the abundance of fish at the steady state, as it
contains the constant v0.

For the McKendrick–von Foerster equation with diffusion (3), the steady state
condition is

∫
s(er )

(
−1 + αK e(α−1)r + α(α − 1)

K 2

2
e(α−2)r

)
dr − η = 0, (9)

and for the McKendrick–von Foerster equation without diffusion (2), terms of order
K 2 in Eq. (9) are ignored.
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2.3 Perturbations around the steady state of the jump-growth equation

We now add a small perturbation to the steady state of the jump-growth equation and
observe its evolution over time. If the perturbation grows over time, then the steady
state is not stable, and the system will not stay at the equilibrium; if the perturbation
decays, then the steady state is locally asymptotically stable. We call the perturbation
v0ε(x, t) and obtain its evolution equation by substituting

v(x, t) = v0(1 + ε(x, t)) (10)

into Eq. (6). We now assume that we can neglect terms of order ε2 because ε is taken
to be very small. For a finite-dimensional dynamical system this can be justified rigor-
ously using the Hartman–Grobman theorem (see e.g. Kirchgraber and Palmer 1990).
However in an infinite-dimensional system this can be more subtle (see e.g. Aulbach
and Garay 1993) and we proceed formally in analogy with the finite-dimensional
case. We then use condition (8) to eliminate terms of order ε0, so that only terms of
ε1 remain. This leads to the linearised perturbation equation

∂ε(x)

∂t
= Âv0

∫
s(er )

(
− eαr (ε(x)+ ε(x − r))− (ε(x)+ ε(x + r))

+eα(r+ψ(r))(ε(x − ψ(r))+ ε(x − r − ψ(r)))
)

dr − με(x). (11)

We can change integration variables appropriately so that the right hand side of equa-
tion (11) is in the form of an integral operator acting on ε,

∂ε(x)

∂t
= Âv0

∫
ε(m)G(x,m) dm (12)

where

G(x,m) = −δ(r)
(∫

s(ez)(eαz + 1) dz + μ

)
− s(er )eαr − s(e−r )

+s(ez1)K −1e(α+1)(z1+r) + s(ez2)e(α+1)r−z2 . (13)

Here r = x − m, z1 = ln(K/(er − 1)), z2 = ln(er − K ) and δ represents the Dirac
delta function. The integral kernel G(x,m) can be thought of as an infinite-dimen-
sional version of a matrix with indices x and m and the task of solving Eq. (12) thus
reduces to finding the ‘eigenvectors’ and ‘eigenvalues’ of this ‘matrix’. To define the
operator rigorously in the infinite-dimensional case we must first restrict the pertur-
bations to the space of square-integrable periodic functions with some period L . On
this space the operator is compact and thus it is meaningful to speak of its spectrum
of eigenvalues. In the end we can then take the period L to infinity.
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2.4 Eigenvalue spectra

We observe that the integral kernel G(x,m) depends on x −m only, i.e. it is a convolu-
tion kernel. Its ‘eigenvectors’ are given by plane waves, εk(x) = eikx , for any k ∈ R.
We refer to k as the wavenumber of the plane wave εk(x) and denote the corresponding
eigenvalue as λ(k).

The eigenvalues are

λ(k) =
∫

s(er )
(
−eαr − eikr + eαr+(α−ik)ψ(r)

) (
1 + e−ikr

)
dr − η. (14)

We refer to the values taken by λ(k) as the eigenvalue spectrum.
A general perturbation can then be expanded in terms of these plane waves and its

time evolution is

ε(x, t) =
∫

C(k)eikx+ Âv0λ(k)t dk. (15)

The expansion coefficient function C(k) is an even function because ε(x, t) is real.
Notice that if any λ(k) has a positive real part then perturbations grow exponentially
with time (the factors Â and v0 are positive constants and thus do not affect the coef-
ficient of t), which means that the steady state is unstable.

