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Abstract We provide rigorous and exact results characterizing the statistics of spike
trains in a network of leaky Integrate-and-Fire neurons, where time is discrete and
where neurons are submitted to noise, without restriction on the synaptic weights.
We show the existence and uniqueness of an invariant measure of Gibbs type and
discuss its properties. We also discuss Markovian approximations and relate them to
the approaches currently used in computational neuroscience to analyse experimental
spike trains statistics.
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1 Introduction

The neuronal activity is manifested by the emission of action potentials or spikes.
While the shape of an action potential is essentially constant for a given neuron, the
succession of spikes (spike train) that a neuron is able to emit, depending on its state
and in response to excitations coming from other neurons or external stimuli, is sim-
ply overwhelming. About 20 different spike trains forms are classified in the literature
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864 B. Cessac

(Izhikevich 2004). It is widely believed by the neuroscience community that spike
trains emitted by a neuron assembly constitute somehow a “code” and deciphering
this code is a big challenge (Rieke et al. 1996).

Spike train are usually not exactly reproducible when repeating the same experi-
ment,1 even with a very good control ensuring that the experimental conditions have
not changed. Therefore, researchers are seeking statistical regularities in spike trains.
For this, they define statistical indicators such as firing rate, probability of spike coin-
cidence, spike response function, spike correlations (see Dayan and Abbott 2001;
Gerstner and Kistler 2002b; Rieke et al. 1996, for a comprehensive introduction to
spike train analysis). An early step for “reading the code” is therefore to provide an
accurate model for spike train statistics, i.e. a probability distribution “fitting at best”
the experimental data and/or matching what neuroscientists believe relevant in neurons
communication via spikes.

For example, it has been long believed that firing rates (the probability that a neu-
ron emits a spike in a certain time interval) were carrying most of the “information”
exchanged by neurons. As a consequence the canonical statistical model, namely the
probability distribution which reproduces the firing rates without additional assump-
tions, is a Bernoulli distribution (possibly with time dependent probabilities), and the
probability that a given number of spikes is emitted within a definite time interval
is Poisson. Actually, there are many mechanisms in the nervous system, such as the
muscle commands (Adrian and Zotterman 1926), working essentially with rates. But
more recent experiments evidenced the role of spikes timing, spike ordering, spike
synchronization, in processes such as vision (Rullen and Thorpe 2001; Thorpe 1990;
Thorpe et al. 1996) or interactions between perception and motion (Grammont and
Riehle 1999, 2003; Riehle et al. 2000). Here, one has to consider more elaborated statis-
tical models, such as the (weak) pairwise interactions model proposed by Schneidman
and collaborators (Schneidman et al. 2006) in experiments on the salamander retina.
Consequently, there is an intensive activity and wide debates, focusing on the deter-
mination of statistical models of spike train statistics, with a clear evidence: distinct
statistical models lead to fundamentally distinct characterizations of the mechanisms
at work in the piece of nervous system under study (Nirenberg and Latham 2003).

Clearly, obtaining statistical models from experimental data or selecting a model
among many others are difficult task. Forgetting about all the experimental difficulties
to obtain “clean” data with a good control on parameters experiments, one has still to
solve delicate questions such as the control of finite sampling effects (finite duration,
finite numbers of experiments), extrapolation of the probability distribution charac-
terizing small neural assemblies to a large population of neurons (Roudy et al. 2009),
non stationarity, effects of synaptic plasticity or adaptation mechanisms (Toyoizumi
et al. 2007). As a consequence, there is no general recipe to extract a statistical model
from data and several approaches have been proposed (Marre et al. 2009; Pouzat and
Chaffiol 2009; Schneidman et al. 2006).

It appears simpler to characterize spike trains statistics in neural networks models
where one controls exactly the neural network parameters, the number of involved

1 Although, retinal responses to a natural image, seem to be almost reproducible spike by spike (Perrinet
2008).
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Discrete time spiking neurons with noise 865

neurons, the number of samples, and the duration of the experiment (with a possible
mathematical extrapolation to infinite time). Especially, producing analytical (and
when possible, rigorous) results on those statistics provides clues toward resolving
the delicate experimental questions raised above, with possible outcomes toward new
algorithms for data treatments (Vasquez et al. 2010). Obviously, for this, one needs
models which are a good compromise between analytical tractability and biological
realism.

Generalized Integrate-and-Fire (gIF) models (Rudolph and Destexhe 2006) consti-
tute a good example of this. Besides the fact that they capture the conductance-based
mechanisms for spike generation, without focusing to much on the biological machin-
ery, it has been shown by authors like Jolivet et al. (2004, 2006) that they are “good
enough” to reproduce spike trains from real neurons. Moreover, these models allow
the analytical characterization of their dynamics (Cessac and Viéville 2008). Further
simplifications of gIF models lead to the Leaky Integrate-and-Fire (LIF) model, which
was in fact the first proposed to model neuron dynamics (in 1907!) (Lapicque 1907).
In this setting, prominent mathematical results on spike statistics in the presence of
noise, have been published. For example, Brunel and Hakim obtained a complete
characterization of LIF models with noise and strong dilution of synaptic weights,
using a mean-field approximation and assuming that the synaptic weights are inhibi-
tory (Brunel and Hakim 1999). Also, Touboul and Faugeras (2007) obtained rigorous
results on the probability distribution of inter-spike intervals for one LIF neuron sub-
mitted to noise. They recently extended their results in (Touboul and Faugeras 2009)
to networks of IF neurons of several type considering different types of interactions
and conclude that the spikes times can be modelled as a Markov chain.

In this paper, we proceed along similar lines, although using different methods
and raising different conclusions, and make a complete characterization of spike train
statistics for the discrete-time leaky Integrate-and-Fire model with noise and time-
independent stimuli. This is somehow a continuation of the paper (Cessac 2008) pro-
posing a complete classification of dynamics in this model, without noise, and of
Cessac and Viéville (2008) extending these results to gIF models. It also rigorously
supports the main assumption made in Cessac et al. (2009) where it was proposed
to characterize spike train statistics in neural networks by Gibbs distributions, with
an emphasis on synaptic plasticity effects. Here, we propose a framework allowing to
handle dynamics with noise, with possible extensions to more realistic neural networks
models such as gIF (see the conclusion section). We emphasize that we do not use
any simplifying assumption in the model. Especially, our results hold for finite-sized
networks, without restriction on the synaptic weights (except that they are finite) and
all type of synaptic graph structures are allowed. Also, we are not constrained by an
ad hoc choice of the initial conditions distribution of membrane potentials; instead we
propose a procedure where this distribution is selected by dynamics and is uniquely
determined, as we show.

Moreover, this work attempts to bridge a gap between the mathematical character-
ization of spike train statistics and empirical methods or algorithms currently used by
the neuroscience community. As a consequence, this paper addresses to two distinct
communities. On one hand, to specialists from mathematical statistical physics and
ergodic theory, as far as the mathematics of this paper are concerned. From this point
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of view the results exposed here are direct applications of classical results in ergodic
theory. But, to the best of our knowledge, it is the first time that they are used in this
context. On the other hand, this paper addresses to neuroscientists. Studying a fairly
simple model, from the biological point of view, we nevertheless obtain conclusions
which could be useful for the characterization of spike trains in real experiments, with
concrete applications toward implementation of software for spike train analysis.

The paper is organized as follows. In Sect. 2 we define the model and infer some
preliminary results. Especially we compute explicitly the probability that neurons fire
at time t given the past. This defines a transition probability which is the main object of
our study. A salient result obtained in Sect. 2 is the fact that this transition probability
is non Markovian, it depends on an unbounded past. This defines a stochastic process,
known under the name of “chain with complete connections” (Maillard 2007, and ref-
erences therein), which is studied in Sect. 3. Especially, we show that there is a unique
invariant probability measure (equilibrium state) whatever the model-parameters val-
ues, which satisfies a variational principle and is a Gibbs distribution. We also show that
the entropy of the discrete-time leaky Integrate-and-Fire model with noise is always
positive. In Sect. 4 we propose a Markovian approximation where memory depends
on R time steps. This approximation allows the computation of the main quantities
used in neuroscience for the characterization of raster plots statistics. The computation
of these quantities is done in Sect. 5. We also show that, in this approximation, the
equilibrium state can also be obtained via the Jaynes principle of statistical physics
(maximizing the entropy under constraints), and we discuss in which sense the sta-
tistical models used in neuroscience community are approximations whose degree of
accuracy can be controlled.

2 Definitions and preliminary results

2.1 Model definition

2.1.1 The neural network

Fix N > 0 a positive integer called “the dimension of the neural network” (the number
of neurons). Let W be a N × N matrix, called “the matrix of synaptic weights”, with
entries Wi j . It defines an oriented and signed graph, called “the neural network associ-
ated to W”, with vertices i = 1 . . . N called the “neurons”.2 There is an oriented edge
j → i whenever Wi j �= 0. Wi j is called “the synaptic weight3 from neuron j to neuron
i”. The synaptic weight is called “excitatory” if Wi j > 0 and “inhibitory” if Wi j < 0.
We assume that the synaptic weights are bounded i.e. Wi j ∈ [Wmin,Wmax],∀i, j
where −∞ < Wmin ≤ Wmax < +∞. Moreover, in this paper, the Wi j ’s do not evolve
in time.

2 Therefore, “neurons” are points here, i.e. they have no structure.
3 On biological grounds, this corresponds to the maximal amplitude of the post-synaptic potential gener-
ated, at the dendrite connecting the pre-synaptic neuron j to the post-synaptic neuron i , when neuron j
emits an action potential.
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Discrete time spiking neurons with noise 867

2.1.2 Membrane potential

Each vertex (neuron) i is characterized by a real variable Vi called the “membrane
potential of neuron i”. Fix a positive real number θ > 0 called the “firing threshold”.
Let Z be the function Z(x) = χ(x ≥ θ) where χ is the indicatrix function. Namely,
Z(x) = 1 whenever x ≥ θ and Z(x) = 0 otherwise. Z(Vi ) is called the “firing state
of neuron i”. When Z(Vi ) = 1 one says that neuron i “fires” or “spikes” and when
Z(Vi ) = 0 neuron i is “quiescent”. We extend the definition of Z to vectors: Z(V ) is
the vector with components Z(Vi ), i = 1 . . . N .

