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Abstract We study the adaptive dynamics of a so-called magic trait, which is under
natural selection and which also serves as a cue for assortative mating. We derive
general results on the monomorphic evolutionary singularities. Next, we study the
long-term evolution of single-locus genetic polymorphisms under various strengths
of assortativity in a version of Levene’s soft-selection model, where natural selection
favours different values of a continuous trait within two habitats. If adaptive dynamics
leads to a polymorphism with sufficiently different alleles, then the corresponding
homozygotes cease to interbreed so that sympatric speciation occurs.

Mathematics Subject Classification (2000) 92D15, Problems related to evolution

1 Introduction

The origin of species is a cardinal question of biology. For speciation to occur in sexu-
ally reproducing organisms, two essential processes need to take place (Coyne and Orr
2004): First, genetic polymorphism must arise and be maintained in the population;
and second, reproductive isolation must evolve such that genetically different lineages
cease to interbreed. Most traditional models of sympatric speciation (e.g. Maynard
Smith 1966; Dickinson and Antonovics 1973; Caisse and Antonovics 1978; Udovic
1980; see Gavrilets 2004 for review) assumed that ecological selection maintains poly-
morphism in one locus, whereas a second locus controls reproductive isolation via
mate choice (for example it may control flowering time in plants, where early and late
flowering individuals are reproductively isolated from one another). In such models,
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ecologically different lineages become reproductively isolated if linkage disequilib-
rium arises between the two loci such that the ecological trait and mate choice become
genetically correlated. Recombination between the ecological locus and the mating
locus, however, efficiently destroys any linkage disequilibrium, rendering speciation
impossible unless ecological selection is strong (Felsenstein 1981).

Reproductive isolation might arise easier if mate choice is based on the ecological
trait itself, with like individuals mating preferentially with each other. For example,
different habitats or different pollinators may exert ecological selection for early vs
late flowering in plants (as it happens between edaphic plants and their normal varie-
ties, cf. Macnair and Gardner 1998). In this case, mate choice itself is under ecological
selection; or in other words, reproductive isolation evolves as a natural byproduct of
ecological divergence. After Gavrilets (2004), traits which are under ecological selec-
tion and also influence mate choice are called magic traits. Magic traits are free of the
problem of recombination because the mating cue and the ecological trait are one and
the same.

Empirical evidence shows that magic traits are common. Body size, a common tar-
get of ecological selection, is also a common cue for mating. Body size is a magic trait
in sticklebacks (Nagel and Schluter 1998; Hatfield and Schluter 1999; Rundle 2002),
in sea horses (Jones et al. 2003), intertidal snails (Cruz et al. 2004), in amphipods
(Wellborn 1994; McPeek and Wellborn 1998), and in Drosophila (Hegde and Krishna
1997). Colour patterns serve as mating cues but are also under disruptive ecological
selection in butterflies (Jiggins et al. 2001, 2004) and in coral reef fishes (Puebla et al.
2007). The shape and colour of animal-pollinated flowers are obvious candidates for
magic traits, although the empirical evidence is less clear in this case (Waser and
Campbell 2004; Gegear and Burns 2007). The call frequency of bats determines both
the prey and the mates they can locate (Kingston and Rossiter 2004). The flowering
time of some plants (Macnair and Gardner 1998) and the time of eclosion and mating
in the apple maggot fly (Felsenstein 1981) are also magic traits. Beak morphology
and song are determined partly by the same genes in Darwin’s finches (Podos 2001;
Huber et al. 2007), such that there is a common magic trait on the genetic level that
correlates with both phenotypic traits, one influencing resource use and the other used
for mate choice. Many of the examples mentioned above are putative cases of incipient
sympatric speciation. Conversely, in most cases where ongoing sympatric speciation
is suspected and the mechanisms of ecological divergence and reproductive isolation
are known, reproductive isolation emerges as a byproduct via ecological selection on
a magic trait (Bolnick and Fitzpatrick 2007).

In this paper, we analyze the adaptive dynamics of a magic trait. Adaptive dynamics
(Geritz et al. 1997, 1998) is a leading mathematical framework to investigate how
continuous traits evolve under ecological selection and small mutational steps, and,
in particular, how diversity evolves via evolutionary branching. Since evolutionary
branching of a magic trait can lead to reproductive isolation as a byproduct, the adap-
tive dynamics of magic traits offer an analytically tractable model of speciation.

Whether speciation occurs via the evolution of a magic trait depends on whether
reproductive isolation becomes sufficiently strong. Reproductive isolation, in turn,
depends on how big a difference the diverging lineages evolve in their magic traits, and
how strongly mate choice is discriminative (the latter referred to as mating assortativity
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or “choosiness”). Several models have investigated the evolution of choosiness while
they kept magic trait values unchanged (Matessi et al. 2001; Pennings et al. 2008; Kopp
and Hermisson 2008; Otto et al. 2008). Here we make the complementary assumption
that the magic trait evolves and the level of choosiness remains fixed. Our results
however also enable conclusions to be drawn on the joint evolution of the magic trait
and of choosiness, provided that the latter evolves sufficiently slowly (see Sect.4).

In the first part of the paper, we analyze the evolution of magic traits in monomor-
phic populations and address in particular the question whether evolutionary branching
occurs in a diploid sexual population under the most popular mating model (intro-
duced by Doebeli 1996, Gavrilets and Boake 1998 and Matessi et al. 2001, and used
e.g. by Kirkpatrick and Nuismer 2004; Schneider 2005; Schneider and Bürger 2006;
Pennings et al. 2008; Kopp and Hermisson 2008; Ripa 2009). In this part, we accommo-
date arbitrary ecological selection and thereby provide general results for the stability
properties of monomorphic evolutionary singularities under sexual reproduction and
assortative mating. Stability properties of a monomorphic singularity were also ana-
lyzed by Schneider (2005) in a special case of the mating model considered here, but
with haploid genetics and in only one specific ecological model.

The second part of this paper investigates the evolution of the magic trait after evo-
lutionary branching has taken place, and in particular asks whether the evolutionary
divergence of the magic trait continues far enough to provide reproductive isolation
of the strength seen inbetween biological species. Whereas evolutionary branching
depends only on the local properties of the fitness function and therefore can be
analyzed without making particular assumptions about the ecological system, evolu-
tion after branching is determined by global properties that depend on the concrete
ecological model at hand. In this second part, we use the so-called Levene’s soft-selec-
tion model, a simple ecological model with selection in two contrasting habitats. The
population genetics of this model is extremely well known (Levene 1953; see e.g.
Roughgarden 1979; Hartl and Clark 1989, Nagylaki and Lou 2001, 2006; Nagylaki
2009; Bürger 2010), and it served as a classic framework of speciation models (e.g.
Maynard Smith 1966; Felsenstein 1981). Furthermore, it was used to explore how
adaptive dynamics can be applied to evolving alleles in diploid sexual populations
under random mating (Kisdi and Geritz 1999; Van Dooren 1999, Geritz and Kisdi
2000). Here we add assortative mating to the Levene model to study speciation after
evolutionary branching of a magic trait.

2 General model: monomorphic singularities and evolutionary branching

We consider a population of sexually reproducing diploid individuals with discrete
generations. The population is assumed to be sufficiently large to ignore random
genetic drift. A continuous trait φ ∈ X ⊆ R is determined by a single autosomal locus
which evolves by mutation and natural selection. We assume that the map between
homozygote genotypes and phenotypes is a bijection, and denote the alleles of the locus
by the phenotype of the corresponding homozygote individual such that φxx = x
(when appropriate, we shall also use single-letter designations such as g for a dip-
loid genotype). The genotype-phenotype map φxy is assumed to be at least twice
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continuously differentiable with respect to the allelic values x and y and to be strictly
monotonic such that ∂φxy

∂x �= 0 [see Van Dooren (2000) for the consequences of vio-
lating this assumption]. We assume no difference between maternally and paternally
derived alleles so that φxy = φyx. With these assumptions, the allelic effects are locally

additive (i.e., φxy → 1
2 (φxx + φyy) as |y − x| → 0) and ∂φxy

∂y

∣
∣
y=x

= 1
2 .

Let P(t)
g denote the frequency of diploid genotype g among the newborn offspring

in generation t . An offspring with genotype g survives to adulthood with probability
vE(t)(φg), where the selective environment E(t) is determined by which phenotypes
are present and what is their population density in generation t . In this section, we do
not have to specify the concrete form of ecological selection encapsulated in v; later we
shall investigate an example based on Levene (1953) multiple habitat model. For con-
venience, let wE (φg) = BvE (φg) denote the absolute genotypic fitness in ecological
selection, where B is the average number of offspring produced by a mated female. We
shall assume that wE (φg) is positive for all admissible values of its arguments, twice
differentiable with respect to φg and E , and E depends sufficiently smoothly on the
phenotypes and their population densities. After ecological selection, the frequency
of genotype g among the adults is

P̃(t)
g = wE(t)(φg)

w̄E(t)
P(t)

g , (1)

where w̄E(t) = ∑

g P(t)
g wE(t)(φg).

Adult females choose mates nonrandomly such that a female of genotype g mates
(and produces offspring) with a male of genotype h with probability Qg,h P̃(t)

h . The
quantity Qg,h measures the affinity of g females towards h males and depends on
their phenotypic resemblance as described below by Eq. (7). Note that in general
Qg,h �= Qh,g .

∑

h Qg,h P̃(t)
h may be less than 1, in which case the female remains

unmated with a positive probability.
The genotypic frequencies at the beginning of the new generation are

P(t+1)
r = 1

Q̄

∑

g,h

P̃(t)
g P̃(t)

h Qg,h Rg,h→r , (2)

where Q̄ = ∑

g,h P̃(t)
g P̃(t)

h Qg,h is the mean mating success and Rg,h→r denotes the
probability that parents with genotypes g and h produce an offspring with genotype r
according to the Mendelian rules. Total population size changes according to

N (t+1) = Q̄w̄E(t)N (t). (3)

2.1 Assortative mating

Mate choice is based on phenotypic similarity of the ecological trait φ between the
mating partners. The assumption that the same trait φ determines fitness in ecological
selection and controls mate choice makes φ a “magic” trait as called by Gavrilets
(2004). To formulate the probability of mating, we follow the assumptions Doebeli
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1996, Gavrilets and Boake (1998) and Matessi et al. (2001). These assumptions are
widely used (see e.g. Kirkpatrick and Nuismer 2004; Schneider 2005; Schneider and
Bürger 2006; Pennings et al. 2008; Kopp and Hermisson 2008; Ripa 2009).