To derive the eigenvalue spectrum for the McKendrick–von Foerster equation with
diffusion from Eq. (14), ψ(r) is expanded in powers of K . Taking terms up to and
including K 2 yields

λ(k) =
∫

s(er )

(
−eikr + K (α − ik)e(α−1)r + K 2

2
(α − ik)(α − 1 − ik)e(α−2)r

)

×
(

1 + e−ikr
)

dr − η. (16)

As in Eq. (9), neglecting K 2 terms gives the corresponding eigenvalue spectrum for
the McKendrick–von Foerster equation.

It is the real part of the eigenvalue that we are interested in, as it is the sign of
this that determines whether the perturbations grow or die out over time. If, for some
wavenumber k Re(λ(k)) is positive, then any perturbation containing a component
with this wavenumber will grow over time and thus the steady state will be unstable.
If Re(λ(k)) is negative for all k then all perturbations die out over time, and the steady
state is stable.

2.5 Stochastic fluctuations

The analysis above is concerned with the deterministic jump-growth equation (1) and
its low-order approximations (2) and (3). In fact, Eq. (1) is the mean-field equation
for a stochastic model of pairwise encounters between predator and prey (Datta et al.
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2010). The magnitude of the fluctuations due to the demographic noise in the stochas-

tic model is usually a factor of �
1
2 smaller than the mean-field solution, where � is

the number of individuals in the system (van Kampen 1992). For marine ecosystems
� tends to be very large, so the fluctuations will be relatively small, but they can none-
theless have important effects (McKane and Newman 2005), and may significantly
impact the patterns observed in empirical data.

In this section we describe how the magnitude of the stochastic fluctuations, and the
correlations between the fluctuations at different body sizes, can be predicted. In order
to make the following statements rigorous, one would work in terms of discrete body
size intervals, but we work in the continuum formally for convenience, which gives the
same results. We let n(x, t) be a random variable corresponding to the density of indi-
viduals of sizew = w0ex at time t . The random variable is described by the stochastic
process given in previous work (Datta et al. 2010). Following the method used by van
Kampen (1992), we separate n(x, t) into a deterministic component v(x, t), which
satisfies the mean-field equations studied above, and a random fluctuation component
ξ(x, t):

n(x, t) = V e−αx
(
v(x, t)+�− 1

2 v0ξ(x, t)
)
. (17)

Since the focus of this paper is the stability of the steady state, we restrict attention
to the case where the deterministic component is at steady state; the results are there-
fore only relevant in cases where the steady state is stable. The stochastic fluctuations
ξ(x, t) can be described by a Langevin-type equation

∂

∂t
ξ(x, t) = Âv0

(∫
G(x, y)ξ(y, t)dy + ρ(x, t)

)
, (18)

where the kernel G is given by Eq. (13) and ρ(x, t) is a null-mean noise process.
Details of the derivation of this equation in the general, non-equilibrium setting may
be found in Datta et al. (2010). The covariance of noise at two different body sizes is
described by a covariance kernel B(x, y) = 〈ρ(x, t)ρ(y, t)〉, which is given by (see
Datta et al. 2010):

B(x, y) = eα(x+y)
∫ (

f (x, y, z)− f (x, z, y)− f (z, y, x)

+δ(x − y)
∫ (

f (x, z, z′)+ f (z, z′, x)

2

)
dz′

)
dz, (19)

where

f (x, y, z) = e−α(x+y) (k(x, y, z)+ k(y, x, z)) (20)

and

k(x, y, z) = eαx s
(
ex−y) δ(z − x − ψ(x − y)). (21)
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The covariance 〈ξ(x, t)ξ(y, t)〉 of the fluctuations at logarithmic body sizes x and y
satisfies

∂

∂t
〈ξ(x, t)ξ(y, t)〉 = Âv0

(∫
(G(x, z)〈ξ(z, t)ξ(y, t)〉

+G(y, z)〈ξ(z, t)ξ(x, t)〉) dz +B(x, y)

)
. (22)