2.1.3 Dynamics

Fix γ ∈ [0, 1[, called the “leak rate”. The discrete time and synchronous dynamics of
our model is given by:

V (t + 1) = F(V (t))+ σB B(t), (1)

where σB > 0, V = (Vi )
N
i=1 is the vector of membrane potentials and F = (Fi )

N
i=1

with:

Fi (V) = γ Vi (1 − Z [Vi ])+
N∑

j=1

Wi j Z [Vj ] + Ii ; i = 1 . . . N .

We assume that initial conditions belong to some compact set in R
N (i.e. the initial

membrane potentials are bounded). The variable Ii is called “an external input applied
to neuron i”. We assume in this paper that it does not depend on time.

2.1.4 Noise

The vector B(t) = (Bi (t))N
i=1 is an additive noise.4 It has Gaussian identically distrib-

uted and independent entries Bi (t) with zero mean and variance 1. We note N (0, 1)
the standard Gaussian law and :

π(x) = 1√
2π

+∞∫

x

e− u2
2 du.

The parameter σB in (1) tunes the noise amplitude.

2.1.5 Interpretation

To the best of our knowledge this model has been first introduced by Soula et al.
(2006). It belongs to the family of the so-called leaky-Integrate-and-Fire models

4 On phenomenological grounds, it mimics effects such as noise in synaptic transmission (neurotransmitters
diffusion), randomness in ionic channels transitions, or effects of hidden degrees of freedom.
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(Gerstner and Kistler 2002b). Its interpretation is the following. A neuron “fires”
i.e. emits an action potential (or “spike”) whenever its membrane potential exceeds
the threshold θ . Here a spike is modelled by the function Z . For an isolated neuron,
firing corresponds, in the model, to the reset of the membrane potential to a rest value
Vrest = 0. In a network, each neuron i receives spikes from pre-synaptic neurons.
When a pre-synaptic neuron j emits a spike this modifies the membrane potential of
neuron i by an amount Wi j . Thus, according to Eq. (1), when a neuron fires, it immedi-
ately receives inputs from other neurons and from the environment (the constant input
and the noise) (hence its value at the next time step is different from zero in general). If
a neuron does not fire and does not receive influences from other neurons or input, then
its membrane potential decays exponentially fast with a decay rate 0 < γ < 1. The dis-
cussion of the biological relevance of this model and its extensions towards more elabo-
rated models with adaptive conductances has been done in Cessac and Viéville (2008).

2.2 Technical definitions

2.2.1 Spiking sequences

Call M = R
N the phase space of our dynamical system. Given two integers s < t

(possibly negative) we note V t
s the piece of trajectory V (s), . . . , V (t). To each mem-

brane potential value, Vi (t), we associate a variable ωi (t) = Z(Vi (t)). The “spiking
pattern” of the neural network at time t is the vector ω(t) = (ωi (t))N

i=1: it tells us
which neurons are firing at time t, (ωi (t) = 1) and which neurons are not firing
at time t (ωi (t) = 0). We denote by ωt

s the sequence or spike block ω(s) . . . ω(t).
Associated with each piece of trajectory V t

s there is a unique spike block ωt
s with

ωi (n) = Z(Vi (n)), i = 1 . . . N , s ≤ n ≤ t . We note Z(V t
s ) = ωt

s . Also we note
ω

t1
s ω

t
t1 = ωt

s the concatenation of the blocks ωt1
s and ωt

t1 .

2.2.2 Raster plots

Call A the set of spiking patterns (alphabet). An element of AZ, i.e. a bi-infinite
sequenceω = {ω(t)}+∞

t=−∞ of spiking patterns, is called a “raster plot”. It tells us which
neurons are firing at each time t ∈ Z. In experiments raster plots are obviously finite
sequences of spiking pattern but the extension to Z, especially the possibility of consid-
ering an arbitrary distant past (negative times) is quite useful in the present work. The
set AZ is a topological space for the product topology (Kitchens 1998). The open sets
are the cylinder sets, namely the sets [ωt

s] = {
ω′ ∈ AZ, ω′(n) = ω(n), n = s, . . . , t

}
.

Cylinder sets are also a countable basis for the σ -algebra in AZ. There is a natural
distance on AZ,

d�(ω,ω
′)

=
{(
�N

)n
, if ω and ω′ differ for the first time in the n-th spiking pattern;

0, if ω = ω′, (2)

for some 0 < � < 1. A classical choice is � = 1
2 . Here, it can be convenient to take

� = γ .
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2.2.3 Last firing time

For (s, t) ∈ Z
2, s < t , and each i = 1 . . . N , we define the “last firing time of neuron

i in the sequence ωt
s” by:

τi (ω
t
s)

def=
{

s, if ωi (k)=0, k =s, . . . , t;
max {s ≤k ≤ t, ωi (k)=1} , if ∃ k ∈{s, . . . , t} such that ωi (k) = 1.

(3)

Therefore, τi (ω
t
s) = s either if neuron i fires at time s or if it does not fire during

the whole time interval [s, t]. In this way, the name “last firing time” is a little bit
confusing, but this has no incidence on the mathematical developments.

2.3 The asymptotic probability distribution of membrane potentials and raster plots

2.3.1 Conditional probability distribution of V (t + 1)

Call P = N (0, 1)⊗NZ, the joint distribution of the noise trajectories. Under P the
membrane potential V is a stochastic process whose evolution is given in Eq. (1).
Fix a pair of integers (s, t), s < t . The probability distribution of V (t + 1) can be
explicitly obtained with the following remark. Since the cylinder sets [ωt

s] constitute
a (countable) basis for the σ -algebra in AZ and since to each piece of trajectory V t

s
is associated a unique sequence ωt

s , we consider first the probability distribution of
V (t + 1) conditioned by Z(V t

s ) = ωt
s and by the initial condition V (s), assumed here

to be bounded. Then, the following holds as easily checked with a few algebra:

Proposition 1 For each (s, t) ∈ Z
2, s < t , conditionally to Z(V t

s ) = ωt
s , and given

V (s),

Vi (t + 1)

=
{
γ t+1−s Vi (s)+Ci (ω

t
s)+ σBξi (ω

t
s), if neuron i didn’t fire in the time interval [s, t];

Ci (ω
t
s)+σBξi (ω

t
s), otherwise.

(4)

where

Ci (ω
t
s) =

N∑

j=1

Wi j xi j (ω
t
s)+ Ii

1 − γ t+1−τi (ω
t
s )

1 − γ
, (5)

xi j (ω
t
s) =

t∑

l=τi (ω
t
s )

γ t−lω j (l), (6)

ξi (ω
t
s) =

t∑

l=τi (ω
t
s )

γ t−l Bi (l). (7)
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870 B. Cessac

Remark – This equation expresses that the neuron loses its memory whenever it
fires. This is due to the fact that we reset the membrane potential, after firing. This
consequently simplifies the following analysis. For a discussion on dynamics of
spiking neural phase models when the condition is relaxed see Kirst et al. (2009).

– Clearly, the membrane potential is the sum of a “deterministic” part, γ t+1−s Vi (s)+
Ci (ω

t
s), fixed by initial condition at time s and by the spike sequence ωt

s , and a
stochastic part, σBξi (ω

t
s), where the probability distribution of the noise ξi (ω

t
s) is

also fixed by the spike sequenceωt
s . More precisely, since the Bi ’s are independent,

Gaussian with mean zero and variance 1, the ξi (ω
t
s)’s, i = 1 . . . N are, under P ,

Gaussian, independent, with zero mean and variance 1−γ 2(t+1−τi (ωt
s ))

1−γ 2 .

Denote by E [] the expectation under P . It follows that:

Proposition 2 For each (s, t) ∈ Z
2, s < t , conditionally to Z(V t

s ) = ωt
s , and given

V (s), V (t + 1) is Gaussian with mean:

E
[
Vi (t + 1)|ωt

s, V (s)
]

=
{
γ t+1−s Vi (s)+ Ci (ω

t
s), if neuron i didn’t fire in the time interval [s, t];

Ci (ω
t
s), otherwise.

and covariance:

Cov
[
Vi (t + 1), Vj (t + 1)|ωt

s, V (s)
] = σ 2

i (ω
t
s)δi j .

with:

σ 2
i (ω

t
s) = σ 2

B
1 − γ 2(t+1−τi (ω

t
s ))

1 − γ 2 . (8)

Thus, the Vi (t + 1)’s, i = 1 . . . N, are conditionally independent.

Remark We used a slight abuse of notation since we condition by ωt
s instead of

Z(V t
s ) = ωt

s .

2.3.2 The probability that some neuron i does not fire within the time interval [s, t]

It is given by:

P

(
t⋂

n=s

{Vi (n) < θ}
)

=
∑

ωt
s∈At−s

P

(
t⋂

n=s

{Vi (n) < θ} |ωt
s

)
P
(
ωt

s

)

=
∑

ωt
s∈At−s

t∏

n=s+1

P

(
{Vi (n)<θ} |

n−1⋂

l=s

{Vi (l) < θ} ∩ ωt
s

)
P
({Vi (s)<θ} |ωt

s

)
P
(
ωt

s

)

=
∑

ωt
s∈At−s

t∏

n=s+1

P

(
{Vi (n)<θ} |

n−1⋂

l=s

{Vi (l)<θ}∩ωn−1
s

)
P
({Vi (s)<θ} |ωs

s

)
P
(
ωt

s

)
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Discrete time spiking neurons with noise 871

From Proposition 2, we have:

P

(
{Vi (n) < θ} |

n−1⋂

l=s

{Vi (l) < θ} ∩ ωn−1
s

)

= P
(
γ n−s Vi (s)+ Ci (ω

n−1
s )+ σBξi (ω

n−1
s ) < θ

)
,

where Ci (ω
n−1
s ) and ξi (ω

n−1
s ) are given by (5), (6), (7) with τi (ω

t
s) = s. Since, in this

case, ξi (ω
n−1
s ) is Gaussian, centered, with variance 1−γ 2(n−s)

1−γ 2 (Eq. 8) we have:

P

(
{Vi (n) < θ} |

n−1⋂

l=s

{Vi (l) < θ} ∩ ωn−1
s

)
= 1 − π

⎛

⎜⎜⎝
θ − γ n−s Vi (s)− Ci (ω

n−1
s )

σB

√
1−γ 2(n−s)

1−γ 2

⎞

⎟⎟⎠.