Assume that females encounter males at random. If a female with phenotype φg

encounters a male with phenotype φh , she accepts the male for mating with probability

μ(φg, φh) = μmaxπ(φh − φg), (4)

where 0 < μmax ≤ 1 is the maximum mating probability and π is a twice contin-
uously differentiable function that attains its maximum at 0 with π(0) = 1 and is
bounded away from zero for all admissible values of φh − φg . If the female does not
accept the male, she may try again until the total number of encounters has reached a
maximum number M . Females mate at most once but males can participate in several
matings. The probability that an encounter between a female of type φg and a random
male results in mating is

μ̄(φg) =
∑

h

μ(φg, φh)P̃h (5)

and the probability that she eventually mates with a male of type φh is

M−1
∑

i=0

[1 − μ̄(φg)]iμ(φg, φh)P̃h (6)

such that we have

Qg,h = μ(φg, φh)
1 − (1 − μ̄(φg))

M

μ̄(φg)
(7)

to be inserted into Eq. (2). Matessi et al. (2001) observed that with M = 1, the model
can be seen as a model of fertility selection (Bodmer 1965; Hadeler and Liberman
1975) or as a model of parental selection (Gavrilets 1998); Schneider (2005) studied
the evolution of a magic trait in a haploid model with M = 1, μmax = 1.

With M < ∞, females may remain unmated. This results in sexual selection
favoring common females: Females whose phenotype is rare prefer to mate with rare
male phenotypes and therefore run a higher risk of remaining unmated. With M → ∞,
females experience no sexual selection. Males, however, may remain unmated also
in this case, and the average number they mate depends on their phenotype and on
the phenotypic distribution of females. Males therefore always experience frequency-
dependent sexual selection next to natural selection on the ecological trait.

In a population monomorphic for allele x, females are eventually mated with prob-
ability

Qxx,xx ≡ Q = 1 − (1 − μmax)M . (8)
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This probability is independent of the resident phenotype but is less than 1, unless
μmax = 1 so that females accept the first male for mating or M → ∞ so that females
can keep trying until they mate. The mating process therefore affects the dynamics of
the population [see Eq. (3)] even if every male and female is equally likely to mate.

2.2 Invasion fitness

We assume that alleles undergo mutations with small phenotypic effect, mutant alleles
have initially low frequency, and mutations occur infrequently such that the resident
population has reached its population genetic attractor by the time a new mutant comes
along. Under these assumptions, we can use adaptive dynamics (Geritz et al. 1998)
to study long-term evolution in the space of alleles (Kisdi and Geritz 1999). For sim-
plicity, we also assume that the resident population dynamics attains a unique point
attractor such that the environment E is constant and uniquely determined by the
resident allele(s) (see Geritz et al. 2002 for extension to multiple attractors). We shall
write wÊ(φxx)

(φg) to denote ecological fitness of genotype g in the environment set
by a monomorphic resident population with phenotype φxx.

In Appendix 1, we derive invasion fitness (the marginal fitness of a rare allele) as
shown in Eq. (11) below; here we shall arrive at the same result in a more heuristic way.
Consider a mutant allele y in a population otherwise monomorphic for the resident
allele x. If the mutant allele is sufficiently rare, then the probability of forming a mutant
homozygote offspring is negligible. This is obvious in the case of random mating, but
remains true also in our assortative mating model given that wÊ(φxx)

(φxy) > 0 and
π(φxx − φxy) > 0 (see Appendix 1). The dynamics of the mutant allele are then
governed by the dynamics of heterozygotes,

P(t+1)
xy = 1

2

Qxy,xx + Qxx,xy

Q
P̃(t)

xx P̃(t)
xy + O((P̃(t)

xy )2) (9)

(cf. Eqs. (2), (8)). In the first term of this equation, Qxy,xx P̃(t)
xx is the probability

for a heterozygote female to eventually mate with a resident homozygote male; in
the second term, Qxx,xy P̃(t)

xy is the probability for a resident homozygote female
to eventually mate with a heterozygote male; both types of mating produce het-
erozygote offspring with probability 1/2. With the resident population in equilib-
rium, QwÊ(φxx)

(φxx) = 1 [cf. Eq. (3)] and hence from Eq. (1), we obtain P̃(t)
xy =

QwÊ(φxx)
(φxy)P(t)

xy . Substituting this and noting that P̃(t)
xx = 1 + O(P̃(t)

xy ) in Eq. (9),
we arrive at

P(t+1)
xy = 1

2

(

Qxy,xx + Qxx,xy

)

wÊ(φxx)
(φxy)P(t)

xy + O((P(t)
xy )2) (10)

from which the marginal fitness of the rare allele, i.e., the invasion fitness of allele y
in the resident population of x is

Wx(y) = 1

2

(

Qxy,xx + Qxx,xy

)

wÊ(φxx)
(φxy). (11)
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Simplifying from Eq. (7),

Qxy,xx = 1 − [

1 − μmaxπ(φxx − φxy)
]M (12)

describes sexual selection on heterozygote females in Eq. (11) and

Qxx,xy =
[

1 − (1 − μmax)M
]

π(φxy − φxx) (13)

gives sexual selection on males.
If mating is random, i.e., π ≡ 1 and a female accepts any male with probability

μmax, then Eq. (11) simplifies to

Wx(y) = QwÊ(φxx)
(φxy). (14)

We thus recover the marginal fitness of the rare allele Wx(y) as the fitness of het-
erozygotes in ecological selection. Recall, however, that the mating process affects
the dynamics of the population and therefore affects the resident environment Ê(φxx)

even with random mating. When we compare results obtained for assortative mating
with those under random mating, we always assume that the mating process is as
described above (with π ≡ 1 for random mating), and therefore only a fraction Q of
the resident females is mated, regardless of whether mating is assortative or random.
Simply removing the mating process from the model, and assuming instead that each
female mates with the first male she encounters, would introduce a change in the
ecological environment unless Q = 1, i.e., unless μmax = 1 or M → ∞.

To obtain invasion fitness in a polymorphic resident population, note that a rare
mutant allele y in a resident population with alleles x1 and x2 is almost exclusively in
heterozygotes and therefore the initial invasion dynamics can be written as

P(t+1)
het = MP(t)

het , (15)

where Phet = (Px1y, Px2y)
T and M is a 2 × 2 matrix that depends on the allelic

values y and x1,x2 (see Appendix 1 for details). The invasion fitness of the mutant,
Wx1,x2(y), is the dominant eigenvalue of M. For small mutations (i.e., if either |y−x1|
or |y − x2| is sufficiently small), this is equivalent to

W̃x1,x2(y) = TrM − DetM > 1 (16)

(see Appendix 1). W̃x1,x2(y) is a proxy for invasion fitness: Because log W̃ is sign-
equivalent to log W and has the same smoothness properties, we can find the diallelic
singularities and their stability properties using W̃x1,x2(y) (which is easier to calcu-
late) in place of the dominant eigenvalue Wx1,x2(y) [see Metz and Leimar (2010) for
a related approach].
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2.3 Monomorphic singularities and evolutionary branching

The mutant allele y, when it appears in a single copy in a large resident popula-
tion fixed for allele x, has a positive probability of invasion if Wx(y)> 1; otherwise
the mutant goes extinct with probability 1 (Jagers 1975). By repeated mutations and
allele substitutions, the magic trait evolves in the direction of the selection gradient
∂Wx(y)/∂y

∣
∣
y=x

until it reaches either an endpoint of the trait space X or an evolu-
tionary singular trait value x∗ at which

∂Wx(y)

∂y

∣
∣
∣
∣
y=x=x∗

= 1

2
Q

∂wÊ(φxx)
(φxy)

∂φxy

∣
∣
∣
y=x=x∗ = 0 (17)

(Geritz et al. 1998; Geritz 2005). Notice that the selection gradient does not depend on
function π because π ′(0) = 0, and therefore, the existence, number, and position of
evolutionary singularities are independent of assortativity of mating. The singularity is
convergence stable (i.e., approached by gradual evolution via small mutation steps) if

[
∂2Wx(y)

∂x∂y
+ ∂2Wx(y)

∂y2

]

y=x=x∗
= 1

2
Q

[

∂2w

∂φxx∂φxy
+ ∂2w

∂φ2
xy

]

y=x=x∗
< 0 (18)

(Eshel 1983; Christiansen 1991), where we wrote w = wÊ(φxx)
(φxy) for short. This

condition is again independent of mating assortativity, as expected, because conver-
gence stability follows directly from the selection gradient.

The singularity is evolutionarily stable (sensu Maynard Smith 1982) if

[
∂2Wx(y)

∂y2

]

y=x=x∗
= 1

4

⎛

⎝Q

[

∂2w

∂φ2
xy

]

y=x=x∗
+ qπ ′′(0)

⎞

⎠ < 0, (19)

where

q = 1

2

[

1 + Mμmax(1 − μmax)M−1

1 − (1 − μmax)M

]

. (20)

In (19), sexual selection from assortative mating contributes a negative term via
π ′′(0) < 0. Assortative mating stabilizes x∗ against the invasion of mutants because
rare phenotypes are at a disadvantage during mating.

The strength of the stabilizing effect of assortative mating depends on parameters
μmax and M via quantity q. To interpret the relative weight of ecological and sex-
ual selection in (19), note that Q, the coefficient in front of the term corresponding
to ecological selection, simply corrects w for the population dynamical effect of the
mating process, i.e., the product Qw is the invasion fitness under random mating
[cf. Eq. (14)]. If M = 1, then (20) simplifies to q = 1 and we recover a result of
Schneider (2005): the curvatures of fitness in ecological and in sexual selection con-
tribute equally and additively to the condition of evolutionary stability. If M > 1
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and μmax → 1, then q = 1
2 so that only male sexual selection contributes to (19).

This is because the probability that a heterozygote female remains unmated [(1 −
μmaxπ(φxx − φxy))

M ] is in this case a “flat” function of the phenotypic difference
with vanishing second derivative at zero, so that for small mutations, female sexual
selection is negligible compared to sexual selection on males and to ecological selec-
tion. Finally if M → ∞ with arbitrary μmax, then again q = 1

2 ; in this case all females
are eventually mated and hence there is no sexual selection on females, who are half
the parents of the next generation (see also Kirkpatrick and Nuismer 2004; Schneider
and Bürger 2006 on evolutionary stability in face of stabilizing sexual selection).