In the steady state, the time derivative on the left-hand side vanishes and thus the
covariance function 〈ξ(x, t)ξ(y, t)〉 can be calculated by setting the right-hand side to
zero which results in a linear equation to be solved. We present the numerical results of
this in Sect. 3.7. In order to verify these, we also carry out stochastic simulations of the
number ni (t) of individuals in log weight bracket [xi , xi+1] for −4 ≤ x ≤ 4 (outside
this size range, the spectrum is assumed to remain at steady state). We approximate
the number Ri j of individuals in bracket i that eat an individual in bracket j during
a short time δt as a Poisson random variable (see Datta et al. 2010, for details). The
mean of Ri j is given by

V −1T (w0exi , w0ex j )ni (t)n j (t)δt. (23)

The fluctuation ξ(xi , t) is computed from the difference between ni (t) and its equi-
librium value. The covariance 〈ξ(xi , t)ξ(x j , t)〉 is then obtained by averaging
ξ(xi , t)ξ(x j , t) over a large number of successive time points. In the long term, this
gives the same result as the ensemble average of ξ(xi , t)ξ(x j , t) provided the stochastic
process is ergodic.

2.6 Gaussian feeding preference

Organisms do not eat indiscriminately; here we assume that they feed at some preferred
prey size (in relation to their own size), and a range of sizes around this preferred size.
To reflect this, a suitable preference function is a Gaussian feeding preference, with
peak at β and width proportional to σ (Andersen and Beyer 2006; Law et al. 2009).
This can be represented by the following form for s(er ),

s(er ) = 1√
2πσ

· e
−(r−β)2

2σ2 . (24)

In theory this function allows predators to eat prey larger than themselves (i.e. is
non-zero for r < 0), although for realistic sets of parameter values s(er ) is typically
negligible for r < 0.

The eigenvalue spectrum for the jump-growth equation (14) with the Gaussian pref-
erence function (24) unfortunately does not have a closed form. In contrast, the eigen-
value spectra for the McKendrick–von Foerster equation without and with diffusion
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can be determined analytically. Defining

Rn = (α − n)

(
β + 1

2
σ 2(α − n)

)
(25)

In = k(β + σ 2(α − n)), (26)

and taking the steady state condition (9) into account, the eigenvalue spectrum for the
equation with diffusion gives

Re(λ(k)) = e− 1
2 σ

2k2
[

− cos(kβ)+ K eR1(α cos(I1)− k sin(I1))

+ K 2

2
eR2((α(α − 1)− k2) cos(I2)− k(2α − 1) sin(I2))

]

− K 2

2
eR2 k2. (27)

The diffusion term is removed by excluding terms of order K 2 in Eq. (27). An impor-
tant difference between the two approximations is that there must always exist values
of k for which Re(λ(k)) is positive in the eigenvalue function for the McKendrick–
von Foerster equation. Consequentially the McKendrick–von Foerster equation will
never give a stable spectrum. In contrast, the McKendrick–von Foerster equation with
diffusion contains a non-oscillatory term in k which is negative and increases in mag-
nitude as k increases. This has the effect of making the real parts of the eigenvalues
more negative for higher values of k. For both approximations the oscillatory terms are

damped by a factor of e− 1
2 σ

2k2
. Equation (27) is analysed in greater detail in Sect. 3

to explain observed patterns in the behaviour of eigenvalue spectra when altering
parameters.

Using the steady state condition (8), it can be shown for the jump-growth
equation that Re(λ(0))= η. This result also applies to both of the approxima-
tions. Thus, for any positive η, Re(λ(k)) must be positive at k = 0, and as λ(k)
given in Eq. (14) is continuous, there exists a neighbourhood around k = 0 where
Re(λ(k)) > 0. Therefore there will be a range of wavenumbers k for which
perturbations eikx will destabilise the steady state. However, we only expect our
model to be realistic for a range of body weights spanning around 12 orders
of magnitude (Cohen et al. 2003) and therefore should ignore perturbations with
a wavelength longer than this, i.e. those with wavenumbers smaller than about
k ≈ 0.2.