Since Vi (s) and the Wi j ’s are assumed to be bounded we have, whatever n > s:

0 < �− < P

(
{Vi (n) < θ} |

n−1⋂

l=s

{Vi (l) < θ} ∩ ωn−1
s

)
< �+ < 1, (9)

for some constants �−,�+ depending on parameters γ,Wi j , i, j = 1 . . . N , Ii , i =
1 . . . N . Likewise, 0 < a < P

({Vi (s) < θ} |ωs
s

)
< b < 1. Without loss of general-

ity, e.g. redefining �− as min(�−, a) (redefining �+ as max(�+, b)) we may write
0 < �− < P

({Vi (s) < θ} |ωs
s

)
< �+ < 1. As a consequence,

Proposition 3 The probability that some neuron i does not fire within the time interval
[s, t] has the following bounds:

0 < �t−s− < P

(
t⋂

n=s

{Vi (n) < θ}
)
< �t−s+ < 1.

As a consequence, whatever s < t, t − s finite, there is a positive probability that
some neuron i does not fire within the time interval [s, t]. This probability vanishes
exponentially fast as |t − s| → +∞.

2.3.3 Permanent regime

The main drawback of the previous results is that we have to condition on the “initial”
condition V (s) for spiking sequences such that some neuron does not fire between
s and t . But the probability distribution of V (s) is not known. It has either to be
“guessed” from ad hoc assumptions: is it Gaussian, uniform, “fractal” …? Actually,
the determination of initial conditions distribution is, to our opinion, one of the main
obstacle toward realistic characterizations or simulations of neural network models,
intended to somehow mimics the dynamics (of some part) of the brain, at some stage
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of its evolution. Indeed, when considering the evolution of a set of neurons, one starts
from some “initial” time s which corresponds to the beginning of the experiment.
This is NOT the beginning of the system under study, which has undergone a previous
evolution that actually determines the distribution of membrane potentials at time s.
This distribution has little chances to be Gaussian or anything so mathematically “con-
venient”, unless one finds strong arguments to justify this. Actually, as we show, such
assumption is wrong in model (1). Therefore, to compute the distribution of membrane
potential at time s one has to consider the previous evolution of the system, which only
postpones the problem, …unless one assumes that this initial condition was drawn in
an infinite past. On phenomenological grounds, “infinite past” means “a time quite
longer than all characteristic time scales in the system”, though, mathematically, one
may take it truly infinite. This is what we do here, focusing on what we call a “per-
manent regime” (by analogy with Physics) where the initial condition is fixed in the
infinite past, namely s → −∞. In this case, indeed, γ t+1−s Vi (s) → 0. As we show,
this procedure selects a unique probability distribution for membrane potentials, with
a highly non trivial structure (see Eq. 33).

We therefore consider left-infinite sequences ωt−∞ with corresponding last firing
time:

τi (ω
t−∞)

def=
{−∞, if ωi (k) = 0, ∀k ≤ t;

max {−∞ < k ≤ t, ωi (k) = 1} otherwise.
(10)

We now show that Proposition 2 extends as well to the case s → −∞, namely:

Proposition 4 For each t ∈ Z, conditionally to ωt−∞, V (t + 1) is Gaussian with
mean:

E
[
Vi (t + 1)|ωt−∞

] = Ci (ω
t−∞) =

N∑

j=1

Wi j xi j (ω
t−∞)+ Ii

1 − γ t+1−τi (ω
t−∞)

1 − γ
,

(11)

where,

xi j (ω
t−∞) =

t∑

l=τi (ω
t−∞)

γ t−lω j (l), (12)

and covariance:

Cov
[
Vi (t + 1), Vj (t + 1)|ωt−∞

] = σ 2
i (ω

t−∞)δi j = σ 2
B

1 − γ 2(t+1−τi (ω
t−∞))

1 − γ 2 δi j .

(13)

Thus, the Vi (t + 1)’s, i = 1 . . . N, are conditionally independent.
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Discrete time spiking neurons with noise 873

Proof Let us first show that the quantities defined by Eqs. (5), (6), (7) are well defined
in the limit s → −∞. Consider first the limit of xi j (ω

t
s) given by Eq. (6). There are two

possibilities. Eitherωt−∞ is such that τi (ω
t−∞) = n > −∞. Then, xi j (ω

t−∞) is a finite
sum

∑t
l=n γ

t−lω j (l) and is well defined. Or, τi (ω
t−∞) = −∞. Then xi j (ω

t−∞) =∑t
l=−∞ γ t−lω j (l) = ∑+∞

l=0 γ
lω j (t − l). This series converges since γ < 1 and

ω j (t − l) = 0, 1.
Moreover, ξi (ω

t
s) = ∑t

l=τi (ω
t
s )
γ t−l Bi (l) is a sum (possibly infinite) of independent

Gaussian centered variables with finite variance. As a consequence,

ξi (ω
t−∞) =

t∑

l=τi (ω
t−∞)

γ t−l Bi (l), (14)

is Gaussian centered with variance 1−γ 2(t+1−τi (ωt−∞))

1−γ 2 . Finally, from (4) Vi (t + 1) =
Ci (ω

t−∞) + σBξi (ω
t−∞), and the proposition follows from the independence of the

ξi (ω
t−∞)’s and their Gaussian distribution. ��

2.3.4 Elementary bounds

We have:

0 ≤ xi j (ω
t−∞) ≤ 1

1 − γ
, (15)

and,

C−
i

def= Ii + 1

1 − γ

N∑

j=1
Wi j<0

Wi j ≤ Ci (ω
t−∞) ≤ 1

1 − γ

⎛

⎜⎜⎝
N∑

j=1
Wi j>0

Wi j + Ii .

⎞

⎟⎟⎠
def=C+

i , (16)

In the same way

σ 2
B ≤ σ 2

i (ω
t−∞) ≤ σ 2

B

1 − γ 2 . (17)

2.3.5 The transition probability

We now compute the probability of a spiking pattern at time t + 1, ω(t + 1), given the
past ωt−∞. It is given by the following:

Proposition 5 The probability of ω(t + 1) conditionally to ωt−∞ is given by:

P
(
ω(t + 1)|ωt−∞,

) =
N∏

i=1

P
(
ωi (t + 1)|ωt−∞

)
, (18)
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with

P
(
ωi (t + 1)|ωt−∞,

) = ωi (t + 1)π

(
θ − Ci (ω

t−∞)
σi (ω

t−∞)

)

+ (1 − ωi (t + 1))

(
1 − π

(
θ − Ci (ω

t−∞)
σi (ω

t−∞)

))
. (19)

Proof We have, using the conditional independence of the Vi (t + 1)’s:

P
(
ω(t + 1)|ωt−∞

) =
N∏

i=1

[
ωi (t + 1)P

(
Vi (t + 1) ≥ θ |ωt−∞

)

+(1 − ωi (t + 1))P
(

Vi (t + 1) < θ

∣∣∣ωt−∞
)]
.

Since the Vi (t +1)’s are Gaussian, with mean Ci (ω
t−∞)with a variance σ 2

i (ω
t−∞)we

directly obtain (18), (19). ��

Consequently, it is possible, knowing the past sequence ωt−∞, to determine the
probability of the spiking pattern ω(t + 1). In this way, P

(
ω(t + 1)|ωt−∞,

)
acts as a

transition probability, as in Markov chains. But here, the length of the Markov chain
depends on the last firing time of each neuron, since in fact,

P
(
ωi (t + 1)|ωt−∞

) = P
(
ωi (t + 1)|ωt

τi (ω
t−∞)

)
.

The problem here is that, according to Proposition 3, we cannot bound τi (ω
t−∞).

Although this time τi (ω
t−∞) is almost-surely finite, nevertheless, whatever T > 0,

there is a positive probability set of sequencesω such that τi (ω
t−∞) < t−T . So we have

to consider a process where transition probability may have an unbounded memory.
This type of process is called “variable length Markov chain” (Maillard 2007). Such
processes can be studied in the general context of chains with complete connections
and g-measures, developed in Sect. 3.

2.3.6 Stationarity

In the present setting where Ii does not depend on t we have the following property:

Proposition 6 Fix a sequence a0−∞, a(−n) ∈ A, n ≥ 0. Then, ∀t ∈ Z,

P
(
ω(t) = a(0)|ωt−1−∞ = a−1−∞

)
= P

(
ω(0) = a(0)|ω−1−∞ = a−1−∞

)
. (20)
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Proof Assume that ω(t − n) = a(−n), n ≥ 0, as in the l.h.s of (20). Then, according
to Eq. (10), τi (ω

t−1−∞) = t + τi (a
−1−∞). Therefore, according to Eq. (12),

xi j (ω
t−1−∞) =

t−1∑

l=τi (ω
t−1−∞)

γ t−1−lω j (l) =
t−1∑

l=t+τi (a
−1−∞)

γ t−1−la j (l − t)

=
−1∑

l ′=τi (a
−1−∞)

γ−1−l ′a j (l
′) = xi j (a

−1−∞),

and, according to (11),

Ci (ω
t−1−∞) =

N∑

j=1

Wi j xi j (ω
t−1−∞)+ Ii

1 − γ t−τi (ω
t−1−∞)

1 − γ
,

=
N∑

j=1

Wi j xi j (a
−1−∞)+ Ii

1 − γ−τi (a
−1−∞)

1 − γ
= Ci (a

−1−∞).

Note that this last property holds because Ii does not depend on time. We have also,
from the same arguments,

σ 2
i (ω

t−1−∞) = σ 2
i (a

−1−∞).

Consequently,

P
(
ω(t) = a(0)|ωt−1−∞ = a−1−∞

)

=
N∏

i=1

[
ωi (t)π

(
θ − Ci (ω

t−1−∞)
σi (ω

t−1−∞)

)
+ (1 − ωi (t))

(
1 − π

(
θ − Ci (ω

t−1−∞)
σi (ω

t−1−∞)

))]

=
N∏

i=1

[
ai (0)π

(
θ − Ci (a

−1−∞)
σi (a

−1−∞)

)
+ (1 − ai (0))

(
1 − π

(
θ − Ci (a

−1−∞)
σi (a

−1−∞)

))]

= P
(
ω(0) = a(0)|ω−1−∞ = a−1−∞

)
.