Evolutionary branching occurs in initially monomorphic populations at a singu-
larity that is convergence stable but not evolutionarily stable (Geritz et al. 1998).
Assortative mating does not change convergence stability but hinders evolutionary
branching via stabilizing sexual selection: increasing assortativity, which corresponds
to increasing π ′′(0) in absolute value, can turn an evolutionary branching point [where
(19) is violated] into an ESS [where (19) is satisfied].

2.4 Polymorphism near singularities

An important property of a singularity is whether there are pairs of alleles in its neigh-
bourhood such that each of the two alleles can invade the other’s monomorphic resident
population (mutual invasibility) or, to the contrary, there are pairs such that neither can
invade the other and therefore the rare allele goes extinct regardless of which of the
two alleles is rare (mutual exclusion). In the vicinity of x∗, there exist pairs of alleles
that exhibit mutual invasibility and hence form a protected polymorphism if

[
∂2Wx(y)

∂x∂y

]

y=x=x∗
= 1

4

⎛

⎝Q

[

2
∂2w

∂φxx∂φxy
+ ∂2w

∂φ2
xy

]

y=x=x∗
− qπ ′′(0)

⎞

⎠

= −1

4

(

Q

[
∂2w

∂φ2
xx

]

y=x=x∗
+ qπ ′′(0)

)

< 0, (21)

where in the last step we used that wÊ(φxx)
(φxx) = 1/Q is constant for all x and hence

[ ∂2w
∂φ2

xx
+ 2 ∂2w

∂φxx∂φxy
+ ∂2w

∂φ2
xy

]y=x = 0; the opposite of (21) implies the existence of allele

pairs with mutual exclusion near x∗ (Geritz et al. 1998).
There are two aspects of condition (21) to interpret. Concerning ecological selec-

tion, recall that in a clonal model of adaptive dynamics, there are strategy pairs with
phenotypes φxx and φxy near φx∗x∗ that mutually invade each other if [ ∂2w

∂φxx∂φxy
]x∗ < 0.

The ecological selection part (derivatives of w in the brackets) in (21) is at variance
with this clonal condition. This is because of diploid inheritance: Alleles x and y mutu-
ally invade each other if the heterozygote phenotype φxy invades both φxx and φyy

(whereas the clonal condition requires that φxy and φxx invade each other). Assume
that the singular phenotype φx∗x∗ can invade all other phenotypes in its vicinity. Then
at least alleles placed symmetrically around x∗ (such as x = x∗ − ε and y = x∗ + ε)
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can invade each other, because due to locally additive allelic effects, they produce the
heterozygote phenotype φxy = φx∗x∗ , which invades any phenotype in the vicinity,
including φxx and φyy . In the opposite case if φx∗x∗ cannot invade other phenotypes in
its vicinity, then alleles near x∗ cannot invade each other even if they are symmetrically
placed (as easily seen e.g. from pairwise invasibility plots, this is the most favourable
configuration for mutual invasibility). Hence the diploid condition of mutual invasi-
bility of alleles coincides with the clonal condition of the singular phenotype being
able to invade other similar phenotypes. The latter is given by [ ∂2w

∂φ2
xx

]x∗ > 0 (Geritz

et al. 1998), which directly corresponds to the ecological part of (21).
Concerning sexual selection, π ′′(0) < 0 makes it more difficult to satisfy (21), i.e.,

assortative mating hinders mutual invasibility. The weight of sexual selection (q) is the
same as in the ESS-condition (19) above. Because rare alleles are at a disadvantage in
sexual selection, mutual invasibility can turn into mutual exclusion near the singularity
if the assortativity of mating is increased. The remainder of this section explores the
consequences of the bifurcation between mutual invasibility and mutual exclusion.

Mutual invasibility yields (protected) polymorphism, but a locally stable poly-
morphism may occur also without mutual invasibility when the population genetic
equations [our Eqs. (1) and (2)] have multiple attractors. We shall refer to a locally
asymptotically stable polymorphic equilibrium of two alleles as unprotected poly-
morphism when one or both boundary equilibria (fixation of an allele) are also locally
stable. The alleles can coexist indefinitely in an unprotected polymorphism, provided
that the population is never subject to large perturbations that would bring the system
into the basin of attraction of a boundary equilibrium.

Because sexual selection disfavours rare alleles, it stabilizes the boundary equi-
libria and for a given pair of alleles, this can lead to loss of mutual invasibility or to
mutual exclusion. Sexual selection however weakens when the alleles have more com-
parable frequencies, i.e., sexual selection does not necessarily destabilize an internal
(polymorphic) equilibrium when it does stabilize a boundary equilibrium. One can
therefore readily expect that unprotected polymorphisms occur under assortative mat-
ing. Below, Fig. 1 illustrates using the Levene model as an example that this is indeed
the case. Actually, it is proved in a separate paper (Priklopil in prep.) that unprotected
polymorphism generically occurs when mutual invasibility near a singularity turns
into mutual exclusion (or vice versa). Therefore, if in the present model ecological
selection promotes mutual invasibility near the singularity such that (21) is satisfied
for random mating, then strengthening the assortativity of mating [increasing π ′′(0) in
absolute value] will cause a bifurcation into mutual exclusion, and unprotected poly-
morphism necessarily occurs near x∗ for some values of π ′′(0). Note however that
starting with a monomorphic population, unprotected polymorphism could be reached
only if a new allele appears with sufficiently high frequency (e.g. due to secondary
contact with a formerly isolated population).

3 Levene model: adaptive dynamics and speciation in polymorphic populations

In the second part of the paper, we aim at investigating the adaptive dynamics of a
magic trait when the resident population is already polymorphic. This analysis will
show whether the alleles evolve sufficiently far apart such that homozygotes become
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Fig. 1 Top row pairwise invasibility plots (black color denotes the area where allele x2 can invade the
resident allele x1 and white color where it can not) for c1 = c2 = 0.5, d = 3, σs = 1, and a σm = ∞
(random mating), b σm = 0.50 (moderate assortativness) and c σm = 0.36 (strong assortativeness). Middle
row areas of mutual invasibility (protected polymorphism, black) and unprotected polymorphism (grey);
mutual exclusion occurs in f in the area adjacent to the singularity in between the invasion boundaries
(bold lines). Parameters for d–f as in a–c. Bottom row dynamics of allele frequencies with g protected
polymorphism; h unprotected polymorphism; i unprotected polymorphism with mutual exclusion; and j
mutual exclusion. The filled circles and empty circles indicate stable and unstable equilibria, respectively.
g–j represent the dynamics which occurs in the corresponding regions of f

reproductively isolated by assortative mating. Because this analysis depends on the
global properties of the fitness function, we need to make specific assumptions about
the ecological setting underlying wE(t)(φg). We shall thus use a version of Levene’s
soft-selection model (Levene 1953).

3.1 Assumptions

For the ecological model, we consider a population in which the offspring of each
discrete generation are distributed randomly over two habitats (Levene 1953). Within
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each habitat, there is first a period of viability selection, which an individual with
phenotype φg survives with probability

f1(φg) = α1exp

(

− (φg − m1)
2

2σ 2
s

)

(22a)

in habitat 1 and

f2(φg) = α2exp

(

− (φg − m2)
2

2σ 2
s

)

(22b)

in habitat 2, respectively, where α1 and α2 are the maximum survival probabilities,
m1 and m2 are the optimal phenotypes in the two habitats, and σs > 0 controls the
strength of stabilizing selection within a habitat. Without loss of generality, we set
m1 = −d/2 and m2 = d/2, where d is the distance between the two habitat-specific
optima.

Viability selection is followed by non-selective “contest” competition, where a fixed
number Ki of individuals survive to adulthood within habitat i (i = 1, 2; we assume
that fecundity is sufficiently large such that the number of offspring after viability
selection exceeds Ki in both habitats and for all phenotypes considered). As a result,
a fraction c1 = K1/(K1 + K2) of the adult population is recruited from habitat 1 and
the remaining fraction c2 = 1 − c1 comes from habitat 2. All adults form a single
population where mating is assortative with respect to phenotype but not with respect
to habitat.

As we derive in Appendix 2, fitness in ecological selection under these assumptions
is given by

wE(t)(φg) = c1
f1(φg)

∑

h Ph(t) f1(φh)
+ c2

f2(φg)
∑

h Ph(t) f2(φh)
. (23)

Note that the selective environment

E(t) =
(

∑

h

Ph(t) f1(φh),
∑

h

Ph(t) f2(φh)

)

(24)

depends on the frequencies and phenotypes of all genotypes present and changes in
time until the genotypic frequencies arrive at an equilibrium, but can always be given
by only two variables that are the habitat-specific mean probabilities of survival during
viability selection. Contrary to clonal models, in a diploid sexual population the num-
ber of environmental feedback variables does not give an upper bound on the number
of alleles that can form a polymorphism, except if the alleles act additively on the
within-habitat viabilities (Nagylaki and Lou 2001) or there is partial dominance that
is constant across habitats in the Levene model (Nagylaki 2009). In our model, alle-
lic effects determine the phenotype φ additively but (24) implies nonadditive effects
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on the viabilities with variable dominance and possible overdominance; as a conse-
quence, more than two alleles can be present at equilibrium (Kisdi and Geritz 1999;
Nagylaki 2009).

For the mating process, in this example we shall assume M → ∞ such that all
females are eventually mated. This immediately implies Q̄ = Q = 1. Eqs. (12) and
(13) simplify to Qxy,xx = 1 and Qxx,xy = π(φxy − φxx), respectively, and in the
invasion fitness

Wx(y) = 1

2
(1 + π(φxy − φxx))wÊ(φxx)

(φxy), (25)

purely ecological selection on females is combined with ecological and sexual selec-
tion on males. We adopt the mating function

π(φh − φg) = exp

(

− (φh − φg)
2

2σ 2
m

)

(26)

for the probability that a φg female accepts a φh male when they encounter each other
(the same has been used e.g. by Doebeli 1996, Matessi et al. 2001; Pennings et al.
2008; Ripa 2009). In (26), decreasing σ 2

m corresponds to decreasing π ′′(0) = −1/σ 2
m

and stronger assortativity.
Finally, we assume that the alleles act additively on the phenotype, i.e.,

φxi x j = xi + x j

2
(27)

holds also for large differences between xi and x j (local additivity follows already
from the smoothness assumptions made in the general model).