3 Results

3.1 Eigenvalue spectra of the three models

To evaluate the eigenvalue spectra, we use the Gaussian feeding preference (24), for
given values for the parameters K , β, σ, η. Where possible we keep these parameters
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Fig. 1 The eigenvalue spectra for the a jump-growth equation (JGE), b McKendrick–von Foerster equation
(MvF) and c McKendrick–von Foerster equation with diffusion (MvF-D) when using a Gaussian feeding
preference. Note that η has been set to give a steady state exponent of roughly 2.3 for all three spectra.
Parameter values K = 0.2, β = 5, σ = 1.5, η = 0.290, γ = 2.30

biologically reasonable and close to values from previous studies (Andersen and Beyer
2006). We use values of K=0.2, β=5 and σ=1.5 as a base parameter set, and inves-
tigate the effects of changing these parameters. For this base parameter set, the steady
state exponent γ is equal to 2.27 when η=0 (i.e. no external mortality) and the value of
γ increases with η. The values of γ used in the numerical plots mostly lie in the empir-
ical range of 2.2–3.25 reported by Blanchard et al. (2009). Values of the wavenumber
k are taken over a range from 0 to 30, as the interesting behaviour of the eigenvalue
spectra is seen in this frequency range. Note that the expressions for Re(λ(k)) are even
in k for the three models, so the plotting of negative values of k is unnecessary. We
often plot the eigenvalue spectra over a logarithmic k-axis to make it easier to see the
details at small k.

Examples of the eigenvalue spectra of the jump-growth equation and its two
approximations (all computed numerically using the preference function (24)) are
compared in Fig. 1. All three spectra are close to η for small k, as expected from
Sect. 2.6. Both approximations are close to the jump-growth equation for low values
of k, but as k gets larger only the McKendrick–von Foerster equation with diffusion
follows the jump-growth equation closely. This is expected from Eq. (27) because
the diffusion term is needed to make the eigenvalue spectrum more negative with
increasing k. Adding the diffusion term gives a better approximation to the full jump-
growth model. Thus the properties of Eq. (27) will be used to gain insight into the
behaviour of the eigenvalue spectra of the jump-growth equation in the subsequent
sections.

The power-law steady state is unstable for all three models in this example, because
all three spectra contain eigenvalues with a positive real part (the maximum occurring
at k ≈ 0.861). The tendency for unstable steady states to emerge in our analysis will
be discussed in Sect. 4.

The different behaviours of the two approximations are not just limited to a Gauss-
ian feeding preference; similar results have also been obtained when using a step
function for the feeding preference (results not shown here). This has the form
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Fig. 2 Eigenvalue spectra for the McKendrick–von Foerster equation and McKendrick–von Foerster equa-
tion with diffusion, compared to that of the jump-growth equation. Parameter values K = 0.8, β = 1, σ =
0.35, η = 0, γ = 2.11

s(er ) =
{ 1

2σ if β − σ ≤ r ≤ β + σ

0 otherwise
(28)

and is a rectangular shaped function, with midpoint β, width 2σ and height 1/(2σ ). It
is worth noting that although behaviour similar to Fig. 1 is observed, the oscillations
are not damped exponentially, and oscillations are observed at all values of k.

3.2 Stable and unstable steady states

For some sets of parameter values, the steady state is stable. Figure 2 gives an example,
obtained by allowing a low preferred predator:prey mass ratio β, a high efficiency K
and a relatively large diet breadth σ . This example is chosen to illustrate the point
that the eigenvalue spectrum for the McKendrick–von Foerster equation can be mis-
leading; the spectrum for the McKendrick–von Foerster equation without diffusion
peaks at 1.19, whereas for the equation with diffusion and the jump-growth equa-
tion Re(λ(k)) < 0 for all k. The spectrum is stabilised by the non-oscillatory term
introduced by the inclusion of terms of order K 2. The diffusion term contributes to
stability and the effect of this is great enough to make a qualitative difference to
the calculated stability of the steady state. As predicted in Sect. 2.6, the McKend-
rick–von Foerster equation gives an unstable spectrum for any choice of parameter
values.
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3.3 Time evolution of perturbations