��
Therefore, instead of considering a family of transition probabilities depending on

t , it suffices to define the transition probability at one time t ∈ Z, for example t = 0.

3 The equilibrium state

In this section we show the existence of a unique invariant probability distribution
for the dynamics (1) and characterize it explicitly. Especially, we show that it is an
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equilibrium state and a Gibbs state in the sense of the thermodynamic formalism in
ergodic theory (Chazottes and Keller 2009; Keller 1998). For this we use the concept
of g-measures (Keane 1972), coming from ergodic theory, and very close (equivalent
in the present setting) to the concept of chains with complete connections,5 which
comes from probability theory. However, all known theorems used here being formu-
lated in the g-measure context, we use this formulation here. For the convenience of
the reader we however provide examples and illustrations of the used notions. Our
main reference are Bressaud et al. (1999), Chazottes (1999), Coelho and Quas (1998),
Ledrappier (1974), and Maillard (2007).

We proceed in several steps leading us to the Theorems 1, 2 the main results of this
paper.

3.1 Definitions and elementary results

3.1.1 Setting and notations

The main object under study here is the family of transitions probabilities (18). Using
the stationarity Proposition 6 we can restrict to transition probabilities of the form
P(ω(0)|ω−1−∞). Namely, we may focus on sequences in A0−∞. From now on we set
ω = ω0−∞, ω = ω−1−∞ (a sequence ω is called an “history”), X = A0−∞, X = A−1−∞.
The σ -algebra (the set of cylinders) on X (resp. X ) is denoted F (resp. F).

Call T the right shift over X i.e. (Tω)(t) = ω(t − 1), t ≤ 0. The use of the right
shift, instead of the left shift currently used in dynamical systems theory, is related to
the formulation of the problem in terms of transitions probabilities (see for example
Bressaud et al. (1999)). We note ωa, the right concatenation of ω and a ∈ A, namely,
this is the sequence ω′ such that ω′(t − 1) = ω(t), t ≤ 0 and ω′(0) = a. Note that
T (ωa) = ω.

3.1.2 g-Functions

Definition 1 A g-function over (X, T ) is a measurable function g : X → [0, 1] which
satisfies, for all ω ∈ X :

∑

ω′,T (ω′)=ω
g(ω′) = 1. (21)

5 The concept of chains with complete connections, dates back to 1935 (Onicescu and Mihoc 1935). They
are a generalization of Markov chains with an infinite memory. More precisely, they are induced by condi-
tional probabilities of the form: P(ω(t + 1) |ωt−∞). These transition probabilities appear to be a extension
of the notion of k-step Markov chain with an infinite k. These objects must be taken with some precautions
because, in the non-Markovian case, the conditioning is always on an event of probability zero (see Maillard
(2007) for proper definition). The transition probabilities given by Eqs. (18), (19) define a system of such
transition probabilities.
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Discrete time spiking neurons with noise 877

Examples of g functions are precisely transition probabilities of type (18). Indeed,
for ω ∈ X , set:

g0(ω) = P
(
ω(0)|ω)

=
N∏

i=1

[
ωi (0)π

(
θ−Ci (ω)

σi (ω)

)
+(1−ωi (0))

(
1−π

(
θ − Ci (ω)

σi (ω)

))]
. (22)

Then, by definition, all ω′’s in the sum (21) have the form ω′ = ωa, and:

∑

ω′,T (ω′)=ω
g0(ω

′) =
∑

a∈A
P
(
a|ω) = 1.

We now give two properties of g0 used below.

3.1.3 g0 is non-null

A g function is non null on X if for all ω ∈ X , g(ω) > 0. We have:

Proposition 7 The g-function g0, given by (22), is non-null.

Proof It suffices to check that P
(
ω(0)|ω) > 0. If there exists ω ∈ X such that

P
(
ω(0)|ω) = 0, then, for some i ∈ {1 . . . N } , π

(
θ−Ci (ω)

σi (ω)

)
= 0 or 1. This imposes

that either Ci (ω) = ±∞ or σi (ω) = 0 which is not possible since these quantities are
bounded by bounds (16), (17). ��

3.1.4 g0 is continuous

Definition 2 The variation of a g-function g is:

vark(g) = sup
{|g(ω)− g(ω′)| : ω,ω′ ∈ X, ω(t) = ω′(t),∀t ∈ {−k, . . . , 0}} .

Definition 3 A g-function is continuous if vark(g) → 0 as k → +∞.

Proposition 8 g0 is continuous.

Proof We shall use the following inequalities.

1. For a collection 0 ≤ ai , bi ≤ 1,∀i = 1 . . . N , we have6

∣∣∣∣∣

N∏

i=1

ai −
N∏

i=1

bi

∣∣∣∣∣ ≤
N∑

i=1

|ai − bi |, (23)

as easily proved by recursion.

6 We thank one reviewer for this useful remark.
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2. For 0 ≤ x < 1, write
√

1 − x = 1 − ∑+∞
n=1 fn xn , where fn = 4−n(2n)!

(n!)2(−1+2n)
≥ 0

are the series coefficients of
√

1 − x . Then, for A, B real, 0 ≤ u, v < 1,

|A√
1 − u − B

√
1 − v| ≤ |A − B| +

+∞∑

n=1

fn|Aun − Bvn|

≤ |A − B| +
+∞∑

n=1

fn(|A|un + |B|vn). (24)

Fix i ∈ {1, . . . , N }. Set yi = θ−Ci (ω)

σi (ω)
, y′

i = θ−Ci (ω
′)

σi (ω
′) , Ci = Ci (ω),C ′

i = Ci (ω
′),

σi = σi (ω), σ
′
i = σi (ω

′), τi = τi (ω), τ
′
i = τi (ω

′) to alleviate notations in the proof.
We have, for k > 0,

vark(g0) = sup

{∣∣∣∣∣

N∏

i=1

ai −
N∏

i=1

bi

∣∣∣∣∣ : ω,ω′ ∈ X, ω(t) = ω′(t),∀t ∈ {−k, . . . , 0}
}
.

where ai = ωi (0)π (yi )+ (1 − ωi (0)) (1 − π (yi )), bi = ωi (0)π
(
y′

i

)+ (1 − ωi (0))(
1 − π

(
y′

i

))
. Moreover, since either ωi (0) = 0 or ωi (0) = 1, |ai − bi | = |π(yi ) −

π(y′
i )|. Therefore, using inequality (23),

vark g0 ≤
N∑

i=1

sup
{|π (yi )− π

(
y′

i )
) | : ω,ω′ ∈ X, ω(t) = ω′(t),∀t ∈ {−k, . . . 0}} .

Fix k > 0. Then, for all ω such that τi (ω) ∈ {−k . . . 0} , π (yi ) = π
(
y′

i

)
. There-

fore, the sup is realized for those ω,ω′ such that τi , τ
′
i < −k. Since γ < 1 we have

therefore γ−τ < γ k and 1
1−γ−τ <

1
1−γ k , for τ = τi , τ

′
i . We have |π(yi ) − π(y′

i )| ≤
|yi − y′

i |‖π ′‖∞ with ‖π ′‖∞ = 1√
2π

. Moreover, |yi − y′
i | ≤ θ

∣∣∣ 1
σi

− 1
σ ′

i

∣∣∣+
∣∣∣C ′

iσi −Ciσ
′
i

σiσ
′
i

∣∣∣.
We have,

∣∣∣∣
1

σi
− 1

σ ′
i

∣∣∣∣ =
√

1 − γ 2

σB

∣∣∣∣∣∣
1√

1 − γ−2τi
− 1√

1 − γ−2τ ′
i

∣∣∣∣∣∣

=
√

1 − γ 2

σB

√
1 − γ−2τi

√
1 − γ−2τ ′

i

∣∣∣∣
√

1 − γ−2τ ′
i −

√
1 − γ−2τi

∣∣∣∣

≤ 2
√

1 − γ 2

σB(1 − γ 2k)
γ 2k S(γ ),
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with

S(γ ) =
+∞∑

n=1

fnγ
2k(n−1), (25)

the last inequality coming from (24).
Likewise,

∣∣∣∣
C ′

iσi − Ciσ
′
i

σiσ
′
i

∣∣∣∣ =
√

1 − γ 2

σB

√
1 − γ−2τi

√
1 − γ−2τ ′

i

∣∣∣∣C
′
i

√
1 − γ−2τi − Ci

√
1 − γ−2τ ′

i

∣∣∣∣

≤
√

1 − γ 2

σB(1 − γ 2k)

(
∣∣C ′

i − Ci
∣∣ +

+∞∑

n=1

fnγ
2kn(|C ′

i | + |Ci |)
)

≤
√

1 − γ 2

σB(1 − γ 2k)

(∣∣C ′
i − Ci

∣∣ + 2γ 2k |C+
i |S(γ )

)

where C+
i is given by (16).

We have,

∣∣C ′
i − Ci

∣∣ =
∣∣∣∣∣∣

N∑

j=1

Wi j

⎛

⎝
−1∑

l=τi

γ−l−1ω j (l)−
−1∑

l=τ ′
i

γ−l−1ω′
j (l)

⎞

⎠+ Ii

1−γ (γ
−τi −γ−τ ′

i )

∣∣∣∣∣∣

≤
N∑

j=1

∣∣Wi j
∣∣

∣∣∣∣∣∣

−1∑

l=τi

γ−l−1ω j (l)−
−1∑

l=τ ′
i

γ−l−1ω′
j (l)

∣∣∣∣∣∣
+ |Ii |

1 − γ

∣∣∣γ−τi − γ−τ ′
i

∣∣∣.

Remark that

−1∑

l=−k

γ−l−1ω j (l) =
−1∑

l=−k

γ−l−1ω′
j (l),

since ω j (l) = ω′
j (l), l = −k · · · − 1. Therefore,

∣∣∣∣∣∣

−1∑

l=τi

γ−l−1ω j (l)−
−1∑

l=τ ′
i

γ−l−1ω′
j (l)

∣∣∣∣∣∣
=
∣∣∣∣∣∣

−k−1∑

l=τi

γ−l−1ω j (l)−
−k−1∑

l=τ ′
i

γ−l−1ω′
j (l)

∣∣∣∣∣∣
≤ 2γ k

1−γ .