By scaling the allelic values, one can set σs = 1 without loss of generality. Hence
the adaptive dynamics of alleles depend on three parameters only: the relative size of
habitats, c1 (with c2 = 1 − c1); the (scaled) difference between the habitat-specific
optima, d/σs ; and the (scaled) strength of assortative mating, σm/σs . With random
mating (σm/σs → ∞), this model is identical to the one investigated by Kisdi and
Geritz (1999).

3.2 Monomorphic singularities of the Levene model

Before turning to speciation in polymorphic populations, we briefly illustrate our
general results on monomorphic singularities in the Levene model. Substituting the
ecological model (23) and genotype-phenotype map (27) into Eq. (25), we arrive at

Wx(y) = 1

2

(

1 + π

(
y − x

2

)) (

c1
f1

(x+y
2

)

f1 (x)
+ c2

f2
(x+y

2

)

f2 (x)

)

(28)
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for the the invasion fitness with π and fi given as in Eqs. (26) and (22), respectively.
Using (17), we obtain a unique evolutionary singularity at

x∗ = (c2 − c1)d/2 (29)

and this singularity is always convergence stable [condition (18) simplifies to −1/σ 2
s

< 0]. The ESS condition (19) is not satisfied so that the singularity x∗ is an evolutionary
branching point if

c1c2(d/σs)
2 > 1 and (σm/σs)

2 >
1

2(c1c2(d/σs)2 − 1)
. (30)

The first of these inequalities is the condition for evolutionary branching under random
mating (cf. Kisdi and Geritz 1999). Assortative mating hinders evolutionary branching
so that branching occurs only if it does under random mating, and, in addition, mating
is not too assortative so that σm is sufficiently large to satisfy the second inequality
in (30). In the vicinity of x∗, there are pairs of alleles that mutually invade each other
and hence form a protected polymorphism [see (21)] if

(σm/σs)
2 >

1

2(c1c2(d/σs)2 + 1)
(31)

whereas there are allele pairs with mutual exclusion if the opposite inequality holds.
Notice that under random mating (σm → ∞), the condition for mutual invasibility is
always satisfied, but it can be violated if mating is sufficiently assortative.

The resulting bifurcation patterns are illustrated in Fig. 1. The top row contains
pairwise invasibility plots [i.e., sign plots of log Wx(y)] for increasing assortativeness,
taking parameter values such that evolutionary branching occurs under random mat-
ing. The middle row shows the areas of mutual invasibility (Wx(y)> 1 and Wy(x)> 1)
as derived from the pairwise invasibility plots, and areas of unprotected polymorphism
as found by numerical continuation of equilibria. As σm decreases, x∗ first bifurcates
from an evolutionary branching point (Fig. 1a) into an ESS with mutual invasibility
in its neighbourhood (Fig. 1b); next, mutual invasibility (Fig. 1d, e) bifurcates into
mutual exclusion near x∗ (Fig. 1f). When mating is sufficiently assortative, unpro-
tected polymorphism appears (Fig. 1e, f). When mutual invasibility has bifurcated
into mutual exclusion such that the invasion boundary lines [where Wx(y)= 1 and
Wy(x)= 1, respectively] intersect away from the main diagonal y = x, unprotected
polymorphism is always found in the neighbourhood of the intersection (Fig. 1f; see
Priklopil in prep. for proof). The bottom row of Fig. 1 (where pxi denotes the fre-
quency of allele xi ) illustrates the dynamics of allelic frequencies in protected and
unprotected polymorphisms, and mutual exclusion with no polymorphism.

Figure 2 shows all bifurcations of monomorphic evolutionary singularities for equal
habitat sizes (c1 = c2 = 1

2 ) from (30) and (31). When disruptive selection generated by
the contrasting habitats is weak (d/σs < 2), the monomorphic singularity is always an
ESS. When the ecological conditions generate stronger disruptive selection (d/σs > 2)
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Fig. 2 Bifurcation plot for monomorphic singularities assuming equal habitat size (c1 = c2 = 0.5). On
the continuous line, x∗ bifurcates between an ESS and an evolutionary branching point BP [equality in
the second condition of (30)]; on the dash-dotted line, x∗ bifurcates between having mutual invasibility
and mutual exclusion ME attached to it [equality in condition (31)]. Below the dotted line, unprotected
polymorphism UP exists for some allelic values (x1, x2) (this region is found numerically)

and assortativness is weak (σm is sufficiently high), then the singularity is a branching
point, but branching is lost if stabilizing sexual selection is too strong (σm is small).
Strong sexual selection can always generate mutual exclusion near the singularity.

3.3 Adaptive dynamics in polymorphic resident populations and speciation by magic
traits

In this section, we investigate the dynamics of evolution after evolutionary branching
of a magic trait, with particular attention to whether speciation occurs and whether
the existing species are stable in face of changes in the environment. We adhere to
the biological species concept, i.e., define species by substantial (although not neces-
sarily complete) reproductive isolation between them (see e.g. Coyne and Orr 2004).
The evolution of a magic trait leads to reproductive isolation, and thus to speciation
if the phenotypes become sufficiently different relative to the width of the mating
function σm in Eq. (26), so that separate phenotypes cease to interbreed and hetero-
zygotes (“hybrids” between the homozygote species) become rare. σm may depend
on environmental factors. A famous example is found in the cichlid fish of Lake
Victoria (Seehausen et al. 1997): Mate choice is determined by colour in normal clear
water, but since recent eutrophication of the lake has increased water turbidity and
made colours difficult to recognize, mating has become less assortative and formerly
isolated species started to fuse. Below, we shall also investigate the consequences of
environmental changes affecting σm .
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Fig. 3 Trait evolution plots for
d = 2.25 and a σm = ∞, b
σm = 1.6, c σm = 1.0, d
σm = 0.6, e σm = 0.57, f
σm = 0.5, g σm = 0.43 and h
σm = 0.38. Arrows indicate the
direction of the selection
gradient in allele x1 (horizontal)
and allele x2 (vertical); isoclines
are the null clines of the
selection gradients and diallelic
singularities are at the
intersection of isoclines. Dots
indicate convergence stable
diallelic singularities (these are
also evolutionarily stable). The
size of the dot indicates the
strength of reproductive
isolation at the singularity;
smallest dot denotes F < 0.9 (a,
b), middle sized dot denotes
0.9 < F < 0.99 (not in this
figure), biggest dot denotes
0.99 < F (g, h). Grey areas
denote unprotected
polymorphisms. In h, we
marked the boundaries across
which evolutionary suicide can
occur, but analogous boundaries
are found in every panel with
unprotected polymorphism. The
monomorphic singularity at
(x∗,x∗) = (0, 0) is an
evolutionary branching point for
σm > 1.37 (a, b) and an ESS
below this threshold (c–h); there
is mutual invasibility in the
neighbourhood of (x∗, x∗) for
σm > 0.47 (a–f) and there is
mutual exclusion below this
threshold (g, h)

To analyze the dynamics of evolution after evolutionary branching, we construct
so called trait evolution plots, i.e., combined sign plots of the selection gradients
[∂Wx1,x2(y)/∂y]y=x1 and [∂Wx1,x2(y)/∂y]y=x2 (Geritz et al. 1998), where the fit-
ness proxy W̃ defined in (16) can be used in place of W . In Figs. 3, 4, 5, arrows
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Fig. 4 Trait evolution plots for
d = 2.66 and a σm = ∞, b
σm = 2.9, c σm = 2.6, d
σm = 0.9, e σm = 0.83, f
σm = 0.82, g σm = 0.61 and h
σm = 0.45. Notations as in
Fig. 3. Note that in the upper left
and lower right of each plot, the
x1- and x2-isoclines are very
near to each other especially for
small values of σm , but there is
no isolated singularity in these
regions [the outermost
symmetric singularity is around
(x1, x2) = (−1.2, 1.2)

in every panel]. Note also the
change of scale in h. The
monomorphic singularity at
(x∗,x∗) = (0, 0) is an
evolutionary branching point for
σm > 0.81 (a–f) and an ESS
below this threshold (g–h); there
is mutual invasibility in the
neighbourhood of (x∗, x∗) for
σm > 0.42 (in all panels shown
here)

show the direction of selection gradients inside the area of coexistence; the bound-
ary lines where the corresponding selection gradient changes sign are referred to as
x1- and x2-isoclines. Note that the isoclines extend smoothly into the areas of unpro-
tected polymorphism (grey areas). The intersections of isoclines correspond to diallelic
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Fig. 5 Trait evolution plots for
d = 3 and a σm = ∞, b
σm = 2.0, c σm = 1.95, d
σm = 1.5, e σm = 1.0, f
σm = 0.7, g σm = 0.6 and h
σm = 0.5. Notations as in Fig. 3.
Note that in the upper left and
lower right, the x1- and
x2-isoclines are very near to
each other but there is no
isolated singularity in these
regions [the outermost
symmetric singularity is around
(x1, x2) = (−1.4, 1.4) in every
panel]. Note also the changes of
scale. The monomorphic
singularity at (x∗, x∗) = (0, 0)

is an evolutionary branching
point for σm > 0.63 (a–f) and an
ESS below this threshold (g, h);
there is mutual invasibility in the
neighbourhood of (x∗, x∗) for
σm > 0.39 (in all panels shown
here)

evolutionary singularities [cf. Eq. (39)], and the singularities which are evolutionarily
as well as convergence stable (see Appendix 3) are marked with filled circles. Trait
evolution plots are symmetric with respect to the main diagonal x2 = x1 because
labelling of the resident alleles is arbitrary. In addition, the trait evolution plots in
Figs. 3, 4, 5 are also symmetric with respect to the secondary diagonal x2 = −x1
because we assume equal habitat size, c1 = c2 = 0.5 (see Appendix 3 for relaxing
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this symmetry). In case of random mating (σm = ∞), we recover the trait evolution
plots of Kisdi and Geritz (1999).

To assess the degree of reproductive isolation at the evolutionary singularities, we
calculate the deficiency of heterozygotes among newborns (before ecological selec-
tion) at the population genetic equilibrium of the two resident alleles of the diallelic
singularity, as compared to Hardy-Weinberg equilibrium: F = 1 − Px1x2/(2px1 px2),
where pxi denotes the frequency of allele xi (px1 = px2 = 1

2 by symmetry on the
secondary diagonal x2 = −x1). F = 0 corresponds to random mating and F = 1
implies that the two homozygotes are fully isolated and hence behave as separately
evolving species. In Figs. 3, 4, 5 we indicate three different regimes of reproductive
isolation with three different sized circles; the smallest circle (as in Fig. 3a) denotes
F < 0.9, the middle sized circle (as in Fig. 4e) denotes 0.9 < F < 0.99 and the
biggest circle (as in Fig. 4g) denotes 0.99 < F .