To show the consequences of stable and unstable steady states on the dynamics, we
can examine the behaviour of a local perturbation to the size spectrum, and observe
its time evolution. Assume a Gaussian perturbation with initial form

ε(x, 0) = νe
− x2

2ς2 , (29)

where ν is a small constant and ς dictates what range of body sizes in the size spectrum
are effected by the initial perturbation. This can be expanded in plane waves, rewriting
ε(x, 0) as

ε(x, 0) = ν̄

∞∫

−∞
e− 1

2 ς
2k2

eikx dk. (30)

where ν̄ = (νς)/
√

2π . The time dependence of this perturbation then has the follow-
ing form:

ε(x, t) = ν̄

∞∫

−∞
e− 1

2 ς
2k2

eikx+ Âv0λ(k)t dk. (31)

We set ς so that the perturbation covers about one size unit on the x-scale, and choose
units so that Âv0 = 1. We choose to centre our perturbation around x = 0 without
loss of generality. Plotting the time evolution both for a stable spectrum (Fig. 2) and an
unstable spectrum (Fig. 1) using the jump-growth equation gives the two behaviours
shown in Fig. 3.

For both plots, the initial perturbation moves along the x-axis over time, as the
organisms it contains feed on smaller organisms and grow. In the case of a stable spec-
trum, the perturbation gives rise to smaller peaks either side of the initial perturbation,
and these all die out over time, tending to zero across the whole range of x . In the
case of an unstable spectrum, the peaks grow over time. They develop into waves with
wavenumber k̂, where k̂ is the most unstable node of the eigenvalue spectrum. Thus, in
the case of Fig. 3b, where k̂ = 0.861, the wavelength of the peaks is seen to be around
(2π)/k̂. Over time the peaks grow in magnitude but maintain their wavelength. The
speed at which the perturbation moves through the size spectrum is determined by
Im(λ(k̂)).

3.4 Changing the preferred predator : prey mass ratio

Figure 4 shows the effect of increasing the logarithm of the preferred predator:prey
mass ratio β on the stability of the jump-growth equation. The maximum real part of
the eigenvalues increases as β increases, the steady state going from stability when
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Fig. 4 The eigenvalue equations for the jump-growth equation with varying logarithm of the preferred
predator : prey mass ratio β. Parameter values σ = 1.5, K = 0.2, η = 0

β = 1 (i.e. Re(λ(k)) < 0 for all k), to instability for the larger values of β. This is in
keeping with previous numerical results, where increasing β led to a bifurcation from
the power-law steady state to a travelling wave attractor (Law et al. 2009), although the
two results should not be directly compared because in earlier work the assumption
α = γ − 1 was not imposed. The changes seen in Fig. 4 as β is increased can be
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Fig. 5 The eigenvalue equations for the jump-growth equation, with varying feeding efficiency K ; k̂ denotes
the location of the most unstable node of the spectrum. Parameter values β = 5, σ = 1.5, η = 0.290

understood in terms of Eq. (27), where β occurs both in the Rn exponential terms and
in the In cosine and sine terms. In Rn, β acts to dampen the waves more as it increases,
and in In, β acts to reduce the period of the waves as it increases. Both these changes
are visible in the figure. Some decrease in the exponent of the power-law steady state
is also evident with increasing β in Fig. 4. We interpret this in biological terms as an
outcome of less biomass being lost from the size spectrum as β increases, because
biomass is inefficiently consumed fewer times during its passage along the spectrum.
Note that σ has been held constant this figure, so that as β is increased, the mean of
the predator:prey feeding distribution increases but the variance remains constant.