Moreover,

|Ii |
1 − γ

∣∣∣γ−τi − γ−τ ′
i

∣∣∣ ≤ 2
|Ii |

1 − γ
γ k
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Finally,

∣∣C ′
i − Ci

∣∣ ≤ 2γ k

1 − γ

⎛

⎝
N∑

j=1

|Wi j | + |Ii |
⎞

⎠ .

Summarizing,

∣∣∣∣
C ′

iσi − Ciσ
′
i

σiσ
′
i

∣∣∣∣ ≤ γ k 2
√

1 − γ 2

σB(1 − γ 2k)

⎛

⎝ 1

1 − γ

⎛

⎝
N∑

j=1

|Wi j | + |Ii |
⎞

⎠ + γ k |C+
i |S(γ )

⎞

⎠

‖π(yi )−π(y′
i )‖ ≤

√
2

π

√
1−γ 2

σB(1−γ 2k)

⎛

⎝ 1

1−γ

⎛

⎝
N∑

j=1

|Wi j |+|Ii |
⎞

⎠+γ k(θ + |C+
i |)S(γ )

⎞

⎠ γ k,

and,

vark g0 ≤
√

2

π

√
1−γ 2

σB(1−γ 2k)

⎛

⎝ 1

1−γ

⎛

⎝
N∑

i, j=1

|Wi j |+
N∑

i=1

|Ii |
⎞

⎠+γ k

(
Nθ+

N∑

i=1

|C+
i |
)

S(γ )

⎞

⎠ γ k,

Remarking that S(γ ) → f1 as k → +∞ we conclude that vark g0 → 0 as
k → +∞ and behaves like Kγ k , where the constant

K =
√

2

π

1

σB

√
1 + γ

1 − γ

⎡

⎣
N∑

i, j=1

|Wi j | +
N∑

i=1

|Ii |
⎤

⎦ , (26)

depends on model parameters (synaptic weights and current) and N . ��

Remark Note that g0 is therefore Hölderian for the metric (2) (with an exponent log γ
log�

so it is Lipschitz for � = γ ).

3.2 The Gibbs equilibrium state

We now prove that the system (1) admits a unique invariant probability measure (also
called a g-measure). This measure satisfies a variational principle (equilibrium state)
and has the form of a Gibbs distribution in statistical physics.

3.2.1 g-Measure

Definition 4 Let g be a g-function. A probability measure μ in P(X,F) is a
g-measure if:
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∫
f (ω)g(ωa)μ(dω) =

∫

{ω(0)=a}
f (ω)μ(dω),

∀a ∈ A and ∀ f measurable with respect to F .

3.2.2 There exists a g-measure for (1) and it is unique

Since g0 is continuous there is always a g-measure. Now, a theorem of Johansson and
Oberg (2003) states that if g0 is a continuous, non-null g function on X satisfying:

∑

k≥0

var2
k (log g0)) < +∞, (27)

then the g-measure is unique.

Theorem 1 The dynamical system (1) has a unique g0-measure whatever the values
of parameters Wi j , i, j = 1 . . . N , Ii , i = 1 . . . N , γ, θ .

Proof This follows from the theorem of Johansson and Oberg. Indeed, using a proof
similar to Proposition 8 and the same notations, we have, for k > 0, and using that

log [ωi (0)π(yi )+ (1 − ωi (0)) (1 − π(yi ))] = ωi (0) log (π(yi ))

+ (1 − ωi (0)) log (1 − π(yi )) ,

vark(log g0)=sup

{∣∣∣∣∣

N∑

i=1

[
ωi (0)

[
log

(
π(yi )

π(y′
i )

)]
+(1−ωi (0))

[
log

(
1−π(yi )

1−π(y′
i )

)]]∣∣∣∣∣

× : ω,ω′ ∈ X, ω(t) = ω′(t),∀t ∈ {−k, . . . , 0}
}

≤
N∑

i=1

sup

{∣∣∣∣log

(
π(yi )

π(y′
i )

)
| + | log

(
1 − π(yi )

1 − π(y′
i )

)∣∣∣∣ :

× ω,ω′ ∈ X, ω(t) = ω′(t),∀t ∈ {−k, . . . 0}
}
.

From the bounds (16), (17),

√
1 − γ 2

θ − C+
i

σB
≤ yi , y′

i ≤ θ − C−
i

σB
.

Set a
def=√

1 − γ 2 mini=1...N
θ−C+

i
σB

and b
def= maxi=1...N

θ−C−
i

σB
< ∞. Denote ‖ f ‖[a,b]

def= supx∈[a,b] | f (x)|, we have:

vark(log g0)≤2‖π
′

π
‖[a,b]

N∑

i=1

sup
{|yi −y′

i | :ω,ω′ ∈ X, ω(t)=ω′(t),∀t ∈{−k, . . . 0}},
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where the norm

∥∥∥∥
π ′

π

∥∥∥∥
[a,b]

= e− b2
2

∫ +∞
b e− u2

2 du
,

is finite since b is finite. For the term maxi sup
{|yi − y′

i ) | : ω,ω′ ∈ X, ω(t) = ω′(t),
∀t ∈ {−k, . . . 0}}, we have the same majoration as in the proof of Proposition 8. Thus,

vark(log g0) ≤ K ′γ k,

with

K ′ = √
2π

∥∥∥∥
π ′

π

∥∥∥∥
[a,b]

K , (28)

K given by (26). It follows that
∑

k≥0 var2
k (log g0) ≤ K ′2 ∑

k≥0(γ
2)k < ∞. Then

the g0 measure is unique. ��
Let us now characterize the structure of this g-measure.

3.2.3 The Ruelle–Perron–Frobenius operator

For the g-function g0 define the transfer operator or Ruelle–Perron–Frobenius oper-
ator Lg0 from C(X,R) to C(X,R), where C(X,R) is the set of continuous real
functions on X , by:

Lg0 f (ω) =
∑

ω′:T (ω′)=ω
g0(ω

′) f (ω′). (29)

Denoting Ln
g0
, n > 0, the n-iterates of the RPF operator, Ln

g0
f is the conditional

expectation of f on the time interval [0, n − 1] given the history ω. The Ruelle–
Perron–Frobenius is the extension of matrices of probability transitions for Markov
chains.

The adjoint of Lg0 maps the set of probability measures on X to itself and is defined
by:

L∗
g0
μ( f ) = μ(Lg f ).

A probability measure μ on X is a g-measure if and only if L∗
g0
μ = μ (Ledrappier

1974).

3.2.4 Equilibrium state

Let ψ be a continuous function X → R such that
∑∞

k=0 vark(ψ) < ∞ (also called a
regular potential, Keller 1998). Call PT (X) the set of T -invariant finite measures on
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X . For μ ∈ PT (X) let

h(μ) = lim sup
n→+∞

1

n + 1

∑

[ω]n
0

μ([ω]n
0) logμ([ω]n

0), (30)

be the entropy of μ, where the sum holds over all cylinders [ω]n
0 of length n + 1. Note

that the entropy can be defined in a more general setting (see Keller 1998). Here we
take a definition which corresponds more to the one used in neural networks dynamics
analysis.

Definition 5 An equilibrium state, μψ , is a T -invariant measure on X , such that:

P(ψ)
def=h(μψ)+ μψ(ψ) = sup

μ∈PT (X)
h(μ)+ μ(ψ). (31)

The quantity P(ψ) is called the “topological pressure” (Bowen 2008; Ruelle 1978;
Sinai 1972). This is a fundamental quantity and we come back to it in Sect. 4. It is
zero whenever the potential ψ is normalized, which is the case here since ψ is the log
of a conditional probability.

Ledrappier has shown (Ledrappier 1974) that if ψ is a regular potential then the
equilibrium states for ψ are the g-measures for a continuous g function. In our case
where the g-measure is unique, g0 is related to the potential ψ given by:

ψ(ω) = log g0(ω).

Therefore, the following holds.

Theorem 2 Whatever the parameters values the system (1) has a unique g0 proba-
bility measure, μψ , which is an equilibrium state for the potential

ψ(ω) ≡ ψ(ω0−∞) = log g0(ω)

=
N∑

i=1

[
ωi (0) log

(
π

(
θ−Ci (ω)

σi (ω)

))
+(1−ωi (0)) log

(
1−π

(
θ−Ci (ω)

σi (ω)

))]
.

(32)

3.3 Consequences

3.3.1 Asymptotic distribution of membrane potentials

A first consequence of Proposition 4 and Theorem 1 is:

123



884 B. Cessac

Proposition 9 The membrane potential vector V is stationary with a product density
ρV (v) = ∏N

i=1 ρVi
(vi ) where:

ρVi
(v) =

∫

X

1√
2πσi (ω)

exp

(
−1

2

(
v − Ci (ω)

σi (ω)

)2
)

dμψ(ω). (33)

Its expectation is μψ
[
Ci (ω)

]
and its variance μψ

[
σ 2

i (ω)
]
.

Comments. This density is a “mixture” of Gaussian densities, but it is not Gaussian.
Each Gaussian density in the decomposition depends on a specific history ω, and the
integral holds on the set of all possible histories with a weight μψ(ω). Therefore, to
obtain a closed form for the stationary density of membrane potential we need to know
the invariant probability μψ which weights the possible histories over an unbounded
past. It has therefore a highly non trivial structure as announced in Sect. 2.3.3.

3.3.2 Firing rates

Define:

ri (ω)
def= P(ωi (0) = 1|ω) = π

[
θ − Ci (ω)

σi (ω)

]
, (34)

the probability that neuron i fires at time 0 given the past ω and,

ri
def=μψ(ωi (0) = 1), (35)

called “the firing rate” of neuron i . We have:

ri = μψ (ri (ω)) = μψ

(
π

[
θ − Ci (ω)

σi (ω)

])
. (36)

3.3.3 Entropy

It results from (31) and the normalization of the potentialψ that 0 = h(μψ)+μψ(ψ).
Therefore:

h(μψ) = −
N∑

i=1

μψ

(
ωi (0) log

(
π

[
θ − Ci (ω)

σi (ω)

])

+(1 − ωi (0)) log

(
1 − π

[
θ − Ci (ω)

σi (ω)

]))
.
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Since either ωi (0) = 0 or 1, we have:

h(μψ) = −
N∑

i=1

[
riμψ

(
log

(
π

[
θ − Ci ( ω )

σi ( ω )

]))

+ (1 − ri )μψ

(
log

(
1 − π

[
θ − Ci ( ω )

σi ( ω )

]))]
,

and finally,

h(μψ) = −
N∑

i=1

[
riμψ (log ri (ω))+ (1 − ri )μψ (log(1 − ri (ω)))

]
. (37)

This looks like the classical entropy for a Bernoulli scheme but with a crucial differ-
ence: one has to take the expectation of the log of the probability instead of the log of
the expectation.