It will be necessary to distinguish between strong discrimination against males even
with small phenotypic differences to the female phenotype (small σm in Eq. (26)) and
strong reproductive isolation due to large phenotypic differences (|x1 − x2|). Hence-
forth we shall refer to small σm as “strongly assortative”, and use “strongly isolated”
when the probability of interbreeding between different phenotypes is small and there-
fore F is close to 1.

Moderate difference between habitat optima. In Fig. 3, there is only a moderate
difference between the within-habitat optima (d/σs = 2.25), and therefore disruptive
ecological selection is weak. In absence of assortative mating (Fig. 3a), evolutionary
branching at x∗ = 0 is followed by evolution to a unique convergence and evolu-
tionarily stable diallelic singularity, where two alleles segregate in a randomly mating
population (F = 0). With weak assortativity (Fig. 3b), the qualitative outcome is the
same, and mating is nearly random at the singularity (F = 0.017). Increasing assort-
ativity by decreasing σm leads to the loss of evolutionary branching as the diallelic
singularity converges to (x∗,x∗) (Fig. 3c).

At stronger assortativity, an area of unprotected polymorphism appears (grey areas
in Fig. 3d–h). At the outer edge of the area of unprotected polymorphism, the diallelic
population genetic attractor disappears via a fold bifurcation. This is a “catastrophic”
bifurcation where the frequency of an allele drops to zero discontinuously, which
makes evolutionary suicide possible (Gyllenberg and Parvinen 2001). In Fig. 3h, we
have marked those parts of the boundary of unprotected polymorphism where evo-
lutionary suicide can happen. Above the main diagonal of the figure (x2 > x1), the
selection gradient in x1 is positive whereas the selective gradient in x2 is negative
along the outer edge of unprotected polymorphism. At the marked boundary above
the secondary diagonal (x2 > −x1), an evolutionary step downwards leads to the
loss of polymorphism and fixation of the x1 allele: Hence an invading mutant of x2
causes the extinction of the same allele. Below the secondary diagonal, x1 may be lost
via evolutionary suicide in a similar manner; and below the main diagonal, the roles
are reversed. Evolutionary suicide events can happen also for other parameter values,
whenever unprotected polymorphism is present.

When assortativity is strong, new diallelic singularities are created via a fold bifurca-
tion (Fig. 3g, h). At the convergence stable (outer) singularity, the two homozygotes are
strongly isolated and heterozygotes are nearly absent (F > 0.99). The convergence
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stable singularity thus corresponds to two biological species. Because two isolated
species evolve independently and analogously to two clonal strategies, the position
of the diallelic singularity is close to the dimorphic singularity of the corresponding
clonal model whenever reproductive isolation is strong (cf. Geritz and Kisdi 2000).
Note however that in contrast to the clonal model, the convergence stable diallelic
singularity in Fig. 3g, h is not attainable via evolutionary branching from an initially
monomorphic population: This is because stabilizing sexual selection in the vicinity
of the monomorphic singularity (x∗,x∗) = (0, 0) prevents evolutionary branching
when mating is strongly assortative. Even though separate species are stable, for these
parameters speciation cannot happen by evolving the magic trait from monomorphic
populations.

Suppose now that two isolated species exist at the diallelic convergence stable
singularity in Fig. 3g, h, but mating assortativity decreases (σm increases) due to a
change in the environment. If this change is not too large, then the diallelic singular-
ity is lost (cf. Fig. 3c–f): The two species hybridize to some extent, and the hybrid
species complex eventually loses genetic polymorphism by evolving to a monomor-
phic ESS. Note that there may be significant variations in the transient dynamics:
If σm increases to just above the fold bifurcation point of the diallelic singular-
ity, then the species initially remain reproductively well isolated but start evolving
their magic trait towards the common ESS, and reproductive isolation slowly dis-
solves as the species evolve towards each other. If σm increases more dramatically,
then reproductive isolation breaks down instantly and the species fuse on the short
population genetic timescale, before evolutionary changes occur in the magic trait.
Eventually, however, the two species will in both cases be replaced with a single
monomorphic species at the ESS, and the system will stay there also if the origi-
nal small value of σm is restored. If the environment changes such that σm jumps
to a very high value, then the system settles at a diallelic singularity (Fig. 3a, b)
where genetic polymorphism is preserved, although the two separate species are
fused into a single, nearly randomly mating population. Restoring the small value
of σm will, interestingly, restore the original two species only if the disturbed value
of σm was sufficiently large. If, during the environmental disturbance, the alleles
evolve according to Fig. 3a, then they remain in the basin of attraction of the con-
vergence stable diallelic singularity of Fig. 3g, h so that if σm assumes its origi-
nal value after the disturbance, the two species become isolated again. If however
the disturbed population evolves as in Fig. 3b, then the alleles evolve out of the
basin of attraction in Fig. 3g, h such that restoring the original σm will not restore
the two species; instead, upon reducing σm , one species will eventually go extinct
and the other will evolve to the monomorphic ESS.

Increasing the difference between habitat optima. With somewhat larger difference
between the habitats (d/σs = 2.66, Fig. 4), the symmetric diallelic singularity is a
saddle point under random mating (Fig. 4a), but it undergoes a pitchfork bifurcation
and becomes convergence stable under weak assortativity (Fig. 4b). In contrast to
the previous scenario, this symmetric convergence stable singularity is not lost as
σm decreases, and there is substantial reproductive isolation maintaining two separate
species at this singularity when mating is fairly assortative (F > 0.9 at the outermost
singularity in Fig. 4e, f and F > 0.99 in Fig. 4g, h). However, as mating becomes
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more assortative, this singularity becomes isolated from the evolutionary branching
point by a new pair of singularities (Fig. 4e, f). There we see an interesting evolu-
tionary bistability: On the one hand, two reproductively almost isolated species exist
at the outer singularity, with few heterozygotes present at mating and therefore with
stabilizing sexual selection around the two homozygote phenotypes. This singularity
is close to the singular coalition of strategies in the clonal model. On the other hand,
however, there is an almost randomly mating population at the inner singularity, where
heterozygote females are common and exert stabilizing selection on males, thereby
preventing the further divergence of alleles. Evolutionary branching thus does not lead
to speciation, because the evolution of the magic trait stops at the innermost singular-
ity, where reproductive isolation is very weak (F < 0.1 in Fig. 4e, f). Increasing the
strength of assortativity further (Fig. 4g, h) leads to the loss of evolutionary branching,
although a pair of well isolated species continues to be convergence and evolutionarily
stable.

Environmental changes inducing changes in σm can destroy species, but here, they
will not destroy genetic polymorphism. When mating assortativity drops, then sepa-
rate species fuse into a single polymorphic population (e.g. in Fig. 4c, F < 0.1 at the
diallelic singularity); reproductively isolated species appear instantly if the environ-
ment is restored such that σm assumes a low value again. If mating becomes almost
random (σm becomes very large), then the magic trait evolves away from the sym-
metric diallelic singularity (Fig. 4a), but still remains polymorphic. This change is
reversible but with a hysteresis effect: σm needs to get below the simultaneous fold
bifurcation that destroys the asymmetric singularities in order to allow the magic trait
to evolve back to the symmetric diallelic singularity.

With fairly large difference between habitats (d/σs = 3, Fig. 5), the evolution
of a magic trait leads to speciation provided that assortativity is sufficiently strong,
such that it provides sufficient reproductive isolation at the diallelic singularity, but
not too strong, such that it does not prevent evolutionary branching. These conditions
hold e.g. in Fig. 5f: Evolutionary branching leads to the evolution of two alleles with
F = 0.999, i.e., to the evolution of two reproductively isolated homozygote species.
For stronger assortativity of mating, the monomorphic singularity x∗ = 0 becomes
an ESS and a saddle point bifurcates from x∗ that isolates the diallelic convergence
stable singularity. Otherwise, similar conclusions hold as for d/σs = 2.66.

In summary, two species can coexist in an evolutionarily stable manner if the
habitats are substantially different (d/σs is large) and mating assortativity is suffi-
ciently strong (σm/σs is not too large). Very strong assortativity however prevents
evolutionary branching, so that even though there is an evolutionarily stable pair
of species, these species cannot evolve from an initially monomorphic population.
Speciation by the evolution of a magic trait occurs for intermediate levels of as-
sortativity. We summarize these results in Fig. 6, which shows where the symmet-
ric diallelic singularities correspond to speciation and whether these can be reached
via evolutionary branching from an initially monomorphic population. Appendix 3
contains a full bifurcation analysis of the diallelic singularities, which provides a
comprehensive overview of the patterns seen in Figs. 3, 4, 5, and discusses how
the bifurcation structures unfold when the habitats are not precisely of the same
size.

123



382 É. Kisdi, T. Priklopil

Fig. 6 Strength of reproductive isolation at the symmetric convergence stable diallelic singularity. Such
a singularity exists in white and grey areas. If there is more than one symmetric singularity then F values
refer to the outer singularity (see Appendix 3). F increases with decreasing σm/σs such that F < 0.9 above
the upper dashed line, 0.9 < F < 0.99 in between the dashed lines and F > 0.99 below the lower dashed
line. In the grey area, the singularity cannot be reached by evolutionary branching from a monomorphic
population. In the striped area there are no diallelic singularities

3.4 Species in unequally sized habitats

Analyzing the adaptive dynamics of polymorphic populations with arbitrary habitat
sizes (c1, c2) is beyond the scope of this paper. However, in Fig. 7 we show one
example where the habitats differ substantially in their size (c1 = 0.38, c2 = 0.62).
In this example, the convergence stable diallelic singularity lies in the area of unpro-
tected polymorphism. Reproductive isolation is strong at this singularity (F > 0.99),

i.e., the singularity corresponds to two biological species that coexist at a locally sta-
ble equilibrium of their joint population dynamics. This coexistence is however not
protected, i.e., not globally stable: If the species harboring allele x1 becomes rare or
goes extinct due to some ecological disturbance, then it is no longer able to invade and
recover from low initial population densities. The species loss is therefore permanent,
and the remaining species will subsequently evolve to the monomorphic ESS. This
is in contrast to the diallelic singularities of Figs. 3, 4, 5, which all occur in the area
of protected polymorphism such that any of the two alleles (or species) can invade if
rare, provided that it is re-introduced shortly on the evolutionary time scale before the
remaining population could evolve away.