3.5 Changing the feeding efficiency

Figure 5 shows the effect of changing the feeding efficiency K on the eigenvalue spec-
trum. To understand Fig. 5, it helps to consider the limiting case of K → 0. Although
unrealistic, because it implies no growth of organisms, the eigenvalue spectrum in

Eq. (27) is then simply a damped cosine wave: Re(λ(k)) = e− 1
2 σ

2k2
cos(kβ). Conse-

quently, the most unstable node k̂ must be the first peak of this wave, which occurs at
k̂ = π/β, equivalent to k̂ = 0.628 with the parameter values in Fig. 5. We observe
in Fig. 5 that, for small K (1 × 10−5), the value of k̂ (0.655) is close to this limiting
value.

Corresponding to the node at k̂ = π/β, there is a dominant eigenfunction with a
wavelength 2β. This can be understood in biological terms as a straightforward con-
sequence of the predator–prey interaction. A pulse perturbation from steady state that
increases the density of predators at some size lowers the density of prey eβ times
smaller than themselves. This in turn reduces the mortality rate on the prey’s prey e2β
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times smaller than the predators, allowing their density to increase. This leads to the
wavelength 2β.

Figure 5 also shows that, as K increases, k̂ grows and Re(λ(k̂)) gets smaller. In
other words, as K increases, perturbations from the steady state have wavelengths pro-
gressively less than 2β and grow more slowly. In this case, a pulse increase in predator
density at some body size does not remain at the same position in the size spectrum as
time goes on. The predators grow as they eat, and their preferred prey body size moves
along with them. This mitigates to some extent the destabilizing feedback of slow (or
absent) predator growth that would continue to reduce the density of prey approxi-
mately eβ times smaller than the predator. These results help explain the observation of
Law et al. (2009) that perturbations tend to have a wavelength less than 2β. Notice
also that the exponent of the power-law steady state becomes substantially smaller as
K increases, because more biomass passes along the size spectrum to large organisms.

3.6 Changing diet breadth

It has been shown in earlier numerical studies that, by making the diet breadth more
narrow (i.e. decreasing σ ), the power-law steady state can become unstable, leading
to travelling waves of abundance that move along the spectrum with time (Law et al.
2009; Datta et al. 2010). In the extreme case of a feeding kernel where predators only
eat prey of the exact preferred mass ratio, and of no other weight (using a Dirac delta
function of the form s(er ) = δ(r − β) as the feeding preference), the steady state can
be shown always to be unstable (proof not given here).

In Fig. 6 we investigate the effect of increasing the diet breath σ . As σ increases, the
amplitude of oscillations at low values of k decreases, and the range for which Re(λ(k))
has positive values becomes narrower; the largest value of k for which Re(λ(k)) > 0
k∗ is seen to decrease as σ increases. This is consistent with Eq. (27), because increas-

ing σ will cause the oscillations to be damped sooner by the e− 1
2 σ

2k2
term. Note that

it is the change in σ which is causing the change in the spectrum and not the steady
state exponent; γ remains at a value of approximately 2.27 in each case.

3.7 The effects of demographic stochasticity

As explained in Sect. 2.5, we can calculate the equal-time covariance function
〈ξ(x, t)ξ(y, t)〉 for the fluctuations in the steady state. This function describes how
the fluctuations due to demographic stochasticity are correlated at different weights at
steady state. It is obtained by solving the linear integral equation obtained by setting
the time derivative to zero in Eq. (22). To perform the calculation we use discrete
weight brackets, so that the integral equation becomes a matrix equation, which we
solve numerically.

Using the same parameter values as in Fig. 2, the covariance function calculated
from (22) (solid curve) and from stochastic simulations (points) is plotted in Fig. 7.
The simulations use a system size of � = 105 and are restricted to the size range
−4≤ x ≤4; simulating a wider size range for sufficient time would be computationally
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prohibitive. The simulation data become increasingly noisy as x increases, due to the
decreasing number of individuals in a weight bracket. Nevertheless, the simulation
results show good agreement with the solution of Eq. (22).