Moreover ψ(ω) < 0 (the strict inequality comes from proposition 7). Therefore,
μψ(ψ) < 0 and:

Proposition 10 The entropy h(μψ), given by (37), is positive whatever the value of
parameters Wi j , i, j = 1 . . . N , Ii , i = 1 . . . N , θ, γ .

Though this result appears “evident” a priori, it is proved here, as an easy conse-
quence of the variational principle (31). Moreover, it provides an explicit value for the
entropy, which depends on parameters.

3.3.4 Gibbs state

In the present setting equilibrium states are Gibbs states (Keller 1998). A Gibbs state
for the potential ψ is a probability measure μψ such that one can find some constants
P(ψ), c1, c2 with 0 < c1 ≤ 1 ≤ c2 such that for all n ≥ 0 and for all ω ∈ X :

c1 ≤ μψ
(
[ω]n

0

)

exp
[−(n + 1)P(ψ)+ ∑n

k=0 ψ(T
kω)

] ≤ c2. (38)

Basically, the condition (38) expresses that the measure of the cylinder [ω]n
0 behaves

like:

μψ
(
[ω]n

0

) ∼ exp
∑n

k=0 ψ(ω
k−∞)

Z (n+1)
ψ (ω)

, (39)

which has therefore the classical form of Gibbs distribution where spins chains are
replaced by sequences of spiking patterns and where the normalization factor Z (n+1)

ψ

(ω) is analog to a “partition function” (but depends onω). Note that P(ψ) = limn→+∞
1

n+1 log Z (n+1)
ψ (ω), where the limit exists and is constant forμψ -almost-everyω. Thus

the topological pressure P(ψ) is analog to a free energy density.
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3.3.5 Kullback–Leibler divergence

Let μ, ν be two T -invariant measures. The Kullback–Leibler divergence between μ
and ν is given by:

d(μ, ν) = lim sup
n→+∞

1

n + 1

∑

[ω]n
0

μ
(
[ω]n

0

)
log

[
μ
(
[ω]n

0

)

ν
(
[ω]n

0

)
]
, (40)

where the sum holds on all possible cylinders [ω]n
0. It provides some notion of asym-

metric “distance” between μ and ν. Minimizing this divergence, corresponds to min-
imizing “what is not explained in the empirical measure μ by the theoretical measure
ν”.

The following holds. Forμ an ergodic measure andμψ a Gibbs state with a potential
ψ , both defined on the same set of sequences, one has (Bowen 2008; Chazottes and
Keller 2009; Keller 1998; Ruelle 1969):

d
(
μ,μψ

) = P(ψ)− μ(ψ)− h(μ). (41)

This result is used in the next section.

4 Finite range approximations

4.1 Constructing a Markov chain with finite memory

The main difficulty in handling the transition probabilities (18) and the related equi-
librium state is that they depend on an history dating back to τi (ω

t−∞), where τi (ω
t−∞)

is unbounded. On the other hand, the influence of the activity of the network, say at
time −l, on the membrane potential Vi at time 0, appearing in the term xi j (ω

0−∞) =∑0
l=τi (ω

0−∞)
γ−lω j (l), (Eq. 12) decays exponentially fast as l → −∞. Thus, one may

argue that after a characteristic time depending on 1
| log(γ )| the past network activity has

little influence on Vi (0). We now make this statement precise, especially evaluating
the error attached to this approximation, before exploring its consequences in Sect. 5.

4.1.1 Range-R approximation

Assume that we want to approximate the statistics of spikes, given by the dynamics (1),
by fixing a finite time horizon R such that the membrane potential at time 0 depends on
the past only up to some finite time −R. In this way, we truncate the histories and we

approximate the transition probabilities P
(
ω(0)|ω−1−∞

)
, with unbounded memory, by

transition probabilities P
(
ω(0)|ω−1

−R

)
where τi (ω

−1−∞) is replaced by τi (ω
−1
−R) (see

Eq. (3)), thus limiting memory to at most R time steps in the past.
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These approximated transition probabilities constitute therefore a Markov chain
with a memory depth R. How good is this approximation? To answer this question let
us first construct the Markov chain within more details.

4.1.2 Blocks coding

Since we are now only considering finite histories given by spike blocks of length R,
of the form ω−1

−R , we may encode each of these blocks by an integer

w =
N∑

i=1

−1∑

n=−R

2(i−1)+(n+R)Nωi (n). (42)

We writew ∼ ω−1
−R . These integers or words constitute the states of the Markov chain.

We note

�Rdef=
{

0, . . . , 2N R − 1
}
,

the set of words.

4.1.3 Transition matrix

From Proposition 6, this chain is homogeneous, i.e. transition probabilities does not
depend on time. They are encoded in a 2N R × 2N R matrix L(R) with entries:

L(R)
w′,w

def=
{

P
(
ω(0)|ω−1

−R

)
, if w′ ∼ ω−1

−R, w ∼ ω0−R+1,

0, otherwise.
(43)

Ifw′ ∼ ω−1
−R, w ∼ ω0−R+1 we say thatw “follows”w′ or that the transitionw′ → w

is “legal”. Note that when using a matrix representation where w′ ∈ �R , w ∈ �R not
all transition are legal (w′, w must correspond to overlapping blocks). We therefore
use the convention that non-legal transitions have a zero probability.

It results from Proposition 7 that any legal transition has a positive probability.
Note that the transition matrix L(R) corresponds to the matrix representation of the
Ruelle–Perron–Frobenius (29) operator in the case of a finite memory.

4.1.4 Incidence matrix

The set of transitions is encoded in a 2N R × 2N R matrix I, called incidence matrix
with entries:

Iw′w =
{

1, if w′ → w is legal
0; otherwise.

(44)
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It is easy to show that I is primitive namely ∃m > 0 such that ∀w,w′ ∈ �R × �R ,
Im
w′w > 0, where Im is the m-th power of I. Indeed, having Im

w′w > 0 means that there
exists a raster plot ω which contains the blockw′ and the blockw where the first spik-
ing pattern of each block is separated by m time steps. Therefore, taking m = R + 1
any raster containing the concatenation of blocks w′w satisfies the requirement.

4.1.5 Range R + 1 potential

Using the same representation as (42), but with blocks of size R+1, to each blockω0−R

of length R +1 we associate a word W = ∑N
i=1

∑0
n=−R 2(i−1)+(n+R)Nωi (n) ∼ ω0−R

and define:

ψ(R)(W ) =
N∑

i=1

[
ωi (0) log

(
π

(
θ − Ci (ω

−1
−R)

σi (ω
−1
−R)

))

+ (1 − ωi (0)) log

(
1 − π

(
θ − Ci (ω

−1
−R)

σi (ω
−1
−R)

))]
, (45)

called a range-R + 1 potential. It corresponds to an approximation of the potential
(32) when the memory depth of the chain is R. Then:

L(R)
w′,w = eψ

(R)(W )Iw′w.

4.1.6 The Perron–Frobenius theorem

Since I is primitive and since all legal transitions have a positive probability, L(R) is
primitive and the Perron–Frobenius theorem holds (Gantmacher 1998; Seneta 2006).
L(R) has a real positive eigenvalue s with maximal modulus, isolated from the rest of
the spectrum. Moreover, since L(R) is a transition probability, s = 1. The quantity

P(ψ(R)) = log s = 0

is the topological pressure of the potential ψ(R) (Keller 1998).
The corresponding left and right eigenvectors are respectively denoted l and r i.e.

lL(R) = sl and L(R)r = sr where r as positive entries rw > 0. Without of generality
we may assume that 〈l, r〉 = 1, where 〈, 〉 denotes the standard scalar product.

The Markov chain has a unique invariant probability measure μψ(R) = lr (i.e
∀w ∈ �R , μψ(R) (w) = lwrw). From this, one can compute the probability of spike
blocks of arbitrary length by the Chapman–Kolmogorov formula:

μψ(R) ([ω]t+R
s ) = μψ(R) (w(s))

t−1∏

n=s

L(R)w(n)w(n+1),

with w(n) ∼ ωn+R
n .
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Then, one can check that μψ(R) is a Gibbs distribution (Keller 1998) (see Eq. 38).
Moreover, it is also an equilibrium state in the sense of (31). As a result 0 = h(μψ(R) )+
μψ(R) (ψ

(R)), therefore

h(μψ(R) ) = −μψ(R) (ψ(R)).

4.2 Convergence of the approximation

Let us now discuss how well the range-R potential (45) approximates the infinite range
potential (32). By definition of a range-R +1 potentialψ(R)(ω) = ψ(R)(ω0−R) so that
we can compare ψ and ψ(R). One has:

‖ψ − ψ(R)‖∞ ≤ sup
{|ψ(ω)− ψ(ω′)| : ω,ω′ ∈ X, ω(t) = ω′(t),

∀t ∈ {−R, . . . , 0} }def=varR(ψ),

so that, from Theorem 1,

‖ψ − ψ(R)‖∞ ≤ K ′γ R, (46)

where K ′ is given by (28). Therefore, ψ(R) approaches ψ exponentially fast, as R
growths, with a rate γ . This is in fact a classical result in ergodic theory: regular
potential are approximated by finite-range potential in the sup norm where ‖ψ −
ψ(R)‖∞ ≤ C�R , for some 0 < � < 1 (see Eq. 2). Here it is natural to take � = γ .

The implications on statistics is related to the Kullback–Leibler divergence (40).
Indeed, since μψ and μψ(R) are Gibbs distributions for the right shift T we may use
(41), giving:

d
(
μψ(R) , μψ

) = P(ψ)− μψ(R) (ψ)− h(μψ(R) ) = μψ(R) (ψ
(R) − ψ),

where we used P(ψ) = 0 (normalization of ψ) and h(μψ(R) ) = −μψ(R) (ψ(R)) (see
e.g. Chazottes 1999 for a more general proof). Therefore,

d
(
μψ(R) , μψ

)
< K ′γ R . (47)

Therefore, the Kullback–Leibler divergence between the two measures μψ,μψ(R) ,
decays exponentially fast with a decay rate γ .