4 Discussion

In the first part of this paper, we investigated the evolution of a magic trait under the
most commonly used model of assortative mating (originally due to Doebeli 1996;
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Fig. 7 The convergence stable
diallelic singularity lies in the
area of unprotected
polymorhism when the
difference between the habitat
sizes is sufficiently large. The
parameter values are
d = 2.25, σm = 0.38 and
c1 = 0.38 (the singularity moves
to the area of unprotected
polymorhism when c1 ≈ 0.43)

Gavrilets and Boake 1998; Matessi et al. 2001) and under arbitrary ecological selection.
Assortative mating occurs via female preference for males with similar phenotypes
to the female herself. Because assortative mating exerts no directional selection, the
position and convergence stability of monomorphic evolutionary singularities are not
affected by assortativity and coincide with those under random mating (Eqs. (17),
(18)); which, in turn, coincide with the monomorphic singularities of the correspond-
ing clonal model of adaptive dynamics (Geritz and Kisdi 2000; Van Dooren in press).
Thus as far as the number, position, and convergence stability of monomorphic singu-
larities are concerned, sexual reproduction and assortative mating makes no difference.

In polymorphic populations, however, the abundance of resident genotypes depends
on the assortativity of mating, and this affects the selection gradient experienced by
rare mutants through both ecological and sexual selection. As ecological and sexual
selection interact, the adaptive dynamics of diallelic populations (as shown by the
example of the Levene model in Figs. 3, 4, 5) are much richer than adaptive dynam-
ics under random mating (no sexual selection; Kisdi and Geritz 1999) or the adaptive
dynamics of clonal phenotypes in the same ecological model (Geritz et al. 1998; Geritz
and Kisdi 2000). For the existence and convergence stability of polymorphic singu-
larities, we can draw a general (model-independent) conclusion only for the limiting
case where female reproduction is not affected by mating (M → ∞) and assortativity
is very strong (σm → 0), so that heterozygotes are absent and the model reduces to
its clonal counterpart.

It is important to recall that if some females remain unmated due to assortative mat-
ing (M < ∞), then mating also affects ecological fitness via changing the densities of
resident genotypes. When relaxing assortativeness (σm → ∞), the model converges
to the corresponding sexual model without mate choice only if all females reproduce
(μmax = 1). Likewise, under full reproductive isolation (σm → 0) but with M < ∞
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and μmax < 1, females reproduce less on average than in the corresponding clonal
model and because this alters the population densities of the residents, ecological
selection will be different.

Sexual selection from assortative mating has no directional component but it is sta-
bilizing around the common phenotypes (Kirkpatrick and Nuismer 2004; Schneider
2005; Pennings et al. 2008). At a monomorphic singularity, stabilizing sexual selec-
tion counteracts disruptive ecological selection, and therefore may prevent evolution-
ary branching. Schneider (2005) obtained a similar result in a more specific model,
assuming a particular ecological scenario (trait-dependent competition in a Lotka-Vol-
terra model), haploid sexual genetics, and a single opportunity for mating (M = 1;
μmax = 1); the numerical analysis of two models by Ripa (2009) showed the same.
Here, we give the general analytic condition for evolutionary branching to occur in a
diploid population in face of assortative mating (Eq. 19).

Stabilizing sexual selection can prevent not only the evolution of polymorphism via
evolutionary branching, but also the maintenance of polymorphism of given (fixed)
alleles (Matessi et al. 2001; Schneider 2005; Schneider and Bürger 2006; Pennings
et al. 2008). We found that under strong assortativity, mutual invasibility near an
evolutionary singularity is replaced by mutual exclusion, a situation such that a mono-
morphic population of either allele resists invasion by the other allele [Eq. (21); see
examples in Figs. 1, 2]. Although sexual selection can prevent protected polymor-
phisms, it can result in an unprotected polymorphism, where there is a stable internal
(polymorphic) equilibrium even though both fixation equilibria are also stable (cf.
Schneider and Bürger 2006). This is again because assortativity favours the common
phenotypes: An allele may be unable to invade when rare but may reach a stable
equilibrium when sufficiently common. A set of unprotected polymorphisms appears
when mutual invasibility at an evolutionary singularity bifurcates into mutual exclu-
sion (Priklopil in prep.).

To retain analytical tractability (and similarly to previous analytical models of sym-
patric speciation such as Udovic 1980; Matessi et al. 2001; Schneider 2005; Pennings
et al. 2008; Kopp and Hermisson 2008; Otto et al. 2008; Ripa 2009), we assumed
throughout that the magic trait is determined by a single gene. While this is a simplifi-
cation, it may even be close to reality in some cases: The number of genes underlying
adaptations and species differences vary and may be as low as one or few (Orr 2001;
Woodruff and Thompson 2002). Interestingly, the adaptive dynamics of two loci under
random mating in the Levene model leads to loss of genetic variability in one locus,
so that eventually the ecological trait is determined by the alleles of a single locus as
assumed here (Kisdi and Geritz 1999; Van Doorn and Dieckmann 2006).

4.1 Speciation

In our model, speciation occurs by the evolution of sufficiently large differences
between the allelic values of the magic trait, which implies that the homozygotes
become reproductively isolated by assortative mating. We studied the evolution of
polymorphic populations and in particular speciation in the Levene model as an
example. First of all, this model was used as the basis of many classic studies of
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speciation assuming non-evolving allelic values (e.g. Maynard Smith 1966; Felsen-
stein 1981; see Kirkpatrick and Ravigne 2002 and Gavrilets 2004 for reviews); sec-
ondly, the adaptive dynamics of allelic values are well understood in this model under
random mating (Kisdi and Geritz 1999) and also under linkage disequilibrium with a
separate mating locus (Geritz and Kisdi 2000; Kisdi and Geritz in press). In this paper,
we explored the evolution of a magic trait rather than separate ecological and mating
traits. As recent empirical data demonstrate, this is probably a more common route to
sympatric speciation than linkage disequilibrium between separate traits (see Sect. 1).

In the Levene (1953) model, viability selection occurs in two contrasting habitats.
The model assumes that adults emerging from both habitats form a single mating
population so that mating is independent of habitat origin; in other words, all mating
assortativity is due to mate choice by the magic trait and speciation is fully sympatric.
This assumption is met if the environment is “fine grained”, i.e., if the habitats exist in
many randomly placed patches so that distances across different habitats are short rel-
ative to the mobility of the organism. A weakness of Levene’s soft selection model is
that it assumes fully saturated habitats; when the population is maladapted to a habitat,
this implies that fecundity must be large. Under random mating and with Gaussian
functions as assumed in (22a,b), the monomorphic singularity of the Levene model is
always convergence stable, but this does not hold for other choices of functions (Kisdi
2001) and also not in models where the habitats are not always saturated (e.g. Meszéna
et al. 1997, Day 2000, Kisdi 2002, Ravigne et al. 2009). If convergence stability of
the monomorphic singularity is lost when the habitats differ strongly, then this further
limits the possibility of speciation via the evolutionary branching of a magic trait in
heterogeneous habitats.

Several models have considered the evolution of mating assortativity, i.e., the evo-
lution of σm , with fixed allelic values (x1,x2) of the magic trait (Matessi et al. 2001;
Pennings et al. 2008; Kopp and Hermisson 2008; Otto et al. 2008; Ripa 2009). These
models concluded that for speciation, disruptive ecological selection on the magic
trait needs to be strong. As assortativity gradually increases by the evolution of σm ,
stabilizing sexual selection strengthens, and may fully balance disruptive ecological
selection: If this happens, then the selection gradient on σm vanishes before the pro-
spective species become reproductively isolated, so that the process of speciation stalls
(Matessi et al. 2001; Pennings et al. 2008).

In this paper, we made the complementary assumption that only the magic trait
x evolves whereas σm is fixed (see also Schneider 2005). Our model uncovers other
difficulties of speciation by magic traits. Unless ecological selection is strong even for
moderately different alleles (i.e., unless d/σs is large in the Levene model), an ini-
tially monomorphic population cannot evolve into two isolated species because when
assortativity is sufficiently strong to provide reproductive isolation at a polymorphic
singularity, then evolutionary branching either does not occur (as in Figs. 3g, h, 4g, h)
or evolution after branching stops before the alleles become sufficiently different to
achieve reproductive isolation (Fig. 4e, f). Ripa (2009) investigated speciation by a
magic trait in two other ecological models, where again if assortativity is sufficiently
strong for reproductive isolation at the diallelic singularity, then it is likely to pre-
vent evolutionary branching of the monomorphic population. Although the numerical
analysis of Ripa (2009) was less complete, it seems that the bifurcation structures of
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his models are simpler, and alternative diallelic attractors do not prevent speciation as
seen in our Fig. 4e, f.

The above-mentioned problems are particularly relevant for the evolution of species
diversity after an extinction event. If initially two species are isolated by assortative
mating but one goes extinct due to some environmental disturbance, then mating can
remain strongly assortative in the remaining species. The remaining species will evolve
to the monomorphic singularity, where assortative mating can prevent evolutionary
branching (or prevent the evolution of sufficiently different alleles for obtaining repro-
ductively isolated species after branching) so that the initial species diversity will not
be restored. This problem is not particular to the example of the Levene model: If
assortativity is sufficiently strong for the given ecological parameters, then the mono-
morphic singularity is always an ESS [Eq. (19)], and evolutionary branching cannot
restore an extinct species. In principle, assortativity could evolve arbitrarily strong
between two species, but in practice the selection gradient on assortativity will become
weak once the species are well isolated. How strong assortativity does evolve relative
to ecological selection determines whether evolutionary branching remains possible
after an extinction event or not.