The graph in Fig. 7 decays exponentially with distance, a typical feature of covari-
ance functions. Superimposed on the decay is an oscillation with a wavelength of
approximately 2β, generated by the non-local predator–prey interaction. The reason
for the oscillation is that a positive fluctuation at x = 0 gives more food, faster growth
and a negative fluctuation near β, which in turn gives less food, slower growth and a
positive fluctuation near 2β.
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4 Discussion

We have presented a local stability analysis of the power-law steady state of marine
size spectra. The approach has some resemblance to the local stability analyses of
steady-state food webs widely applied in ecology (Murray 2002; Rooney et al. 2006).
However, instead of having nodes representing a finite number of species, the analysis
here uses a continuous weight range corresponding to an infinite number of “nodes”,
and this gives a continuous spectrum of eigenvalues. Characterization of the eigen-
value spectrum has been carried out before (Arino et al. 2004); the difference here is
that we explicitly link growth of the organisms to predation, which we think is a useful
step towards reality.

To do the analysis, the predator search exponent α and steady state exponent γ
have been set so that α = γ − 1. In addition, we assume that the rate for predation-
independent death is independent of body weight. These assumptions imply that the
dynamics of small perturbations are described by the convolution operator given in
Eq. (12), leading to a simple time dependence of the perturbations in terms of an
expansion in plane waves, given in Eq. (15). In general these assumptions would not
be appropriate in ecological communities. The reason for using them here is that we
believe it is valuable to have analytical results for this special case before beginning
numerical explorations of conditions closer to those in nature.

The benchmark for the analysis is a jump-growth equation, obtained as the large-
system limit of an underlying stochastic predation-growth process (Datta et al. 2010).
Importantly, the eigenvalue spectrum of the well-known, first-order approximation,
the McKendrick–von Foerster equation (Andersen and Beyer 2006; Law et al. 2009;
Blanchard et al. 2009), exhibits a systematic departure from that of the jump-growth
equation: the real parts of the eigenvalues of the former tend to zero as wavenum-
ber increases, whereas those of the latter become increasingly negative. Therefore in
our analysis the eigenvalue spectrum of the McKendrick–von Foerster equation must
always contain eigenvalues with positive real parts, and must always have an unstable
steady state.

In contrast to the first-order approximation, the eigenvalue spectrum of the sec-
ond-order approximation, obtained by adding a diffusion term to the McKendrick–
von Foerster equation, contains a negative term that is quadratic in the wavenumber,
which makes the real parts of the eigenvalues much closer to those of the jump-growth
equation. The diffusion term is potentially important. One consequence of it is that
there can be eigenvalue spectra for which Re(λ(k)) < 0 for all wavenumbers k > 0,
implying local stability of the steady state. This is with the caveat that the eigenvalue
spectrum tends to the natural death rate η as the wavenumber tends to zero, so pertur-
bations with sufficiently low wavenumbers (long wavelengths) could still destabilize
the steady state.

The second-order approximation with diffusion has not previously been used, but
would be worth considering in the future when the full jump-growth equation cannot
be used. Interestingly, Benoît and Rochet (2004) found they had to include a diffusion
term in numerical integrations of the McKendrick–von Foerster equation to obtain
a solution in the absence of natural mortality, although they stated that they did not
understand why this should be so. How serious the omission of the diffusion term is
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in practice depends on the wavenumber k at which the eigenvalue spectrum peaks,
because it is this wavenumber that dominates the solution in the long term. If the peak
occurs at sufficiently small k, the effect of the negative second-order term in Eq. (27)
is small, and the standard McKendrick–von Foerster equation is reliable (Fig. 1). If
the peak occurs at large k, the negative second-order term in Eq. (27) becomes signifi-
cant, and inferences about stability from McKendrick–von Foerster equation may not
be reliable (Fig. 2). The second-order equation with diffusion itself becomes a poor
approximation if the feeding preference function is set such that predators are often
smaller than their prey, because the Taylor expansion of the jump-growth equation
on which it is based is no longer convergent (Datta et al. 2010). However, in reality
predators are almost always larger than prey, so this is not likely to be an issue.