A practical consequence of this result is that it might be sufficient, for practical
purposes, to approximate ψ with a potential of range:

R ∼ − log K ′

log γ
. (48)

Note however that the constant K ′ depend on several parameters. Especially, it diverges
when σB → 0 (or γ → 1). As a consequence, depending on these parameters, the
effective range can be quite large.
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5 Raster plots statistics

As discussed in the introduction, the neuroscience community is confronted to the
delicate problem of characterizing statistical properties of raster plots from finite time
spike trains and/or from finite number of experiments. This requires an a priori guess
for the probability of raster plots, what we call a statistical model. These models can
be extrapolated from heuristic arguments or from principles such as the Jaynes argu-
ment from statistical physics (Jaynes 1957) (see Sect. 5.3.2). In this section, we show
that Markovian approximations introduced in the previous section constitute such sta-
tistical models, from which classical statistical indicators used by the neuroscience
community can be explicitly computed in the case of model (1).

5.1 Two representations of the potential ψ(R)

5.1.1 Spike-block representation

The potential ψ(R) is a function of W ∼ ω0−R . Therefore, it takes only L = 2N (R+1)

values, explicitly given by (45). To each possible block ω0−R we associate a word
Wn, n = 1 . . . L . Call χn(W ) the characteristic function, equal to 1, if W = Wn , and
0 otherwise. Then:

ψ(R)(W ) =
L=2N (R+1)∑

n=1

αnχn(W ) ≡ ψ(R)α (W ), (49)

where αn = ψ(R)(Wn). This decomposition of the potential is called the spike-block
representation of ψ(R) and the index α in (49) (which is the vector (αn)

L
n=1) makes

this representation explicit. Note that α depend (analytically) on the model-parameters
Wi j , i, j = 1 . . . N , Ii , i = 1 . . . N , γ, θ .

5.1.2 Interpretation

This representation is quite natural since eαn is nothing but the probability P(ω(0)|
ω−1

−R) with Wn ∼ ω0−R , namely a matrix element of the transition matrix (43). This
function corresponds to the so-called “conditional intensity” introduced in neurosci-
ence data analysis by researchers like Pouzat and Chaffiol (2009) and the exponential
distribution introduced by these authors is actually our Gibbs distribution. Here, we
are able to compute explicitly this distribution, because we are dealing with a model,
while Pouzat and Chaffiol are coping with real world data.

Fixing an history ω−1
−R the sum of eαn ’s, over all blocks Wn having an history ω−1

−R

and such that ωi (0) = 1, is the probability that neuron i fires given the history ω−1
−R .

More generally, the product of the transition matrix L elements (43) provides the
probability of a certain sequence of spikes (“response”) given a certain history. If one
focuses on the response R of a subset of neurons in the network, to spikes emitted
by an another subset of neurons in the network-corresponding to a given history and
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considered as a stimulus S- the matrix L in the α-representation allows the computa-
tion of the probability P(R|S). Then, by Bayesian inference, and since the probability
P(S)of the stimulus is known (it is given by the invariant measure of the Markov chain),
one infers P(S|R). This provides one way of characterizing the “neural code”, in the
sense of Rieke et al. (1996), at the level of networks of neurons, where stimuli are
spike trains.

5.2 The spikes-uplets representation

Though natural the α-representation is not the most commonly used. Let us introduce
another representation.

5.2.1 Monomials

An order-n monomial is a product ωi1(t1) . . . ωin (tn), where 1 ≤ i1 ≤ i2 ≤ · · · ≤
in ≤ N and −∞ < t1 ≤ t2 ≤ · · · ≤ tn < +∞, and where there is no repeated pair of
indexes (i, t). Since ωi (t)k = ωi (t),∀i = 1 . . . N , t ∈ Z, k > 1 the last requirement
avoids redundancies. A polynomial is a linear combination of monomials.

The monomial ωi1(t1) . . . ωin (tn) takes values in {0, 1} and is 1 if and only if each
neuron il fires at times tl , l = 1 . . . n. On phenomenological grounds this corresponds
to a spike n-uplet (i1, t1), . . . , (in, tn) (neuron i1 fires at time t1, and neuron i2 fires at
time t2, . . .).

5.2.2 Spikes-uplets expansion of ψ

Returning to the spike-block representation (49), the characteristic function of the
word Wn, χn(W ), reads:

χn(W ) = Qn(W )Rn(W ),

with

Qn(W ) =
∏

(i,t),ωi (t)=1

ω′
i (t),

where W represents a spike block ω′0−R , while the product holds over all pairs
(i, t), 1 ≤ i ≤ N ,−R ≤ t ≤ 0 such that ωi (t) = 1, in the word Wn ∼ ω0−R .
Likewise,

Rn(W ) =
∏

( j,s),ω j (s)=0

(1 − ω′
j (s)) =

kn∑

m=1

(−1)m Rn,m(W ),

where Rn,m are monomials of order ≤ R. Since ωi (t)k = ωi (t), k ≥ 1, Qn, Rn are
monomials of order ≤ R and all χn(W )’s are polynomials of order ≤ R.
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For N , R ∈ Z, we note P(N , R) the set of non repeated pairs of integers (i, n)with
i ∈ {1, . . . , N } and t ∈ {−R, . . . , 0}. We have just proved that ψ is approximated by
a range-R polynomial expansion of the form:

ψ
(R)
λ (W ) =

R∑

l=0

∑

(i1, t1), . . . , (il , tl ) ∈ P(N , R),

λ
(l)
i1,t1,...,il ,tl

ωi1(t1) . . . ωil (tl), (50)

where W ∼ ωR
0 . This is called the “spike-uplets representation”. It is obviously equiv-

alent to the spike-block representation ψ(R)α (the λi ’s are linear combinations of the
αl ’s) but this expansion is more convenient to discuss the link between our results and
the standard approaches used in the neuroscience community. Note that a spike-block
contains 0’s and 1’s (it tells us which neurons are firing and which neurons are not
firing) while a spike-uplet takes only into account firing neurons. As a consequence
there is some redundancy in the spike-block representation that can be removed in the
spike-uplets representation (see details below).

5.2.3 Interpretation

Since the analytic function log(π(x)) has a series expansion for x ∈ R, setting x =
θ−Ci (ω

−1
−R)

σi (ω
−1
−R)

in (45) xn is a sum of terms ωi1(t1) . . . ωin (tn) and using the series expan-

sion7 one can compute explicitly the coefficients of the spike-uplets expansion. Due
to stationarity (see details below) one can only consider spike-uplets of the form
ωi (0)ω j1(t1) . . . ω jl (tl), with t1, . . . , tl < 0. They are combinations of terms propor-
tional to Wi j1 Wi j2 . . .Wi jlγ

−(t1+t2+...tl ) which have a nice interpretation. The sum of
these terms corresponds to the cumulative effect of spikes emitted by neurons j1, . . . , jl
at times t1, . . . , tl in the past, on neuron i at time 0. Actually, these terms are related to
a linear response theory as developed in a different context in Cessac and Sepulchre
(2004, 2006).

5.3 Statistical models

5.3.1 The topological pressure as a cumulant generator

Let us return to the transition matrix L(R) and related topological pressure P(ψ(R))
introduced in Sects. 4.1.3, 4.1.6. These quantities depend on α or λ according to the
representation (which is nothing but a change of variables).

7 Since ωi (t)
k = ωi (t), ∀i = 1 . . . N , t ∈ Z, k > 1, the terms of the series can be grouped together giving

rise to a finite sum of monomials.
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The pressure is differentiable with respect to λ and one has8:

∂P(ψ(R))

∂λ
(l)
(i1,t1),...,(il ,tl )

= μψ(R)
[
ωi1(t1) . . . ωil (tl)

]
,

Therefore, the derivation of the pressure with respect to the quantity λ(l)(i1,t1),...,(il ,tl )
provides the μψ(R)-probability of the spike n-uplet ωi1(t1) . . . ωil (tl).

In particular:

∂P(ψ(R))

∂λ
(1)
i1,t1

= μψ(R)
[
ωi1(t1)

]
, (51)

the firing rate of neuron i1 at time t1. Since dynamics is stationary this quantity does not
depend on t (see Eq. (35)). As a consequence all termsλi,t , i fixed and t ∈ {−R, . . . , 0}
play the same role and we can simplify the potential (50) in keeping, as first order
terms, the monomials of form λ

(1)
i ωi (0), i = 1 . . . N .

In the same way:

∂P(ψ(R))

∂λ
(2)
(i1,t1),(i2,t2)

= μψ(R)
[
ωi1(t1)ωi2(t2)

]
,

From stationarity it follows that this quantity depends only on t2 − t1. So, there are
redundant terms in the expansion (50) and we may write the part of the expansion
corresponding to pairs of spikes as

∑R/2
τ=−R/2

∑N
i1,i2=1 λ

(2)
i1,i2,τ

ωi1(0)ωi2(τ ).

Higher order redundant terms can be removed as well, taking into account the sta-
tionarity of the process. As a consequence we may write the spike-uplets expansion
of ψ in the form:

ψ
(R)
λ (W ) =

K∑

l=0

λlφl(W ), (52)

where l enumerates all non redundant monomials φl of order ≤ R, including the
constant monomial φ0(W ) = 1.

5.3.2 Statistics of raster plots from Jaynes formalism

We would like now to relate the present analysis to a standard problem in spike train
analysis. Assume that we have generated a (finite) raster plot ωexp from the dynamical

8 Here the pressure P(ψ(R)) is considered as a function of the λ’s, where these parameters are arbitrary.

As a consequence the corresponding potential ψ(R)λ is no longer normalized. In this case the topological

pressure is defined as the logarithm of the maximal eigenvalue of the matrix L(R). The fact that a potential
of the form (50) are in general not normalized has deep practical consequences widely discussed in the
paper (Vasquez et al. 2010).
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system (1) and that we want to recover the probability distribution μψ from this ras-
ter plot, without any other information. A usual approach consist of computing the
average value of some prescribed spike-uplets, and infer the corresponding probabil-
ity distribution from a variational principle introduced by Jaynes (1957). The Jaynes
approach has been used by several authors in the field of experimental spike train
analysis (Marre et al. 2009; Schneidman et al. 2006; Tkacik et al. 2006).