Distinction needs to be made between the questions whether evolutionary branch-
ing is possible, whether there is a locally stable polymorphic evolutionary singularity
where homozygotes are reproductively isolated, and whether such a singularity can
be reached from an evolutionary branching point. Evolutionary branching is possible
if assortativity is not too strong relative to disruptive ecological selection [Eq. 19].
A singularity with two separate species exists if assortativity is strong enough and
ecological selection is able to maintain two clonal phenotypes in an evolutionarily
stable coalition. Note that assortativity needs to be both sufficiently weak so as not
to exert too strong stabilising selection on similar alleles near the monomorphic sin-
gularity, and also sufficiently strong so as to provide reproductive isolation between
distinct homozygotes: Given the Gaussian mating function in Eq. (26), this is possi-
ble if disruptive ecological selection is sufficiently strong at the branching point and
the homozygotes of the diallelic singularity are sufficiently far apart. In the Levene
model, both these requirements hold if d/σs is large. But evolutionary branching and
the existence of a diallelic singularity with strong reproductive isolation does not yet
guarantee speciation (cf. Fig. 4e, f): An initially monomorphic population can evolve
into two separate species only if disruptive ecological selection is sufficiently strong to
overcome sexual selection for all allelic values from the monomorphic singularity to
a polymorphic singularity with reproductive isolation. Such a case is shown in Fig. 5f.

In reality, the assortativity of mating (σm) can co-evolve with the magic trait (x).
We did not investigate the joint evolution of the magic trait and of mating assortativity
directly (see Ripa 2009), but we can infer the selection gradient on σm using a result
of Pennings et al. (2008; see also Otto et al. 2008): Assuming that all females are
mated (M → ∞), the heterozygote phenotype is exactly inbetween the homozygotes
[as in Eq. (27)], and the mating function is Gaussian [as in Eq. (26); but also under
some other mating functions], a mutant gene increasing the assortativity of mating
(decreasing σm) can invade if and only if both homozygote genotypes of the magic
trait have higher fitness than the heterozygote. This condition holds at every symmetric
diallelic singularity in Figs. 3, 4, 5, therefore assortativity increases as long as the magic
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trait is at or near such a singularity. Assume that σm evolves much slower than the
magic trait (x), so that the magic trait attains quasi-equilibria at its convergence stable
singularities. Under such a separation of evolutionary time scales, speciation occurs
by gradual evolution of σm in an initially randomly mating population if a symmet-
ric diallelic singularity exists for every σm from random mating to full isolation. For
moderate values of d/σs this is not the case, because the diallelic singularity is lost at
intermediate values of σm as shown in Fig. 3. Note however that a modifier with large
effect on σm could cause instant speciation by bringing the population directly from
the diallelic attractor of Fig. 3a to that of Fig. 3g, h. A modifier decreasing σm can
invade a (nearly) randomly mating population independently of the size of its effect
(Pennings et al. 2008), although it remains to see if a modifier with large effect goes
to fixation. Earlier studies also found that assortment is more likely to evolve in large
steps, but for a different reason: If there is an interval of σm where assortativeness
is not selected for, a large mutation can “jump” over this (e.g. Matessi et al. 2001,
Schneider and Peischl, in prep.). At the symmetric diallelic singularities of our model,
assortative mating is always selected for, but a large mutation in σm could help to jump
an interval where a diallelic singularity does not exist.

For larger values of d/σs , speciation is prevented by the evolution of the magic trait
while the population is nearly randomly mating. In Fig. 4a, the symmetric diallelic
singularity is a saddle point and the magic trait evolves to an asymmetric singularity,
where the heterozygotes have higher fitness than homozygotes and therefore assort-
ativity is not selected for (cf. Geritz and Kisdi 2000). If however some assortativity
exists already in the initial population, then this can stabilize the symmetric singularity
[as in Fig. 4b]; from this point, the evolution of assortativity preserves the symmet-
ric singularity of the magic trait and leads to speciation (cf. Figs. 4b–h, 5b–h; Ripa
2009). The symmetric singularity can also be stabilized if migration between the two
habitats is somewhat restricted (Kisdi and Geritz in press). Since in a spatially heter-
ogeneous environment a moderate isolation between habitats can easily occur, such
a weak initial reproductive isolation by distance can help initializing the process of
speciation, which then continues by the evolution of mate choice while the magic trait
is at a symmetric singularity. Finally for d/σs > 4.03, the symmetric diallelic singu-
larity is convergence stable in a randomly mating population (Kisdi and Geritz 1999)
as well as for any value of σm (Appendix 3). This implies that speciation can occur
via slow evolution of mating assortativity in an initially randomly mating population.
Note however that this requires very strong ecological selection; and for large d/σs

the assumption of fully saturated habitats breaks down unless fecundity is large.
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Appendix 1

In this Appendix, we derive the invasion fitness of a rare allele y in a resident popu-
lation harbouring alleles x1, . . . ,xk . Invasion fitness in a monomorphic population,
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Eq. (11), follows directly. We also derive the fitness proxy in Eq. (16), which we use
in diallelic resident populations.

Let vector P be the frequency vector of genotypes containing allele y, P(t) =
(P(t)

x1y, . . . , P(t)
xky, P(t)

yy )T . From (1) and (2), the full dynamics of allele y is given by
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where we used the shorthand notation wxi x j for wE(t)(φxi x j ). To see whether y can
invade when rare, we need to investigate the linearized dynamics

P(t+1) = AP(t) (33)

where A is the (k +1)× (k +1) Jacobian derived from (32) and evaluated at the trivial
equilibrium P = 0.

It is easily seen from (32) that each element in the last row of A is zero, but all
other elements of A are strictly positive provided that wg > 0 and Qg,h > 0 for all
genotypes g, h. With the Gaussian functions (26) and (22) used in our example, these
conditions are satisfied if the allelic values are bounded and respectively σs > 0 and
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σm > 0. Let M be the k × k matrix obtained from A by deleting its last row and last
column. Since

Det(A − λI) = −λDet(M − λI), (34)

the eigenvalues of A are the eigenvalues of M and zero. Because M is strictly positive,
the Perron-Frobenius theorem guarantees that the dominant eigenvalue of M is sim-
ple and strictly positive. The dominant eigenvalue of A, which is the invasion fitness
of the rare allele y, is therefore also simple and positive. If the dominant eigenvalue
exceeds 1, y can invade.

Notice further that because the last row of A is zero, the last element of P(t+1)

in Eq. (33) is zero for all t ≥ 0 irrespectively of the initial frequency vector P(0).
In contrast, the first k elements of P converge to the strictly positive eigenvector of
M corresponding to its dominant eigenvalue. During the invasion process, therefore,
the frequency of mutant homozygotes, which is the last element of P, is negligible
compared to the frequency of mutant heterozygotes in the first k elements of P. In the
main text, we denote the vector of the first k elements of P with Phet .

Invasion fitness for monomorphic resident populations. When k = 1, the resident
population consists entirely of homozygotes xx and, using that Qxx,xxwxx = 1 in
resident equilibrium, (32) simplifies to

P(t+1)
xy = 1

wxx

[
1

2
P(t)

xy P(t)
xx wxywxx(Qxy,xx + Qxx,xy)

+1

2
(P(t)

xy )2w2
xy Qxy,xy

+P(t)
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]

(35)

P(t+1)
yy = 1

wxx

[
1

4
(P(t)

xy )2w2
xy Qxy,xy

+1

2
P(t)
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]

The Jacobian matrix is thus

A =
( 1

2wxy(Qxy,xx + Qxx,xy) wyy(Qyy,xx + Qxx,yy)

0 0

)

. (36)

M in this case is the upper left element of A, which is also the dominant eigenvalue
of A and equals the invasion fitness given in Eq. (11).

Invasion fitness for diallelic resident populations. When M is a 2 × 2 matrix, we
can simplify our calculations using the Routh–Hurwitz criterion. Using also that M
has positive elements, its eigenvalues λ1 and λ2 are both less than 1 in absolute value if
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DetM < 1 and TrM − DetM < 1. (37)

M depends continuously on the allelic values (x1,x2) and on y. If y equals either x1 or
x2 such that the mutant allele is neutral, then the dominant eigenvalue of M equals 1,
and hence DetM = λ1λ2 < 1. By continuity, the first inequality of the Routh–Hurwitz
criterion holds also when y is sufficiently close to either resident allele. With small
mutations, therefore, it is the second inequality that determines whether a mutant can
invade, and we can use TrM − DetM as a fitness proxy to see which mutants can
invade a diallelic resident population [cf. Eq. (16)].

Appendix 2

Here we derive fitness during ecological selection in the Levene model [Eq. (23)].
The mating population consists of K = K1 + K2 individuals, who produce a total
of K Q̄ B offspring, where Q̄ is the probability that a female is mated and B is the
per capita fecundity (the number of offspring per mated female times the relative
frequency of females in the population). Each offspring has probability γi to land
in habitat i (i = 1, 2). An offspring with phenotype φg survives viability selection
with probability fi (φg) in habitat i , and then becomes one of the Ki individuals who
survive till adulthood in habitat i with probability Ki/[γi K Q̄ B

∑

h Ph fi (φh)] (where
the denominator is the total number of offspring surviving viability selection and thus
competing for the Ki places of adults). The product of the probability that a newborn
survives till reproduction and the per capita fecundity is thus

wE(t)(φg) =
∑

i

γi fi (φg)
Ki

γi K Q̄ B
∑

h Ph fi (φh)
B, (38)

which, with Q̄ = 1, simplifies to Eq. (23) of the main text. Note that B is assumed
to be large enough such that Ki/[γi K Q̄ B

∑

h Ph fi (φh)] is always less than one to
be a probability; such B can be found if the admissible allelic values are bounded,
σs > 0, σm > 0, and γi > 0 for all i . Moreover, γi and B cancel in wE(t)(φg) due to
“contest” competition (i.e., a fixed number Ki of survivors) within each habitat.

Appendix 3

This Appendix reports the full numerical bifurcation analysis of diallelic singularities
in the Levene model with equal habitat size (c1 = c2 = 0.5), and also shows how the
degenerate bifurcations unfold when this symmetry assumption is relaxed.