Key parameters for locating the peak of the eigenvalue spectrum with respect to k
are the logarithm of the preferred predator:prey mass ratio β, the efficiency of mass
transfer from prey to predator K and the diet breadth σ . The results in Sect. 3.5 suggest
that predator–prey interactions would typically restrict the wavenumber k at the peak
to be greater than π/β. Overall, to get the peak of the eigenvalue spectrum at a low
wavenumber where the McKendrick–von Foerster equation works best, K e−β must be
small, i.e. growth increments of predators must be small. As β is made smaller and K
is made larger, the McKendrick–von Foerster approximation works less well, because
it misses the stabilizing effect of the diffusion term. The diet breadth σ , also affects
the shape of the eigenvalue spectrum, the main effect in Eq. (27) being to dampen the
oscillations in the real parts of the eigenvalues (Fig. 6). In so doing σ has the potential
to shift positive peaks below Re(λ(k))= 0, and hence to change an unstable steady
state into a stable one. This is consistent with the results of earlier studies which have
shown the stabilizing effects of broad diets (Law et al. 2009; Datta et al. 2010).

Random variability from one individual to another in, for example, the number and
size of prey items encountered over a period of time, can have important effects in sys-
tems such as the one studied in this paper. This intrinsic demographic stochasticity is
distinct from environmental stochasticity, which is not included in the current model.
Usually, the relative magnitude of fluctuations due to demographic stochasticity is
proportional to �−1/2, where � is the total number of individuals in the system (van
Kampen 1992). However, interaction between the natural frequency of the mean-field
system and intrinsic variability, which acts at all frequencies, can cause resonant ampli-
fication of demographic stochasticity (McKane and Newman 2005). Stochastic effects
can also cause switching between different solutions (see e.g. Samoilov et al. 2005),
a phenomenon that cannot be investigated using the van Kampen (1992) approach
taken in this paper, which deals with fluctuations about a mean-field solution. As seen
in Fig. 7, correlations between simultaneous demographic fluctuations at different
body sizes do exist. These arise from the predator–prey interactions described by the
feeding kernel. An investigation of correlation of fluctuations across different times is
beyond the scope of this paper. However, neither resonant amplification nor switching
were observed in stochastic simulations, even for relatively small system size �, and
the simultaneous correlations observed are likely to be very small for realistic system
sizes.

A feature of the stability analysis here is that the parameter values required to
achieve stability are outside the range likely to apply in marine systems (e.g. K = 0.8
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in Fig. 2). As stated above, earlier numerical integrations using the McKendrick–von
Foerster equation have led to stable steady states using realistic sets of parameter val-
ues. There are, however, some important differences between the present analysis and
previous work. First, real size spectra span a finite range of body sizes, about twelve
orders of magnitude being realistic (Cohen et al. 2003). This means that perturbations
with very long wavelengths cannot occur, and corresponding to this, the wavenumber
k cannot be less than about 0.2. Second, the finite range calls for lower and upper
bounds which are not used here. Imposing such bounds removes the exact power-law
steady state, and the boundary conditions themselves influence the stability of the
steady state. Third, the constraint on parameter values needed to achieve α = γ − 1
may exclude those values likely to lead to stability. The present study is best thought of
as throwing light on the role that mortality, predation and growth play in determining
stability of the power-law steady state. Other processes also leave their own footprint,
and some of these increase the parameter space in which stable steady states arise
(Capitan and Delius 2010).

Nonetheless, at a qualitative level, the results here are consistent with earlier obser-
vations that the steady state of marine size spectra undergoes a bifurcation from sta-
bility to instability as predator:prey mass ratio is increased and as diet breadth is
decreased. The results here indicate that this is a Hopf bifurcation as a complex con-
jugate pair of eigenvalues cross the imaginary axis. Even without taking other major
life processes into account, the analysis makes clearer what kinds of ecosystems are
more vulnerable to external disturbances such as those caused by fishing and climate
change. Further research should expand upon this, to better understand marine ecosys-
tem dynamics, and better predict the potential consequences of perturbing seemingly
robust ecosystems.
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