So, let us assume that, from the raster plot ωexp, we have computed, by time aver-
age,9 the average value Cl of an a priori fixed set of monomials φl , l = 1 . . .M .
To find a probability distribution μψtest which matches these average values, without
making additional assumptions, one maximizes the statistical entropy under the con-
straints μψtest (φl) = Cl , l = 1 . . .M . In the context of thermodynamic formalism this
amounts to finding a set of parameters λl satisfying the variational equation (31) for
a finite range potentialψtest = ∑M

l=1 λlφl . The λl ’s are adjustable Lagrange multipli-
ers, which have to be tuned using (51), so that the average of φl with respect to μψtest

is equal to Cl

Let us give two classical examples.

5.3.3 Homogeneous Bernoulli statistics

The simplest example consists of only measuring, thus, constraining the value of fir-
ing rates. This amount to considering a range-1 potential (Dayan and Abbott 2001;
Gerstner and Kistler 2002a; Rieke et al. 1996):

ψtest (W ) =
N∑

i=1

λ
(1)
i ωi (0),

corresponding to a probability:

μψtest (ω(0)) =
N∏

i=1

eλ
(1)
i ωi (0)

1 + eλ
(1)
i

.

Therefore, taking only the first order monomials allows one to select a probability
distribution under which neurons fire independently with a time-independent rate:

ri = eλ
(1)
i

1 + eλ
(1)
i

.

5.3.4 Pairwise interactions

This statistical model has been introduced, in the context of spike trains statistics, by
Schneidman et al. (2006). Here, still R = 1 and ψtest does not depend on t but pairs

9 This argument extends to the case where several empirical raster plots have been generated. Then, average
values are obtained by combinations of time average and sample average.
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of spikes occurring at the same time are considered. Then,

ψtest (W ) =
N∑

i=1

λ
(1)
i ωi (0)+

∑

1≤i1<i2≤N

λ
(2)
i1,i2

ωi1(0)ωi2(0).

Here, the related probability measure does not factorize any more but all information
about spike train statistics is contained in the first and second order spike-uplets.

5.3.5 Choosing an a priori set of monomials

More general potentials can be considered as well (Marre et al. 2009). In view of the
present analysis, fixing an a priori set of observables, often fixed from a priori hypoth-
eses on the relative role of spike-uplets (e.g. rate versus synchronization), amounts to
fixing a test potential ψtest . Therefore, there are as many models as possible choices
of observables. How to discriminate them ?

The probability distributionμψtest is the Gibbs distribution for the potentialψtest . It
provides an approximation of the invariant measure μψ in two senses. First,
ψtest contains only some terms in the polynomial expansion of a finite range potential
ψ(R), which are fixed from the a priori choice of observables. Second,ψ(R) is a finite-
range approximation of the exact, infinite-range, potential ψ . The “error” is measured
by the Kullback–Leibler divergence (40):

d
(
μψtest , μψ

) = μψtest (ψtest − ψ).

It is upper-bounded by Cγ N R . This fixes, for model (1), an estimate for the value of
R given by (48).

Nevertheless, the number of terms increases exponentially with R and N and there-
fore, especially if γ is close to 1 there is an overwhelming number of monomials. Now,
it might be, that some terms φl are less important than others: the corresponding coef-
ficient λl vanishes or is small compared to others terms. As discussed in Cessac et al.
(2009) and shortly commented in Sect. 6.3, neural mechanisms such as plasticity
certainly reinforce some of these terms (especially rates and spike pairs). On a more
abstract setting, our analysis shows that the Kullback–Leibler divergence (40) gives an
indication of the distance between the probability reconstructed from Jaynes principle,
with a “guess” potential, and the true probability μψ . This opens up a way to compare
and select statistical models by minimizing the Kullback–Leibler divergence, using
Eq. (40). This aspect and its numerical implementation are discussed in Vasquez et al.
(2010).

6 Discussion and conclusion

In this paper we have addressed the question of characterizing the spike train statistics
of a network of LIF neurons with noise, in the stationary case, with two aims. Firstly,
to obtain analytic and rigorous results allowing the characterization of the process
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of spike generations. For this, we have used the realm of ergodic theory and ther-
modynamic formalism, which looks well adapted for this purpose. We have obtained
unexpected results, especially the fact that, even so simple models of neural networks
have, strictly speaking, an unbounded memory rendering spike train statistics non-
Markovian. The common wisdom in the field of neural networks dynamics suggests,
however, that there is a characteristic time scale after which the system essentially
looses its memory. Here, this time scale is controlled by γ , the leak rate, closely
related to synaptic response time.

The second goal was to make a connection from this mathematical analysis toward
the empirical methods used in neuroscience community for the analysis of spike trains.
Here, we have shown that the Jaynes method, based on an a priori choice of a “guess”
potential, with finite range, amounts to approximate the exact probability distribution
by the Gibbs distribution of a Markov chain (Csiszar 1984). The degree of approx-
imation can be controlled by the Kullback–Leibler divergence which can computed
using a classical result in the thermodynamic formalism. This analysis opens up the
possibility of developing efficients algorithms to estimate at best the statistic of spike
trains from experimental data, using several guess potential and selecting the one
which minimizes the KL divergence (Vasquez et al. 2010).

Clearly, this work is just a beginning, since, especially, it deals with a rather simple
model. Let us now briefly comment several possible extensions.

6.1 Conductance based Integrate-and-Fire neurons

A natural extension of the present works concerns the so-called Generalized Integrate-
and-Fire models (Rudolph and Destexhe 2006), which are closer to biology (Jolivet
et al. 2004, 2006). The occurrence of a post-synaptic potential on synapse j , at time
t (n)j , results in a change of membrane potential. In conductance based models this
change is integrated in the adaptation of conductances. It has been shown in Cessac
and Viéville (2008) that, under natural assumptions on spike-time precision that the
continuous-time evolution of these equations reduces to the discrete time dynamics:

Vi (t + 1) = γi (t, ω
t−∞) [1 − Z(Vi (t))] Vi (t)+ Ji (t, ω

t−∞), i = 1 . . . N ,

where:

γi (t, ω
t−∞)

def=e− ∫ t+1
t gi (s,ωt−∞) ds < 1,

is the integral of the conductance gi (s, ωt−∞) over the time interval [t, t + 1[. Con-
ductances depend on the past spikes via the relation:

gi j (t, ω
t−∞) = Gi j

M j (ω
t−∞)∑

n=1

α j (t − t (n)j ).

123



Discrete time spiking neurons with noise 897

In this equation, M j (ω
t−∞) is the number of times neuron j has fired at time t (it can

be infinite). α is the synaptic profile (it decays exponentially fast) and t (n)j is the time
of occurrence of the n-th spike in the raster ω. Gi j is a positive constant proportional
to the synaptic efficacy

{
Wi j = E+Gi j if j ∈ E,
Wi j = E−Gi j if j ∈ I,

where EL , E+, E− are respectively the Nernst potentials for the leak, the excitatory
(set E) and the inhibitory synapses (set I).

The term,

Ji (t, ω
t−∞) =

t+1∫

t

ii (s, ω
t−∞) νi (s, t + 1, ωt−∞) ds,

is the corresponding integrated synaptic current with:

ii (t, ω
t−∞) = EL

τL
+ E+ ∑

j∈E
gi j (t, ω

t−∞)+ E− ∑

j∈I
gi j (t, ω

t−∞)+ i (ext)
i (t),

νi (s, t + 1, ωt−∞) = e− ∫ t+1
s gi (s′,ωt−∞) ds′

.

The difficulty here is that the coefficient γi (t, ωt−∞), which is the analog of γ in
Eq. (1) depends on the whole past. This introduces another non-Markovian effect in
the dynamics. In this case the computation of the potential corresponding to (32) is
clearly more complex. This case is under current investigations.

6.2 Non stationarity

One weakness of the present work is that it only considers stationary dynamics, where
e.g. the external current Ii is independent of time. Besides, we have taken the limit
s → −∞ in Sect. 2 to remove the dependence in the initial condition V (s). However,
real neural systems are submitted to non static stimuli, and transients play a crucial
role. To extend the present analysis to these case one needs the proper mathematical
framework. The non stationarity requires to handle time dependent Gibbs measures.
In the realm of ergodic theory applied to non equilibrium statistical physics, Ruelle
has introduced the notion of time-dependent SRB measure (Ruelle 1999). A similar
approach could be used here, at least formally.

Handling the transients is an even more tricky question. The main difficulty is to
propose a probability distribution for the initial condition V (s). From the dynamical
systems point of view it is natural to take e.g. Lebesgue, and extensions toward this
case are under current investigations. But if one wants to make serious extrapolations
of mathematical results towards neuroscience one has to ask why the “initial state” of
a neural network, namely the state in which the neural network is as the experiment
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starts, should be uniform in the phase space (or Gaussian or whatsoever), as soon as
this initial state is the result of a previous (phylogenetic and ontogenetic) evolution ?

6.3 Synaptic plasticity

In neural networks, synaptic weights are not fixed, as in (1), but they evolve with the
activity of the pre- and post-synaptic neuron (synaptic plasticity). This means that
synaptic weights evolve according to spike train statistics, while spike train statistics
is constrained by synaptic weights. This interwoven evolution has been considered
in Cessac et al. (2009) under the assumption that spike-train statistics is character-
ized by a Gibbs distribution. Actually, the present work confirms this hypothesis in
the case of LIF models. The main conclusion of Cessac et al. (2009) is that synaptic
mechanism occurring on a time scale which is slow compared to neural dynamics are
associated with a variational principle. There is a function, closely related to the topo-
logical pressure, which decreases when the synaptic adaptation process takes place.
Moreover, the synaptic adaptation has the effect of reinforcing specific terms in the
potential, directly related to the form of the synaptic plasticity mechanism. The interest
of this result is that it provides an a priori guess of the relevant terms in the potential
expansion. A contrario, it allows one to constrain the spike train statistics of a LIF
model, using synaptic plasticity with an appropriate rule which can be determined
from the form of the expected potential.

Finally, an interesting issue fitting together with the discussion of non stationarity
and synaptic plasticity, is to analyse spike frequency adaptation in this context (Benda
and Herz 2003; Benda et al. 2005; Crook et al. 1998; Ermentrout et al. 1926).
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