Analogously to the monomorphic case, a diallelic evolutionary singularity (x∗
1,x

∗
2)

is determined by

∂Wx1,x2(y)

∂y

∣
∣
∣
∣y=xi
x1=x∗

1 ,x2=x∗
2

= 0 for i = 1, 2 (39)
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and it is evolutionarily stable if

∂W 2
x1,x2

(y)

∂y2

∣
∣
∣
∣y=xi
x1=x∗

1 ,x2=x∗
2

< 0 for i = 1, 2. (40)

Convergence stability in more than one dimension may depend on the frequency and
size of mutations (e.g. if allele x1 mutates more frequently or with somewhat larger
mutation steps than allele x2). In this paper, we adopt the concept of “absolute conver-
gence stability” (Leimar 2001, 2009) and rely on the conditions derived by Matessi
and Di Pasquale (1996; see also Kisdi 2006). To formulate the criteria for convergence
stability of a diallelic singularity, we introduce the notation

Ei = ∂W 2
x1,x2

(y)

∂y2

∣
∣
∣
∣y=xi
x1=x∗

1 ,x2=x∗
2

(41)

Mi = ∂W 2
x1,x2

(y)

∂xi∂y

∣
∣
∣
∣y=xi
x1=x∗

1 ,x2=x∗
2

(42)

Ai = ∂W 2
x1,x2

(y)

∂x j∂y

∣
∣
∣
∣y=xi
x1=x∗

1 ,x2=x∗
2

with j �= i (43)

for i = 1, 2. Matessi and Di Pasquale (1996) classified all generic singularities of a
population with two co-evolving resident strategies or alleles into three groups:

(i) All possible allele substitution sequences starting in the neighbourhood of
(x∗

1,x
∗
2) converge to the singularity if

(E1 + M1)(E2 + M2) > |A1 A2| and E1 + M1 < 0, E2 + M2 < 0. (44)

(ii) There exist both converging and diverging allele substitution sequences from
every initial point in the neighbourhood of (x∗

1,x
∗
2) if

|(E1 + M1)(E2 + M2)| < |A1 A2| and A1 A2 < 0. (45)

(iii) In all other cases, every possible allele substitution sequence diverges from a
non-zero measure set of initial points.

The above conditions are valid for all possible allele substitution sequences, includ-
ing those that occur with vanishing probabilities. All singularities we found in the
diallelic Levene model are either in (i) or in (iii), i.e., we have evolutionary attractors
with absolute convergence stability and evolutionary repellers. We adopt the shorthand
names “convergence stable” for singularities with absolute convergence stability and
“saddle” for the repellers. The fitness proxy W̃ of Eq. (16) can be used in place of W in
all of the conditions given above. We obtained the diallelic singularities of the Levene
model by solving Eq. (39) numerically and evaluated the conditions of evolutionary
and convergence stability as outlined above.

123



392 É. Kisdi, T. Priklopil

Fig. 8 Bifurcation plot of diallelic singularities for equal habitat size (c1 = c2 = 0.5). Region A no diallelic
singularity, B one convergence stable singularity, C a pair of asymmetric convergence stable singularities
separated by a symmetric saddle point, D three convergence stable singularities (one in symmetric position
and a pair of asymmetric singularities) separated by a pair of asymmetric saddles, E two symmetric conver-
gence stable singularities separated by a symmetric saddle, F one symmetric convergence stable singularity
and one symmetric saddle. Regions A–D extend to σm/σs at infinity as indicated. All convergence stable
singularities of this plot are also evolutionarily stable. The thick line coincides with the bifurcation line
of the monomorphic singularity: x∗ = 0 is evolutionarily stable in A and F whereas it is an evolutionary
branching point elsewhere. The dash-dotted line is same as in Fig. 2

Figure 8 shows the bifurcations of diallelic singularities for equal habitat size (c1 =
c2 = 0.5). There can be up to five diallelic singularities (three convergence stable sin-
gularities separated by two saddle points). All convergence stable diallelic singularities
found in this bifurcation plot are also evolutionarily stable, hence further branching
(leading to tri-allelic polymorphisms) does not occur. (Note however that with sub-
stantially unequal habitat sizes, further branching does occur, as found in a narrow
range of parameters under random mating by Kisdi and Geritz 1999.)

In region A, there is no diallelic singularity, and two resident alleles are always sub-
ject to convergent coevolution (see Fig. 3c for an example). When crossing the bifur-
cation line to region B, the monomorphic singularity x∗ = 0 becomes an evolutionary
branching point and, simultaneously, a diallelic convergence stable singularity is born
with (x∗

1,x
∗
2) = (x∗,x∗) at the bifurcation. Within region B, evolutionary branching

yields two distinct alleles and these evolve to the unique convergence stable diallelic
singularity with symmetric allelic values x∗

1 = −x∗
2 (as in Fig. 3a, b).

Between regions B and C, a pitchfork bifurcation occurs such that the symmetric
convergence stable diallelic singularity of region B becomes a saddle in region C, and
two new convergence stable singularities arise, which occupy asymmetric positions
but are mirror images of each other such that x

∗(1)
1 = −x

∗(2)
2 and x

∗(2)
1 = −x

∗(1)
2

(compare Figs. 3a, 4a for an example). When crossing from region C to region D, the
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symmetric singularity undergoes another pitchfork bifurcation such that it becomes
convergence stable again, and two saddles arise that separate the basin of attraction of
the symmetric singularity from the two asymmetric convergence stable singularities
(compare panels a and b in Fig. 5). The bifurcations described so far occur also with
random mating (σm/σs → ∞) and are therefore identical to those discussed by Kisdi
and Geritz (1999).

At moderate values of σm/σs , region B (with a single symmetric diallelic singu-
larity) and region D (with three convergence stable singularities and two saddles)
have adjacent parts, which are separated by a line of two simultaneous fold bifurca-
tions. Each fold bifurcation involves an asymmetric convergence stable singularity
and a saddle point, leaving the symmetric convergence stable singularity unchanged
(compare Fig. 5c,d for an example).

There is another fold bifurcation that is independent of all the above, and separates
regions A from F and B from E. The convergence stable singularity and the saddle
born on this bifurcation line are both in symmetric position. In region F, there are no
other singularities but this pair (as in Fig. 3g), whereas in region E, the pair coex-
ists with the symmetric convergence stable singularity also present in region B (as in
Fig. 4e). When crossing from E to F, a convergence stable singularity collides with
the monomorphic singularity, and simultaneously the latter becomes an ESS (compare
Fig. 4f, g), whereas between B and F, a diallelic saddle interacts with the monomorphic
singularity (compare Fig. 5f, g).

In the limit of very strong mating assortativity (σm → 0), the homozygotes are
fully isolated and heterozygotes are absent at any diallelic singularity isolated from
(x∗,x∗) = (0, 0). Hence the resident population contains two phenotypes just as a
dimorphic clonal population; and since assortativity with M → ∞ implies Q̄ = 1
in Eq. (3), the population densities of the two phenotypes are also the same. Because
π ′(0) = 0, the selection gradient is not affected by sexual selection [cf. Eq. (17)]. The
two homozygote subpopulations therefore evolve exactly as two clonal phenotypes
evolve in absence of sexual reproduction, and the diallelic singularities coincide with
the clonal dimorphic singularities. In particular, the clonal version of the Levene model
with equal habitat size has a dimorphic singularity for d/σs > 2 (Geritz and Kisdi
2000). Accordingly, in our model, the diallelic singularity in region F disappears at
d/σs = 2 when σm → 0. Note that d/σs > 2 is also the condition for evolutionary
branching under random mating (σm → ∞), which is always the same as the condi-
tion for branching in the corresponding clonal model (Van Dooren in press). However,
the condition for clonal evolutionary branching coincides with the condition for hav-
ing a dimorphic singularity only because of equal habitat size (Kisdi and Geritz 1999;
see below).

Unequal habitat size. The pitchfork bifurcations found above are degeneracies due
to equal habitat size, and they unfold into fold bifurcations producing a convergence
stable singularity and a saddle independently of an existing singularity. The simul-
taneous fold bifurcations between regions B and D separate into two simple fold
bifurcations when habitat sizes are not precisely equal. This is shown in Fig. 9: The
lines of pitchfork bifurcations (between B and C and between C and D, respectively)
and the line of simultaneous fold bifurcation (between B and D) are all replaced by
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Fig. 9 Detail of the bifurcation plot for equal habitat size in Fig. 8 (left) and the same for c1 close but not
equal to 0.5 (right). With equal habitat size, pitchfork bifurcations separate B from C and C from D (thin
lines), and two simultaneous fold bifurcations occur between B and D (thick line). With unequal habitat size,
the simultaneous fold bifurcations separate and the pitchfork bifurcations are replaced by fold bifurcations.
In the new region C̄ that opens up between B and D, there are two convergence stable singularities separated
by a saddle. A cusp bifurcation occurs at the peak of C̄

Fig. 10 Detail of the bifurcation plot with slightly unequal habitat sizes. The thick line is the bifurcation
line of the monomorphic singularity such that x∗ = 0 is an ESS below and an evolutionary branching point
above the line. A convergence stable diallelic singularity appears across the thin line and coexists with the
monomorphic ESS in the band-shaped region below the thick line; the ESS-branching point bifurcation of
the monomorphic singularity no longer coincides with the boundary between A and B (see Fig. 8). Another
pair of a convergence stable singularity and a saddle are born across the fold bifurcation line on the boundary
of regions E and F

lines of fold bifurcations, and a new region, with two convergence stable singularities
and a saddle, emerges between regions B and D.

Another type of degeneracy emerges because equal habitat size implies symme-
try about the point x∗ = 0, such that any diallelic singularities must exist either in
symmetric pairs (such as x

∗(1)
1 = −x

∗(2)
2 and x

∗(2)
1 = −x

∗(1)
2 ) or in a symmetric

position (with x∗
1 = −x∗

2). Singularities which are forced to retain their symmet-
ric position collide with the monomorphic singularity ((x∗

1,x
∗
2) → (x∗,x∗)), and

therefore changes in the evolutionary stability of the monomorphic singularity x∗ are
linked to the appearance of a diallelic singularity. As a result, the bifurcation line in
Fig. 8 on which the monomorphic singularity changes between an ESS and an evo-
lutionary branching point (thick line) coincides with the boundary between regions
A and B, between E and F, and between B and F. The unfolding of this degeneracy
is shown in Fig. 10: When habitat size is perturbed, a diallelic singularity exists in a
band of the parameter space outside the region where the monomorphic singularity
is a branching point (and instead of colliding with the monomorphic singularity, it
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appears from across the extinction boundary delineating the set of possible diallelic
polymorphisms). This pattern corresponds to what is expected in generic models of
adaptive dynamics (see the Appendix of Geritz et al. 1999), and implies an evolu-
tionary hysteresis effect (Kisdi and Geritz 1999): Suppose a polymorphic population
exists at the diallelic singularity within the band where x∗ is an ESS. If this popula-
tion loses an allele due to a temporary change in its environment, then polymorphism
cannot be regained without a greater change in the environment that not only restores
the existence of a diallelic singularity but also makes x∗ an evolutionary branching
point.
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